summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc/generic/pst-cox
diff options
context:
space:
mode:
authorKarl Berry <karl@freefriends.org>2008-02-27 01:41:10 +0000
committerKarl Berry <karl@freefriends.org>2008-02-27 01:41:10 +0000
commit52e0e587ff774ec47a088432cdb5738a39fb3739 (patch)
treedb08a7c283495c0bbdc3bf159b7e0b96f68a453b /Master/texmf-dist/doc/generic/pst-cox
parentf82487f7cb5a8a26f143589f509ed0a76b51b82f (diff)
new (and special install) pstricks package pst-cox (24feb08)
git-svn-id: svn://tug.org/texlive/trunk@6759 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Master/texmf-dist/doc/generic/pst-cox')
-rw-r--r--Master/texmf-dist/doc/generic/pst-cox/README54
-rw-r--r--Master/texmf-dist/doc/generic/pst-cox/gpl.txt674
-rw-r--r--Master/texmf-dist/doc/generic/pst-cox/lgpl.txt165
-rw-r--r--Master/texmf-dist/doc/generic/pst-cox/pst-coxcoor/Gallery.tex1573
-rw-r--r--Master/texmf-dist/doc/generic/pst-cox/pst-coxcoor/pst-coxcoor_doc.pdfbin0 -> 895667 bytes
-rw-r--r--Master/texmf-dist/doc/generic/pst-cox/pst-coxcoor/pst-coxcoor_doc.tex1118
-rw-r--r--Master/texmf-dist/doc/generic/pst-cox/pst-coxeterp/Gallery.tex342
-rw-r--r--Master/texmf-dist/doc/generic/pst-cox/pst-coxeterp/pst-coxeterp_doc.pdfbin0 -> 204208 bytes
-rw-r--r--Master/texmf-dist/doc/generic/pst-cox/pst-coxeterp/pst-coxeterp_doc.tex470
9 files changed, 4396 insertions, 0 deletions
diff --git a/Master/texmf-dist/doc/generic/pst-cox/README b/Master/texmf-dist/doc/generic/pst-cox/README
new file mode 100644
index 00000000000..f7622032c22
--- /dev/null
+++ b/Master/texmf-dist/doc/generic/pst-cox/README
@@ -0,0 +1,54 @@
+PST-Cox v1.0
+------------------------
+This project contains two LaTeX packages for drawing regular complex polytopes:
+ - pst-coxcoor: pre-calculated regular polytopes up to dimension 4.
+ - pst-coxeterp: infinite series of regular complex regular polytopes.
+
+See for more information the files pst-coxcoor_doc.ps and pst-coxeterp_doc.ps of the package.
+
+First check whether the project can be installed by the distribution that you use. The packages need PSTrick and xkeyval of Hendri Adriaens.
+
+The structure and location in the Tex-tree is shown below.
+
+README.txt: should be not installed
+
+
+| - pst-coxeterp_doc.ps
+| --- pst-coxeterp-|
+|-doc-| - Gallery_doc.ps
+| |
+| | - pst-coxcoor_doc.ps
+| --- pst-coxcoor-|
+| - Gallery.ps
+|
+|
+|-dvips-[-- pst-coxcoor-[ pst-coxeter.pro
+|
+|
+| --- pst-coxeterp-[ pst-coxeterp.sty
+| |
+| |-latex-|
+| | |
+| | --- pst-coxcoor-[ pst-coxcoor.sty
+|-tex-|
+| | --- pst-coxeterp-[ pst_coxeterp.tex
+| | |
+| |-generic-|
+| | |
+| | --- pst-coxcoor-[ pst-coxcoor.tex
+
+Don't forget to update your filename database after installing the
+files.
+
+Contact informations
+Jean-Gabriel Luque
+Institut Gaspard Monge
+Université Paris-Est
+77454 Marne-la-Vallée Cedex 2
+Jean-Gabriel.Luque@univ-mlv.fr
+or
+Jean-Gabriel.Luque@wanadoo.fr
+
+License
+Copyright © 2008 Jean-Gabriel Luque, Manuel Luque.
+This work may be distributed and/or modified under the condition of the Lesser GPL.
diff --git a/Master/texmf-dist/doc/generic/pst-cox/gpl.txt b/Master/texmf-dist/doc/generic/pst-cox/gpl.txt
new file mode 100644
index 00000000000..94a9ed024d3
--- /dev/null
+++ b/Master/texmf-dist/doc/generic/pst-cox/gpl.txt
@@ -0,0 +1,674 @@
+ GNU GENERAL PUBLIC LICENSE
+ Version 3, 29 June 2007
+
+ Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
+ Everyone is permitted to copy and distribute verbatim copies
+ of this license document, but changing it is not allowed.
+
+ Preamble
+
+ The GNU General Public License is a free, copyleft license for
+software and other kinds of works.
+
+ The licenses for most software and other practical works are designed
+to take away your freedom to share and change the works. By contrast,
+the GNU General Public License is intended to guarantee your freedom to
+share and change all versions of a program--to make sure it remains free
+software for all its users. We, the Free Software Foundation, use the
+GNU General Public License for most of our software; it applies also to
+any other work released this way by its authors. You can apply it to
+your programs, too.
+
+ When we speak of free software, we are referring to freedom, not
+price. Our General Public Licenses are designed to make sure that you
+have the freedom to distribute copies of free software (and charge for
+them if you wish), that you receive source code or can get it if you
+want it, that you can change the software or use pieces of it in new
+free programs, and that you know you can do these things.
+
+ To protect your rights, we need to prevent others from denying you
+these rights or asking you to surrender the rights. Therefore, you have
+certain responsibilities if you distribute copies of the software, or if
+you modify it: responsibilities to respect the freedom of others.
+
+ For example, if you distribute copies of such a program, whether
+gratis or for a fee, you must pass on to the recipients the same
+freedoms that you received. You must make sure that they, too, receive
+or can get the source code. And you must show them these terms so they
+know their rights.
+
+ Developers that use the GNU GPL protect your rights with two steps:
+(1) assert copyright on the software, and (2) offer you this License
+giving you legal permission to copy, distribute and/or modify it.
+
+ For the developers' and authors' protection, the GPL clearly explains
+that there is no warranty for this free software. For both users' and
+authors' sake, the GPL requires that modified versions be marked as
+changed, so that their problems will not be attributed erroneously to
+authors of previous versions.
+
+ Some devices are designed to deny users access to install or run
+modified versions of the software inside them, although the manufacturer
+can do so. This is fundamentally incompatible with the aim of
+protecting users' freedom to change the software. The systematic
+pattern of such abuse occurs in the area of products for individuals to
+use, which is precisely where it is most unacceptable. Therefore, we
+have designed this version of the GPL to prohibit the practice for those
+products. If such problems arise substantially in other domains, we
+stand ready to extend this provision to those domains in future versions
+of the GPL, as needed to protect the freedom of users.
+
+ Finally, every program is threatened constantly by software patents.
+States should not allow patents to restrict development and use of
+software on general-purpose computers, but in those that do, we wish to
+avoid the special danger that patents applied to a free program could
+make it effectively proprietary. To prevent this, the GPL assures that
+patents cannot be used to render the program non-free.
+
+ The precise terms and conditions for copying, distribution and
+modification follow.
+
+ TERMS AND CONDITIONS
+
+ 0. Definitions.
+
+ "This License" refers to version 3 of the GNU General Public License.
+
+ "Copyright" also means copyright-like laws that apply to other kinds of
+works, such as semiconductor masks.
+
+ "The Program" refers to any copyrightable work licensed under this
+License. Each licensee is addressed as "you". "Licensees" and
+"recipients" may be individuals or organizations.
+
+ To "modify" a work means to copy from or adapt all or part of the work
+in a fashion requiring copyright permission, other than the making of an
+exact copy. The resulting work is called a "modified version" of the
+earlier work or a work "based on" the earlier work.
+
+ A "covered work" means either the unmodified Program or a work based
+on the Program.
+
+ To "propagate" a work means to do anything with it that, without
+permission, would make you directly or secondarily liable for
+infringement under applicable copyright law, except executing it on a
+computer or modifying a private copy. Propagation includes copying,
+distribution (with or without modification), making available to the
+public, and in some countries other activities as well.
+
+ To "convey" a work means any kind of propagation that enables other
+parties to make or receive copies. Mere interaction with a user through
+a computer network, with no transfer of a copy, is not conveying.
+
+ An interactive user interface displays "Appropriate Legal Notices"
+to the extent that it includes a convenient and prominently visible
+feature that (1) displays an appropriate copyright notice, and (2)
+tells the user that there is no warranty for the work (except to the
+extent that warranties are provided), that licensees may convey the
+work under this License, and how to view a copy of this License. If
+the interface presents a list of user commands or options, such as a
+menu, a prominent item in the list meets this criterion.
+
+ 1. Source Code.
+
+ The "source code" for a work means the preferred form of the work
+for making modifications to it. "Object code" means any non-source
+form of a work.
+
+ A "Standard Interface" means an interface that either is an official
+standard defined by a recognized standards body, or, in the case of
+interfaces specified for a particular programming language, one that
+is widely used among developers working in that language.
+
+ The "System Libraries" of an executable work include anything, other
+than the work as a whole, that (a) is included in the normal form of
+packaging a Major Component, but which is not part of that Major
+Component, and (b) serves only to enable use of the work with that
+Major Component, or to implement a Standard Interface for which an
+implementation is available to the public in source code form. A
+"Major Component", in this context, means a major essential component
+(kernel, window system, and so on) of the specific operating system
+(if any) on which the executable work runs, or a compiler used to
+produce the work, or an object code interpreter used to run it.
+
+ The "Corresponding Source" for a work in object code form means all
+the source code needed to generate, install, and (for an executable
+work) run the object code and to modify the work, including scripts to
+control those activities. However, it does not include the work's
+System Libraries, or general-purpose tools or generally available free
+programs which are used unmodified in performing those activities but
+which are not part of the work. For example, Corresponding Source
+includes interface definition files associated with source files for
+the work, and the source code for shared libraries and dynamically
+linked subprograms that the work is specifically designed to require,
+such as by intimate data communication or control flow between those
+subprograms and other parts of the work.
+
+ The Corresponding Source need not include anything that users
+can regenerate automatically from other parts of the Corresponding
+Source.
+
+ The Corresponding Source for a work in source code form is that
+same work.
+
+ 2. Basic Permissions.
+
+ All rights granted under this License are granted for the term of
+copyright on the Program, and are irrevocable provided the stated
+conditions are met. This License explicitly affirms your unlimited
+permission to run the unmodified Program. The output from running a
+covered work is covered by this License only if the output, given its
+content, constitutes a covered work. This License acknowledges your
+rights of fair use or other equivalent, as provided by copyright law.
+
+ You may make, run and propagate covered works that you do not
+convey, without conditions so long as your license otherwise remains
+in force. You may convey covered works to others for the sole purpose
+of having them make modifications exclusively for you, or provide you
+with facilities for running those works, provided that you comply with
+the terms of this License in conveying all material for which you do
+not control copyright. Those thus making or running the covered works
+for you must do so exclusively on your behalf, under your direction
+and control, on terms that prohibit them from making any copies of
+your copyrighted material outside their relationship with you.
+
+ Conveying under any other circumstances is permitted solely under
+the conditions stated below. Sublicensing is not allowed; section 10
+makes it unnecessary.
+
+ 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
+
+ No covered work shall be deemed part of an effective technological
+measure under any applicable law fulfilling obligations under article
+11 of the WIPO copyright treaty adopted on 20 December 1996, or
+similar laws prohibiting or restricting circumvention of such
+measures.
+
+ When you convey a covered work, you waive any legal power to forbid
+circumvention of technological measures to the extent such circumvention
+is effected by exercising rights under this License with respect to
+the covered work, and you disclaim any intention to limit operation or
+modification of the work as a means of enforcing, against the work's
+users, your or third parties' legal rights to forbid circumvention of
+technological measures.
+
+ 4. Conveying Verbatim Copies.
+
+ You may convey verbatim copies of the Program's source code as you
+receive it, in any medium, provided that you conspicuously and
+appropriately publish on each copy an appropriate copyright notice;
+keep intact all notices stating that this License and any
+non-permissive terms added in accord with section 7 apply to the code;
+keep intact all notices of the absence of any warranty; and give all
+recipients a copy of this License along with the Program.
+
+ You may charge any price or no price for each copy that you convey,
+and you may offer support or warranty protection for a fee.
+
+ 5. Conveying Modified Source Versions.
+
+ You may convey a work based on the Program, or the modifications to
+produce it from the Program, in the form of source code under the
+terms of section 4, provided that you also meet all of these conditions:
+
+ a) The work must carry prominent notices stating that you modified
+ it, and giving a relevant date.
+
+ b) The work must carry prominent notices stating that it is
+ released under this License and any conditions added under section
+ 7. This requirement modifies the requirement in section 4 to
+ "keep intact all notices".
+
+ c) You must license the entire work, as a whole, under this
+ License to anyone who comes into possession of a copy. This
+ License will therefore apply, along with any applicable section 7
+ additional terms, to the whole of the work, and all its parts,
+ regardless of how they are packaged. This License gives no
+ permission to license the work in any other way, but it does not
+ invalidate such permission if you have separately received it.
+
+ d) If the work has interactive user interfaces, each must display
+ Appropriate Legal Notices; however, if the Program has interactive
+ interfaces that do not display Appropriate Legal Notices, your
+ work need not make them do so.
+
+ A compilation of a covered work with other separate and independent
+works, which are not by their nature extensions of the covered work,
+and which are not combined with it such as to form a larger program,
+in or on a volume of a storage or distribution medium, is called an
+"aggregate" if the compilation and its resulting copyright are not
+used to limit the access or legal rights of the compilation's users
+beyond what the individual works permit. Inclusion of a covered work
+in an aggregate does not cause this License to apply to the other
+parts of the aggregate.
+
+ 6. Conveying Non-Source Forms.
+
+ You may convey a covered work in object code form under the terms
+of sections 4 and 5, provided that you also convey the
+machine-readable Corresponding Source under the terms of this License,
+in one of these ways:
+
+ a) Convey the object code in, or embodied in, a physical product
+ (including a physical distribution medium), accompanied by the
+ Corresponding Source fixed on a durable physical medium
+ customarily used for software interchange.
+
+ b) Convey the object code in, or embodied in, a physical product
+ (including a physical distribution medium), accompanied by a
+ written offer, valid for at least three years and valid for as
+ long as you offer spare parts or customer support for that product
+ model, to give anyone who possesses the object code either (1) a
+ copy of the Corresponding Source for all the software in the
+ product that is covered by this License, on a durable physical
+ medium customarily used for software interchange, for a price no
+ more than your reasonable cost of physically performing this
+ conveying of source, or (2) access to copy the
+ Corresponding Source from a network server at no charge.
+
+ c) Convey individual copies of the object code with a copy of the
+ written offer to provide the Corresponding Source. This
+ alternative is allowed only occasionally and noncommercially, and
+ only if you received the object code with such an offer, in accord
+ with subsection 6b.
+
+ d) Convey the object code by offering access from a designated
+ place (gratis or for a charge), and offer equivalent access to the
+ Corresponding Source in the same way through the same place at no
+ further charge. You need not require recipients to copy the
+ Corresponding Source along with the object code. If the place to
+ copy the object code is a network server, the Corresponding Source
+ may be on a different server (operated by you or a third party)
+ that supports equivalent copying facilities, provided you maintain
+ clear directions next to the object code saying where to find the
+ Corresponding Source. Regardless of what server hosts the
+ Corresponding Source, you remain obligated to ensure that it is
+ available for as long as needed to satisfy these requirements.
+
+ e) Convey the object code using peer-to-peer transmission, provided
+ you inform other peers where the object code and Corresponding
+ Source of the work are being offered to the general public at no
+ charge under subsection 6d.
+
+ A separable portion of the object code, whose source code is excluded
+from the Corresponding Source as a System Library, need not be
+included in conveying the object code work.
+
+ A "User Product" is either (1) a "consumer product", which means any
+tangible personal property which is normally used for personal, family,
+or household purposes, or (2) anything designed or sold for incorporation
+into a dwelling. In determining whether a product is a consumer product,
+doubtful cases shall be resolved in favor of coverage. For a particular
+product received by a particular user, "normally used" refers to a
+typical or common use of that class of product, regardless of the status
+of the particular user or of the way in which the particular user
+actually uses, or expects or is expected to use, the product. A product
+is a consumer product regardless of whether the product has substantial
+commercial, industrial or non-consumer uses, unless such uses represent
+the only significant mode of use of the product.
+
+ "Installation Information" for a User Product means any methods,
+procedures, authorization keys, or other information required to install
+and execute modified versions of a covered work in that User Product from
+a modified version of its Corresponding Source. The information must
+suffice to ensure that the continued functioning of the modified object
+code is in no case prevented or interfered with solely because
+modification has been made.
+
+ If you convey an object code work under this section in, or with, or
+specifically for use in, a User Product, and the conveying occurs as
+part of a transaction in which the right of possession and use of the
+User Product is transferred to the recipient in perpetuity or for a
+fixed term (regardless of how the transaction is characterized), the
+Corresponding Source conveyed under this section must be accompanied
+by the Installation Information. But this requirement does not apply
+if neither you nor any third party retains the ability to install
+modified object code on the User Product (for example, the work has
+been installed in ROM).
+
+ The requirement to provide Installation Information does not include a
+requirement to continue to provide support service, warranty, or updates
+for a work that has been modified or installed by the recipient, or for
+the User Product in which it has been modified or installed. Access to a
+network may be denied when the modification itself materially and
+adversely affects the operation of the network or violates the rules and
+protocols for communication across the network.
+
+ Corresponding Source conveyed, and Installation Information provided,
+in accord with this section must be in a format that is publicly
+documented (and with an implementation available to the public in
+source code form), and must require no special password or key for
+unpacking, reading or copying.
+
+ 7. Additional Terms.
+
+ "Additional permissions" are terms that supplement the terms of this
+License by making exceptions from one or more of its conditions.
+Additional permissions that are applicable to the entire Program shall
+be treated as though they were included in this License, to the extent
+that they are valid under applicable law. If additional permissions
+apply only to part of the Program, that part may be used separately
+under those permissions, but the entire Program remains governed by
+this License without regard to the additional permissions.
+
+ When you convey a copy of a covered work, you may at your option
+remove any additional permissions from that copy, or from any part of
+it. (Additional permissions may be written to require their own
+removal in certain cases when you modify the work.) You may place
+additional permissions on material, added by you to a covered work,
+for which you have or can give appropriate copyright permission.
+
+ Notwithstanding any other provision of this License, for material you
+add to a covered work, you may (if authorized by the copyright holders of
+that material) supplement the terms of this License with terms:
+
+ a) Disclaiming warranty or limiting liability differently from the
+ terms of sections 15 and 16 of this License; or
+
+ b) Requiring preservation of specified reasonable legal notices or
+ author attributions in that material or in the Appropriate Legal
+ Notices displayed by works containing it; or
+
+ c) Prohibiting misrepresentation of the origin of that material, or
+ requiring that modified versions of such material be marked in
+ reasonable ways as different from the original version; or
+
+ d) Limiting the use for publicity purposes of names of licensors or
+ authors of the material; or
+
+ e) Declining to grant rights under trademark law for use of some
+ trade names, trademarks, or service marks; or
+
+ f) Requiring indemnification of licensors and authors of that
+ material by anyone who conveys the material (or modified versions of
+ it) with contractual assumptions of liability to the recipient, for
+ any liability that these contractual assumptions directly impose on
+ those licensors and authors.
+
+ All other non-permissive additional terms are considered "further
+restrictions" within the meaning of section 10. If the Program as you
+received it, or any part of it, contains a notice stating that it is
+governed by this License along with a term that is a further
+restriction, you may remove that term. If a license document contains
+a further restriction but permits relicensing or conveying under this
+License, you may add to a covered work material governed by the terms
+of that license document, provided that the further restriction does
+not survive such relicensing or conveying.
+
+ If you add terms to a covered work in accord with this section, you
+must place, in the relevant source files, a statement of the
+additional terms that apply to those files, or a notice indicating
+where to find the applicable terms.
+
+ Additional terms, permissive or non-permissive, may be stated in the
+form of a separately written license, or stated as exceptions;
+the above requirements apply either way.
+
+ 8. Termination.
+
+ You may not propagate or modify a covered work except as expressly
+provided under this License. Any attempt otherwise to propagate or
+modify it is void, and will automatically terminate your rights under
+this License (including any patent licenses granted under the third
+paragraph of section 11).
+
+ However, if you cease all violation of this License, then your
+license from a particular copyright holder is reinstated (a)
+provisionally, unless and until the copyright holder explicitly and
+finally terminates your license, and (b) permanently, if the copyright
+holder fails to notify you of the violation by some reasonable means
+prior to 60 days after the cessation.
+
+ Moreover, your license from a particular copyright holder is
+reinstated permanently if the copyright holder notifies you of the
+violation by some reasonable means, this is the first time you have
+received notice of violation of this License (for any work) from that
+copyright holder, and you cure the violation prior to 30 days after
+your receipt of the notice.
+
+ Termination of your rights under this section does not terminate the
+licenses of parties who have received copies or rights from you under
+this License. If your rights have been terminated and not permanently
+reinstated, you do not qualify to receive new licenses for the same
+material under section 10.
+
+ 9. Acceptance Not Required for Having Copies.
+
+ You are not required to accept this License in order to receive or
+run a copy of the Program. Ancillary propagation of a covered work
+occurring solely as a consequence of using peer-to-peer transmission
+to receive a copy likewise does not require acceptance. However,
+nothing other than this License grants you permission to propagate or
+modify any covered work. These actions infringe copyright if you do
+not accept this License. Therefore, by modifying or propagating a
+covered work, you indicate your acceptance of this License to do so.
+
+ 10. Automatic Licensing of Downstream Recipients.
+
+ Each time you convey a covered work, the recipient automatically
+receives a license from the original licensors, to run, modify and
+propagate that work, subject to this License. You are not responsible
+for enforcing compliance by third parties with this License.
+
+ An "entity transaction" is a transaction transferring control of an
+organization, or substantially all assets of one, or subdividing an
+organization, or merging organizations. If propagation of a covered
+work results from an entity transaction, each party to that
+transaction who receives a copy of the work also receives whatever
+licenses to the work the party's predecessor in interest had or could
+give under the previous paragraph, plus a right to possession of the
+Corresponding Source of the work from the predecessor in interest, if
+the predecessor has it or can get it with reasonable efforts.
+
+ You may not impose any further restrictions on the exercise of the
+rights granted or affirmed under this License. For example, you may
+not impose a license fee, royalty, or other charge for exercise of
+rights granted under this License, and you may not initiate litigation
+(including a cross-claim or counterclaim in a lawsuit) alleging that
+any patent claim is infringed by making, using, selling, offering for
+sale, or importing the Program or any portion of it.
+
+ 11. Patents.
+
+ A "contributor" is a copyright holder who authorizes use under this
+License of the Program or a work on which the Program is based. The
+work thus licensed is called the contributor's "contributor version".
