summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc/generic/pst-cox/pst-coxcoor
diff options
context:
space:
mode:
authorKarl Berry <karl@freefriends.org>2008-02-27 01:41:10 +0000
committerKarl Berry <karl@freefriends.org>2008-02-27 01:41:10 +0000
commit52e0e587ff774ec47a088432cdb5738a39fb3739 (patch)
treedb08a7c283495c0bbdc3bf159b7e0b96f68a453b /Master/texmf-dist/doc/generic/pst-cox/pst-coxcoor
parentf82487f7cb5a8a26f143589f509ed0a76b51b82f (diff)
new (and special install) pstricks package pst-cox (24feb08)
git-svn-id: svn://tug.org/texlive/trunk@6759 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Master/texmf-dist/doc/generic/pst-cox/pst-coxcoor')
-rw-r--r--Master/texmf-dist/doc/generic/pst-cox/pst-coxcoor/Gallery.tex1573
-rw-r--r--Master/texmf-dist/doc/generic/pst-cox/pst-coxcoor/pst-coxcoor_doc.pdfbin0 -> 895667 bytes
-rw-r--r--Master/texmf-dist/doc/generic/pst-cox/pst-coxcoor/pst-coxcoor_doc.tex1118
3 files changed, 2691 insertions, 0 deletions
diff --git a/Master/texmf-dist/doc/generic/pst-cox/pst-coxcoor/Gallery.tex b/Master/texmf-dist/doc/generic/pst-cox/pst-coxcoor/Gallery.tex
new file mode 100644
index 00000000000..03b334e9855
--- /dev/null
+++ b/Master/texmf-dist/doc/generic/pst-cox/pst-coxcoor/Gallery.tex
@@ -0,0 +1,1573 @@
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+% polygonesCoordinate\Gallery.tex
+% Authors: J.-G. Luque and M. Luque
+% Purpose: Demonstration of the library pst-coxcoor
+% Created: 02/02/2008
+% License: LGPL
+% Project: PST-Cox V1.00
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+% Copyright © 2008 Jean-Gabriel Luque, Manuel Luque.
+% This work may be distributed and/or modified under the condition of
+% the Lesser GPL.
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+% This file is part of PST-Cox V1.00.
+%
+% PST-Cox V1.00 is free software: you can redistribute it and/or modify
+% it under the terms of the Lesser GNU General Public License as published by
+% the Free Software Foundation, either version 3 of the License, or
+% (at your option) any later version.%
+%
+% PST-Cox V1.00 is distributed in the hope that it will be useful,
+% but WITHOUT ANY WARRANTY; without even the implied warranty of
+% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+% Lesser GNU General Public License for more details.%
+%
+% You should have received a copy of the Lesser GNU General Public License
+% along with PST-Cox V1.00. If not, see <http://www.gnu.org/licenses/>.
+%
+
+\documentclass[a4paper]{article}
+\usepackage[latin1]{inputenc}%
+\usepackage[margin=2cm]{geometry}
+\usepackage{pst-coxcoor}
+\usepackage{multido}
+\usepackage{graphics}
+\newcount\ChoicePolytope
+
+\def\Titre#1{
+\ifcase\ichoice\or \def\polname{$2\{3\}3$}\def\ep{0.5mm}
+ \or \def\polname{$3\{3\}2$}\def\ep{0.3mm}\or
+\def\polname{$3\{3\}3$}\def\ep{0.3mm}\or
+ \def\polname{$3\{4\}2$}\def\ep{0.3mm}\or \def\polname{$3\{4\}4$}\def\ep{0.1mm}
+ \or \def\polname{$3\{4\}3$}\def\ep{0.1mm}\or \def\polname{$4\{3\}4$}\def\ep{0.1mm}\or
+\def\polname{$2\{4\}3\{3\}3$}\def\ep{0.1mm}\or \def\polname{ Hessien}\def\ep{0.1mm}
+ \or \def\polname{$3\{3\}3\{4\}2$}\def\ep{0.1mm}
+ \or \def\polname{de Witting} \def\ep{0.01mm} \or
+ \def\polname{$3\{8\}2$} \def\ep{0.1mm} \or
+ \def\polname{$2\{8\}3$} \def\ep{0.1mm} \or
+ \def\polname{$3\{5\}3$} \def\ep{0.1mm}
+ \or\def\polname{$4\{4\}3$} \def\ep{0.1mm}
+ \or\def\polname{$4\{3\}2$} \def\ep{0.1mm}
+ \or\def\polname{$2\{3\}4$} \def\ep{0.1mm}
+ \or\def\polname{$2\{6\}4$} \def\ep{0.1mm}
+ \or\def\polname{$4\{6\}2$} \def\ep{0.1mm}
+ \or\def\polname{$5\{3\}5$} \def\ep{0.1mm}
+ \or\def\polname{$2\{10\}3$} \def\ep{0.1mm}
+ \or\def\polname{$3\{10\}2$} \def\ep{0.1mm}
+ \or\def\polname{$2\{5\}3$} \def\ep{0.1mm}
+ \or\def\polname{$3\{5\}2$} \def\ep{0.1mm}
+ \or\def\polname{$2\{4\}3$} \def\ep{0.1mm}
+ \or\def\polname{$2\{3\}2\{4\}3$} \def\ep{0.1mm}