+
+ A contributor's "essential patent claims" are all patent claims
+owned or controlled by the contributor, whether already acquired or
+hereafter acquired, that would be infringed by some manner, permitted
+by this License, of making, using, or selling its contributor version,
+but do not include claims that would be infringed only as a
+consequence of further modification of the contributor version. For
+purposes of this definition, "control" includes the right to grant
+patent sublicenses in a manner consistent with the requirements of
+this License.
+
+ Each contributor grants you a non-exclusive, worldwide, royalty-free
+patent license under the contributor's essential patent claims, to
+make, use, sell, offer for sale, import and otherwise run, modify and
+propagate the contents of its contributor version.
+
+ In the following three paragraphs, a "patent license" is any express
+agreement or commitment, however denominated, not to enforce a patent
+(such as an express permission to practice a patent or covenant not to
+sue for patent infringement). To "grant" such a patent license to a
+party means to make such an agreement or commitment not to enforce a
+patent against the party.
+
+ If you convey a covered work, knowingly relying on a patent license,
+and the Corresponding Source of the work is not available for anyone
+to copy, free of charge and under the terms of this License, through a
+publicly available network server or other readily accessible means,
+then you must either (1) cause the Corresponding Source to be so
+available, or (2) arrange to deprive yourself of the benefit of the
+patent license for this particular work, or (3) arrange, in a manner
+consistent with the requirements of this License, to extend the patent
+license to downstream recipients. "Knowingly relying" means you have
+actual knowledge that, but for the patent license, your conveying the
+covered work in a country, or your recipient's use of the covered work
+in a country, would infringe one or more identifiable patents in that
+country that you have reason to believe are valid.
+
+ If, pursuant to or in connection with a single transaction or
+arrangement, you convey, or propagate by procuring conveyance of, a
+covered work, and grant a patent license to some of the parties
+receiving the covered work authorizing them to use, propagate, modify
+or convey a specific copy of the covered work, then the patent license
+you grant is automatically extended to all recipients of the covered
+work and works based on it.
+
+ A patent license is "discriminatory" if it does not include within
+the scope of its coverage, prohibits the exercise of, or is
+conditioned on the non-exercise of one or more of the rights that are
+specifically granted under this License. You may not convey a covered
+work if you are a party to an arrangement with a third party that is
+in the business of distributing software, under which you make payment
+to the third party based on the extent of your activity of conveying
+the work, and under which the third party grants, to any of the
+parties who would receive the covered work from you, a discriminatory
+patent license (a) in connection with copies of the covered work
+conveyed by you (or copies made from those copies), or (b) primarily
+for and in connection with specific products or compilations that
+contain the covered work, unless you entered into that arrangement,
+or that patent license was granted, prior to 28 March 2007.
+
+ Nothing in this License shall be construed as excluding or limiting
+any implied license or other defenses to infringement that may
+otherwise be available to you under applicable patent law.
+
+ 12. No Surrender of Others' Freedom.
+
+ If conditions are imposed on you (whether by court order, agreement or
+otherwise) that contradict the conditions of this License, they do not
+excuse you from the conditions of this License. If you cannot convey a
+covered work so as to satisfy simultaneously your obligations under this
+License and any other pertinent obligations, then as a consequence you may
+not convey it at all. For example, if you agree to terms that obligate you
+to collect a royalty for further conveying from those to whom you convey
+the Program, the only way you could satisfy both those terms and this
+License would be to refrain entirely from conveying the Program.
+
+ 13. Use with the GNU Affero General Public License.
+
+ Notwithstanding any other provision of this License, you have
+permission to link or combine any covered work with a work licensed
+under version 3 of the GNU Affero General Public License into a single
+combined work, and to convey the resulting work. The terms of this
+License will continue to apply to the part which is the covered work,
+but the special requirements of the GNU Affero General Public License,
+section 13, concerning interaction through a network will apply to the
+combination as such.
+
+ 14. Revised Versions of this License.
+
+ The Free Software Foundation may publish revised and/or new versions of
+the GNU General Public License from time to time. Such new versions will
+be similar in spirit to the present version, but may differ in detail to
+address new problems or concerns.
+
+ Each version is given a distinguishing version number. If the
+Program specifies that a certain numbered version of the GNU General
+Public License "or any later version" applies to it, you have the
+option of following the terms and conditions either of that numbered
+version or of any later version published by the Free Software
+Foundation. If the Program does not specify a version number of the
+GNU General Public License, you may choose any version ever published
+by the Free Software Foundation.
+
+ If the Program specifies that a proxy can decide which future
+versions of the GNU General Public License can be used, that proxy's
+public statement of acceptance of a version permanently authorizes you
+to choose that version for the Program.
+
+ Later license versions may give you additional or different
+permissions. However, no additional obligations are imposed on any
+author or copyright holder as a result of your choosing to follow a
+later version.
+
+ 15. Disclaimer of Warranty.
+
+ THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
+APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
+HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
+OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
+THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
+IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
+ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
+
+ 16. Limitation of Liability.
+
+ IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
+WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
+THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
+GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
+USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
+DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
+PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
+EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
+SUCH DAMAGES.
+
+ 17. Interpretation of Sections 15 and 16.
+
+ If the disclaimer of warranty and limitation of liability provided
+above cannot be given local legal effect according to their terms,
+reviewing courts shall apply local law that most closely approximates
+an absolute waiver of all civil liability in connection with the
+Program, unless a warranty or assumption of liability accompanies a
+copy of the Program in return for a fee.
+
+ END OF TERMS AND CONDITIONS
+
+ How to Apply These Terms to Your New Programs
+
+ If you develop a new program, and you want it to be of the greatest
+possible use to the public, the best way to achieve this is to make it
+free software which everyone can redistribute and change under these terms.
+
+ To do so, attach the following notices to the program. It is safest
+to attach them to the start of each source file to most effectively
+state the exclusion of warranty; and each file should have at least
+the "copyright" line and a pointer to where the full notice is found.
+
+ <one line to give the program's name and a brief idea of what it does.>
+ Copyright (C) <year> <name of author>
+
+ This program is free software: you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation, either version 3 of the License, or
+ (at your option) any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program. If not, see <http://www.gnu.org/licenses/>.
+
+Also add information on how to contact you by electronic and paper mail.
+
+ If the program does terminal interaction, make it output a short
+notice like this when it starts in an interactive mode:
+
+ <program> Copyright (C) <year> <name of author>
+ This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
+ This is free software, and you are welcome to redistribute it
+ under certain conditions; type `show c' for details.
+
+The hypothetical commands `show w' and `show c' should show the appropriate
+parts of the General Public License. Of course, your program's commands
+might be different; for a GUI interface, you would use an "about box".
+
+ You should also get your employer (if you work as a programmer) or school,
+if any, to sign a "copyright disclaimer" for the program, if necessary.
+For more information on this, and how to apply and follow the GNU GPL, see
+<http://www.gnu.org/licenses/>.
+
+ The GNU General Public License does not permit incorporating your program
+into proprietary programs. If your program is a subroutine library, you
+may consider it more useful to permit linking proprietary applications with
+the library. If this is what you want to do, use the GNU Lesser General
+Public License instead of this License. But first, please read
+<http://www.gnu.org/philosophy/why-not-lgpl.html>.
diff --git a/Master/texmf-dist/doc/generic/pst-cox/lgpl.txt b/Master/texmf-dist/doc/generic/pst-cox/lgpl.txt
new file mode 100644
index 00000000000..fc8a5de7edf
--- /dev/null
+++ b/Master/texmf-dist/doc/generic/pst-cox/lgpl.txt
@@ -0,0 +1,165 @@
+ GNU LESSER GENERAL PUBLIC LICENSE
+ Version 3, 29 June 2007
+
+ Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
+ Everyone is permitted to copy and distribute verbatim copies
+ of this license document, but changing it is not allowed.
+
+
+ This version of the GNU Lesser General Public License incorporates
+the terms and conditions of version 3 of the GNU General Public
+License, supplemented by the additional permissions listed below.
+
+ 0. Additional Definitions.
+
+ As used herein, "this License" refers to version 3 of the GNU Lesser
+General Public License, and the "GNU GPL" refers to version 3 of the GNU
+General Public License.
+
+ "The Library" refers to a covered work governed by this License,
+other than an Application or a Combined Work as defined below.
+
+ An "Application" is any work that makes use of an interface provided
+by the Library, but which is not otherwise based on the Library.
+Defining a subclass of a class defined by the Library is deemed a mode
+of using an interface provided by the Library.
+
+ A "Combined Work" is a work produced by combining or linking an
+Application with the Library. The particular version of the Library
+with which the Combined Work was made is also called the "Linked
+Version".
+
+ The "Minimal Corresponding Source" for a Combined Work means the
+Corresponding Source for the Combined Work, excluding any source code
+for portions of the Combined Work that, considered in isolation, are
+based on the Application, and not on the Linked Version.
+
+ The "Corresponding Application Code" for a Combined Work means the
+object code and/or source code for the Application, including any data
+and utility programs needed for reproducing the Combined Work from the
+Application, but excluding the System Libraries of the Combined Work.
+
+ 1. Exception to Section 3 of the GNU GPL.
+
+ You may convey a covered work under sections 3 and 4 of this License
+without being bound by section 3 of the GNU GPL.
+
+ 2. Conveying Modified Versions.
+
+ If you modify a copy of the Library, and, in your modifications, a
+facility refers to a function or data to be supplied by an Application
+that uses the facility (other than as an argument passed when the
+facility is invoked), then you may convey a copy of the modified
+version:
+
+ a) under this License, provided that you make a good faith effort to
+ ensure that, in the event an Application does not supply the
+ function or data, the facility still operates, and performs
+ whatever part of its purpose remains meaningful, or
+
+ b) under the GNU GPL, with none of the additional permissions of
+ this License applicable to that copy.
+
+ 3. Object Code Incorporating Material from Library Header Files.
+
+ The object code form of an Application may incorporate material from
+a header file that is part of the Library. You may convey such object
+code under terms of your choice, provided that, if the incorporated
+material is not limited to numerical parameters, data structure
+layouts and accessors, or small macros, inline functions and templates
+(ten or fewer lines in length), you do both of the following:
+
+ a) Give prominent notice with each copy of the object code that the
+ Library is used in it and that the Library and its use are
+ covered by this License.
+
+ b) Accompany the object code with a copy of the GNU GPL and this license
+ document.
+
+ 4. Combined Works.
+
+ You may convey a Combined Work under terms of your choice that,
+taken together, effectively do not restrict modification of the
+portions of the Library contained in the Combined Work and reverse
+engineering for debugging such modifications, if you also do each of
+the following:
+
+ a) Give prominent notice with each copy of the Combined Work that
+ the Library is used in it and that the Library and its use are
+ covered by this License.
+
+ b) Accompany the Combined Work with a copy of the GNU GPL and this license
+ document.
+
+ c) For a Combined Work that displays copyright notices during
+ execution, include the copyright notice for the Library among
+ these notices, as well as a reference directing the user to the
+ copies of the GNU GPL and this license document.
+
+ d) Do one of the following:
+
+ 0) Convey the Minimal Corresponding Source under the terms of this
+ License, and the Corresponding Application Code in a form
+ suitable for, and under terms that permit, the user to
+ recombine or relink the Application with a modified version of
+ the Linked Version to produce a modified Combined Work, in the
+ manner specified by section 6 of the GNU GPL for conveying
+ Corresponding Source.
+
+ 1) Use a suitable shared library mechanism for linking with the
+ Library. A suitable mechanism is one that (a) uses at run time
+ a copy of the Library already present on the user's computer
+ system, and (b) will operate properly with a modified version
+ of the Library that is interface-compatible with the Linked
+ Version.
+
+ e) Provide Installation Information, but only if you would otherwise
+ be required to provide such information under section 6 of the
+ GNU GPL, and only to the extent that such information is
+ necessary to install and execute a modified version of the
+ Combined Work produced by recombining or relinking the
+ Application with a modified version of the Linked Version. (If
+ you use option 4d0, the Installation Information must accompany
+ the Minimal Corresponding Source and Corresponding Application
+ Code. If you use option 4d1, you must provide the Installation
+ Information in the manner specified by section 6 of the GNU GPL
+ for conveying Corresponding Source.)
+
+ 5. Combined Libraries.
+
+ You may place library facilities that are a work based on the
+Library side by side in a single library together with other library
+facilities that are not Applications and are not covered by this
+License, and convey such a combined library under terms of your
+choice, if you do both of the following:
+
+ a) Accompany the combined library with a copy of the same work based
+ on the Library, uncombined with any other library facilities,
+ conveyed under the terms of this License.
+
+ b) Give prominent notice with the combined library that part of it
+ is a work based on the Library, and explaining where to find the
+ accompanying uncombined form of the same work.
+
+ 6. Revised Versions of the GNU Lesser General Public License.
+
+ The Free Software Foundation may publish revised and/or new versions
+of the GNU Lesser General Public License from time to time. Such new
+versions will be similar in spirit to the present version, but may
+differ in detail to address new problems or concerns.
+
+ Each version is given a distinguishing version number. If the
+Library as you received it specifies that a certain numbered version
+of the GNU Lesser General Public License "or any later version"
+applies to it, you have the option of following the terms and
+conditions either of that published version or of any later version
+published by the Free Software Foundation. If the Library as you
+received it does not specify a version number of the GNU Lesser
+General Public License, you may choose any version of the GNU Lesser
+General Public License ever published by the Free Software Foundation.
+
+ If the Library as you received it specifies that a proxy can decide
+whether future versions of the GNU Lesser General Public License shall
+apply, that proxy's public statement of acceptance of any version is
+permanent authorization for you to choose that version for the
+Library.
diff --git a/Master/texmf-dist/doc/generic/pst-cox/pst-coxcoor/Gallery.tex b/Master/texmf-dist/doc/generic/pst-cox/pst-coxcoor/Gallery.tex
new file mode 100644
index 00000000000..03b334e9855
--- /dev/null
+++ b/Master/texmf-dist/doc/generic/pst-cox/pst-coxcoor/Gallery.tex
@@ -0,0 +1,1573 @@
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+% polygonesCoordinate\Gallery.tex
+% Authors: J.-G. Luque and M. Luque
+% Purpose: Demonstration of the library pst-coxcoor
+% Created: 02/02/2008
+% License: LGPL
+% Project: PST-Cox V1.00
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+% Copyright © 2008 Jean-Gabriel Luque, Manuel Luque.
+% This work may be distributed and/or modified under the condition of
+% the Lesser GPL.
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+% This file is part of PST-Cox V1.00.
+%
+% PST-Cox V1.00 is free software: you can redistribute it and/or modify
+% it under the terms of the Lesser GNU General Public License as published by
+% the Free Software Foundation, either version 3 of the License, or
+% (at your option) any later version.%
+%
+% PST-Cox V1.00 is distributed in the hope that it will be useful,
+% but WITHOUT ANY WARRANTY; without even the implied warranty of
+% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+% Lesser GNU General Public License for more details.%
+%
+% You should have received a copy of the Lesser GNU General Public License
+% along with PST-Cox V1.00. If not, see <http://www.gnu.org/licenses/>.
+%
+
+\documentclass[a4paper]{article}
+\usepackage[latin1]{inputenc}%
+\usepackage[margin=2cm]{geometry}
+\usepackage{pst-coxcoor}
+\usepackage{multido}
+\usepackage{graphics}
+\newcount\ChoicePolytope
+
+\def\Titre#1{
+\ifcase\ichoice\or \def\polname{$2\{3\}3$}\def\ep{0.5mm}
+ \or \def\polname{$3\{3\}2$}\def\ep{0.3mm}\or
+\def\polname{$3\{3\}3$}\def\ep{0.3mm}\or
+ \def\polname{$3\{4\}2$}\def\ep{0.3mm}\or \def\polname{$3\{4\}4$}\def\ep{0.1mm}
+ \or \def\polname{$3\{4\}3$}\def\ep{0.1mm}\or \def\polname{$4\{3\}4$}\def\ep{0.1mm}\or
+\def\polname{$2\{4\}3\{3\}3$}\def\ep{0.1mm}\or \def\polname{ Hessien}\def\ep{0.1mm}
+ \or \def\polname{$3\{3\}3\{4\}2$}\def\ep{0.1mm}
+ \or \def\polname{de Witting} \def\ep{0.01mm} \or
+ \def\polname{$3\{8\}2$} \def\ep{0.1mm} \or
+ \def\polname{$2\{8\}3$} \def\ep{0.1mm} \or
+ \def\polname{$3\{5\}3$} \def\ep{0.1mm}
+ \or\def\polname{$4\{4\}3$} \def\ep{0.1mm}
+ \or\def\polname{$4\{3\}2$} \def\ep{0.1mm}
+ \or\def\polname{$2\{3\}4$} \def\ep{0.1mm}
+ \or\def\polname{$2\{6\}4$} \def\ep{0.1mm}
+ \or\def\polname{$4\{6\}2$} \def\ep{0.1mm}
+ \or\def\polname{$5\{3\}5$} \def\ep{0.1mm}
+ \or\def\polname{$2\{10\}3$} \def\ep{0.1mm}
+ \or\def\polname{$3\{10\}2$} \def\ep{0.1mm}
+ \or\def\polname{$2\{5\}3$} \def\ep{0.1mm}
+ \or\def\polname{$3\{5\}2$} \def\ep{0.1mm}
+ \or\def\polname{$2\{4\}3$} \def\ep{0.1mm}
+ \or\def\polname{$2\{3\}2\{4\}3$} \def\ep{0.1mm}
+ \or\def\polname{$3\{4\}2\{3\}2$} \def\ep{0.1mm}
+ \or\def\polname{$3\{4\}2\{3\}2\{3\}2$} \def\ep{0.1mm}
+ \or\def\polname{$2\{3\}2\{3\}2\{4\}3$} \def\ep{0.1mm}
+ \or\def\polname{$2\{3\}2\{5\}2$} \def\ep{0.1mm}
+ \or\def\polname{$2\{5\}2\{3\}2$} \def\ep{0.1mm}
+ \or\def\polname{$2\{3\}2\{3\}2\{4\}2$} \def\ep{0.1mm}
+ \or\def\polname{$2\{4\}2\{3\}2\{3\}2$} \def\ep{0.1mm}
+ \or\def\polname{$2\{3\}2\{4\}2\{3\}2$} \def\ep{0.1mm}
+ \or\def\polname{$2\{3\}2\{3\}2\{5\}2$} \def\ep{0.1mm}
+ \or\def\polname{$2\{5\}2\{3\}2\{2\}2$} \def\ep{0.1mm}
+ \or\def\polname{$3\left\{5\over2\right\}3$} \def\ep{0.1mm}
+ \or\def\polname{$5\left\{5\over2\right\}5$} \def\ep{0.1mm}
+ \or\def\polname{$2\left\{5\over2\right\}3$} \def\ep{0.1mm}
+ \or\def\polname{$3\left\{5\over2\right\}2$} \def\ep{0.1mm}
+ \or\def\polname{$3\left\{10\over3\right\}2$} \def\ep{0.1mm}
+ \or\def\polname{$2\left\{10\over3\right\}3$} \def\ep{0.1mm}
+ \or\def\polname{$3\left\{8\over3\right\}2$} \def\ep{0.1mm}
+ \or\def\polname{$2\left\{8\over3\right\}3$} \def\ep{0.1mm}
+ \or\def\polname{$5\{6\}2$} \def\ep{0.1mm}
+ \or\def\polname{$2\{6\}5$} \def\ep{0.1mm}
+ \or\def\polname{$4\left\{8\over3\right\}3$} \def\ep{0.1mm}
+ \or\def\polname{$3\left\{8\over3\right\}4$} \def\ep{0.1mm}