+ \or\def\polname{$3\{4\}2\{3\}2$} \def\ep{0.1mm}
+ \or\def\polname{$3\{4\}2\{3\}2\{3\}2$} \def\ep{0.1mm}
+ \or\def\polname{$2\{3\}2\{3\}2\{4\}3$} \def\ep{0.1mm}
+ \or\def\polname{$2\{3\}2\{5\}2$} \def\ep{0.1mm}
+ \or\def\polname{$2\{5\}2\{3\}2$} \def\ep{0.1mm}
+ \or\def\polname{$2\{3\}2\{3\}2\{4\}2$} \def\ep{0.1mm}
+ \or\def\polname{$2\{4\}2\{3\}2\{3\}2$} \def\ep{0.1mm}
+ \or\def\polname{$2\{3\}2\{4\}2\{3\}2$} \def\ep{0.1mm}
+ \or\def\polname{$2\{3\}2\{3\}2\{5\}2$} \def\ep{0.1mm}
+ \or\def\polname{$2\{5\}2\{3\}2\{2\}2$} \def\ep{0.1mm}
+ \or\def\polname{$3\left\{5\over2\right\}3$} \def\ep{0.1mm}
+ \or\def\polname{$5\left\{5\over2\right\}5$} \def\ep{0.1mm}
+ \or\def\polname{$2\left\{5\over2\right\}3$} \def\ep{0.1mm}
+ \or\def\polname{$3\left\{5\over2\right\}2$} \def\ep{0.1mm}
+ \or\def\polname{$3\left\{10\over3\right\}2$} \def\ep{0.1mm}
+ \or\def\polname{$2\left\{10\over3\right\}3$} \def\ep{0.1mm}
+ \or\def\polname{$3\left\{8\over3\right\}2$} \def\ep{0.1mm}
+ \or\def\polname{$2\left\{8\over3\right\}3$} \def\ep{0.1mm}
+ \or\def\polname{$5\{6\}2$} \def\ep{0.1mm}
+ \or\def\polname{$2\{6\}5$} \def\ep{0.1mm}
+ \or\def\polname{$4\left\{8\over3\right\}3$} \def\ep{0.1mm}
+ \or\def\polname{$3\left\{8\over3\right\}4$} \def\ep{0.1mm}
+ \or\def\polname{$5\{5\}2$} \def\ep{0.1mm}
+ \or\def\polname{$2\{5\}5$} \def\ep{0.1mm}
+ \or\def\polname{$5\left\{10\over3\right\}2$} \def\ep{0.1mm}
+ \or\def\polname{$2\left\{10\over3\right\}5$} \def\ep{0.1mm}
+ \or\def\polname{$5\{3\}2$} \def\ep{0.1mm}
+ \or\def\polname{$2\{3\}5$} \def\ep{0.1mm}
+ \or\def\polname{$5\{4\}2$} \def\ep{0.1mm}
+ \or\def\polname{$2\{4\}5$} \def\ep{0.1mm}
+ \or\def\polname{$5\left\{10\over3\right\}3$} \def\ep{0.1mm}
+ \or\def\polname{$3\left\{10\over3\right\}5$} \def\ep{0.1mm}
+ \or\def\polname{$5\{4\}3$} \def\ep{0.1mm}
+ \or\def\polname{$3\{4\}5$} \def\ep{0.1mm}
+ \or\def\polname{$5\{3\}3$} \def\ep{0.1mm}
+ \or\def\polname{$3\{3\}5$} \def\ep{0.1mm}
+ \or\def\polname{$5\left\{5\over2\right\}3$} \def\ep{0.1mm}
+ \or\def\polname{$3\left\{5\over2\right\}5$} \def\ep{0.1mm}
+ \or\def\polname{$2\left\{5\over2\right\}2\{3\}2$} \def\ep{0.1mm}
+ \or\def\polname{$2\{3\}2\left\{5\over 2\right\}2$} \def\ep{0.1mm}
+ \or\def\polname{$2\left\{5\over2\right\}2\{5\}2$} \def\ep{0.1mm}
+ \or\def\polname{$2\{5\}2\left\{5\over 2\right\}2$} \def\ep{0.1mm}
+ \or\def\polname{$2\{6\}3$} \def\ep{0.1mm}
+ \or\def\polname{$3\{6\}2$} \def\ep{0.1mm}
+ \or\def\polname{$2\{\frac52\}2\{3\}2\{3\}2$} \def\ep{0.1mm}
+ \fi
+ {\Huge Polytope \polname}
+}
+\def\demoPolytopes#1{%}
+\begin{center}
+\Titre{#1}
+\begin{pspicture}(-9,-9)(9,9)
+\psset{unit=3cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=#1,linewidth=\ep] % par défaut choice=1 (332)
+\end{pspicture}
+
+$\backslash$\texttt{CoxeterCoordinates[choice=#1]}
+\end{center}
+\begin{center}
+\begin{tabular}{ccc}
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.7cm}
+\CoxeterCoordinates[drawvertices=false,choice=#1,linewidth=0.01mm] %
+\end{pspicture}
+&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.7cm}
+\CoxeterCoordinates[drawcenters=false,choice=#1,linewidth=0.01mm] %
+\end{pspicture}
+&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.7cm}
+\CoxeterCoordinates[drawedges=false,choice=#1,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawvertices=false,choice=#1]}
+&
+\texttt{[drawcenters=false,choice=#1]}
+&
+\texttt{[drawedges=false,choice=#1]}
+\end{tabular}
+\end{center}}
+
+\def\demoPolytopesGrand#1{%}
+\begin{center}
+\Titre{#1}
+\begin{pspicture}(-9,-9)(9,9)
+\psset{unit=7cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=#1,linewidth=\ep] % par défaut choice=1 (332)
+\end{pspicture}
+
+$\backslash$\texttt{CoxeterCoordinates[choice=#1]}
+\end{center}
+\begin{center}
+\begin{tabular}{ccc}
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=2cm}
+\CoxeterCoordinates[drawvertices=false,choice=#1,linewidth=0.01mm] %
+\end{pspicture}
+&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=2cm}
+\CoxeterCoordinates[drawcenters=false,choice=#1,linewidth=0.01mm] %
+\end{pspicture}
+&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=2cm}
+\CoxeterCoordinates[drawedges=false,choice=#1,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawvertices=false,choice=#1]} &
+\texttt{[drawcenters=false,choice=#1]} &
+\texttt{[drawedges=false,choice=#1]}
+\end{tabular}
+\end{center}}
+
+%
+\def\demoPolytopesPetit#1{%}
+\begin{center}
+\Titre{#1}
+\begin{pspicture}(-9,-9)(9,9)
+\psset{unit=0.7cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=#1,linewidth=\ep] % par défaut choice=1 (332)
+\end{pspicture}
+
+$\backslash$\texttt{CoxeterCoordinates[choice=#1]}
+\end{center}
+\begin{center}
+\begin{tabular}{ccc}
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.2cm}
+\CoxeterCoordinates[drawvertices=false,choice=#1,linewidth=0.01mm] %
+\end{pspicture}
+&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.2cm}
+\CoxeterCoordinates[drawcenters=false,choice=#1,linewidth=0.01mm] %
+\end{pspicture}
+&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.2cm}
+\CoxeterCoordinates[drawedges=false,choice=#1,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawvertices=false,choice=#1]} &
+\texttt{[drawcenters=false,choice=#1]} &
+\texttt{[drawedges=false,choice=#1]}
+\end{tabular}
+\end{center}}
+
+\title{The Gallery}
+\author{Jean-Gabriel \textsc{Luque}\footnote{Jean-Gabriel.Luque@univ-mlv.fr} and Manuel
+ \textsc{Luque}\footnote{mluque5130@aol.com}}
+\begin{document}
+\maketitle\newpage
+\section{Les polygons (dimension 2)}
+\multido{\ichoice=1+1}{7}{%
+\demoPolytopes{\ichoice}\newpage}
+\begin{center}
+{\huge Polytope $3\{8\}2$}
+\begin{pspicture}(-9,-9)(9,9)
+\psset{unit=2cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=12,linewidth=0.01mm] % par défaut choice=1 (332)
+\end{pspicture}
+$\backslash$\texttt{CoxeterCoordinates[choice=12]}
+\end{center}
+\begin{center}
+\begin{tabular}{ccc}
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.4cm}
+\CoxeterCoordinates[drawvertices=false,choice=12,linewidth=0.01mm] %
+\end{pspicture}
+&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.4cm}
+\CoxeterCoordinates[drawcenters=false,choice=12,linewidth=0.01mm] %
+\end{pspicture}
+&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.4cm}
+\CoxeterCoordinates[drawedges=false,choice=12,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawvertices=false,choice=12]} &
+\texttt{[drawcenters=false,choice=12]} &
+\texttt{[drawedges=false,choice=12]}
+\end{tabular}
+\end{center}\newpage
+
+\begin{center}
+{\huge Polytope $2\{8\}3$}
+\begin{pspicture}(-9,-9)(9,9)
+\psset{unit=2cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=13,linewidth=0.01mm] % par défaut choice=1 (332)
+\end{pspicture}
+$\backslash$\texttt{CoxeterCoordinates[choice=13]}
+\end{center}
+\begin{center}
+\begin{tabular}{ccc}
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.4cm}
+\CoxeterCoordinates[drawvertices=false,choice=13,linewidth=0.01mm] %
+\end{pspicture}
+&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.4cm}
+\CoxeterCoordinates[drawcenters=false,choice=13,linewidth=0.01mm] %
+\end{pspicture}
+&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.4cm}
+\CoxeterCoordinates[drawedges=false,choice=13,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawvertices=false,choice=13]} &
+\texttt{[drawcenters=false,choice=13]} &
+\texttt{[drawedges=false,choice=13]}
+\end{tabular}
+\end{center}\newpage
+
+
+\multido{\ichoice=14+1}{11}{%
+\demoPolytopes{\ichoice}\newpage}
+
+\begin{center}
+{\huge Polytope $2\{5\}3$}
+\begin{pspicture}(-9,-9)(9,9)
+\psset{unit=2cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=23,linewidth=0.01mm] % par défaut choice=1 (332)