+ \or\def\polname{$5\{5\}2$} \def\ep{0.1mm}
+ \or\def\polname{$2\{5\}5$} \def\ep{0.1mm}
+ \or\def\polname{$5\left\{10\over3\right\}2$} \def\ep{0.1mm}
+ \or\def\polname{$2\left\{10\over3\right\}5$} \def\ep{0.1mm}
+ \or\def\polname{$5\{3\}2$} \def\ep{0.1mm}
+ \or\def\polname{$2\{3\}5$} \def\ep{0.1mm}
+ \or\def\polname{$5\{4\}2$} \def\ep{0.1mm}
+ \or\def\polname{$2\{4\}5$} \def\ep{0.1mm}
+ \or\def\polname{$5\left\{10\over3\right\}3$} \def\ep{0.1mm}
+ \or\def\polname{$3\left\{10\over3\right\}5$} \def\ep{0.1mm}
+ \or\def\polname{$5\{4\}3$} \def\ep{0.1mm}
+ \or\def\polname{$3\{4\}5$} \def\ep{0.1mm}
+ \or\def\polname{$5\{3\}3$} \def\ep{0.1mm}
+ \or\def\polname{$3\{3\}5$} \def\ep{0.1mm}
+ \or\def\polname{$5\left\{5\over2\right\}3$} \def\ep{0.1mm}
+ \or\def\polname{$3\left\{5\over2\right\}5$} \def\ep{0.1mm}
+ \or\def\polname{$2\left\{5\over2\right\}2\{3\}2$} \def\ep{0.1mm}
+ \or\def\polname{$2\{3\}2\left\{5\over 2\right\}2$} \def\ep{0.1mm}
+ \or\def\polname{$2\left\{5\over2\right\}2\{5\}2$} \def\ep{0.1mm}
+ \or\def\polname{$2\{5\}2\left\{5\over 2\right\}2$} \def\ep{0.1mm}
+ \or\def\polname{$2\{6\}3$} \def\ep{0.1mm}
+ \or\def\polname{$3\{6\}2$} \def\ep{0.1mm}
+ \or\def\polname{$2\{\frac52\}2\{3\}2\{3\}2$} \def\ep{0.1mm}
+ \fi
+ {\Huge Polytope \polname}
+}
+\def\demoPolytopes#1{%}
+\begin{center}
+\Titre{#1}
+\begin{pspicture}(-9,-9)(9,9)
+\psset{unit=3cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=#1,linewidth=\ep] % par défaut choice=1 (332)
+\end{pspicture}
+
+$\backslash$\texttt{CoxeterCoordinates[choice=#1]}
+\end{center}
+\begin{center}
+\begin{tabular}{ccc}
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.7cm}
+\CoxeterCoordinates[drawvertices=false,choice=#1,linewidth=0.01mm] %
+\end{pspicture}
+&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.7cm}
+\CoxeterCoordinates[drawcenters=false,choice=#1,linewidth=0.01mm] %
+\end{pspicture}
+&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.7cm}
+\CoxeterCoordinates[drawedges=false,choice=#1,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawvertices=false,choice=#1]}
+&
+\texttt{[drawcenters=false,choice=#1]}
+&
+\texttt{[drawedges=false,choice=#1]}
+\end{tabular}
+\end{center}}
+
+\def\demoPolytopesGrand#1{%}
+\begin{center}
+\Titre{#1}
+\begin{pspicture}(-9,-9)(9,9)
+\psset{unit=7cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=#1,linewidth=\ep] % par défaut choice=1 (332)
+\end{pspicture}
+
+$\backslash$\texttt{CoxeterCoordinates[choice=#1]}
+\end{center}
+\begin{center}
+\begin{tabular}{ccc}
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=2cm}
+\CoxeterCoordinates[drawvertices=false,choice=#1,linewidth=0.01mm] %
+\end{pspicture}
+&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=2cm}
+\CoxeterCoordinates[drawcenters=false,choice=#1,linewidth=0.01mm] %
+\end{pspicture}
+&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=2cm}
+\CoxeterCoordinates[drawedges=false,choice=#1,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawvertices=false,choice=#1]} &
+\texttt{[drawcenters=false,choice=#1]} &
+\texttt{[drawedges=false,choice=#1]}
+\end{tabular}
+\end{center}}
+
+%
+\def\demoPolytopesPetit#1{%}
+\begin{center}
+\Titre{#1}
+\begin{pspicture}(-9,-9)(9,9)
+\psset{unit=0.7cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=#1,linewidth=\ep] % par défaut choice=1 (332)
+\end{pspicture}
+
+$\backslash$\texttt{CoxeterCoordinates[choice=#1]}
+\end{center}
+\begin{center}
+\begin{tabular}{ccc}
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.2cm}
+\CoxeterCoordinates[drawvertices=false,choice=#1,linewidth=0.01mm] %
+\end{pspicture}
+&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.2cm}
+\CoxeterCoordinates[drawcenters=false,choice=#1,linewidth=0.01mm] %
+\end{pspicture}
+&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.2cm}
+\CoxeterCoordinates[drawedges=false,choice=#1,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawvertices=false,choice=#1]} &
+\texttt{[drawcenters=false,choice=#1]} &
+\texttt{[drawedges=false,choice=#1]}
+\end{tabular}
+\end{center}}
+
+\title{The Gallery}
+\author{Jean-Gabriel \textsc{Luque}\footnote{Jean-Gabriel.Luque@univ-mlv.fr} and Manuel
+ \textsc{Luque}\footnote{mluque5130@aol.com}}
+\begin{document}
+\maketitle\newpage
+\section{Les polygons (dimension 2)}
+\multido{\ichoice=1+1}{7}{%
+\demoPolytopes{\ichoice}\newpage}
+\begin{center}
+{\huge Polytope $3\{8\}2$}
+\begin{pspicture}(-9,-9)(9,9)
+\psset{unit=2cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=12,linewidth=0.01mm] % par défaut choice=1 (332)
+\end{pspicture}
+$\backslash$\texttt{CoxeterCoordinates[choice=12]}
+\end{center}
+\begin{center}
+\begin{tabular}{ccc}
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.4cm}
+\CoxeterCoordinates[drawvertices=false,choice=12,linewidth=0.01mm] %
+\end{pspicture}
+&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.4cm}
+\CoxeterCoordinates[drawcenters=false,choice=12,linewidth=0.01mm] %
+\end{pspicture}
+&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.4cm}
+\CoxeterCoordinates[drawedges=false,choice=12,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawvertices=false,choice=12]} &
+\texttt{[drawcenters=false,choice=12]} &
+\texttt{[drawedges=false,choice=12]}
+\end{tabular}
+\end{center}\newpage
+
+\begin{center}
+{\huge Polytope $2\{8\}3$}
+\begin{pspicture}(-9,-9)(9,9)
+\psset{unit=2cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=13,linewidth=0.01mm] % par défaut choice=1 (332)
+\end{pspicture}
+$\backslash$\texttt{CoxeterCoordinates[choice=13]}
+\end{center}
+\begin{center}
+\begin{tabular}{ccc}
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.4cm}
+\CoxeterCoordinates[drawvertices=false,choice=13,linewidth=0.01mm] %
+\end{pspicture}
+&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.4cm}
+\CoxeterCoordinates[drawcenters=false,choice=13,linewidth=0.01mm] %
+\end{pspicture}
+&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.4cm}
+\CoxeterCoordinates[drawedges=false,choice=13,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawvertices=false,choice=13]} &
+\texttt{[drawcenters=false,choice=13]} &
+\texttt{[drawedges=false,choice=13]}
+\end{tabular}
+\end{center}\newpage
+
+
+\multido{\ichoice=14+1}{11}{%
+\demoPolytopes{\ichoice}\newpage}
+
+\begin{center}
+{\huge Polytope $2\{5\}3$}
+\begin{pspicture}(-9,-9)(9,9)
+\psset{unit=2cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=23,linewidth=0.01mm] % par défaut choice=1 (332)
+\end{pspicture}
+$\backslash$\texttt{CoxeterCoordinates[choice=23]}
+\end{center}
+\begin{center}
+\begin{tabular}{ccc}
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.6cm}
+\CoxeterCoordinates[drawvertices=false,choice=23,linewidth=0.01mm] %
+\end{pspicture}
+&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.6cm}
+\CoxeterCoordinates[drawcenters=false,choice=23,linewidth=0.01mm] %
+\end{pspicture}
+&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.6cm}
+\CoxeterCoordinates[drawedges=false,choice=23,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawvertices=false,choice=23]}
+&
+\texttt{[drawcenters=false,choice=23]}
+&
+\texttt{[drawedges=false,choice=23]}
+\end{tabular}
+\end{center}
+
+\newpage
+\multido{\ichoice=24+1}{2}{%
+\demoPolytopes{\ichoice}\newpage} %%%%%%
+ %ù%%%%%%
+\begin{center}
+ {\huge Polytope $3\{\frac 52\}3$}
+\begin{pspicture}(-9,-9)(9,9)
+\psset{unit=2cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=37,linewidth=0.01mm] % par défaut choice=1 (332)
+\end{pspicture}
+$\backslash$\texttt{CoxeterCoordinates[choice=37]}
+\end{center}
+\begin{center}
+\begin{tabular}{ccc}
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.6cm}
+\CoxeterCoordinates[drawvertices=false,choice=37,linewidth=0.01mm] %
+\end{pspicture}
+&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.6cm}
+\CoxeterCoordinates[drawcenters=false,choice=37,linewidth=0.01mm] %
+\end{pspicture}
+&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.6cm}
+\CoxeterCoordinates[drawedges=false,choice=37,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawvertices=false,choice=37]} &
+\texttt{[drawcenters=false,choice=37]} &
+\texttt{[drawedges=false,choice=37]}
+\end{tabular}
+\end{center}
+%%%%%
+\newpage
+
+\multido{\ichoice=38+1}{13}{%
+\demoPolytopes{\ichoice}
+\newpage}
+\multido{\ichoice=51+1}{3}{
+\begin{center}
+\Titre{\ichoice}
+\begin{pspicture}(-9,-9)(9,9)
+\psset{unit=2cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=\ichoice,linewidth=0.01mm] % par défaut choice=1 (332)
+\end{pspicture}
+$\backslash$\texttt{CoxeterCoordinates[choice=\ichoice]}
+\end{center}
+\begin{center}
+\begin{tabular}{ccc}
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.7cm}
+\CoxeterCoordinates[drawvertices=false,choice=\ichoice,linewidth=0.01mm] %
+\end{pspicture}
+&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.7cm}
+\CoxeterCoordinates[drawcenters=false,choice=\ichoice,linewidth=0.01mm] %
+\end{pspicture}
+&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.7cm}
+\CoxeterCoordinates[drawedges=false,choice=\ichoice,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawvertices=false,choice=\ichoice]} &
+\texttt{[drawcenters=false,choice=\ichoice]} &
+\texttt{[drawedges=false,choice=\ichoice]}
+\end{tabular}
+\end{center}
+\newpage
+}
+\begin{center}
+ \multido{\ichoice=54+1}{1}{
+\Titre{\ichoice}}
+\begin{pspicture}(-9,-9)(9,9)
+\psset{unit=2cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=54,linewidth=0.01mm] % par défaut choice=1 (332)
+\end{pspicture}
+$\backslash$
+\texttt{CoxeterCoordinates[choice=54]}
+\end{center}
+\begin{center}
+\begin{tabular}{ccc}
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.5cm}
+\CoxeterCoordinates[drawvertices=false,choice=54,linewidth=0.01mm] %
+\end{pspicture}
+&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.5cm}
+\CoxeterCoordinates[drawcenters=false,choice=54,linewidth=0.01mm] %
+\end{pspicture}
+&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.5cm}
+\CoxeterCoordinates[drawedges=false,choice=54,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawvertices=false,choice=54]} &
+\texttt{[drawcenters=false,choice=54]} &
+\texttt{[drawedges=false,choice=54]}
+\end{tabular}
+\end{center}
+\newpage
+\multido{\ichoice=55+1}{5}{%
+\demoPolytopes{\ichoice}
+\newpage}
+\multido{\ichoice=60+1}{1}{
+\begin{center}
+\Titre{\ichoice}
+\begin{pspicture}(-9,-9)(9,9)
+\psset{unit=1cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=\ichoice,linewidth=0.01mm] % par défaut choice=1 (332)
+\end{pspicture}
+$\backslash$\texttt{CoxeterCoordinates[choice=\ichoice]}
+\end{center}
+\begin{center}
+\begin{tabular}{ccc}
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.2cm}
+\CoxeterCoordinates[drawvertices=false,choice=\ichoice,linewidth=0.01mm] %
+\end{pspicture}
+&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.2cm}
+\CoxeterCoordinates[drawcenters=false,choice=\ichoice,linewidth=0.01mm] %
+\end{pspicture}
+&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.2cm}
+\CoxeterCoordinates[drawedges=false,choice=\ichoice,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawvertices=false,choice=\ichoice]} &
+\texttt{[drawcenters=false,choice=\ichoice]} &
+\texttt{[drawedges=false,choice=\ichoice]}
+\end{tabular}
+\end{center}
+\newpage}
+\multido{\ichoice=61+1}{3}{
+\begin{center}
+\Titre{\ichoice}
+\begin{pspicture}(-9,-9)(9,9)
+\psset{unit=2cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=\ichoice,linewidth=0.01mm] % par défaut choice=1 (332)
+\end{pspicture}
+$\backslash$\texttt{CoxeterCoordinates[choice=\ichoice]}
+\end{center}
+\begin{center}
+\begin{tabular}{ccc}
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.5cm}
+\CoxeterCoordinates[drawvertices=false,choice=\ichoice,linewidth=0.01mm] %
+\end{pspicture}
+&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.5cm}
+\CoxeterCoordinates[drawcenters=false,choice=\ichoice,linewidth=0.01mm] %
+\end{pspicture}
+&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.5cm}
+\CoxeterCoordinates[drawedges=false,choice=\ichoice,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawvertices=false,choice=\ichoice]} &
+\texttt{[drawcenters=false,choice=\ichoice]} &
+\texttt{[drawedges=false,choice=\ichoice]}
+\end{tabular}
+\end{center}
+\newpage
+}
+\begin{center}
+ \multido{\ichoice=64+1}{1}{
+\Titre{\ichoice}}
+\begin{pspicture}(-9,-9)(9,9)
+\psset{unit=3cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=64,linewidth=0.01mm] % par défaut choice=1 (332)
+\end{pspicture}
+$\backslash$ \texttt{CoxeterCoordinates[choice=64]}
+\end{center}
+\begin{center}
+\begin{tabular}{ccc}
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1cm}
+\CoxeterCoordinates[drawvertices=false,choice=64,linewidth=0.01mm] %
+\end{pspicture}
+&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1cm}
+\CoxeterCoordinates[drawcenters=false,choice=64,linewidth=0.01mm] %
+\end{pspicture}
+&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1cm}
+\CoxeterCoordinates[drawedges=false,choice=64,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawvertices=false,choice=64]} &
+\texttt{[drawcenters=false,choice=64]} &
+\texttt{[drawedges=false,choice=64]}
+\end{tabular}
+\end{center}
+\newpage
+
+\section{Polyhedron (dimension 3)}
+\multido{\ichoice=8+1}{3}{%
+\demoPolytopes{\ichoice} \begin{center}
+\begin{pspicture}(-2,-5)(2,5)
+\psset{unit=2}
+\CoxeterCoordinates[drawvertices=false,drawcentersfaces=true,drawcenters=false,choice=\ichoice,linewidth=0.3mm]
+\end{pspicture}
+{\tt
+[drawvertices=false,drawcentersfaces=true,drawcenters=false,choice=\ichoice,linewidth=0.3mm]
+}
+\end{center}
+\newpage}
+\multido{\ichoice=26+1}{2}{%
+\demoPolytopes{\ichoice} \begin{center}
+\begin{pspicture}(-2,-5)(2,5)
+\psset{unit=2}
+\CoxeterCoordinates[drawvertices=false,drawcentersfaces=true,drawcenters=false,choice=\ichoice,linewidth=0.3mm]
+\end{pspicture}
+{\tt
+[drawvertices=false,drawcentersfaces=true,drawcenters=false,choice=\ichoice,linewidth=0.3mm]
+}
+\end{center}
+\newpage}
+
+\multido{\ichoice=30+1}{2}{%
+\demoPolytopes{\ichoice} \begin{center}
+\begin{pspicture}(-2,-5)(2,5)
+\psset{unit=2}
+\CoxeterCoordinates[drawvertices=false,drawcentersfaces=true,drawcenters=false,choice=\ichoice,linewidth=0.3mm]
+\end{pspicture}
+{\tt
+[drawvertices=false,drawcentersfaces=true,drawcenters=false,choice=\ichoice,linewidth=0.3mm]
+}
+\end{center}
+\newpage}
+\multido{\ichoice=65+1}{4}{%
+\demoPolytopesGrand{\ichoice} \begin{center}
+\begin{pspicture}(-2,-5)(2,5)
+\psset{unit=3}
+\CoxeterCoordinates[drawvertices=false,drawcentersfaces=true,drawcenters=false,choice=\ichoice,linewidth=0.3mm]
+\end{pspicture}
+{\tt
+[drawvertices=false,drawcentersfaces=true,drawcenters=false,choice=\ichoice,linewidth=0.3mm]
+}
+\end{center}
+\newpage}
+
+\section{Polytopes (dimension $4$)}
+
+\begin{center}
+{\Huge Witting polytope}\\
+\begin{pspicture}(-9,-9)(9,9)
+\psset{unit=3cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=11,linewidth=0.01mm] % par défaut choice=1 (332)
+\end{pspicture}
+$\backslash$\texttt{CoxeterCoordinates[choice=11]}
+\end{center}
+\begin{center}
+\begin{tabular}{ccc}
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.7cm}
+\CoxeterCoordinates[drawvertices=false,choice=11,linewidth=0.01mm] %
+\end{pspicture}
+&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.7cm}
+\CoxeterCoordinates[drawcenters=false,choice=11,linewidth=0.01mm] %
+\end{pspicture}
+&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.7cm}
+\CoxeterCoordinates[drawedges=false,choice=11,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawvertices=false,choice=11]} &
+\texttt{[drawcenters=false,choice=11]} &
+\texttt{[drawedges=false,choice=11]}
+\end{tabular}
+\end{center}
+\begin{center}
+\begin{pspicture}(-4,-4)(4,4)
+\psset{unit=1.4cm}
+\CoxeterCoordinates[drawvertices=false,drawedges=false,drawcenters=false,drawcentersfaces=true,choice=11,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawvertices=false,drawedges=false,drawcenters=false,drawcentersfaces=true,choice=11]}
+\end{center}
+\begin{center}
+\begin{pspicture}(-4,-4)(4,4)
+\psset{unit=1.4cm}
+\CoxeterCoordinates[drawvertices=false,drawedges=false,drawcenters=false,drawcenterscells=true,choice=11,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawcenters=false,choice=11]}
+\end{center}\newpage
+\begin{center}
+{\huge Polytope $3\{4\}2\{3\}2\{3\}2$}
+\begin{pspicture}(-9,-9)(9,9)
+\psset{unit=2cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=28,linewidth=0.1mm] % par défaut choice=1 (332)
+\end{pspicture}
+
+$\backslash$\texttt{CoxeterCoordinates[choice=28]}
+\end{center}
+\begin{center}
+\begin{tabular}{ccc}
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.6cm}
+\CoxeterCoordinates[drawvertices=false,choice=28,linewidth=0.01mm] %
+\end{pspicture}
+&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.6cm}
+\CoxeterCoordinates[drawcenters=false,choice=28,linewidth=0.01mm] %
+\end{pspicture}
+&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.6cm}
+\CoxeterCoordinates[drawedges=false,choice=28,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawvertices=false,choice=28]}
+&
+\texttt{[drawcenters=false,choice=28]}
+&
+\texttt{[drawedges=false,choice=28]}
+\end{tabular}
+\end{center}
+\newpage
+\multido{\ichoice=29+1}{1}{%
+\demoPolytopes{\ichoice}
+\begin{center}
+\begin{pspicture}(-4,-4)(4,4)
+\psset{unit=1.4cm}
+\CoxeterCoordinates[drawvertices=false,drawedges=false,drawcenters=false,drawcentersfaces=true,choice=\ichoice,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawvertices=false,drawedges=false,drawcenters=false,drawcentersfaces=true,choice=\ichoice]}
+\end{center}
+\begin{center}
+\begin{pspicture}(-4,-4)(4,4)
+\psset{unit=1.4cm}
+\CoxeterCoordinates[drawvertices=false,drawedges=false,drawcenters=false,drawcenterscells=true,choice=\ichoice,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawcenters=false,choice=\ichoice]}
+\end{center}\newpage}
+
+\multido{\ichoice=32+1}{3}{%
+\demoPolytopes{\ichoice}
+\begin{center}
+\begin{pspicture}(-4,-4)(4,4)
+\psset{unit=1.4cm}
+\CoxeterCoordinates[drawvertices=false,drawedges=false,drawcenters=false,drawcentersfaces=true,choice=\ichoice,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawvertices=false,drawedges=false,drawcenters=false,drawcentersfaces=true,choice=\ichoice]}
+\end{center}
+\begin{center}
+\begin{pspicture}(-4,-4)(4,4)
+\psset{unit=1.4cm}
+\CoxeterCoordinates[drawvertices=false,drawedges=false,drawcenters=false,drawcenterscells=true,choice=\ichoice,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawcenters=false,choice=\ichoice]}
+\end{center}\newpage}
+\begin{center}
+{\Huge Le $600$-topes}\\
+\begin{pspicture}(-9,-9)(9,9)
+\psset{unit=3cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=35,linewidth=0.01mm] % par défaut choice=1 (332)
+\end{pspicture}
+$\backslash$\texttt{CoxeterCoordinates[choice=35]}
+\end{center}
+\begin{center}
+\begin{tabular}{ccc}
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1cm}
+\CoxeterCoordinates[drawvertices=false,choice=35,linewidth=0.01mm] %
+\end{pspicture}
+&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1cm}
+\CoxeterCoordinates[drawcenters=false,choice=35,linewidth=0.01mm] %
+\end{pspicture}
+&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1cm}
+\CoxeterCoordinates[drawedges=false,choice=35,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawvertices=false,choice=35]} &
+\texttt{[drawcenters=false,choice=35]} &
+\texttt{[drawedges=false,choice=35]}
+\end{tabular}
+\end{center}
+\begin{center}
+\begin{pspicture}(-4,-4)(4,4)
+\psset{unit=1.5cm}
+\CoxeterCoordinates[drawvertices=false,drawedges=false,drawcenters=false,drawcentersfaces=true,choice=35,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawvertices=false,drawedges=false,drawcenters=false,drawcentersfaces=true,choice=35]}
+\end{center}
+\begin{center}
+\begin{pspicture}(-4,-4)(4,4)
+\psset{unit=1.5cm}
+\CoxeterCoordinates[drawvertices=false,drawedges=false,drawcenters=false,drawcenterscells=true,choice=35,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawcenters=false,choice=35]}
+\end{center}\newpage
+
+\begin{center}
+{\Huge The $120$-topes}\\
+\begin{pspicture}(-9,-9)(9,9)
+\psset{unit=3.5cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=36,linewidth=0.01mm] % par défaut choice=1 (332)
+\end{pspicture}
+$\backslash$\texttt{CoxeterCoordinates[choice=36]}
+\end{center}
+\begin{center}
+\begin{tabular}{ccc}
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1cm}
+\CoxeterCoordinates[drawvertices=false,choice=36,linewidth=0.01mm] %
+\end{pspicture}
+&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1cm}
+\CoxeterCoordinates[drawcenters=false,choice=36,linewidth=0.01mm] %
+\end{pspicture}
+&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1cm}
+\CoxeterCoordinates[drawedges=false,choice=36,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawvertices=false,choice=36]} &
+\texttt{[drawcenters=false,choice=36]} &
+\texttt{[drawedges=false,choice=36]}
+\end{tabular}
+\end{center}
+\begin{center}
+\begin{pspicture}(-4,-4)(4,4)
+\psset{unit=2cm}
+\CoxeterCoordinates[drawvertices=false,drawedges=false,drawcenters=false,drawcentersfaces=true,choice=36,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawvertices=false,drawedges=false,drawcenters=false,drawcentersfaces=true,choice=36]}
+\end{center}
+\begin{center}
+\begin{pspicture}(-4,-4)(4,4)
+\psset{unit=2cm}
+\CoxeterCoordinates[drawvertices=false,drawedges=false,drawcenters=false,drawcenterscells=true,choice=36,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawcenters=false,choice=36]}
+\end{center}\newpage
+
+%\multido{\ichoice=71+1}{1}{%
+%\demoPolytopesPetit{\ichoice} \begin{center}
+%\begin{pspicture}(-2,-5)(2,5)
+%\psset{unit=0.5}
+%\CoxeterCoordinates[drawvertices=false,drawcentersfaces=true,drawcenters=false,choice=\ichoice,linewidth=0.1mm]