+\end{pspicture}
+$\backslash$\texttt{CoxeterCoordinates[choice=23]}
+\end{center}
+\begin{center}
+\begin{tabular}{ccc}
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.6cm}
+\CoxeterCoordinates[drawvertices=false,choice=23,linewidth=0.01mm] %
+\end{pspicture}
+&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.6cm}
+\CoxeterCoordinates[drawcenters=false,choice=23,linewidth=0.01mm] %
+\end{pspicture}
+&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.6cm}
+\CoxeterCoordinates[drawedges=false,choice=23,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawvertices=false,choice=23]}
+&
+\texttt{[drawcenters=false,choice=23]}
+&
+\texttt{[drawedges=false,choice=23]}
+\end{tabular}
+\end{center}
+
+\newpage
+\multido{\ichoice=24+1}{2}{%
+\demoPolytopes{\ichoice}\newpage} %%%%%%
+ %ù%%%%%%
+\begin{center}
+ {\huge Polytope $3\{\frac 52\}3$}
+\begin{pspicture}(-9,-9)(9,9)
+\psset{unit=2cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=37,linewidth=0.01mm] % par défaut choice=1 (332)
+\end{pspicture}
+$\backslash$\texttt{CoxeterCoordinates[choice=37]}
+\end{center}
+\begin{center}
+\begin{tabular}{ccc}
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.6cm}
+\CoxeterCoordinates[drawvertices=false,choice=37,linewidth=0.01mm] %
+\end{pspicture}
+&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.6cm}
+\CoxeterCoordinates[drawcenters=false,choice=37,linewidth=0.01mm] %
+\end{pspicture}
+&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.6cm}
+\CoxeterCoordinates[drawedges=false,choice=37,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawvertices=false,choice=37]} &
+\texttt{[drawcenters=false,choice=37]} &
+\texttt{[drawedges=false,choice=37]}
+\end{tabular}
+\end{center}
+%%%%%
+\newpage
+
+\multido{\ichoice=38+1}{13}{%
+\demoPolytopes{\ichoice}
+\newpage}
+\multido{\ichoice=51+1}{3}{
+\begin{center}
+\Titre{\ichoice}
+\begin{pspicture}(-9,-9)(9,9)
+\psset{unit=2cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=\ichoice,linewidth=0.01mm] % par défaut choice=1 (332)
+\end{pspicture}
+$\backslash$\texttt{CoxeterCoordinates[choice=\ichoice]}
+\end{center}
+\begin{center}
+\begin{tabular}{ccc}
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.7cm}
+\CoxeterCoordinates[drawvertices=false,choice=\ichoice,linewidth=0.01mm] %
+\end{pspicture}
+&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.7cm}
+\CoxeterCoordinates[drawcenters=false,choice=\ichoice,linewidth=0.01mm] %
+\end{pspicture}
+&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.7cm}
+\CoxeterCoordinates[drawedges=false,choice=\ichoice,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawvertices=false,choice=\ichoice]} &
+\texttt{[drawcenters=false,choice=\ichoice]} &
+\texttt{[drawedges=false,choice=\ichoice]}
+\end{tabular}
+\end{center}
+\newpage
+}
+\begin{center}
+ \multido{\ichoice=54+1}{1}{
+\Titre{\ichoice}}
+\begin{pspicture}(-9,-9)(9,9)
+\psset{unit=2cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=54,linewidth=0.01mm] % par défaut choice=1 (332)
+\end{pspicture}
+$\backslash$
+\texttt{CoxeterCoordinates[choice=54]}
+\end{center}
+\begin{center}
+\begin{tabular}{ccc}
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.5cm}
+\CoxeterCoordinates[drawvertices=false,choice=54,linewidth=0.01mm] %
+\end{pspicture}
+&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.5cm}
+\CoxeterCoordinates[drawcenters=false,choice=54,linewidth=0.01mm] %
+\end{pspicture}
+&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.5cm}
+\CoxeterCoordinates[drawedges=false,choice=54,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawvertices=false,choice=54]} &
+\texttt{[drawcenters=false,choice=54]} &
+\texttt{[drawedges=false,choice=54]}
+\end{tabular}
+\end{center}
+\newpage
+\multido{\ichoice=55+1}{5}{%
+\demoPolytopes{\ichoice}