+%\end{pspicture}
+%{\tt
+%[drawvertices=false,drawcentersfaces=true,drawcenters=false,choice=\ichoice,linewidth=0.1mm]
+%}
+%\end{center}
+%\newpage}
+\begin{center}
+{\Huge The great starry $600$-topes}\\
+\begin{pspicture}(-9,-9)(9,9)
+\psset{unit=0.9cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=71,linewidth=0.01mm] % par défaut choice=1 (332)
+\end{pspicture}
+$\backslash$\texttt{CoxeterCoordinates[choice=71]}
+\end{center}
+\begin{center}
+\begin{tabular}{ccc}
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.2cm}
+\CoxeterCoordinates[drawvertices=false,choice=71,linewidth=0.01mm] %
+\end{pspicture}
+&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.2cm}
+\CoxeterCoordinates[drawcenters=false,choice=71,linewidth=0.01mm] %
+\end{pspicture}
+&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.2cm}
+\CoxeterCoordinates[drawedges=false,choice=71,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawvertices=false,choice=71]} &
+\texttt{[drawcenters=false,choice=71]} &
+\texttt{[drawedges=false,choice=71]}
+\end{tabular}
+\end{center}
+\begin{center}
+\begin{pspicture}(-4,-4)(4,4)
+\psset{unit=1cm}
+\CoxeterCoordinates[drawvertices=false,drawedges=false,drawcenters=false,drawcentersfaces=true,choice=71,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawvertices=false,drawedges=false,drawcenters=false,drawcentersfaces=true,choice=71]}
+\end{center}
+\begin{center}
+\begin{pspicture}(-4,-4)(4,4)
+\psset{unit=1cm}
+\CoxeterCoordinates[drawvertices=false,drawedges=false,drawcenters=false,drawcenterscells=true,choice=71,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawcenters=false,choice=71]}
+\end{center}\newpage
+%
+%
+\begin{center}
+{\Huge The great starry $120$-topes}\\
+\begin{pspicture}(-9,-9)(9,9)
+\psset{unit=6cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=72,linewidth=0.01mm] % par défaut choice=1 (332)
+\end{pspicture}
+$\backslash$\texttt{CoxeterCoordinates[choice=72]}
+\end{center}
+\begin{center}
+\begin{tabular}{ccc}
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1.5cm}
+\CoxeterCoordinates[drawvertices=false,choice=72,linewidth=0.01mm] %
+\end{pspicture}
+&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1.5cm}
+\CoxeterCoordinates[drawcenters=false,choice=72,linewidth=0.01mm] %
+\end{pspicture}
+&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1.5cm}
+\CoxeterCoordinates[drawedges=false,choice=72,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawvertices=false,choice=72]} &
+\texttt{[drawcenters=false,choice=72]} &
+\texttt{[drawedges=false,choice=72]}
+\end{tabular}
+\end{center}
+\begin{center}
+\begin{pspicture}(-4,-4)(4,4)
+\psset{unit=5cm}
+\CoxeterCoordinates[drawvertices=false,drawedges=false,drawcenters=false,drawcentersfaces=true,choice=72,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawvertices=false,drawedges=false,drawcenters=false,drawcentersfaces=true,choice=72]}
+\end{center}
+\begin{center}
+\begin{pspicture}(-4,-4)(4,4)
+\psset{unit=10cm}
+\CoxeterCoordinates[drawvertices=false,drawedges=false,drawcenters=false,drawcenterscells=true,choice=72,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawcenters=false,choice=72]}
+\end{center}\newpage
+%
+%
+%
+\begin{center}
+{\Huge $2\{3\}2\{\frac52\}2\{5\}2$}\\
+\begin{pspicture}(-9,-9)(9,9)
+\psset{unit=2cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=73,linewidth=0.01mm] % par défaut choice=1 (332)
+\end{pspicture}
+$\backslash$\texttt{CoxeterCoordinates[choice=73]}
+\end{center}
+\begin{center}
+\begin{tabular}{ccc}
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.5cm}
+\CoxeterCoordinates[drawvertices=false,choice=73,linewidth=0.01mm] %
+\end{pspicture}
+&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.5cm}
+\CoxeterCoordinates[drawcenters=false,choice=73,linewidth=0.01mm] %
+\end{pspicture}
+&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.5cm}
+\CoxeterCoordinates[drawedges=false,choice=73,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawvertices=false,choice=73]} &
+\texttt{[drawcenters=false,choice=73]} &
+\texttt{[drawedges=false,choice=73]}
+\end{tabular}
+\end{center}
+\begin{center}
+\begin{pspicture}(-4,-4)(4,4)
+\psset{unit=2cm}
+\CoxeterCoordinates[drawvertices=false,drawedges=false,drawcenters=false,drawcentersfaces=true,choice=73,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawvertices=false,drawedges=false,drawcenters=false,drawcentersfaces=true,choice=73]}
+\end{center}
+\begin{center}
+\begin{pspicture}(-4,-4)(4,4)
+\psset{unit=2cm}
+\CoxeterCoordinates[drawvertices=false,drawedges=false,drawcenters=false,drawcenterscells=true,choice=73,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawcenters=false,choice=73]}
+\end{center}\newpage
+%
+%
+%
+\begin{center}
+{\Huge $2\{3\}2\{5\}2\{\frac52\}2$}\\
+\begin{pspicture}(-9,-9)(9,9)
+\psset{unit=6cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=74,linewidth=0.01mm] % par défaut choice=1 (332)
+\end{pspicture}
+$\backslash$\texttt{CoxeterCoordinates[choice=74]}
+\end{center}
+\begin{center}
+\begin{tabular}{ccc}
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1.5cm}
+\CoxeterCoordinates[drawvertices=false,choice=74,linewidth=0.01mm] %
+\end{pspicture}
+&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1.5cm}
+\CoxeterCoordinates[drawcenters=false,choice=74,linewidth=0.01mm] %
+\end{pspicture}
+&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1.5cm}
+\CoxeterCoordinates[drawedges=false,choice=74,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawvertices=false,choice=74]} &
+\texttt{[drawcenters=false,choice=74]} &
+\texttt{[drawedges=false,choice=74]}
+\end{tabular}
+\end{center}
+\begin{center}
+\begin{pspicture}(-4,-4)(4,4)
+\psset{unit=3cm}
+\CoxeterCoordinates[drawvertices=false,drawedges=false,drawcenters=false,drawcentersfaces=true,choice=74,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawvertices=false,drawedges=false,drawcenters=false,drawcentersfaces=true,choice=74]}
+\end{center}
+\begin{center}
+\begin{pspicture}(-4,-4)(4,4)
+\psset{unit=3cm}
+\CoxeterCoordinates[drawvertices=false,drawedges=false,drawcenters=false,drawcenterscells=true,choice=74,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawcenters=false,choice=74]}
+\end{center}\newpage
+%
+%
+\begin{center}
+{\Huge $2\{\frac52\}2\{3\}2\{5\}2$}\\
+\begin{pspicture}(-9,-9)(9,9)
+\psset{unit=3cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=75,linewidth=0.01mm] % par défaut choice=1 (332)
+\end{pspicture}
+$\backslash$\texttt{CoxeterCoordinates[choice=75]}
+\end{center}
+\begin{center}
+\begin{tabular}{ccc}
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.7cm}
+\CoxeterCoordinates[drawvertices=false,choice=75,linewidth=0.01mm] %
+\end{pspicture}
+&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.7cm}
+\CoxeterCoordinates[drawcenters=false,choice=75,linewidth=0.01mm] %
+\end{pspicture}
+&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.7cm}
+\CoxeterCoordinates[drawedges=false,choice=75,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawvertices=false,choice=75]} &
+\texttt{[drawcenters=false,choice=75]} &
+\texttt{[drawedges=false,choice=75]}
+\end{tabular}
+\end{center}
+\begin{center}
+\begin{pspicture}(-4,-4)(4,4)
+\psset{unit=2.5cm}
+\CoxeterCoordinates[drawvertices=false,drawedges=false,drawcenters=false,drawcentersfaces=true,choice=75,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawvertices=false,drawedges=false,drawcenters=false,drawcentersfaces=true,choice=75]}
+\end{center}
+\begin{center}
+\begin{pspicture}(-4,-4)(4,4)
+\psset{unit=3cm}
+\CoxeterCoordinates[drawvertices=false,drawedges=false,drawcenters=false,drawcenterscells=true,choice=75,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawcenters=false,choice=75]}
+\end{center}\newpage
+%
+%
+\begin{center}
+{\Huge $2\{\frac52\}2\{5\}2\{3\}2$}\\
+\begin{pspicture}(-9,-9)(9,9)
+\psset{unit=3cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=76,linewidth=0.01mm] % par défaut choice=1 (332)
+\end{pspicture}
+$\backslash$\texttt{CoxeterCoordinates[choice=76]}
+\end{center}
+\begin{center}
+\begin{tabular}{ccc}
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.7cm}
+\CoxeterCoordinates[drawvertices=false,choice=76,linewidth=0.01mm] %
+\end{pspicture}
+&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.7cm}
+\CoxeterCoordinates[drawcenters=false,choice=76,linewidth=0.01mm] %
+\end{pspicture}
+&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.7cm}
+\CoxeterCoordinates[drawedges=false,choice=76,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawvertices=false,choice=76]} &
+\texttt{[drawcenters=false,choice=76]} &
+\texttt{[drawedges=false,choice=76]}
+\end{tabular}
+\end{center}
+\begin{center}
+\begin{pspicture}(-4,-4)(4,4)
+\psset{unit=2.5cm}
+\CoxeterCoordinates[drawvertices=false,drawedges=false,drawcenters=false,drawcentersfaces=true,choice=76,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawvertices=false,drawedges=false,drawcenters=false,drawcentersfaces=true,choice=76]}
+\end{center}
+\begin{center}
+\begin{pspicture}(-4,-4)(4,4)
+\psset{unit=3cm}
+\CoxeterCoordinates[drawvertices=false,drawedges=false,drawcenters=false,drawcenterscells=true,choice=76,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawcenters=false,choice=76]}
+\end{center}\newpage
+%
+\begin{center}
+{\Huge $2\{5\}2\{3\}2\{\frac52\}2$}\\
+\begin{pspicture}(-9,-9)(9,9)
+\psset{unit=3cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=77,linewidth=0.01mm] % par défaut choice=1 (332)
+\end{pspicture}
+$\backslash$\texttt{CoxeterCoordinates[choice=77]}
+\end{center}
+\begin{center}
+\begin{tabular}{ccc}
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.7cm}
+\CoxeterCoordinates[drawvertices=false,choice=77,linewidth=0.01mm] %
+\end{pspicture}
+&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.7cm}
+\CoxeterCoordinates[drawcenters=false,choice=77,linewidth=0.01mm] %
+\end{pspicture}
+&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.7cm}
+\CoxeterCoordinates[drawedges=false,choice=77,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawvertices=false,choice=77]} &
+\texttt{[drawcenters=false,choice=77]} &
+\texttt{[drawedges=false,choice=77]}
+\end{tabular}
+\end{center}
+\begin{center}
+\begin{pspicture}(-4,-4)(4,4)
+\psset{unit=2.5cm}
+\CoxeterCoordinates[drawvertices=false,drawedges=false,drawcenters=false,drawcentersfaces=true,choice=77,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawvertices=false,drawedges=false,drawcenters=false,drawcentersfaces=true,choice=77]}
+\end{center}
+\begin{center}
+\begin{pspicture}(-4,-4)(4,4)
+\psset{unit=3cm}
+\CoxeterCoordinates[drawvertices=false,drawedges=false,drawcenters=false,drawcenterscells=true,choice=77,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawcenters=false,choice=77]}
+\end{center}\newpage
+%
+\begin{center}
+{\Huge $2\{5\}2\{\frac52\}2\{3\}2$}\\
+\begin{pspicture}(-9,-9)(9,9)
+\psset{unit=5cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=78,linewidth=0.01mm] % par défaut choice=1 (332)
+\end{pspicture}
+$\backslash$\texttt{CoxeterCoordinates[choice=78]}
+\end{center}
+\begin{center}
+\begin{tabular}{ccc}
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.7cm}
+\CoxeterCoordinates[drawvertices=false,choice=78,linewidth=0.01mm] %
+\end{pspicture}
+&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.7cm}
+\CoxeterCoordinates[drawcenters=false,choice=78,linewidth=0.01mm] %
+\end{pspicture}
+&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.7cm}
+\CoxeterCoordinates[drawedges=false,choice=78,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawvertices=false,choice=78]} &
+\texttt{[drawcenters=false,choice=78]} &
+\texttt{[drawedges=false,choice=78]}
+\end{tabular}
+\end{center}
+\begin{center}
+\begin{pspicture}(-4,-4)(4,4)
+\psset{unit=2.5cm}
+\CoxeterCoordinates[drawvertices=false,drawedges=false,drawcenters=false,drawcentersfaces=true,choice=78,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawvertices=false,drawedges=false,drawcenters=false,drawcentersfaces=true,choice=78]}
+\end{center}
+\begin{center}
+\begin{pspicture}(-4,-4)(4,4)
+\psset{unit=3cm}
+\CoxeterCoordinates[drawvertices=false,drawedges=false,drawcenters=false,drawcenterscells=true,choice=78,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawcenters=false,choice=78]}
+\end{center}\newpage
+
+%
+\begin{center}
+{\Huge $2\{5\}2\{\frac52\}2\{5\}2$}\\
+\begin{pspicture}(-9,-9)(9,9)
+\psset{unit=5cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=79,linewidth=0.01mm] % par défaut choice=1 (332)
+\end{pspicture}
+$\backslash$\texttt{CoxeterCoordinates[choice=79}
+\end{center}
+\begin{center}
+\begin{tabular}{ccc}
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.7cm}
+\CoxeterCoordinates[drawvertices=false,choice=79,linewidth=0.01mm] %
+\end{pspicture}
+&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.7cm}
+\CoxeterCoordinates[drawcenters=false,choice=79,linewidth=0.01mm] %
+\end{pspicture}
+&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.7cm}
+\CoxeterCoordinates[drawedges=false,choice=79,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawvertices=false,choice=79]} &
+\texttt{[drawcenters=false,choice=79]} &
+\texttt{[drawedges=false,choice=79]}
+\end{tabular}
+\end{center}
+\begin{center}
+\begin{pspicture}(-4,-4)(4,4)
+\psset{unit=2.5cm}
+\CoxeterCoordinates[drawvertices=false,drawedges=false,drawcenters=false,drawcentersfaces=true,choice=79,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawvertices=false,drawedges=false,drawcenters=false,drawcentersfaces=true,choice=79]}
+\end{center}
+\begin{center}
+\begin{pspicture}(-4,-4)(4,4)
+\psset{unit=3cm}
+\CoxeterCoordinates[drawvertices=false,drawedges=false,drawcenters=false,drawcenterscells=true,choice=79,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawcenters=false,choice=79]}
+\end{center}\newpage
+%
+\begin{center}
+{\Huge $2\{\frac525\}2\{5\}2\{\frac52\}2$}\\
+\begin{pspicture}(-9,-9)(9,9)
+\psset{unit=2cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=80,linewidth=0.01mm] % par défaut choice=1 (332)
+\end{pspicture}
+$\backslash$\texttt{CoxeterCoordinates[choice=80]}
+\end{center}
+\begin{center}
+\begin{tabular}{ccc}
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.4cm}
+\CoxeterCoordinates[drawvertices=false,choice=80,linewidth=0.01mm] %
+\end{pspicture}
+&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.4cm}
+\CoxeterCoordinates[drawcenters=false,choice=80,linewidth=0.01mm] %
+\end{pspicture}
+&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.4cm}
+\CoxeterCoordinates[drawedges=false,choice=80,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawvertices=false,choice=80]} &
+\texttt{[drawcenters=false,choice=80]} &
+\texttt{[drawedges=false,choice=80]}
+\end{tabular}
+\end{center}
+\begin{center}
+\begin{pspicture}(-4,-4)(4,4)
+\psset{unit=1cm}
+\CoxeterCoordinates[drawvertices=false,drawedges=false,drawcenters=false,drawcentersfaces=true,choice=80,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawvertices=false,drawedges=false,drawcenters=false,drawcentersfaces=true,choice=80]}
+\end{center}
+\begin{center}
+\begin{pspicture}(-4,-4)(4,4)
+\psset{unit=1cm}
+\CoxeterCoordinates[drawvertices=false,drawedges=false,drawcenters=false,drawcenterscells=true,choice=80,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawcenters=false,choice=80]}
+\end{center}\newpage
+
+
+\section{Examples}
+\begin{center}
+\begin{pspicture}(-5,-5)(5,5)
+\psset{unit=2}%\rotatebox{90}{
+\CoxeterCoordinates[drawcenters=false,drawcentersfaces=true,
+choice=8,linewidth=0.3mm,linecolor=green,linecolor=blue,sizeCentersFaces=0.15,
+colorCentersFaces=red,styleCentersFaces=pentagon]
+%}
+% \psset{unit=1}
+\CoxeterCoordinates[drawvertices=false,choice=9,linewidth=0.01mm,
+styleCenters=+,sizeCenters=0.1,colorCenters=black]
+\end{pspicture}\\
+%Les centres des ar\^etes d'un polytope Hessien sont les sommets
+%d'un polytope $2\{4\}3\{3\}3$.
+The centers of the edges of an Hessian are the vertices of a
+$2\{4\}3\{3\}3$.
+\begin{verbatim}
+\psset{unit=2}%\rotatebox{90}{
+\CoxeterCoordinates[drawcenters=false,drawcentersfaces=true,
+choice=8,linewidth=0.3mm,linecolor=green,linecolor=blue,sizeCentersFaces=0.15,
+colorCentersFaces=red,styleCentersFaces=pentagon]
+%}
+ \psset{unit=1}
+\CoxeterCoordinates[drawvertices=false,choice=9,linewidth=0.01mm,
+styleCenters=+,sizeCenters=0.1,colorCenters=black]
+\end{verbatim}
+\end{center}
+\newpage
+\begin{center}
+\begin{pspicture}(-2,-7)(2,10)
+\psset{unit=2} \rotatebox{90}{
+\CoxeterCoordinates[drawcenters=false,choice=10,linewidth=0.3mm,linecolor=green,sizeVertices=0.2,
+colorVertices=magenta]} \psset{unit=1.725}
+\CoxeterCoordinates[drawvertices=false,choice=9,linewidth=0.01mm,
+styleCenters=+,sizeCenters=0.1,colorCenters=black]
+\end{pspicture}\\
+%Les centres des ar\^etes d'un polytope Hessien sont les sommets
+%d'un polytope $2\{4\}3\{3\}3$.
+The centers of the edges of an Hessian are a the vertices of a
+$3\{3\}3\{4\}2$.
+\begin{verbatim}
+\psset{unit=2} \rotatebox{90}{
+\CoxeterCoordinates[drawcenters=false,choice=10,linewidth=0.3mm,linecolor=green,sizeVertices=0.2,
+colorVertices=magenta]} \psset{unit=1.725}
+\CoxeterCoordinates[drawvertices=false,choice=9,linewidth=0.01mm,
+styleCenters=+,sizeCenters=0.1,colorCenters=black]\end{verbatim}
+\end{center}
+\newpage
+\begin{center}
+\begin{pspicture}(-2,-7)(2,10)
+\psset{unit=3}
+\CoxeterCoordinates[drawcenters=false,choice=8,linewidth=1mm,sizeVertices=0.1,colorVertices=magenta]
+\psset{unit=1}
+\CoxeterCoordinates[drawcenters=false,choice=9,linewidth=0.01mm,linecolor=blue,
+styleVertices=triangle,sizeVertices=0.07,colorVertices=blue]
+\rotatebox{180}
+{\CoxeterCoordinates[drawcenters=false,choice=9,linewidth=0.01mm,linecolor=green,
+styleVertices=triangle,sizeVertices=0.07,colorVertices=green]}\end{pspicture}\\
+%Les sommets d'un polytope $2\{4\}3\{3\}3$ sont les sommets de deux
+%polytopes Hessien r\'eciproques.
+The vertices of a polytope $2\{4\}3\{3\}3$ are the vertices of two
+reciprocal Hessien polytopes
+\begin{verbatim}
+\psset{unit=3}
+\CoxeterCoordinates[drawcenters=false,choice=8,linewidth=1mm,
+sizeVertices=0.1,colorVertices=magenta]
+\psset{unit=1}
+\CoxeterCoordinates[drawcenters=false,choice=9,linewidth=0.01mm,linecolor=blue,
+styleVertices=+,sizeVertices=0.1,colorVertices=blue] \rotatebox{180}
+{\CoxeterCoordinates[drawcenters=false,choice=9,linewidth=0.01mm,linecolor=green,
+styleVertices=+,sizeVertices=0.1,colorVertices=green]}
+\end{verbatim}
+\end{center}\newpage
+\begin{center}
+\begin{pspicture}(-2,-8)(2,8)
+\psset{unit=2} \rotatebox{180}
+{\CoxeterCoordinates[drawcenters=false,choice=9,
+linewidth=0.3mm,linecolor=green,styleVertices=triangle,sizeVertices=0.1,colorVertices=blue]}
+\psset{unit=2}
+\CoxeterCoordinates[drawvertices=false,drawcenters=false,drawcentersfaces=true
+,choice=9,linewidth=0.01mm]
+\end{pspicture}\\
+%Les centres des faces d'un polytope Hessien sont les sommets d'un
+%polytope Hessien (r\'eciproque du premier).
+The centers of the faces of an Hessian are the vertices of its
+reciprocal.
+\begin{verbatim}
+\psset{unit=2} \rotatebox{180}
+{\CoxeterCoordinates[drawcenters=false,choice=9,
+linewidth=0.3mm,linecolor=green,styleVertices=triangle,sizeVertices=0.1,colorVertices=blue]}
+\psset{unit=2}
+\CoxeterCoordinates[drawvertices=false,drawcenters=false,drawcentersfaces=true
+,choice=9,linewidth=0.01mm]
+\end{verbatim}
+\end{center}
+\newpage
+\begin{center}
+\begin{pspicture}(-2,-8)(2,8)
+\psset{unit=1.5} \rotatebox{180}
+{\CoxeterCoordinates[drawcenters=false,choice=8,
+linewidth=0.3mm,linecolor=green,styleVertices=triangle,sizeVertices=0.1,colorVertices=blue]}
+\psset{unit=2}
+\CoxeterCoordinates[drawvertices=false,drawcenters=false,drawcentersfaces=true
+,choice=10,linewidth=0.01mm]
+\end{pspicture}\\
+%Les centres des faces d'un polytope $2\{4\}3\{3\}3$ sont les
+%sommets d'un polytope $3\{3\}3\{4\}2$ (r\'eciproque du premier).
+The centers of the faces of a $2\{4\}3\{3\}3$ are the vertices of a
+$3\{3\}3\{4\}2$.
+\begin{verbatim}
+\psset{unit=1.5} \rotatebox{180}
+{\CoxeterCoordinates[drawcenters=false,choice=8,
+linewidth=0.3mm,linecolor=green,styleVertices=triangle,sizeVertices=0.1,colorVertices=blue]}
+\psset{unit=2}
+\CoxeterCoordinates[drawvertices=false,drawcenters=false,drawcentersfaces=true
+,choice=10,linewidth=0.01mm]
+\end{verbatim}
+\end{center}
+\newpage
+\begin{center}
+\begin{pspicture}(-2,-8)(2,8)
+ \psset{unit=2.5}
+\CoxeterCoordinates[drawvertices=false,drawcenters=false,choice=11,linewidth=0.01mm,
+linecolor=black] \psset{unit=0.575} \reflectbox
+{\CoxeterCoordinates[drawcenters=false,choice=11,
+linewidth=0.01mm,linecolor=yellow,styleVertices=triangle,sizeVertices=0.1,colorVertices=blue]}
+\psset{unit=1.73}
+\CoxeterCoordinates[drawedges=false,drawvertices=false,drawcenters=false,
+drawcenterscells=true ,choice=11]
+\end{pspicture}\\
+The centers of the cells of a Witting polytope are the vertices of
+its reciprocal.
+\begin{verbatim}
+ \psset{unit=2.5}
+\CoxeterCoordinates[drawvertices=false,drawcenters=false,choice=11,linewidth=0.01mm,
+linecolor=black] \psset{unit=0.575} \reflectbox
+{\CoxeterCoordinates[drawcenters=false,choice=11,
+linewidth=0.01mm,linecolor=yellow,styleVertices=triangle,sizeVertices=0.1,colorVertices=blue]}
+\psset{unit=1.73}
+\CoxeterCoordinates[drawedges=false,drawvertices=false,drawcenters=false,
+drawcenterscells=true ,choice=11]
+\end{verbatim}
+\end{center}
+\newpage
+\begin{center}
+\begin{pspicture}(-2,-8)(2,8)
+\psset{unit=3}
+\CoxeterCoordinates[drawedges=false,drawcenters=false,
+ choice=10,linewidth=0.1mm,colorVertices=blue,sizeVertices=0.1]
+\CoxeterCoordinates[drawvertices=false,drawcenters=false,choice=27]
+\end{pspicture}\\ One of the eight $3\{4\}2\{3\}2$ contained in a $3\{3\}3\{4\}2$.