+\newpage}
+\multido{\ichoice=60+1}{1}{
+\begin{center}
+\Titre{\ichoice}
+\begin{pspicture}(-9,-9)(9,9)
+\psset{unit=1cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=\ichoice,linewidth=0.01mm] % par défaut choice=1 (332)
+\end{pspicture}
+$\backslash$\texttt{CoxeterCoordinates[choice=\ichoice]}
+\end{center}
+\begin{center}
+\begin{tabular}{ccc}
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.2cm}
+\CoxeterCoordinates[drawvertices=false,choice=\ichoice,linewidth=0.01mm] %
+\end{pspicture}
+&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.2cm}
+\CoxeterCoordinates[drawcenters=false,choice=\ichoice,linewidth=0.01mm] %
+\end{pspicture}
+&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.2cm}
+\CoxeterCoordinates[drawedges=false,choice=\ichoice,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawvertices=false,choice=\ichoice]} &
+\texttt{[drawcenters=false,choice=\ichoice]} &
+\texttt{[drawedges=false,choice=\ichoice]}
+\end{tabular}
+\end{center}
+\newpage}
+\multido{\ichoice=61+1}{3}{
+\begin{center}
+\Titre{\ichoice}
+\begin{pspicture}(-9,-9)(9,9)
+\psset{unit=2cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=\ichoice,linewidth=0.01mm] % par défaut choice=1 (332)
+\end{pspicture}
+$\backslash$\texttt{CoxeterCoordinates[choice=\ichoice]}
+\end{center}
+\begin{center}
+\begin{tabular}{ccc}
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.5cm}
+\CoxeterCoordinates[drawvertices=false,choice=\ichoice,linewidth=0.01mm] %
+\end{pspicture}
+&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.5cm}
+\CoxeterCoordinates[drawcenters=false,choice=\ichoice,linewidth=0.01mm] %
+\end{pspicture}
+&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.5cm}
+\CoxeterCoordinates[drawedges=false,choice=\ichoice,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawvertices=false,choice=\ichoice]} &
+\texttt{[drawcenters=false,choice=\ichoice]} &
+\texttt{[drawedges=false,choice=\ichoice]}
+\end{tabular}
+\end{center}
+\newpage
+}
+\begin{center}
+ \multido{\ichoice=64+1}{1}{
+\Titre{\ichoice}}
+\begin{pspicture}(-9,-9)(9,9)
+\psset{unit=3cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=64,linewidth=0.01mm] % par défaut choice=1 (332)
+\end{pspicture}
+$\backslash$ \texttt{CoxeterCoordinates[choice=64]}
+\end{center}
+\begin{center}
+\begin{tabular}{ccc}
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1cm}
+\CoxeterCoordinates[drawvertices=false,choice=64,linewidth=0.01mm] %
+\end{pspicture}
+&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1cm}
+\CoxeterCoordinates[drawcenters=false,choice=64,linewidth=0.01mm] %
+\end{pspicture}
+&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1cm}
+\CoxeterCoordinates[drawedges=false,choice=64,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawvertices=false,choice=64]} &
+\texttt{[drawcenters=false,choice=64]} &
+\texttt{[drawedges=false,choice=64]}
+\end{tabular}
+\end{center}
+\newpage
+
+\section{Polyhedron (dimension 3)}
+\multido{\ichoice=8+1}{3}{%
+\demoPolytopes{\ichoice} \begin{center}
+\begin{pspicture}(-2,-5)(2,5)
+\psset{unit=2}
+\CoxeterCoordinates[drawvertices=false,drawcentersfaces=true,drawcenters=false,choice=\ichoice,linewidth=0.3mm]
+\end{pspicture}
+{\tt
+[drawvertices=false,drawcentersfaces=true,drawcenters=false,choice=\ichoice,linewidth=0.3mm]
+}
+\end{center}
+\newpage}
+\multido{\ichoice=26+1}{2}{%
+\demoPolytopes{\ichoice} \begin{center}
+\begin{pspicture}(-2,-5)(2,5)
+\psset{unit=2}
+\CoxeterCoordinates[drawvertices=false,drawcentersfaces=true,drawcenters=false,choice=\ichoice,linewidth=0.3mm]
+\end{pspicture}
+{\tt
+[drawvertices=false,drawcentersfaces=true,drawcenters=false,choice=\ichoice,linewidth=0.3mm]
+}
+\end{center}
+\newpage}
+
+\multido{\ichoice=30+1}{2}{%
+\demoPolytopes{\ichoice} \begin{center}
+\begin{pspicture}(-2,-5)(2,5)
+\psset{unit=2}