+\begin{verbatim}
+\psset{unit=3}
+\CoxeterCoordinates[drawedges=false,drawcenters=false,
+ choice=10,linewidth=0.1mm,colorVertices=blue,sizeVertices=0.1]
+\CoxeterCoordinates[drawvertices=false,drawcenters=false,choice=27]
+\end{verbatim}
+\end{center}\newpage
+\begin{center}
+\begin{pspicture}(-2,-8)(2,8)
+\psset{unit=3}
+\CoxeterCoordinates[drawedges=false,drawcenters=false,
+ choice=10,linewidth=0.1mm,colorVertices=blue,sizeVertices=0.1]
+\rotatebox{10.5}{\psset{unit=1.75}\CoxeterCoordinates[drawvertices=false,drawcenters=false,choice=26]}
+\end{pspicture}\\ One of the $8$ $2\{3\}2\{4\}3$ contained in a $3\{3\}3\{4\}2$.
+\begin{verbatim}
+\psset{unit=3}
+\CoxeterCoordinates[drawedges=false,drawcenters=false,
+ choice=10,linewidth=0.1mm,colorVertices=blue,sizeVertices=0.1]
+\rotatebox{10.5} {\psset{unit=1.75}
+\CoxeterCoordinates[drawvertices=false,drawcenters=false,choice=26]}
+\end{verbatim}
+\end{center}
+\newpage
+\begin{center}
+\begin{pspicture}(-2,-8)(2,8)
+\psset{unit=3} \CoxeterCoordinates[drawcenters=false,
+ choice=32,linewidth=0.1mm,colorVertices=blue,sizeVertices=0.05,drawcenterscells=true,
+ sizeCentersCells=0.05,styleCentersCells=o]
+ \CoxeterCoordinates[drawcenters=false,
+ choice=33,linewidth=0.1mm,colorVertices=blue,sizeVertices=0.05,drawcenterscells=true]
+ \psset{unit=0.25}\CoxeterCoordinates[drawcenters=false,
+ choice=33,linecolor=blue,linewidth=0.6mm,colorVertices=blue,sizeVertices=0.1,drawcenterscells=true]
+\CoxeterCoordinates[drawcenters=false,
+ choice=32,linewidth=0.1mm,colorVertices=blue,sizeVertices=0.05,drawcenterscells=true,
+ sizeCentersCells=0.05,styleCentersCells=o]
+ \psset{unit=0.25}\CoxeterCoordinates[drawcenters=false,
+ choice=33,linecolor=blue,linewidth=0.6mm,colorVertices=blue,sizeVertices=0.1,drawcenterscells=true]
+\CoxeterCoordinates[drawcenters=false,
+ choice=32,linewidth=0.1mm,colorVertices=blue,sizeVertices=0.05,drawcenterscells=true,
+ sizeCentersCells=0.05,styleCentersCells=o]
+ \psset{unit=0.25}\CoxeterCoordinates[drawcenters=false,
+ choice=33,linecolor=blue,linewidth=0.6mm,colorVertices=blue,sizeVertices=0.1,drawcenterscells=true]
+\CoxeterCoordinates[drawcenters=false,
+ choice=32,linewidth=0.1mm,colorVertices=blue,sizeVertices=0.05,drawcenterscells=true,
+ sizeCentersCells=0.05,styleCentersCells=o]
+\end{pspicture}
+\end{center}
+A 16-tope in an hypercube in a 16-tope in an hypercube in ...
+\begin{verbatim}
+\psset{unit=3} \CoxeterCoordinates[drawcenters=false,
+ choice=32,linewidth=0.1mm,colorVertices=blue,sizeVertices=0.05,drawcenterscells=true,
+ sizeCentersCells=0.05,styleCentersCells=o]
+ \CoxeterCoordinates[drawcenters=false,
+ choice=33,linewidth=0.1mm,colorVertices=blue,sizeVertices=0.05,drawcenterscells=true]
+ \psset{unit=0.25}\CoxeterCoordinates[drawcenters=false,
+ choice=33,linecolor=blue,linewidth=0.6mm,colorVertices=blue,sizeVertices=0.1,drawcenterscells=true]
+\CoxeterCoordinates[drawcenters=false,
+ choice=32,linewidth=0.1mm,colorVertices=blue,sizeVertices=0.05,drawcenterscells=true,
+ sizeCentersCells=0.05,styleCentersCells=o]
+ \psset{unit=0.25}\CoxeterCoordinates[drawcenters=false,
+ choice=33,linecolor=blue,linewidth=0.6mm,colorVertices=blue,sizeVertices=0.1,drawcenterscells=true]
+\CoxeterCoordinates[drawcenters=false,
+ choice=32,linewidth=0.1mm,colorVertices=blue,sizeVertices=0.05,drawcenterscells=true,
+ sizeCentersCells=0.05,styleCentersCells=o]
+ \psset{unit=0.25}\CoxeterCoordinates[drawcenters=false,
+ choice=33,linecolor=blue,linewidth=0.6mm,colorVertices=blue,sizeVertices=0.1,drawcenterscells=true]
+\CoxeterCoordinates[drawcenters=false,
+ choice=32,linewidth=0.1mm,colorVertices=blue,sizeVertices=0.05,drawcenterscells=true,
+ sizeCentersCells=0.05,styleCentersCells=o]\end{verbatim}
+\newpage
+\newpage
+\begin{center}
+\begin{pspicture}(-2,-4)(2,4)
+\psset{unit=2}
+\CoxeterCoordinates[drawcenters=false,drawcentersfaces=false,drawvertices=false,
+ choice=30,linewidth=0.1mm,linecolor=blue]
+ \CoxeterCoordinates[drawcenters=false,
+ choice=31,linewidth=0.1mm,colorVertices=blue,sizeVertices=0.05,linecolor=magenta]
+ \CoxeterCoordinates[drawcenters=false,drawcentersfaces=true,drawvertices=false,
+ drawedges=false,choice=30]
+\end{pspicture}
+\begin{pspicture}(-2,-4)(2,4)
+\psset{unit=2} \CoxeterCoordinates[drawcenters=false,
+ choice=31,linewidth=0.1mm,drawvertices=false,linecolor=magenta]
+{\psset{unit=0.635}\CoxeterCoordinates[drawcenters=false,drawcentersfaces=false,
+ choice=30,linewidth=0.1mm,linecolor=blue,colorVertices=blue,sizeVertices=0.1]
+ }
+ \CoxeterCoordinates[drawcenters=false,drawedges=false,drawcentersfaces=true,
+ choice=31,linewidth=0.1mm,drawvertices=false]
+\end{pspicture}
+
+\end{center}
+A dodec\ae dron in an ikos\ae dron and an iko\ae dron in a dodec\ae
+dron.
+\begin{verbatim}
+\begin{pspicture}(-2,-4)(2,4)
+\psset{unit=2}
+\CoxeterCoordinates[drawcenters=false,drawcentersfaces=false,drawvertices=false,
+ choice=30,linewidth=0.1mm,linecolor=blue]
+ \CoxeterCoordinates[drawcenters=false,
+ choice=31,linewidth=0.1mm,colorVertices=blue,sizeVertices=0.05,linecolor=magenta]
+ \CoxeterCoordinates[drawcenters=false,drawcentersfaces=true,drawvertices=false,
+ drawedges=false,choice=30]
+\end{pspicture}
+\begin{pspicture}(-2,-4)(2,4)
+\psset{unit=2} \CoxeterCoordinates[drawcenters=false,
+ choice=31,linewidth=0.1mm,drawvertices=false,linecolor=magenta]
+{\psset{unit=0.635}\CoxeterCoordinates[drawcenters=false,drawcentersfaces=false,
+ choice=30,linewidth=0.1mm,linecolor=blue,colorVertices=blue,sizeVertices=0.1]
+ }
+ \CoxeterCoordinates[drawcenters=false,drawedges=false,drawcentersfaces=true,
+ choice=31,linewidth=0.1mm,drawvertices=false]
+\end{pspicture}
+\end{verbatim}
+\newpage
+%%%%
+\begin{center}
+\begin{pspicture}(-7,-7)(7,7)
+\psset{unit=5}
+\CoxeterCoordinates[drawcenters=false,drawcentersfaces=false,drawvertices=false,
+ choice=35,linewidth=0.1mm,linecolor=blue]
+ {\psset{unit=0.86}
+ \CoxeterCoordinates[drawcenters=false,
+ choice=36,linewidth=0.1mm,colorVertices=blue,sizeVertices=0.05,linecolor=red]
+ }
+ \CoxeterCoordinates[drawcenters=false,drawcenterscells=true,drawvertices=false,
+ drawedges=false,choice=35]
+\end{pspicture}
+\end{center}
+A $120$-tope in a $600$-tope.
+\begin{verbatim}
+\begin{pspicture}(-7,-7)(7,7)
+\psset{unit=5}
+\CoxeterCoordinates[drawcenters=false,drawcentersfaces=false,drawvertices=false,
+ choice=35,linewidth=0.1mm,linecolor=blue]
+ {\psset{unit=0.86}
+ \CoxeterCoordinates[drawcenters=false,
+ choice=36,linewidth=0.1mm,colorVertices=blue,sizeVertices=0.05,linecolor=red]
+ }
+ \CoxeterCoordinates[drawcenters=false,drawcenterscells=true,drawvertices=false,
+ drawedges=false,choice=35]
+\end{pspicture}
+\end{verbatim}
+\newpage
+%%%%
+\begin{center}
+\begin{pspicture}(-7,-7)(7,7)
+\psset{unit=5}
+\CoxeterCoordinates[drawcenters=false,drawcentersfaces=false,drawvertices=false,
+ choice=36,linewidth=0.1mm,linecolor=blue]
+ \CoxeterCoordinates[drawcenters=false,
+ choice=35,linewidth=0.1mm,colorVertices=blue,sizeVertices=0.05,linecolor=red]
+ \CoxeterCoordinates[drawcenters=false,drawcenterscells=true,drawvertices=false,
+ drawedges=false,choice=36]
+\end{pspicture}
+\end{center}
+A $600$-tope in a $120$-tope.
+\begin{verbatim}
+\begin{pspicture}(-7,-7)(7,7)
+\psset{unit=5}
+\CoxeterCoordinates[drawcenters=false,drawcentersfaces=false,drawvertices=false,
+ choice=36,linewidth=0.1mm,linecolor=blue]
+ \CoxeterCoordinates[drawcenters=false,
+ choice=35,linewidth=0.1mm,colorVertices=blue,sizeVertices=0.05,linecolor=red]
+ \CoxeterCoordinates[drawcenters=false,drawcenterscells=true,drawvertices=false,
+ drawedges=false,choice=36]
+\end{pspicture}
+\end{verbatim}
+\newpage
+%%%%
+%%%%
+\begin{center}
+\begin{pspicture}(-7,-7)(7,7)
+\psset{unit=0.5} \CoxeterCoordinates[drawcenters=false,
+ choice=71,linewidth=0.1mm,colorVertices=blue,sizeVertices=0.05,linecolor=magenta]
+ \rotatebox{4.5}{\psset{unit=6.9}\CoxeterCoordinates[drawcenters=false,
+choice=36,styleVertices=*,linewidth=0.1mm,linecolor=blue]}
+\end{pspicture}
+\end{center}
+A starry $120$-tope in a $120$-tope.
+\begin{verbatim}
+\psset{unit=0.5} \CoxeterCoordinates[drawcenters=false,
+ choice=71,linewidth=0.1mm,colorVertices=blue,sizeVertices=0.05,linecolor=magenta]
+ \rotatebox{4.5}{\psset{unit=6.9}\CoxeterCoordinates[drawcenters=false,
+choice=36,styleVertices=*,linewidth=
+\end{verbatim}
+%%%%
+%\begin{center}
+%\begin{pspicture}(-7,-7)(7,7)
+%{\psset{unit=5} \CoxeterCoordinates[drawcenters=false,
+% choice=72,linewidth=0.1mm,colorVertices=blue,sizeVertices=0.05,linecolor=magenta]}
+% \rotatebox{5}{\CoxeterCoordinates[unit=4.98,drawcenters=false,
+%choice=35,styleVertices=*,linewidth=0.1mm,linecolor=blue]}
+%\end{pspicture}
+%\end{center}
+%A starry $600$-tope in a $600$-tope.
+%\begin{verbatim}
+%\begin{pspicture}(-7,-7)(7,7)
+%\psset{unit=0.5} \CoxeterCoordinates[drawcenters=false,
+% choice=72,linewidth=0.1mm,colorVertices=blue,sizeVertices=0.05,linecolor=magenta]
+% \CoxeterCoordinates[unit=7,drawcenters=false,
+%choice=35,styleVertices=*,linewidth=0.1mm,linecolor=blue]
+%\end{pspicture}\end{verbatim}
+\end{document}
diff --git a/Master/texmf-dist/doc/generic/pst-cox/pst-coxcoor/pst-coxcoor_doc.pdf b/Master/texmf-dist/doc/generic/pst-cox/pst-coxcoor/pst-coxcoor_doc.pdf
new file mode 100644
index 00000000000..4b24fd50775
--- /dev/null
+++ b/Master/texmf-dist/doc/generic/pst-cox/pst-coxcoor/pst-coxcoor_doc.pdf
Binary files differ
diff --git a/Master/texmf-dist/doc/generic/pst-cox/pst-coxcoor/pst-coxcoor_doc.tex b/Master/texmf-dist/doc/generic/pst-cox/pst-coxcoor/pst-coxcoor_doc.tex
new file mode 100644
index 00000000000..f346c7e410a
--- /dev/null
+++ b/Master/texmf-dist/doc/generic/pst-cox/pst-coxcoor/pst-coxcoor_doc.tex
@@ -0,0 +1,1118 @@
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+% polygonesCoordinate\pst-coxcoor_doc.tex
+% 7 Authors: J.-G. Luque and M. Luque
+% 8 Purpose: Documentation for pst-coxcoor
+% 9 Created: 02/02/2008
+% 10 License: LGPL
+% 11 Project: PST-Cox V1.00
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+% polygonesCoordinate\Gallery.tex
+% Authors: J.-G. Luque and M. Luque
+% Purpose: Demonstration of the library pst-coxcoor
+% Created: 02/02/2008
+% License: LGPL
+% Project: PST-Cox V1.00
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+% Copyright © 2008 Jean-Gabriel Luque, Manuel Luque.
+% This work may be distributed and/or modified under the condition of
+% the Lesser GPL.
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+% This file is part of PST-Cox V1.00.
+%
+% PST-Cox V1.00 is free software: you can redistribute it and/or modify
+% it under the terms of the Lesser GNU General Public License as published by
+% the Free Software Foundation, either version 3 of the License, or
+% (at your option) any later version.
+%
+% PST-Cox V1.00 is distributed in the hope that it will be useful,
+% but WITHOUT ANY WARRANTY; without even the implied warranty of
+% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+% Lesser GNU General Public License for more details.
+%
+% You should have received a copy of the Lesser GNU General Public License
+% along with PST-Cox V1.00. If not, see <http://www.gnu.org/licenses/>.
+%
+
+\documentclass[a4paper]{article}
+\usepackage[latin1]{inputenc}%
+\usepackage[margin=2cm]{geometry}
+\usepackage{pst-coxcoor}
+\usepackage{multido}
+\usepackage{amssymb}
+\usepackage{amsfonts}
+\usepackage{amsmath}
+\usepackage{graphics}
+% d\'emonstration
+% JG Luque 12 août 2003
+\newtheorem{example}{Example}[section]
+\newcount\ChoicePolytope
+\def\C{{\mathbb C}}
+
+\title{The Library {\tt pst-coxcoor}}
+\author{Jean-Gabriel \textsc{Luque}\footnote{Universit\'e Paris-Est, Laboratoire d'informatique
+de l'Institut-Gaspard Monge, Jean-Gabriel.Luque@univ-mlv.fr} and
+Manuel
+ \textsc{Luque}\footnote{mluque5130@aol.com}}
+\begin{document}
+\maketitle
+ \begin{abstract}
+ We describe the {\tt LaTex} library {\tt pst-coxcoor} devoted to
+ draw regular complex polytopes.
+ \end{abstract}
+ \section{Introduction}
+ Inspired by the dissertation of G.C. Shephard \cite{Sh}, Coxeter
+ toke twenty years to write his most famous book {\em Regular Complex Polytopes} \cite{Cox}. But its
+ interest for the polytope dates from the beginning of his career as
+ shown his numerous publications on the subject (reader can refer to
+ \cite{Reg} or \cite{Kalei}). According to the preface of
+ \cite{Cox}, the term of complex polytopes is due to D.M.Y.
+ Sommerville \cite{Som}. A complex polytope may have more than two
+ vertices on an edge (and in particular the polygons may have more
+ than two edges at a vertice). It is a finite set of flags of subspaces in $\C^n$
+ with certain constraints
+ which will be not developed here \footnote{For a precise
+ definition, see \cite{Cox} Ch12}.
+ In fact, a complex polytope can be generated from one vertice by a finite number of pseudo-reflections.
+ More precisely, as for the classical solids, it
+ can be constructed from an arrangement of mirrors,
+ considering a point in the intersection of all but one the mirrors
+ and computing the orbit of this point by the pseudo-reflections generated by the mirrors. In the
+ case of the real polytopes, one uses classical reflections which are
+ involutions. It is not the case for general complex polytopes, since
+ a reflection may include a component which is a rotation.
+The classification of the complex polytopes is due to G.C. Shephard
+\cite{Sh} and is closely related to the classification of the
+complex unitary reflection groups \cite{ST}. Many of these groups
+are fundamental in geometry. For example, the polytope Hessian is a
+$3$-dimensional polytope whose symmetry group is generated by $3$
+pseudo-reflections $s_1$, $s_2$ and $s_3$ verifying
+$s_1^3=s_2^3=s_3^3=Id$, $s_1s_2s_1=s_2s_1s_2$, $s_2s_3s_2=s_3s_2s_3$
+and $s_1s_3=s_3s_1$ and which is related to the determination of the
+nine inflection points of a cubic curve and the 27 lines in a cubic
+plane.\\
+The library described here is a {\tt LaTex} package for drawing two
+dimensional projections of regular complex polytopes. The
+coordinates of the vertices, edges, faces... of the projections have
+been pre-calculated using a formal computer system.\\
+The polytopes considered are exceptional polytopes, for drawing
+infinite series use the package {\it pst-coxeterp}.\\
+ Note that this package have already been used by one of the author
+ to illustrate an article \cite{qutrit} in collaboration with E. Briand,
+ J.-Y. Thibon and F. Verstraete and in his ``{\it habilitation \`a
+ diriger les recherches}'' \cite{Luque}.
+\section{Install {\tt pst-coxcoor}}
+The package contains three files: A latex style file {\tt
+pst-coxcoor.sty} which call the latex file {\tt pst-coxcoor.tex}
+containing the description of the macro {\tt
+$\setminus$CoxeterCoordinates} and a data file {\tt pst-coxcoor.pro}
+which contains the list of the coordinates of each polytope.\\ The
+installation is very simple. It suffices to
+copy the files {\tt pst-coxcoor.sty}, {\tt pst-coxcoor.tex} and\\
+{\tt pst-coxcoor.pro} in the appropriate directories.
+\begin{example}\rm
+The file {\tt pst-coxcoor.sty} may be copy in the directory \\ {\tt
+c:/texmf/tex/latex/pst-coxcoor},\\
+ the file {\tt pst-coxcoor.tex} in\\
+{\tt c:/texmf/tex/generic/pst-coxcoor}\\ and the file {\tt
+pst-coxcoor.pro} in\\ {\tt c:/texmf/tex/dvips/pst-coxcoor}.
+\end{example}
+To use the package add the code
+\begin{verbatim}
+\usepackage{pst-coxcoor}}
+\end{verbatim}
+in the beginning of your LaTex-file.
+\begin{example}\rm
+\begin{verbatim}
+\documentclass[a4paper]{article}
+...
+\usepackage{pst-coxcoor}
+....
+\end{verbatim}
+\end{example}
+The library needs the packages {\tt PSTrick} and {\tt pst-xkey}.
+
+\section{Characteristics of the polytopes}
+ The polytope considered here are two, three or four
+ ($\C$)-dimensional objects which generalizes the classical platonic
+ solids. They are constituted of vertices, edges, faces and cells
+ (four dimensional faces). The package contains only one macro {\tt $\setminus$CoxeterCoordinates}
+ which draws the vertices,
+ the edges, the centers of the edges\footnote{In general, for a complex polytope, the edges are
+ polygonal.}, the centers of the faces and the centers of the cells.
+ All the coordinates of the polytopes have been pre-computed and
+ stored in the file {\tt pst-coxcoor.pro}.
+\subsection{List of the polytopes}
+The parameter {\tt ichoice} contains the number identifying the
+polytope.
+\begin{example}
+\rm Setting {\tt choice=9} makes the macro draw the (3 dimensional)
+Hessian polytope which has $27$ vertices, $72$ triangular edges and
+$27$ faces.
+\[
+\begin{pspicture}(-4,-4)(4,4)
+\psset{unit=1.5cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=9] %
+\end{pspicture}
+\]
+\begin{verbatim}
+\begin{pspicture}(-4,-4)(4,4)
+\psset{unit=1.5cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=9] %
+\end{pspicture}
+\end{verbatim}
+\end{example}
+There is $80$ pre-calculated polytopes in the file {\tt
+pst-coxcoor.pro}. Almost all the complex regular polytopes up to the
+dimension four have been computed. Only some starry polytopes in
+dimension $4$ are not in the list. The following tableau contains
+the list of the polytopes with their names in the notation of
+Coxeter \cite{Cox}.
+\[
+\begin{array}{|c|c|c|}
+\hline 2\{3\}3&3\{3\}3&3\{3\}3\\\hline
+ \begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=1] %
+\end{pspicture}&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=2] %
+\end{pspicture}
+ &\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.7cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=3] %
+\end{pspicture}\\\hline
+{\tt choice=1}&{\tt choice=2}&{\tt choice=3}\\\hline
+\end{array}\]
+ %%%%
+\[
+\begin{array}{|c|c|c|}\hline
+ 3\{4\}2&3\{4\}4&3\{4\}3\\\hline
+ \begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.8cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=4] %
+\end{pspicture}&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.6cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=5] %
+\end{pspicture}
+ &\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=6] %
+\end{pspicture}\\\hline
+{\tt choice=4}&{\tt choice=5}&{\tt choice=6}\\\hline
+ %%%%
+\end{array}\]
+ %%%%
+\[
+\begin{array}{|c|c|c|}\hline
+4\{3\}4&2\{4\}3\{3\}3&3\{3\}3\{3\}3\\\hline
+ \begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=7] %
+\end{pspicture}&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.8cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=8] %
+\end{pspicture}
+ &\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.7cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=9] %
+\end{pspicture}\\\hline
+{\tt choice=7}&{\tt choice=8}&{\tt choice=9}\\\hline
+\end{array}
+\]
+%%%
+\[
+\begin{array}{|c|c|c|}\hline
+3\{3\}3\{4\}2&3\{3\}3\{3\}3\{3\}3&3\{8\}2\\\hline
+ \begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.7cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=10] %
+\end{pspicture}&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.6cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=11,drawcenters=false] %
+\end{pspicture}
+ &\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.4cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=12] %
+\end{pspicture}\\\hline
+{\tt choice=10}&{\tt choice=11}&{\tt choice=12}\\\hline
+\end{array}
+\]
+%%%%
+%%%%
+\[
+\begin{array}{|c|c|c|}\hline
+2\{8\}3&3\{5\}3&4\{4\}3\\\hline
+ \begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.4cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=13] %
+\end{pspicture}&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.6cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=14] %
+\end{pspicture}
+ &\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.7cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=15] %
+\end{pspicture}\\\hline
+{\tt choice=13}&{\tt choice=14}&{\tt choice=15}\\\hline
+\end{array}
+\]
+%%%
+%%%
+\[
+\begin{array}{|c|c|c|}\hline
+4\{3\}2&2\{3\}4&2\{6\}4\\\hline
+ \begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=16] %
+\end{pspicture}&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.6cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=17] %
+\end{pspicture}
+ &\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.7cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=18] %
+\end{pspicture}\\\hline
+{\tt choice=16}&{\tt choice=17}&{\tt choice=18}\\\hline
+\end{array}
+\]
+%%%%%
+\[
+\begin{array}{|c|c|c|}\hline
+4\{6\}2&5\{3\}5&2\{10\}3\\\hline
+ \begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.7cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=19] %
+\end{pspicture}&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.6cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=20] %
+\end{pspicture}
+ &\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.7cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=21] %
+\end{pspicture}\\\hline
+{\tt choice=19}&{\tt choice=20}&{\tt choice=21}\\\hline
+\end{array}
+\]
+%%%%%
+\[
+\begin{array}{|c|c|c|}\hline
+3\{10\}2&2\{5\}3&3\{5\}2\\\hline
+ \begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=22] %
+\end{pspicture}&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.5cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=23] %
+\end{pspicture}
+ &\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.6cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=24] %
+\end{pspicture}\\\hline
+{\tt choice=22}&{\tt choice=23}&{\tt choice=24}\\\hline
+\end{array}
+\]
+%%%%
+\[
+\begin{array}{|c|c|c|}\hline
+2\{4\}3&2\{3\}2\{4\}3&3\{4\}2\{3\}2\\\hline
+ \begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=25] %
+\end{pspicture}&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.8cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=26] %
+\end{pspicture}
+ &\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.7cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=27] %
+\end{pspicture}\\\hline
+{\tt choice=25}&{\tt choice=26}&{\tt choice=27}\\\hline
+\end{array}
+\]
+%%%%
+\[
+\begin{array}{|c|c|c|}\hline
+3\{4\}2\{3\}2\{3\}2&2\{3\}2\{3\}2\{4\}3&2\{3\}2\{5\}2\\\hline
+ \begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.6cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=28] %
+\end{pspicture}&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1.3cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=29] %
+\end{pspicture}
+ &\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=30] %
+\end{pspicture}\\\hline
+{\tt choice=28}&{\tt choice=29}&{\tt choice=30}\\\hline
+\end{array}
+\]
+%%%%
+\[
+\begin{array}{|c|c|c|}\hline
+2\{5\}2\{3\}2&2\{3\}2\{3\}2\{4\}2&2\{4\}2\{3\}2\{3\}2\\\hline
+ \begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=31] %
+\end{pspicture}&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=32] %
+\end{pspicture}
+ &\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.7cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=33] %
+\end{pspicture}\\\hline
+{\tt choice=31}&{\tt choice=32}&{\tt choice=33}\\\hline
+\end{array}
+\]
+%%%%
+\[
+\begin{array}{|c|c|c|}\hline
+2\{3\}2\{4\}2\{3\}2&2\{3\}2\{3\}2\{5\}2&2\{5\}2\{3\}2\{3\}2\\\hline
+ \begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.7cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=34] %
+\end{pspicture}&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1.3cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=35,drawcenters=false] %
+\end{pspicture}
+ &\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1.3cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=36,drawcenters=false] %
+\end{pspicture}\\\hline
+{\tt choice=34}&{\tt choice=35}&{\tt choice=36}\\\hline
+\end{array}
+\]
+%%%%
+%%%%
+%%%%%
+\[
+\begin{array}{|c|c|c|}\hline
+3\{\frac52\}3&5\{\frac52\}5&2\{\frac52\}3\\\hline
+ \begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.5cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=37] %
+\end{pspicture}&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.7cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=38] %
+\end{pspicture}
+ &\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.8cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=39] %
+\end{pspicture}\\\hline
+{\tt choice=37}&{\tt choice=38}&{\tt choice=39}\\\hline
+\end{array}
+\]
+%%%%%
+\[
+\begin{array}{|c|c|c|}\hline
+3\{\frac52\}2&3\{\frac{10}3\}2&2\{\frac{103}\}3\\\hline
+ \begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=40] %
+\end{pspicture}&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1.4cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=41] %
+\end{pspicture}
+ &\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1.2cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=42] %
+\end{pspicture}\\\hline
+{\tt choice=40}&{\tt choice=41}&{\tt choice=42}\\\hline
+\end{array}
+\]
+%%%%%
+\[
+\begin{array}{|c|c|c|}\hline
+3\{\frac83\}2&2\{\frac83\}3&5\{6\}2\\\hline
+ \begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1.1 cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=43] %
+\end{pspicture}&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1.2cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=44] %
+\end{pspicture}
+ &\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1.7cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=45] %
+\end{pspicture}\\\hline
+{\tt choice=43}&{\tt choice=44}&{\tt choice=45}\\\hline
+\end{array}
+\]
+%%%%%
+\[
+\begin{array}{|c|c|c|}\hline
+2\{6\}5&4\{\frac83\}3&3\{\frac83\}4\\\hline
+ \begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.7cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=46] %
+\end{pspicture}&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1.2cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=47] %
+\end{pspicture}
+ &\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1.2cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=48] %
+\end{pspicture}\\\hline
+{\tt choice=46}&{\tt choice=47}&{\tt choice=48}\\\hline
+\end{array}
+\]
+%%%%%
+\[
+\begin{array}{|c|c|c|}\hline
+5\{5\}2&2\{5\}5&5\{\frac{10}3\}2\\\hline
+ \begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=49] %
+\end{pspicture}&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1.2cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=50] %
+\end{pspicture}
+ &\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.7cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=51] %
+\end{pspicture}\\\hline
+{\tt choice=49}&{\tt choice=50}&{\tt choice=51}\\\hline
+\end{array}
+\]
+%%%%%
+\[
+\begin{array}{|c|c|c|}\hline
+2\{\frac{10}3\}5&5\{3\}2&2\{3\}5\\\hline
+ \begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.6cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=52] %
+\end{pspicture}&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.5cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=53] %
+\end{pspicture}
+ &\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.7cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=54] %
+\end{pspicture}\\\hline
+{\tt choice=52}&{\tt choice=53}&{\tt choice=54}\\\hline
+\end{array}
+\]
+%%%
+%%%%%
+\[
+\begin{array}{|c|c|c|}\hline
+5\{4\}2&2\{4\}5&5\{\frac{10}3\}3\\\hline
+ \begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.8cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=55] %
+\end{pspicture}&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=56] %
+\end{pspicture}
+ &\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1.3cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=57] %
+\end{pspicture}\\\hline
+{\tt choice=55}&{\tt choice=56}&{\tt choice=57}\\\hline
+\end{array}
+\]
+%%%%
+%%%%%
+\[
+\begin{array}{|c|c|c|}\hline
+3\{\frac{10}3\}5&5\{4\}3&3\{4\}5\\\hline
+ \begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.6cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=58] %
+\end{pspicture}&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.6cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=59] %
+\end{pspicture}
+ &\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.25cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=60] %
+\end{pspicture}\\\hline
+{\tt choice=58}&{\tt choice=59}&{\tt choice=60}\\\hline
+\end{array}
+\]
+%%%%%
+\[
+\begin{array}{|c|c|c|}\hline
+5\{3\}3&3\{3\}5&5\{\frac52\}3\\\hline
+ \begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1.2cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=61] %
+\end{pspicture}&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.7cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=62] %
+\end{pspicture}
+ &\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.6cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=63] %
+\end{pspicture}\\\hline
+{\tt choice=61}&{\tt choice=62}&{\tt choice=63}\\\hline
+\end{array}
+\]
+%%%%%
+\[
+\begin{array}{|c|c|c|}\hline
+3\{\frac52\}5&2\{\frac52\}2\{3\}2&2\{3\}2\{\frac52\}2\\\hline
+ \begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.7cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=64] %
+\end{pspicture}&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=2cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=65] %
+\end{pspicture}
+ &\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=3cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=66] %
+\end{pspicture}\\\hline
+{\tt choice=64}&{\tt choice=65}&{\tt choice=66}\\\hline
+\end{array}
+\]
+%%%%%
+\[
+\begin{array}{|c|c|c|}\hline
+2\{\frac52\}2\{3\}2&2\{5\}2\{\frac52\}2&2\{6\}3\\\hline
+ \begin{pspicture}(-2,-2)(2,2)
+\psset{unit=2.5cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=67] %
+\end{pspicture}&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=5cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=68] %
+\end{pspicture}
+ &\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=2.5cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=69] %
+\end{pspicture}\\\hline
+{\tt choice=67}&{\tt choice=68}&{\tt choice=69}\\\hline
+\end{array}
+\]
+%%%%%
+\[
+\begin{array}{|c|c|c|}\hline
+3\{6\}2&2\{\frac52\}2\{3\}2\{3\}2&2\{3\}2\{3\}2\{\frac52\}2\\\hline
+ \begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1.5cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=70] %
+\end{pspicture}&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.17cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=71] %
+\end{pspicture}&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1.4cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=72] %
+\end{pspicture}\\
+ \hline
+{\tt choice=70}&{\tt choice=71}&{\tt choice=72}\\\hline
+\end{array}
+\]
+\[
+\begin{array}{|c|c|c|}\hline
+2\{3\}2\{\frac52\}2\{5\}2&2\{3\}2\{5\}2\{\frac52\}2&2\{\frac52\}2\{3\}2\{5\}2\\\hline
+ \begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.4cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=73] %
+\end{pspicture}&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1.3cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=74] %
+\end{pspicture}&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.7cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=75] %
+\end{pspicture}\\
+ \hline
+{\tt choice=73}&{\tt choice=74}&{\tt choice=75}\\\hline
+\end{array}
+\]
+%
+\[
+\begin{array}{|c|c|c|}\hline
+2\{\frac52\}2\{5\}2\{3\}2&2\{5\}2\{3\}2\{\frac52\}2&2\{5\}2\{\frac52\}2\{3\}2\\\hline
+ \begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=76] %
+\end{pspicture}&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1.3cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=77] %
+\end{pspicture}&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1.3cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=78] %
+\end{pspicture}\\
+ \hline
+{\tt choice=76}&{\tt choice=77}&{\tt choice=78}\\\hline
+\end{array}
+\]
+\[
+\begin{array}{|c|c|c|}\hline
+2\{5\}2\{\frac52\}2\{5\}2&2\{\frac525\}2\{5\}2\{\frac52\}2\\\hline
+ \begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=79] %
+\end{pspicture}&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.4cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=80] %
+\end{pspicture}\\
+ \hline
+{\tt choice=79}&{\tt choice=80}\\\hline
+\end{array}
+\]
+
+
+
+\subsection{The components of a polytope}
+ The library {\tt pst-coxcoor.sty} contains a macro for
+drawing the vertices, the edges, the centers of the edges, the
+centers of the faces and the centers of the cells of many
+pre-calculated regular complex polytopes.
+
+It is possible to choice which components of the polytope will be
+drawn. It suffices to use the boolean parameters {\tt drawedges},
+{\tt drawvertices}, {\tt drawcenters}, {\tt drawcentersface}, and
+{\tt drawcenterscells}.
+
+ By default the values of the parameters {\tt
+drawedges}, {\tt drawvertices}, {\tt drawcenters} are set to {\tt
+true} and the values of {\tt drawcentersface} and {\tt
+drawcenterscells} are set to {\tt false}.
+\begin{example}
+\rm By default, the vertices, the edges and the centers of the edges
+are drawn but not the centers of the faces and the cells.
+\[
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.7cm}
+\CoxeterCoordinates[choice=28] %
+\end{pspicture}
+\]
+\begin{verbatim}
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1cm}
+ \CoxeterCoordinates[choice=28]
+\end{pspicture}
+\end{verbatim}
+The macro does not draw the edges
+\[
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.7cm}
+\CoxeterCoordinates[choice=28,drawedges=false] %
+\end{pspicture}
+\]
+\begin{verbatim}
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1cm}
+ \CoxeterCoordinates[choice=28,drawedges=false]
+\end{pspicture}
+\end{verbatim}
+or the vertices
+\[
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.7cm}
+\CoxeterCoordinates[choice=28,drawvertices=false] %
+\end{pspicture}
+\]
+\begin{verbatim}
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1cm}
+ \CoxeterCoordinates[choice=28,drawvertices=false]
+\end{pspicture}
+\end{verbatim}
+or the centers of the edges.
+\[
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.7cm}
+\CoxeterCoordinates[choice=28,drawcenters=false] %
+\end{pspicture}
+\]
+\begin{verbatim}
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1cm}
+ \CoxeterCoordinates[choice=28,drawcenters=false]
+\end{pspicture}
+\end{verbatim}
+Furthermore, one can draw the centers of the faces (when the
+dimension of the polytope is at least 3)
+\[
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.7cm}
+\CoxeterCoordinates[choice=28,drawvertices=false,drawcenters=false,drawcentersfaces=true] %
+\end{pspicture}
+\]
+\begin{verbatim}
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1cm}
+ \CoxeterCoordinates[choice=28,drawvertices=false,drawcenters=false,drawcentersfaces=true]
+\end{pspicture}
+\end{verbatim}
+and the centers of the cells (when the dimension of the polytope is
+at least 4).
+\[
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.7cm}
+\CoxeterCoordinates[choice=28,drawvertices=false,drawcenters=false,drawcenterscells=true] %
+\end{pspicture}
+\]
+\begin{verbatim}
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1cm}
+ \CoxeterCoordinates[choice=28,drawvertices=false,drawcenters=false,drawcenterscells=true]
+\end{pspicture}
+\end{verbatim}
+\end{example}
+
+\section{Graphical parameters}
+It is possible to change the graphical characteristics of a
+polytope.\\
+The size of the polytope depends on the parameter {\tt unit}.
+\begin{example}
+\rm
+ \[
+ \begin{pspicture}(-1,-1)(1,1)
+\CoxeterCoordinates[choice=4,unit=0.3cm] %
+\end{pspicture}
+ \begin{pspicture}(-2,-2)(2,2)
+\CoxeterCoordinates[choice=4,unit=0.8cm] %
+\end{pspicture}
+ \begin{pspicture}(-4,-4)(4,4)
+\CoxeterCoordinates[choice=4,unit=2cm] %
+\end{pspicture}
+\]
+\begin{verbatim}
+\begin{pspicture}(-1,-1)(1,1)
+\CoxeterCoordinates[choice=4,unit=0.3cm] %
+\end{pspicture}
+ \begin{pspicture}(-2,-2)(2,2)
+\CoxeterCoordinates[choice=4,unit=0.8cm] %
+\end{pspicture}
+ \begin{pspicture}(-4,-4)(4,4)
+\CoxeterCoordinates[choice=4,unit=2cm] %
+\end{pspicture}
+\end{verbatim}
+\end{example}
+Classically, one can modify the color and the width of the edges
+using the parameter {\tt linecolor} and {\it linewidth}.
+\begin{example}
+\rm
+ \[
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.8,linewidth=0.01,linecolor=red}
+\CoxeterCoordinates[choice=4] %
+\end{pspicture}
+ \begin{pspicture}(-2,-2)(2,2)
+\CoxeterCoordinates[choice=4,linewidth=0.1] %
+\end{pspicture}
+\]
+\begin{verbatim}
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.8,linewidth=0.01,linecolor=red}
+\CoxeterCoordinates[choice=4] %
+\end{pspicture}
+ \begin{pspicture}(-2,-2)(2,2)
+\CoxeterCoordinates[choice=4,linewidth=0.1] %
+\end{pspicture}
+\end{verbatim}
+\end{example}
+The color, the style and the size of the vertices can be modify
+using the parameters {\tt colorVertices}, {\tt styleVertices} and
+{\tt sizeVertices}. The style of the vertices can be chosen in the
+classical dot styles.
+\begin{example}
+\rm
+ \[
+\begin{pspicture}(-2,-2)(2,2)
+\CoxeterCoordinates[choice=4,colorVertices=blue,styleVertices=pentagon,sizeVertices=0.2] %
+\end{pspicture}
+ \begin{pspicture}(-2,-2)(2,2)
+\CoxeterCoordinates[choice=4,colorVertices=magenta,sizeVertices=0.1,styleVertices=triangle] %
+\end{pspicture}
+ \begin{pspicture}(-2,-2)(2,2)
+\CoxeterCoordinates[choice=4,colorVertices=red,styleVertices=+,sizeVertices=0.2] %
+\end{pspicture}
+\]
+\begin{verbatim}
+\begin{pspicture}(-2,-2)(2,2)
+\CoxeterCoordinates[choice=4,colorVertices=blue,styleVertices=pentagon,sizeVertices=0.2] %
+\end{pspicture}
+ \begin{pspicture}(-2,-2)(2,2)
+\CoxeterCoordinates[choice=4,colorVertices=magenta,sizeVertices=0.1,styleVertices=triangle] %
+\end{pspicture}
+ \begin{pspicture}(-2,-2)(2,2)
+\CoxeterCoordinates[choice=4,colorVertices=red,styleVertices=+,sizeVertices=0.2] %
+\end{pspicture}
+\end{verbatim}
+\end{example}
+The color, the style and the size of the centers of the edges can be
+modify using the parameters {\tt colorCenters}, {\tt styleCenters}
+and {\tt sizeCenters}.
+\begin{example}
+\rm
+ \[
+\begin{pspicture}(-2,-2)(2,2)
+\CoxeterCoordinates[choice=4,colorCenters=blue,styleCenters=pentagon,sizeCenters=0.2] %
+\end{pspicture}
+ \begin{pspicture}(-2,-2)(2,2)
+\CoxeterCoordinates[choice=4,colorCenters=magenta,sizeCenters=0.1,styleCenters=triangle] %
+\end{pspicture}
+ \begin{pspicture}(-2,-2)(2,2)
+\CoxeterCoordinates[choice=4,colorCenters=red,styleCenters=+,sizeCenters=0.2] %
+\end{pspicture}
+\]
+\begin{verbatim}
+\begin{pspicture}(-2,-2)(2,2)
+\CoxeterCoordinates[choice=4,colorCenters=blue,styleCenters=pentagon,sizeCenters=0.2] %
+\end{pspicture}
+ \begin{pspicture}(-2,-2)(2,2)
+\CoxeterCoordinates[choice=4,colorCenters=magenta,sizeCenters=0.1,styleCenters=triangle] %
+\end{pspicture}
+ \begin{pspicture}(-2,-2)(2,2)
+\CoxeterCoordinates[choice=4,colorCenters=red,styleCenters=+,sizeCenters=0.2] %
+\end{pspicture}
+\end{verbatim}
+\end{example}
+
+The color, the style and the size of the centers of the faces can be
+modify using the parameters {\tt colorCentersFaces}, {\tt
+styleCentersFaces} and {\tt sizeCentersFaces}.
+\begin{example}
+\rm
+ \[\psset{unit=0.8cm,drawcentersfaces=true}
+\begin{pspicture}(-3,-3)(3,3)
+\CoxeterCoordinates[choice=33,styleCentersFaces=pentagon,sizeCentersFaces=0.2] %
+\end{pspicture}
+ \begin{pspicture}(-3,-3)(3,3)
+\CoxeterCoordinates[choice=33,colorCentersFaces=magenta,sizeCentersFaces=0.1] %
+\end{pspicture}
+ \begin{pspicture}(-3,-3)(3,3)
+\CoxeterCoordinates[choice=33,colorCentersFaces=red,styleCentersFaces=+] %
+\end{pspicture}
+\]
+\begin{verbatim}
+\psset{unit=0.8cm,drawcentersfaces=true}
+\begin{pspicture}(-3,-3)(3,3)
+\CoxeterCoordinates[choice=33,styleCentersFaces=pentagon,sizeCentersFaces=0.2] %
+\end{pspicture}
+ \begin{pspicture}(-3,-3)(3,3)
+\CoxeterCoordinates[choice=33,colorCentersFaces=magenta,sizeCentersFaces=0.1] %
+\end{pspicture}
+ \begin{pspicture}(-3,-3)(3,3)
+\CoxeterCoordinates[choice=33,colorCentersFaces=red,styleCentersFaces=+] %
+\end{pspicture}\end{verbatim}
+\end{example}
+
+The color, the style and the size of the centers of the cells can be
+modify using the parameters {\tt colorCentersCells}, {\tt
+styleCentersCells} and {\tt sizeCentersCells}.
+\begin{example}
+\rm
+ \[\psset{unit=0.8cm,drawcenterscells=true,drawcentersfaces=false}
+\begin{pspicture}(-3,-3)(3,3)
+\CoxeterCoordinates[choice=33,styleCentersCells=pentagon,sizeCentersCells=0.2] %
+\end{pspicture}
+ \begin{pspicture}(-3,-3)(3,3)
+\CoxeterCoordinates[choice=33,colorCentersCells=magenta,sizeCentersCells=0.1] %
+\end{pspicture}
+ \begin{pspicture}(-3,-3)(3,3)
+\CoxeterCoordinates[choice=33,colorCentersCells=red,styleCentersCells=+] %
+\end{pspicture}
+\]
+\begin{verbatim}
+\psset{unit=0.8cm,drawcenterscells=true,drawcentersfaces=false}
+\begin{pspicture}(-3,-3)(3,3)
+\CoxeterCoordinates[choice=33,styleCentersCells=pentagon,sizeCentersCells=0.2] %
+\end{pspicture}
+ \begin{pspicture}(-3,-3)(3,3)
+\CoxeterCoordinates[choice=33,colorCentersCells=magenta,sizeCentersCells=0.1] %
+\end{pspicture}
+ \begin{pspicture}(-3,-3)(3,3)
+\CoxeterCoordinates[choice=33,colorCentersCells=red,styleCentersCells=+] %
+\end{pspicture}\end{verbatim}
+\end{example}
+\section{How to modify or add a polytope to the Library}
+The polytopes described in this library are the regular complex
+polytopes as considered by Coxeter \cite{Cox}. But, in fact, the
+same library can be used to draw any kind of polytopes (not
+necessarily regular) if the user add the datas corresponding to the
+vertices, the edges, the faces and the cells of the polytopes.
+
+To add a polytope, one has to modify the file {\tt
+pst-coxeterp.pro}. This file contains the list of the polytopes
+which can be drawn with the macro {\tt CoxeterCoordinates}.