+\CoxeterCoordinates[drawvertices=false,drawcentersfaces=true,drawcenters=false,choice=\ichoice,linewidth=0.3mm]
+\end{pspicture}
+{\tt
+[drawvertices=false,drawcentersfaces=true,drawcenters=false,choice=\ichoice,linewidth=0.3mm]
+}
+\end{center}
+\newpage}
+\multido{\ichoice=65+1}{4}{%
+\demoPolytopesGrand{\ichoice} \begin{center}
+\begin{pspicture}(-2,-5)(2,5)
+\psset{unit=3}
+\CoxeterCoordinates[drawvertices=false,drawcentersfaces=true,drawcenters=false,choice=\ichoice,linewidth=0.3mm]
+\end{pspicture}
+{\tt
+[drawvertices=false,drawcentersfaces=true,drawcenters=false,choice=\ichoice,linewidth=0.3mm]
+}
+\end{center}
+\newpage}
+
+\section{Polytopes (dimension $4$)}
+
+\begin{center}
+{\Huge Witting polytope}\\
+\begin{pspicture}(-9,-9)(9,9)
+\psset{unit=3cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=11,linewidth=0.01mm] % par défaut choice=1 (332)
+\end{pspicture}
+$\backslash$\texttt{CoxeterCoordinates[choice=11]}
+\end{center}
+\begin{center}
+\begin{tabular}{ccc}
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.7cm}
+\CoxeterCoordinates[drawvertices=false,choice=11,linewidth=0.01mm] %
+\end{pspicture}
+&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.7cm}
+\CoxeterCoordinates[drawcenters=false,choice=11,linewidth=0.01mm] %
+\end{pspicture}
+&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.7cm}
+\CoxeterCoordinates[drawedges=false,choice=11,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawvertices=false,choice=11]} &
+\texttt{[drawcenters=false,choice=11]} &
+\texttt{[drawedges=false,choice=11]}
+\end{tabular}
+\end{center}
+\begin{center}
+\begin{pspicture}(-4,-4)(4,4)
+\psset{unit=1.4cm}
+\CoxeterCoordinates[drawvertices=false,drawedges=false,drawcenters=false,drawcentersfaces=true,choice=11,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawvertices=false,drawedges=false,drawcenters=false,drawcentersfaces=true,choice=11]}
+\end{center}
+\begin{center}
+\begin{pspicture}(-4,-4)(4,4)
+\psset{unit=1.4cm}
+\CoxeterCoordinates[drawvertices=false,drawedges=false,drawcenters=false,drawcenterscells=true,choice=11,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawcenters=false,choice=11]}
+\end{center}\newpage
+\begin{center}
+{\huge Polytope $3\{4\}2\{3\}2\{3\}2$}
+\begin{pspicture}(-9,-9)(9,9)
+\psset{unit=2cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=28,linewidth=0.1mm] % par défaut choice=1 (332)
+\end{pspicture}
+
+$\backslash$\texttt{CoxeterCoordinates[choice=28]}
+\end{center}
+\begin{center}
+\begin{tabular}{ccc}
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.6cm}
+\CoxeterCoordinates[drawvertices=false,choice=28,linewidth=0.01mm] %
+\end{pspicture}
+&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.6cm}
+\CoxeterCoordinates[drawcenters=false,choice=28,linewidth=0.01mm] %
+\end{pspicture}
+&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.6cm}
+\CoxeterCoordinates[drawedges=false,choice=28,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawvertices=false,choice=28]}
+&
+\texttt{[drawcenters=false,choice=28]}
+&
+\texttt{[drawedges=false,choice=28]}
+\end{tabular}
+\end{center}
+\newpage
+\multido{\ichoice=29+1}{1}{%
+\demoPolytopes{\ichoice}
+\begin{center}
+\begin{pspicture}(-4,-4)(4,4)
+\psset{unit=1.4cm}
+\CoxeterCoordinates[drawvertices=false,drawedges=false,drawcenters=false,drawcentersfaces=true,choice=\ichoice,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawvertices=false,drawedges=false,drawcenters=false,drawcentersfaces=true,choice=\ichoice]}
+\end{center}
+\begin{center}
+\begin{pspicture}(-4,-4)(4,4)
+\psset{unit=1.4cm}
+\CoxeterCoordinates[drawvertices=false,drawedges=false,drawcenters=false,drawcenterscells=true,choice=\ichoice,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawcenters=false,choice=\ichoice]}
+\end{center}\newpage}
+
+\multido{\ichoice=32+1}{3}{%