+ For each polytope, the datas are organized as follows
+ \begin{verbatim}
+ /cox+name+datas{% The name of the Polytope
+ /ListePoints [
+ % List of the edges
+ ] def
+ /ListeFaces [
+ % List of the centers of the faces
+ ] def
+ /ListeCells [
+ % List of the centers of the cells
+ ] def
+ /NbrFaces nf def % nb of faces
+ /NbrCells nc def % nb of cells
+ /NbrEdges ne def % nb of edges
+ /NbrVerticesInAnEdge nv def % nb of vertices per edge
+ } def
+ \end{verbatim}
+ The list {\tt /ListePoints} contains the description of the edges
+ of the polytope. The variable {\tt /NbrEdges} contains the number
+ of edges and the variables {\tt /NbrVerticesInAnEdges} contains the
+ number of vertices by edges. An edge is defined by its {\tt
+ /NbrVerticesInAnEdges} vertices. The list {\tt /ListePoints} of the
+ edges is the list of all edges described by the sequence of their
+ vertices.
+ \begin{example}\rm
+ Let us explain the structure on the example of the complex polytope
+ $3\{4\}2$.
+\begin{verbatim}
+/cox342datas{%
+ /ListePoints [
+ [-1.054405725 .6087614291]
+ [-1.717232873 -.9914448614]
+ [0 -.7653668647]
+ [1.054405725 .6087614291]
+ [1.717232873 -.9914448614]
+ [0 -.7653668647]
+ [-.6628271482 .3826834323]
+ [0 -1.217522858]
+ [-1.717232873 -.9914448614]
+ [0 1.982889723]
+ [.6628271482 .3826834323]
+ [-1.054405725 .6087614291]
+ [.6628271482 .3826834323]
+ [0 -1.217522858]
+ [1.717232873 -.9914448614]
+ [0 1.982889723]
+ [-.6628271482 .3826834323]
+ [1.054405725 .6087614291]
+ ] def
+ /ListeFaces [
+ [0 0]
+ ] def
+ /NbrFaces 1 def
+ /ListeCells [
+ [0 0]
+ ] def
+ /NbrCells 1 def
+ /NbrEdges 6 def
+ /NbrVerticesInAnEdge 3 def
+ } def
+\end{verbatim}
+ This is a complex polygon and the number $3$ indicates
+ that each edges is triangular and contains $3$ vertices. Hence, the
+ list {\tt /ListePoints} is a sequence of triplet of points.
+ For example, the first edge is constituted by the three vertices {\tt [-1.054405725 .6087614291] [-1.717232873 -.9914448614]
+ [0 -.7653668647]}.
+Here, since there is $6$ edges of $3$ vertices, the list {\tt
+/ListePoints} contains $18$ points with two coordinates.\\ Note
+that, since $3\{4\}2$ is a polygon, it has neither faces nor cells.
+In such a case, the variables {\tt ListeFaces} and {\tt ListeCells}
+must contain only one point {\tt [0 0]} and the variables {\tt
+/NbrFaces} and {\tt /NbrCells} contain $1$.
+ \end{example}
+When the polytope has more than two dimensions, it has faces. The
+number of faces is given by the variable {\tt /NbrFaces} and the
+variable {\tt /ListeFaces} contains the list of the centers of the
+faces.\\
+If the polytope has four dimensions, it has cells. The number of
+cells is given by the variable {\tt /NbrCells} and the variable {\tt
+/ListeCells} contains the list of the centers of the cells.\\ \\
+To add a polytope, add the datas in the files {\tt pst-coxeter.pro}
+and modify the file {\tt pst-coxeter.tex} as follows. Change the
+numbers of the polytopes at the line 26 of the file
+ \begin{verbatim}
+ %%% Parameter choice. Allows to choice the polytope. To each integer
+ %%% 0<i<81 corresponds a polytope.
+ \define@key[psset]{pst-coxeter}{choice}{%
+ \pst@cntg=#1\relax \ifnum\pst@cntg>80 \typeout{choice < or = 80 and
+ not `\the\pst@cntg'. Value 1 forced.} \pst@cntg=1
+ \fi
+ \edef\psk@pstCoxeter@choice{#1}}
+ \end{verbatim}
+Here, the number of polytope is $80$, if your add other datas you
+must increase this number.
+ \begin{verbatim}
+ %%% Parameter choice. Allows to choice the polytope. To each integer
+ %%% 0<i<82 corresponds a polytope.
+ \define@key[psset]{pst-coxeter}{choice}{%
+ \pst@cntg=#1\relax \ifnum\pst@cntg>81 \typeout{choice < or = 81 and
+ not `\the\pst@cntg'. Value 1 forced.} \pst@cntg=1
+ \fi
+ \edef\psk@pstCoxeter@choice{#1}}
+ \end{verbatim}
+ Hence, you must add the polytope to the list of polytopes (line 169
+- 251 of the file {\tt pst-coxcoor.tex}.
+\begin{verbatim}
+ /choice \the\pst@cntg\space def
+ choice 1 eq {cox233datas} if
+ ...
+ choice 78 eq {cox362datas} if
+ choice 79 eq {cox25223232datas} if
+ choice 80 eq {cox23232522datas} if
+%%% <-- add new polytope here
+ \end{verbatim}
+ For example, add the line
+ \begin{verbatim}
+ choice 81 eq {coxNEWdatas} if
+ \end{verbatim}
+ \begin{thebibliography}{ABC}
+\bibitem{qutrit} E. Briand, J.-G. Luque, J.-Y. Thibon and F. Verstrate, {\it the
+moduli space of the three qutrit states},Journal of Mathematical
+Physics, vol. 45, num. 12, pp. 4855--4867, 2004.
+%
+\bibitem{Reg} H. S. M. Coxeter, {\em Regular polytopes}, Third
+Edition, Dover Publication Inc., New-York, 1973.
+%
+\bibitem{Cox}
+H. S. M. Coxeter, {\em Regular Complex Polytopes}, Second Edition,
+Cambridge University Press, 1991 .
+%
+\bibitem{Kalei}
+ H.S.M. Coxeter, {\em Kaleidoscopes, selected writing of H.S.M.
+ Coxeter by F.A. Sherk, P. McMullen, A.C. Thompson, A. Ivi\'c Weiss}, Canadian Mathematical Society Series of Monographs and
+ Advanced texts, Published in conjunction with the fiftieth anniversary of
+ the canadian mathematical society, J. M. Borwein and P. B. Borwein
+ Ed., A Wiley-Interscience publication, 1995.
+%
+\bibitem{Luque} J.-G. Luque, {\em Invariants des hypermatrices},
+habilitation \`a diriger les recherches, Université Paris-Est,
+Décembre 2007.
+%
+\bibitem{Sh} G.C. Shephard, {\em Regular Complex Polytopes},
+Proceeding of the London Mathermatical Society (3), 2 82-97.
+%
+\bibitem{ST} G.C. Shephard and J.A. Todd, {\it Finite unitary
+reflection groups}, Canadian Journal of Mathematics 6, 274-304,
+1954.
+%
+\bibitem{Som} M.Y. Sommerville, {\it Geometry of $n$ dimension},
+Methuen, Lodon, 1929.
+\end{thebibliography}
+
+ \end{document}
diff --git a/Master/texmf-dist/doc/generic/pst-cox/pst-coxeterp/Gallery.tex b/Master/texmf-dist/doc/generic/pst-cox/pst-coxeterp/Gallery.tex
new file mode 100644
index 00000000000..7d47fd13eb0
--- /dev/null
+++ b/Master/texmf-dist/doc/generic/pst-cox/pst-coxeterp/Gallery.tex
@@ -0,0 +1,342 @@
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+% pst-coxeter_parameter\Gallery.tex
+% Authors: J.-G. Luque and M. Luque
+% Purpose: Demonstration of the library pst-coxeterp
+% Created: 02/02/2008
+% License: LGPL
+% Project: PST-Cox V1.00
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+% Copyright © 2008 Jean-Gabriel Luque, Manuel Luque.
+% This work may be distributed and/or modified under the condition of
+% the Lesser GPL.
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+% This file is part of PST-Cox V1.00.
+%
+% PST-Cox V1.00 is free software: you can redistribute it and/or modify
+% it under the terms of the Lesser GNU General Public License as published by
+% the Free Software Foundation, either version 3 of the License, or
+% (at your option) any later version.
+%
+% PST-Cox V1.00 is distributed in the hope that it will be useful,
+% but WITHOUT ANY WARRANTY; without even the implied warranty of
+% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+% Lesser GNU General Public License for more details.
+%
+% You should have received a copy of the Lesser GNU General Public License
+% along with PST-Cox V1.00. If not, see <http://www.gnu.org/licenses/>.
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+\documentclass[a4paper]{article}
+\usepackage[latin1]{inputenc}%
+\usepackage[margin=2cm]{geometry}
+\usepackage{pst-coxeterp}
+\usepackage{multido}
+\usepackage{amssymb}
+\usepackage{amsfonts}
+\usepackage{amsmath}
+\usepackage{graphics}
+% d\'emonstration
+% JG Luque 12 août 2003
+\newcount\ChoicePolytope
+\def\S{\mbox{\goth S}}
+\def\Sym{{\bf Sym}}
+\def\sym{{\sl Sym}}
+\def\QSym{{QSym}}
+\def\N{{\mathbb N}}\def\L{{\mathbb L}}
+\def\C{{\mathbb C}}
+\def\Z{{\mathbb Z}}
+\def\R{{\mathbb R}}
+\def\Q{{\mathbb Q}}
+\def\demoPolytopes#1{%}
+\begin{center}
+\ifcase\ichoice\or \def\polname{$2\{3\}3$}\def\ep{0.5mm}
+ \or \def\polname{$3\{3\}2$}\def\ep{0.3mm}\or
+\def\polname{$3\{3\}3$}\def\ep{0.3mm}\or
+ \def\polname{$3\{4\}2$}\def\ep{0.3mm}\or \def\polname{$3\{4\}4$}\def\ep{0.1mm}
+ \or \def\polname{$3\{4\}3$}\def\ep{0.1mm}\or \def\polname{$4\{3\}4$}\def\ep{0.1mm}\or
+\def\polname{$2\{4\}3\{3\}3$}\def\ep{0.1mm}\or \def\polname{ Hessien}\def\ep{0.1mm}
+ \or \def\polname{$3\{3\}3\{4\}2$}\def\ep{0.1mm}
+ \or \def\polname{de Witting} \def\ep{0.01mm} \or
+ \def\polname{$3\{8\}2$} \def\ep{0.1mm} \or
+ \def\polname{$2\{8\}3$} \def\ep{0.1mm} \or
+ \def\polname{$3\{5\}3$} \def\ep{0.1mm}
+ \or\def\polname{$4\{4\}3$} \def\ep{0.1mm}
+ \or\def\polname{$4\{3\}2$} \def\ep{0.1mm}
+ \or\def\polname{$2\{3\}4$} \def\ep{0.1mm}
+ \or\def\polname{$2\{6\}4$} \def\ep{0.1mm}
+ \or\def\polname{$4\{6\}2$} \def\ep{0.1mm}
+ \or\def\polname{$5\{3\}5$} \def\ep{0.1mm}
+ \or\def\polname{$2\{10\}3$} \def\ep{0.1mm}
+ \or\def\polname{$3\{10\}2$} \def\ep{0.1mm}
+ \or\def\polname{$2\{5\}3$} \def\ep{0.1mm}
+ \or\def\polname{$3\{5\}2$} \def\ep{0.1mm}
+ \or\def\polname{$2\{4\}3$} \def\ep{0.1mm}
+ \or\def\polname{$2\{3\}2\{4\}3$} \def\ep{0.1mm}
+ \or\def\polname{$3\{4\}2\{3\}2$} \def\ep{0.1mm}
+ \or\def\polname{$3\{4\}2\{3\}2\{3\}2$} \def\ep{0.1mm}
+ \or\def\polname{$2\{3\}2\{3\}2\{4\}3$} \def\ep{0.1mm}
+ \fi {\Huge Polytope \polname}
+
+\begin{pspicture}(-9,-9)(9,9)
+\psset{unit=3cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=#1,linewidth=\ep] % par défaut choice=1 (332)
+\end{pspicture}
+
+$\backslash$\texttt{CoxeterCoordinates[choice=#1]}
+\end{center}
+\begin{center}
+\begin{tabular}{ccc}
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.7cm}
+\CoxeterCoordinates[drawvertices=false,choice=#1,linewidth=0.01mm] %
+\end{pspicture}
+&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.7cm}
+\CoxeterCoordinates[drawcenters=false,choice=#1,linewidth=0.01mm] %
+\end{pspicture}
+&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.7cm}
+\CoxeterCoordinates[drawedges=false,choice=#1,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawvertices=false,choice=#1]}
+&
+\texttt{[drawcenters=false,choice=#1]}
+&
+\texttt{[drawedges=false,choice=#1]}
+\end{tabular}
+\end{center}}
+%
+\title{The Gallery of Infinite Series}
+\author{Jean-Gabriel \textsc{Luque}\footnote{Jean-Gabriel.Luque@univ-mlv.fr},
+Manuel \textsc{Luque}\footnote{manuel.luque27@gmail.com}}
+\begin{document}
+\maketitle
+\newpage
+\section{Real polygons}
+There are the polytopes $2\{\frac pq\}2$ (with $p$ and $q$ in $\N$)
+in the notation of Coxeter. Use the command:
+\begin{verbatim}
+\psset{unit=1.5cm}\Polygon[P=p,Q=q]
+\end{verbatim}
+\[\begin{array}{|c|c|c|}
+\hline 2&3&4\\
+\hline \begin{pspicture}(-1.5,-3)(1.5,3)
+\psset{unit=1.5cm}\Polygon[P=2,Q=1]
+\end{pspicture}&\begin{pspicture}(-3,-3)(3,3)
+\psset{unit=1.5cm}\Polygon[P=3]
+\end{pspicture}&\begin{pspicture}(-3,-3)(3,3)
+\psset{unit=1.5cm}\Polygon[P=4]
+\end{pspicture}\\
+\hline 5&\frac52&6\\
+\hline \begin{pspicture}(-1.5,-3)(1.5,3)
+\psset{unit=1.5cm}\Polygon[P=5,Q=1]
+\end{pspicture}&\begin{pspicture}(-3,-3)(3,3)
+\psset{unit=1.5cm}\Polygon[P=5,Q=2]
+\end{pspicture}&\begin{pspicture}(-3,-3)(3,3)
+\psset{unit=1.5cm}\Polygon[P=6]
+\end{pspicture}\\
+\hline 7&\frac72&\frac73\\
+\hline \begin{pspicture}(-1.5,-3)(1.5,3)
+\psset{unit=1.5cm}\Polygon[P=7]
+\end{pspicture}&\begin{pspicture}(-3,-3)(3,3)
+\psset{unit=1.5cm}\Polygon[P=7,Q=2]
+\end{pspicture}&\begin{pspicture}(-3,-3)(3,3)
+\psset{unit=1.5cm}\Polygon[P=10,Q=3]
+\end{pspicture}\\
+\hline
+\end{array}
+\]
+\newpage
+\section{Simplices }
+There are the real polytopes $2\{3\}2\cdots2\{3\}2$ in dimension $n$
+(tetrahedron, pentatope, sextatope etc...) in the notation of
+Coxeter. Use the command:
+\begin{verbatim}
+\psset{unit=1.5cm}\Simplex[dimension=n]
+\end{verbatim}
+\[\begin{array}{|c|c|c|}
+\hline 2&3&4\\
+\hline \begin{pspicture}(-1.5,-3)(1.5,3)
+\psset{unit=1.5cm}\Simplex[dimension=2]
+\end{pspicture}&\begin{pspicture}(-3,-3)(3,3)
+\psset{unit=1.5cm}\Simplex[dimension=3]
+\end{pspicture}&\begin{pspicture}(-3,-3)(3,3)
+\psset{unit=1.5cm}\Simplex[dimension=4]
+\end{pspicture}\\
+\hline 5&6&7\\
+\hline \begin{pspicture}(-1.5,-3)(1.5,3)
+\psset{unit=1.5cm}\Simplex[dimension=5]
+\end{pspicture}&\begin{pspicture}(-3,-3)(3,3)
+\psset{unit=1.5cm}\Simplex[dimension=6]
+\end{pspicture}&\begin{pspicture}(-3,-3)(3,3)
+\psset{unit=1.5cm}\Simplex[dimension=7]
+\end{pspicture}\\
+\hline 8&9&10\\
+\hline \begin{pspicture}(-1.5,-3)(1.5,3)
+\psset{unit=1.5cm}\Simplex[dimension=8]
+\end{pspicture}&\begin{pspicture}(-3,-3)(3,3)
+\psset{unit=1.5cm}\Simplex[dimension=9]
+\end{pspicture}&\begin{pspicture}(-3,-3)(3,3)
+\psset{unit=1.5cm}\Simplex[dimension=10]
+\end{pspicture}\\
+\hline
+\end{array}
+\]\newpage
+\section{The infinite series $\gamma_n^p$}
+It is an infinite series of polytopes with two parameters $p$ and
+$n$. The parameter $n$ is the dimension of the polytope. In the
+notation of Coxeter, its name reads $p\{4\}2\{3\}\dots\{3\}2$. In
+the case $p=2$, we recovers the family of the hypercubes. Use the
+command:
+ \begin{verbatim}
+ \gammapn[P=p,dimension=n]
+ \end{verbatim}
+\[\begin{array}{|c|c|c|}
+\hline \gamma_2^2&\gamma_2^3&\gamma_2^4\\
+\hline \begin{pspicture}(-2,-3)(2,3)
+\psset{unit=1.2cm}\gammapn[dimension=2,P=2,linewidth=0.01mm]
+\end{pspicture}&\begin{pspicture}(-2,-3)(2,3)
+\psset{unit=1.2cm}\gammapn[P=3,dimension=2,linewidth=0.01mm]
+\end{pspicture}&\begin{pspicture}(-2,-3)(2,3)
+\psset{unit=1cm}\gammapn[P=4,dimension=2,linewidth=0.01mm]
+\end{pspicture}\\
+\hline \gamma_3^2&\gamma_3^3&\gamma_3^4\\ \hline
+\begin{pspicture}(-2,-3)(2,3)
+\psset{unit=1cm}\gammapn[P=2,dimension=3,linewidth=0.01mm]
+\end{pspicture}&\begin{pspicture}(-2,-3)(2,3)
+\psset{unit=0.8cm}\gammapn[P=3,dimension=3,linewidth=0.01mm]
+\end{pspicture}&\begin{pspicture}(-2,-3)(2,3)
+\psset{unit=0.7cm}\gammapn[P=4,dimension=3,linewidth=0.01mm]
+\end{pspicture}\\
+\hline \gamma_4^2&\gamma_4^3&\gamma_4^4\\
+\hline \begin{pspicture}(-2,-3)(2,3)
+\psset{unit=0.8cm}\gammapn[P=2,dimension=4,linewidth=0.01mm]
+\end{pspicture}&\begin{pspicture}(-2,-3)(2,3)
+\psset{unit=0.6cm}\gammapn[P=3,dimension=4,linewidth=0.01mm]
+\end{pspicture}&\begin{pspicture}(-2,-3)(2,3)
+\psset{unit=0.55cm}\gammapn[P=4,dimension=4,linewidth=0.01mm]
+\end{pspicture}\\
+\hline
+\end{array}
+\]%
+\newpage
+\section{The infinite series $\beta_n^p$}
+It is an infinite series of polytopes with two parameters $p$ and
+$n$ reciprocals of $\gamma_n^p$. The parameter $n$ is the dimension
+of the polytope. In the notation of Coxeter, its name reads
+$2\{3\}2\{3\}\dots\{3\}2\{4\}p$. In the case $p=2$, we recovers the
+family of the $2^n$-topes which generalizes the tetrahedron for
+higher dimension. Use the command:
+ \begin{verbatim}
+ \betapn[P=p,dimension=n]
+ \end{verbatim}
+\[\begin{array}{|c|c|c|}
+\hline \beta_2^2&\beta_2^3&\beta_2^4\\
+\hline \begin{pspicture}(-2,-3)(2,3)
+\psset{unit=2cm}\betapn[dimension=2,P=2]
+\end{pspicture}&\begin{pspicture}(-2,-3)(2,3)
+\psset{unit=1.5cm}\betapn[P=3,dimension=2,linewidth=0.01mm]
+\end{pspicture}&\begin{pspicture}(-2,-3)(2,3)
+\psset{unit=1.4cm}\betapn[P=4,dimension=2,linewidth=0.01mm]
+\end{pspicture}\\
+\hline \beta_3^2&\beta_3^3&\beta_3^4\\ \hline
+\begin{pspicture}(-2,-3)(2,3)
+\psset{unit=2cm}\betapn[P=2,dimension=3,linewidth=0.01mm]
+\end{pspicture}&\begin{pspicture}(-2,-3)(2,3)
+\psset{unit=1.5cm}\betapn[P=3,dimension=3,linewidth=0.01mm]
+\end{pspicture}&\begin{pspicture}(-2,-3)(2,3)
+\psset{unit=1.4cm}\betapn[P=4,dimension=3,linewidth=0.01mm]
+\end{pspicture}\\
+\hline \beta_4^2&\beta_4^3&\beta_4^4\\
+\hline \begin{pspicture}(-2,-3)(2,3)
+\psset{unit=2cm}\betapn[P=2,dimension=4,linewidth=0.01mm]
+\end{pspicture}&\begin{pspicture}(-2,-3)(2,3)
+\psset{unit=1.5cm}\betapn[P=3,dimension=4,linewidth=0.01mm]
+\end{pspicture}&\begin{pspicture}(-2,-3)(2,3)
+\psset{unit=1.4cm}\betapn[P=4,dimension=4,linewidth=0.01mm]
+\end{pspicture}\\
+\hline
+\end{array}
+\]%
+\newpage
+\section{The infinite series $\gamma_2^p$}
+It is a special case of the series $\gamma_n^p$ for $n=2$. In this
+case, the polytopes are complex polygons. The projection used here
+is different than the projection used with {\tt gammapn}. Use the
+command:
+\begin{verbatim}
+\gammaptwo[P=p]
+\end{verbatim}
+\[\begin{array}{|c|c|c|}
+\hline \gamma_2^3&\gamma_2^4&\gamma_2^5\\
+\hline \begin{pspicture}(-2,-3)(2,3) \psset{unit=1cm}\gammaptwo[P=3]
+\end{pspicture}&\begin{pspicture}(-2,-3)(2,3)
+\psset{unit=1cm}\gammaptwo[P=4,linewidth=0.01mm]
+\end{pspicture}&\begin{pspicture}(-2,-3)(2,3)
+\psset{unit=1cm}\gammaptwo[P=5,linewidth=0.01mm]
+\end{pspicture}\\
+\hline \gamma_2^6&\gamma_2^7&\gamma_2^8\\ \hline
+\begin{pspicture}(-2,-3)(2,3)
+\psset{unit=1cm}\gammaptwo[P=6,linewidth=0.01mm]
+\end{pspicture}&\begin{pspicture}(-2,-3)(2,3)
+\psset{unit=0.8cm}\gammaptwo[P=7,linewidth=0.01mm]
+\end{pspicture}&\begin{pspicture}(-2,-3)(2,3)
+\psset{unit=0.7cm}\gammaptwo[P=8,linewidth=0.01mm]
+\end{pspicture}\\
+\hline \gamma_2^9&\gamma_2^{10}&\gamma_2^{11}\\
+\hline \begin{pspicture}(-2,-3)(2,3)
+\psset{unit=0.8cm}\gammaptwo[P=9,linewidth=0.01mm]
+\end{pspicture}&\begin{pspicture}(-2,-3)(2,3)
+\psset{unit=0.7cm}\gammaptwo[P=10,linewidth=0.01mm]
+\end{pspicture}&\begin{pspicture}(-2,-3)(2,3)
+\psset{unit=0.7cm}\gammaptwo[P=11,linewidth=0.01mm]
+\end{pspicture}\\
+\hline
+\end{array}
+\]%
+\newpage
+\section{The infinite series $\beta_2^p$}
+It is a special case of the series $\beta_n^p$ for $n=2$. In this
+case, the polytopes are complex polygons. The projection used here
+is different than the projection used with {\tt betapn}. Use the
+command:
+\begin{verbatim}
+\betaptwo[P=p]
+\end{verbatim}
+\[\begin{array}{|c|c|c|}
+\hline \beta_2^3&\beta_2^4&\beta_2^5\\
+\hline \begin{pspicture}(-2,-3)(2,3)
+\psset{unit=1.5cm}\betaptwo[P=3]
+\end{pspicture}&\begin{pspicture}(-2,-3)(2,3)
+\psset{unit=1.5cm}\betaptwo[P=4,linewidth=0.01mm]
+\end{pspicture}&\begin{pspicture}(-2,-3)(2,3)
+\psset{unit=1.5cm}\betaptwo[P=5,linewidth=0.01mm]
+\end{pspicture}\\
+\hline \beta_2^6&\beta_2^7&\beta_2^8\\ \hline
+\begin{pspicture}(-2,-3)(2,3)
+\psset{unit=1.5cm}\betaptwo[P=6,linewidth=0.01mm]
+\end{pspicture}&\begin{pspicture}(-2,-3)(2,3)
+\psset{unit=1.5cm}\betaptwo[P=7,linewidth=0.01mm]
+\end{pspicture}&\begin{pspicture}(-2,-3)(2,3)
+\psset{unit=1.5cm}\betaptwo[P=8,linewidth=0.01mm]
+\end{pspicture}\\
+\hline \beta_2^9&\beta_2^{10}&\beta_2^{11}\\
+\hline \begin{pspicture}(-2,-3)(2,3)
+\psset{unit=1.5cm}\betaptwo[P=9,linewidth=0.01mm]
+\end{pspicture}&\begin{pspicture}(-2,-3)(2,3)
+\psset{unit=1.5cm}\betaptwo[P=10,linewidth=0.01mm]
+\end{pspicture}&\begin{pspicture}(-2,-3)(2,3)
+\psset{unit=1.5cm}\betaptwo[P=11,linewidth=0.01mm]
+\end{pspicture}\\
+\hline
+\end{array}
+\]%
+\begin{thebibliography}{ABC}
+%
+\bibitem{Cox1}
+H. S. M. Coxeter, {\em Regular Complex Polytopes}, Second Edition,
+Cambridge University Press, 1991 .
+%
+\end{thebibliography}
+\end{document}
diff --git a/Master/texmf-dist/doc/generic/pst-cox/pst-coxeterp/pst-coxeterp_doc.pdf b/Master/texmf-dist/doc/generic/pst-cox/pst-coxeterp/pst-coxeterp_doc.pdf
new file mode 100644
index 00000000000..efc7bfa09f5
--- /dev/null
+++ b/Master/texmf-dist/doc/generic/pst-cox/pst-coxeterp/pst-coxeterp_doc.pdf
Binary files differ
diff --git a/Master/texmf-dist/doc/generic/pst-cox/pst-coxeterp/pst-coxeterp_doc.tex b/Master/texmf-dist/doc/generic/pst-cox/pst-coxeterp/pst-coxeterp_doc.tex
new file mode 100644
index 00000000000..4cb0c32a187
--- /dev/null
+++ b/Master/texmf-dist/doc/generic/pst-cox/pst-coxeterp/pst-coxeterp_doc.tex
@@ -0,0 +1,470 @@
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+% pst-coxeter_parameter\pst-coxeterp_doc.tex
+% Authors: J.-G. Luque and M. Luque
+% Purpose: Documentation for the library pst-coxcoor
+% Created: 02/02/2008
+% License: LGPL
+% Project: PST-Cox V1.00
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+% Copyright © 2008 Jean-Gabriel Luque, Manuel Luque.
+% This work may be distributed and/or modified under the condition of
+% the Lesser GPL.
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+% This file is part of PST-Cox V1.00.
+%
+% PST-Cox V1.00 is free software: you can redistribute it and/or modify
+% it under the terms of the Lesser GNU General Public License as published by
+% the Free Software Foundation, either version 3 of the License, or
+% (at your option) any later version.
+%
+% PST-Cox V1.00 is distributed in the hope that it will be useful,
+% but WITHOUT ANY WARRANTY; without even the implied warranty of
+% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+% Lesser GNU General Public License for more details.
+%
+% You should have received a copy of the Lesser GNU General Public License
+% along with PST-Cox V1.00. If not, see <http://www.gnu.org/licenses/>.
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+\documentclass[a4paper]{article}
+\usepackage[latin1]{inputenc}%
+\usepackage[margin=2cm]{geometry}
+\usepackage{pst-coxeterp}
+\usepackage{multido}
+\usepackage{amssymb}
+\usepackage{amsfonts}
+\usepackage{amsmath}
+\usepackage{graphics}
+% d\'emonstration
+% JG Luque 12 août 2003
+\newtheorem{example}{Example}[section]
+\newcount\ChoicePolytope
+\def\C{{\mathbb C}}
+
+\title{The Library {\tt pst-coxeterp}}
+\author{Jean-Gabriel \textsc{Luque}\footnote{Universit\'e Paris-Est, Laboratoire d'informatique
+de l'Institut-Gaspard Monge, Jean-Gabriel.Luque@univ-mlv.fr} and
+Manuel
+ \textsc{Luque}\footnote{mluque5130@aol.com}}
+\begin{document}
+\maketitle
+ \begin{abstract}
+ We describe the {\tt LaTex} library {\tt pst-coxeterp} devoted to
+ draw regular complex polytopes belonging in the infinite series.
+ \end{abstract}
+ \section{Introduction}
+ Inspired by the dissertation of G.C. Shephard \cite{Sh}, Coxeter
+ toke twenty years to write his most famous book {\em Regular Complex Polytopes} \cite{Cox}. But its
+ interest for the polytope dates from the beginning of his career as
+ shown his numerous publications on the subject (reader can refer to
+ \cite{Reg} or \cite{Kalei}). According to the preface of
+ \cite{Cox}, the term of complex polytopes is due to D.M.Y.
+ Sommerville \cite{Som}. A complex polytope may have more than two
+ vertices on an edge (and in particular the polygons may have more
+ than two edges at a vertice). It is a finite set of flags of subspaces in $\C^n$
+ with certain constraints
+ which will be not explain here \footnote{For a precise
+ definition, see \cite{Cox} Ch12}.
+ In fact, a complex polytope can be generated from one vertice by a finite number of pseudo-reflections.
+ More precisely, as for the classical solids, it
+ can be constructed from an arrangement of mirrors,
+ considering a point in the intersection of all but one the mirrors
+ and computing the orbit of this point by the pseudo-reflections generated by the mirrors. In the
+ case of the real polytopes, one uses classical reflections which are
+ involutions. It is not the case for general complex polytopes, since
+ a reflection may include a component which is a rotation.
+The classification of the complex polytopes is due to G.C. Shephard
+\cite{Sh} and is closely related to the classification of the
+complex unitary reflection groups \cite{ST}. This classification
+includes four infinite series of polytopes: the well-known real
+polygons (including the starry polygon) which have two parameters,
+the series of simplices (triangle, tetrahedron, pentatope, sextatope
+etc...) which have only one parameter, the dimension and to
+reciprocal series $\gamma_n^p$ and $\beta_n^p$. The library
+described here is a {\tt LaTex} package for drawing the polytopes of
+these infinite series.
+\section{Install {\tt pst-coxeterp}}
+The package contains two files: A latex style file {\tt
+pst-coxeterp.sty} which call the latex file {\tt pst-coxeterp.tex}
+containing the description of the macros. The installation is very
+simple. It suffices to copy the files {\tt pst-coxeterp.sty} and
+{\tt pst-coxeterp.tex} in the appropriate directories.
+\begin{example}\rm
+The file {\tt pst-coxeterp.sty} may be copy in the directory \\ {\tt
+c:/texmf/tex/latex/pst-coxeterp},\\
+ the file {\tt pst-coxeterp.tex} in\\
+{\tt c:/texmf/tex/generic/pst-coxeterp}
+\end{example}
+To use the package add the code
+\begin{verbatim}
+\usepackage{pst-coxeterp}
+%\end{verbatim}
+in the beginning of your LaTex-file.
+\begin{example}\rm
+\begin{verbatim}
+\documentclass[a4paper]{article}
+...
+\usepackage{pst-coxeterp}
+....
+\end{verbatim}
+\end{example}
+The library needs the packages {\tt PSTrick} and {\tt pst-xkey}.%
+
+\section{The different families}
+This library contains six macros for drawing polytopes belonging in
+a infinite series.\\
+The first macro, {\tt Polygon}, draws real (starry or not) polygon.
+The polygon is defined by two parameters {\tt P} and {\tt Q} which
+defines the angle $2\frac QP\Pi $ between the segment from the
+center to the first vertices and the segment from the center to the
+second vertices. By default the value of {\tt Q} is $1$.
+\begin{example}
+\begin{pspicture}(-2,-2)(2,2)
+\Polygon[P=11,Q=1] %
+\end{pspicture}
+\begin{pspicture}(-2,-2)(2,2)
+\Polygon[P=11,Q=3]
+\end{pspicture}
+\begin{pspicture}(-2,-2)(2,2)
+ \Polygon[P=11,Q=4]
+\end{pspicture}
+\begin{verbatim}
+\begin{pspicture}(-2,-2)(2,2)
+\Polygon[P=11,Q=1] %
+\end{pspicture}
+\begin{pspicture}(-2,-2)(2,2)
+\Polygon[P=11,Q=3]
+\end{pspicture}
+\begin{pspicture}(-2,-2)(2,2)
+ \Polygon[P=11,Q=4]
+\end{pspicture}
+\end{verbatim}
+\end{example}
+
+The macro {\tt Simplex} draws simplices in dimension $n$. The
+simplices are the real polytopes whose automorphism groups are the
+symmetric groups. The dimension of the polytope can be chosen using
+the parameter {\tt dimension}.
+\begin{example}
+\begin{pspicture}(-2,-2)(2,2)
+\Simplex[dimension=2] %
+\end{pspicture}
+\begin{pspicture}(-2,-2)(2,2)
+\Simplex[dimension=3]
+\end{pspicture}
+\begin{pspicture}(-2,-2)(2,2)
+ \Simplex[dimension=5]
+\end{pspicture}
+\begin{verbatim}
+\begin{pspicture}(-2,-2)(2,2)
+\Simplex[dimension=2] %
+\end{pspicture}
+\begin{pspicture}(-2,-2)(2,2)
+\Simplex[dimension=3]
+\end{pspicture}
+\begin{pspicture}(-2,-2)(2,2)
+ \Simplex[dimension=5]
+\end{pspicture}
+\end{verbatim}
+\end{example}
+
+The polytopes $\gamma_n^p$ forms a two parameters family which
+contains as special case the hypercubes. The parameter $n$ is the
+dimension of the polytope and the parameter $p$ is the number of
+vertices per edge. Use the macro {\tt gammapn} and the parameters
+{\tt dimension} and {\tt P} to chose the characteristics of the
+polytope.
+\begin{example}
+\begin{pspicture}(-2,-2)(2,2)
+\gammapn[dimension=2,P=4] %
+\end{pspicture}
+\begin{pspicture}(-2,-2)(2,2)
+\gammapn[dimension=3,P=3,unit=0.7cm]
+\end{pspicture}
+\begin{pspicture}(-2,-2)(2,2)
+ \gammapn[dimension=5,P=2,unit=0.55cm]
+\end{pspicture}
+\begin{verbatim}
+\begin{pspicture}(-2,-2)(2,2)
+\gammapn[dimension=2,P=4] %
+\end{pspicture}
+\begin{pspicture}(-2,-2)(2,2)
+\gammapn[dimension=3,P=3,unit=0.7cm]
+\end{pspicture}
+\begin{pspicture}(-2,-2)(2,2)
+ \gammapn[dimension=5,P=2,unit=0.55cm]
+\end{pspicture}
+\end{verbatim}
+\end{example}
+
+The polytopes $\beta_n^p$ forms a two parameters family which
+contains as special case the hyperoctahedra. The parameter $n$ is
+the dimension of the polytope and the parameter $p$ is the number of
+cells of dimension $n-1$ containing a cell of dimension $n-2$. Use
+the macro {\tt betapn} and the parameters {\tt dimension} and {\tt
+P} to chose the characteristics of the polytope.
+\begin{example}
+\begin{pspicture}(-2,-2)(2,2)
+\betapn[dimension=2,P=4] %
+\end{pspicture}
+\begin{pspicture}(-2,-2)(2,2)
+\betapn[dimension=3,P=3]
+\end{pspicture}
+\begin{pspicture}(-2,-2)(2,2)
+ \betapn[dimension=5,P=2]
+\end{pspicture}
+\begin{verbatim}
+\begin{pspicture}(-2,-2)(2,2)
+\betapn[dimension=2,P=4] %
+\end{pspicture}
+\begin{pspicture}(-2,-2)(2,2)
+\betapn[dimension=3,P=3]
+\end{pspicture}
+\begin{pspicture}(-2,-2)(2,2)
+ \betapn[dimension=5,P=2]
+\end{pspicture}
+\end{verbatim}
+\end{example}
+
+The macro {\tt gammaptwo} draw the regular complex polytope
+$\gamma_2^p$ which is a special case of $\gamma_n^p$ for an other
+projection. Use the parameter {\tt P} for setting the number of
+vertices by edge.
+\begin{example}
+\begin{pspicture}(-2,-2)(2,2)
+\gammaptwo[P=3] %
+\end{pspicture}
+\begin{pspicture}(-2,-2)(2,2)
+\gammaptwo[P=4]
+\end{pspicture}
+\begin{pspicture}(-2,-2)(2,2)
+ \gammaptwo[P=5]
+\end{pspicture}
+\begin{verbatim}
+\begin{pspicture}(-2,-2)(2,2)
+\gammaptwo[P=3] %
+\end{pspicture}
+\begin{pspicture}(-2,-2)(2,2)
+\gammaptwo[P=4]
+\end{pspicture}
+\begin{pspicture}(-2,-2)(2,2)
+ \gammaptwo[P=5]
+\end{pspicture}
+\end{verbatim}
+\end{example}
+
+The macro {\tt betaptwo} draw the regular complex polytope
+$\beta_2^p$ which is a special case of $\beta_n^p$ for an other
+projection (the same than for {\tt gammaptwo}). Use the parameter
+{\tt P} for setting the number of vertices by edge.
+\begin{example}
+\begin{pspicture}(-2,-2)(2,2)
+\betaptwo[P=3] %
+\end{pspicture}
+\begin{pspicture}(-2,-2)(2,2)
+\betaptwo[P=4]
+\end{pspicture}
+\begin{pspicture}(-2,-2)(2,2)
+ \betaptwo[P=5]
+\end{pspicture}
+\begin{verbatim}
+\begin{pspicture}(-2,-2)(2,2)
+\betaptwo[P=3] %
+\end{pspicture}
+\begin{pspicture}(-2,-2)(2,2)
+\betaptwo[P=4]
+\end{pspicture}
+\begin{pspicture}(-2,-2)(2,2)
+ \betaptwo[P=5]
+\end{pspicture}
+\end{verbatim}
+\end{example}
+
+\section{Graphical parameters}
+\subsection{The components of a polytope}
+ The library {\tt pst-coxeterrep.sty} contains macros for
+drawing the vertices, the edges and the centers of the edges of
+polytopes of the infinite series of regular complex polytopes.
+
+It is possible to choice which components of the polytope will be
+drawn. It suffices to use the boolean parameters {\tt drawedges},
+{\tt drawvertices} and {\tt drawcenters}.
+
+ By default the values of the parameters {\tt
+drawedges}, {\tt drawvertices}, {\tt drawcenters} are set to {\tt
+true}.
+\begin{example}
+\rm
+\[
+\begin{pspicture}(-2,-2)(2,2)
+\Polygon[P=5,Q=2,drawcenters=false] %
+\end{pspicture}
+\begin{pspicture}(-2,-2)(2,2)
+\Simplex[dimension=3,drawvertices=false] %
+\end{pspicture}
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.5}
+ \gammapn[P=4,dimension=4,drawedges=false]
+\end{pspicture}
+\]
+\begin{verbatim}
+\begin{pspicture}(-2,-2)(2,2)
+\Polygon[P=5,Q=2,drawcenters=false] %
+\end{pspicture}
+\begin{pspicture}(-2,-2)(2,2)
+\Simplex[dimension=3,drawvertices=false] %
+\end{pspicture}
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.5}
+ \gammapn[P=4,dimension=4,drawedges=false]
+\end{pspicture}\end{verbatim}
+\end{example}
+\section{Graphical properties}
+It is possible to change the graphical characteristics of a
+polytope.\\
+The size of the polytope depends on the parameter {\tt unit}.
+\begin{example}
+\rm
+ \[
+ \begin{pspicture}(-1,-1)(1,1)
+\gammaptwo[P=4,unit=0.5cm] %
+\end{pspicture}
+ \begin{pspicture}(-2,-2)(2,2)
+\gammaptwo[P=4,unit=1cm] %
+\end{pspicture}
+ \begin{pspicture}(-4,-4)(4,4)
+\gammaptwo[P=4,unit=2cm] %
+\end{pspicture}
+\]
+\begin{verbatim}
+ \begin{pspicture}(-1,-1)(1,1)
+\gammaptwo[P=4,unit=0.5cm] %
+\end{pspicture}
+ \begin{pspicture}(-2,-2)(2,2)
+\gammaptwo[P=4,unit=1cm] %
+\end{pspicture}
+ \begin{pspicture}(-4,-4)(4,4)
+\gammaptwo[P=4,unit=2cm] %
+\end{pspicture}
+\end{verbatim}
+\end{example}
+Classically, one can modify the color and the width of the edges
+using the parameter {\tt linecolor} and {\tt linewidth}.
+\begin{example}
+\rm
+ \[
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.8,linewidth=0.01,linecolor=red}
+\betaptwo[P=5] %
+\end{pspicture}
+ \begin{pspicture}(-2,-2)(2,2)
+\betaptwo[P=5] %
+\end{pspicture}
+\]
+\begin{verbatim}
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.8,linewidth=0.01,linecolor=red}
+\betaptwo[P=5] %
+\end{pspicture}
+ \begin{pspicture}(-2,-2)(2,2)
+\betaptwo[P=5] %
+\end{pspicture}
+\end{verbatim}
+\end{example}
+The color, the style and the size of the vertices can be modify
+using the parameters {\tt colorVertices}, {\tt styleVertices} and
+{\tt sizeVertices}. The style of the vertices can be chosen in the
+classical dot styles.
+\begin{example}
+\rm
+ \[
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1.5cm,colorVertices=blue,styleVertices=pentagon,sizeVertices=0.2}
+\betapn[P=5,dimension=4] %
+\end{pspicture}
+ \begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1.5cm,colorVertices=magenta,sizeVertices=0.1,styleVertices=triangle} %
+\betapn[P=5,dimension=4]
+\end{pspicture}
+ \begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1.5cm,colorVertices=red,styleVertices=+,sizeVertices=0.2} %
+\betapn[P=5,dimension=4]
+\end{pspicture}
+\]
+\begin{verbatim}
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1.5cm,colorVertices=blue,styleVertices=pentagon,sizeVertices=0.2}
+\betapn[P=5,dimension=4] %
+\end{pspicture}
+ \begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1.5cm,colorVertices=magenta,sizeVertices=0.1,styleVertices=triangle} %
+\betapn[P=5,dimension=4]
+\end{pspicture}
+ \begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1.5cm,colorVertices=red,styleVertices=+,sizeVertices=0.2} %
+\betapn[P=5,dimension=4]
+\end{pspicture}
+\end{verbatim}
+\end{example}
+The color, the style and the size of the centers of the edges can be
+modify using the parameters {\tt colorCenters}, {\tt styleCenters}
+and {\tt sizeCenters}.
+\begin{example}
+\rm
+ \[
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.5cm,colorCenters=blue,styleCenters=pentagon,sizeCenters=0.2} %
+\gammapn[P=5,dimension=4] %
+\end{pspicture}
+ \begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.5cm,colorCenters=magenta,sizeCenters=0.1,styleCenters=triangle} %
+\gammapn[P=5,dimension=4] %
+\end{pspicture}
+ \begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.5cm,colorCenters=red,styleCenters=+,sizeCenters=0.2} %
+\gammapn[P=5,dimension=4] %
+\end{pspicture}
+\]
+\begin{verbatim}
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.5cm,colorCenters=blue,styleCenters=pentagon,sizeCenters=0.2} %
+\gammapn[P=5,dimension=4] %
+\end{pspicture}
+ \begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.5cm,colorCenters=magenta,sizeCenters=0.1,styleCenters=triangle} %
+\gammapn[P=5,dimension=4] %
+\end{pspicture}
+ \begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.5cm,colorCenters=red,styleCenters=+,sizeCenters=0.2} %
+\gammapn[P=5,dimension=4] %
+\end{pspicture}
+\end{verbatim}
+\end{example}
+
+ \begin{thebibliography}{ABC}
+
+\bibitem{Reg} H. S. M. Coxeter, {\em Regular polytopes}, Third
+Edition, Dover Publication Inc., New-York, 1973.
+%
+\bibitem{Cox}
+H. S. M. Coxeter, {\em Regular Complex Polytopes}, Second Edition,
+Cambridge University Press, 1991 .
+%
+\bibitem{Kalei}
+ H.S.M. Coxeter, {\em Kaleidoscopes, selected writing of H.S.M.
+ Coxeter by F.A. Sherk, P. McMullen, A.C. Thompson, A. Ivi\'c Weiss}, Canadian Mathematical Society Series of Monographs and
+ Advanced texts, Published in conjunction with the fiftieth anniversary of
+ the canadian mathematical society, J. M. Borwein and P. B. Borwein
+ Ed., A Wiley-Interscience publication, 1995.
+%
+\bibitem{Sh} G.C. Shephard, {\em Regular Complex Polytopes},
+Proceeding of the London Mathermatical Society (3), 2 82-97.
+%
+\bibitem{ST} G.C. Shephard and J.A. Todd, {\it Finite unitary
+reflection groups}, Canadian Journal of Mathematics 6, 274-304,
+1954.
+%
+\bibitem{Som} M.Y. Sommerville, {\it Geometry of $n$ dimension},
+Methuen, Lodon, 1929.
+\end{thebibliography}
+
+ \end{document}