+\demoPolytopes{\ichoice}
+\begin{center}
+\begin{pspicture}(-4,-4)(4,4)
+\psset{unit=1.4cm}
+\CoxeterCoordinates[drawvertices=false,drawedges=false,drawcenters=false,drawcentersfaces=true,choice=\ichoice,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawvertices=false,drawedges=false,drawcenters=false,drawcentersfaces=true,choice=\ichoice]}
+\end{center}
+\begin{center}
+\begin{pspicture}(-4,-4)(4,4)
+\psset{unit=1.4cm}
+\CoxeterCoordinates[drawvertices=false,drawedges=false,drawcenters=false,drawcenterscells=true,choice=\ichoice,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawcenters=false,choice=\ichoice]}
+\end{center}\newpage}
+\begin{center}
+{\Huge Le $600$-topes}\\
+\begin{pspicture}(-9,-9)(9,9)
+\psset{unit=3cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=35,linewidth=0.01mm] % par défaut choice=1 (332)
+\end{pspicture}
+$\backslash$\texttt{CoxeterCoordinates[choice=35]}
+\end{center}
+\begin{center}
+\begin{tabular}{ccc}
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1cm}
+\CoxeterCoordinates[drawvertices=false,choice=35,linewidth=0.01mm] %
+\end{pspicture}
+&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1cm}
+\CoxeterCoordinates[drawcenters=false,choice=35,linewidth=0.01mm] %
+\end{pspicture}
+&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1cm}
+\CoxeterCoordinates[drawedges=false,choice=35,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawvertices=false,choice=35]} &
+\texttt{[drawcenters=false,choice=35]} &
+\texttt{[drawedges=false,choice=35]}
+\end{tabular}
+\end{center}
+\begin{center}
+\begin{pspicture}(-4,-4)(4,4)
+\psset{unit=1.5cm}
+\CoxeterCoordinates[drawvertices=false,drawedges=false,drawcenters=false,drawcentersfaces=true,choice=35,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawvertices=false,drawedges=false,drawcenters=false,drawcentersfaces=true,choice=35]}
+\end{center}
+\begin{center}
+\begin{pspicture}(-4,-4)(4,4)
+\psset{unit=1.5cm}
+\CoxeterCoordinates[drawvertices=false,drawedges=false,drawcenters=false,drawcenterscells=true,choice=35,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawcenters=false,choice=35]}
+\end{center}\newpage
+
+\begin{center}
+{\Huge The $120$-topes}\\
+\begin{pspicture}(-9,-9)(9,9)
+\psset{unit=3.5cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=36,linewidth=0.01mm] % par défaut choice=1 (332)
+\end{pspicture}
+$\backslash$\texttt{CoxeterCoordinates[choice=36]}
+\end{center}
+\begin{center}
+\begin{tabular}{ccc}
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1cm}
+\CoxeterCoordinates[drawvertices=false,choice=36,linewidth=0.01mm] %
+\end{pspicture}
+&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1cm}
+\CoxeterCoordinates[drawcenters=false,choice=36,linewidth=0.01mm] %
+\end{pspicture}
+&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1cm}
+\CoxeterCoordinates[drawedges=false,choice=36,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawvertices=false,choice=36]} &
+\texttt{[drawcenters=false,choice=36]} &
+\texttt{[drawedges=false,choice=36]}
+\end{tabular}
+\end{center}
+\begin{center}
+\begin{pspicture}(-4,-4)(4,4)
+\psset{unit=2cm}
+\CoxeterCoordinates[drawvertices=false,drawedges=false,drawcenters=false,drawcentersfaces=true,choice=36,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawvertices=false,drawedges=false,drawcenters=false,drawcentersfaces=true,choice=36]}
+\end{center}
+\begin{center}
+\begin{pspicture}(-4,-4)(4,4)
+\psset{unit=2cm}
+\CoxeterCoordinates[drawvertices=false,drawedges=false,drawcenters=false,drawcenterscells=true,choice=36,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawcenters=false,choice=36]}
+\end{center}\newpage
+
+%\multido{\ichoice=71+1}{1}{%
+%\demoPolytopesPetit{\ichoice} \begin{center}
+%\begin{pspicture}(-2,-5)(2,5)
+%\psset{unit=0.5}
+%\CoxeterCoordinates[drawvertices=false,drawcentersfaces=true,drawcenters=false,choice=\ichoice,linewidth=0.1mm]
+%\end{pspicture}
+%{\tt
+%[drawvertices=false,drawcentersfaces=true,drawcenters=false,choice=\ichoice,linewidth=0.1mm]
+%}
+%\end{center}
+%\newpage}
+\begin{center}
+{\Huge The great starry $600$-topes}\\
+\begin{pspicture}(-9,-9)(9,9)
+\psset{unit=0.9cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=71,linewidth=0.01mm] % par défaut choice=1 (332)
+\end{pspicture}
+$\backslash$\texttt{CoxeterCoordinates[choice=71]}
+\end{center}
+\begin{center}
+\begin{tabular}{ccc}
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.2cm}
+\CoxeterCoordinates[drawvertices=false,choice=71,linewidth=0.01mm] %
+\end{pspicture}
+&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.2cm}
+\CoxeterCoordinates[drawcenters=false,choice=71,linewidth=0.01mm] %
+\end{pspicture}
+&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.2cm}
+\CoxeterCoordinates[drawedges=false,choice=71,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawvertices=false,choice=71]} &
+\texttt{[drawcenters=false,choice=71]} &
+\texttt{[drawedges=false,choice=71]}
+\end{tabular}
+\end{center}
+\begin{center}
+\begin{pspicture}(-4,-4)(4,4)
+\psset{unit=1cm}
+\CoxeterCoordinates[drawvertices=false,drawedges=false,drawcenters=false,drawcentersfaces=true,choice=71,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawvertices=false,drawedges=false,drawcenters=false,drawcentersfaces=true,choice=71]}
+\end{center}
+\begin{center}
+\begin{pspicture}(-4,-4)(4,4)
+\psset{unit=1cm}
+\CoxeterCoordinates[drawvertices=false,drawedges=false,drawcenters=false,drawcenterscells=true,choice=71,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawcenters=false,choice=71]}
+\end{center}\newpage
+%
+%
+\begin{center}
+{\Huge The great starry $120$-topes}\\
+\begin{pspicture}(-9,-9)(9,9)
+\psset{unit=6cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=72,linewidth=0.01mm] % par défaut choice=1 (332)
+\end{pspicture}
+$\backslash$\texttt{CoxeterCoordinates[choice=72]}
+\end{center}
+\begin{center}
+\begin{tabular}{ccc}
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1.5cm}
+\CoxeterCoordinates[drawvertices=false,choice=72,linewidth=0.01mm] %
+\end{pspicture}
+&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1.5cm}
+\CoxeterCoordinates[drawcenters=false,choice=72,linewidth=0.01mm] %
+\end{pspicture}
+&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1.5cm}
+\CoxeterCoordinates[drawedges=false,choice=72,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawvertices=false,choice=72]} &
+\texttt{[drawcenters=false,choice=72]} &
+\texttt{[drawedges=false,choice=72]}
+\end{tabular}
+\end{center}
+\begin{center}
+\begin{pspicture}(-4,-4)(4,4)
+\psset{unit=5cm}
+\CoxeterCoordinates[drawvertices=false,drawedges=false,drawcenters=false,drawcentersfaces=true,choice=72,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawvertices=false,drawedges=false,drawcenters=false,drawcentersfaces=true,choice=72]}
+\end{center}
+\begin{center}
+\begin{pspicture}(-4,-4)(4,4)
+\psset{unit=10cm}
+\CoxeterCoordinates[drawvertices=false,drawedges=false,drawcenters=false,drawcenterscells=true,choice=72,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawcenters=false,choice=72]}
+\end{center}\newpage
+%
+%
+%
+\begin{center}
+{\Huge $2\{3\}2\{\frac52\}2\{5\}2$}\\
+\begin{pspicture}(-9,-9)(9,9)
+\psset{unit=2cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=73,linewidth=0.01mm] % par défaut choice=1 (332)
+\end{pspicture}
+$\backslash$\texttt{CoxeterCoordinates[choice=73]}
+\end{center}
+\begin{center}
+\begin{tabular}{ccc}
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.5cm}
+\CoxeterCoordinates[drawvertices=false,choice=73,linewidth=0.01mm] %
+\end{pspicture}
+&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.5cm}
+\CoxeterCoordinates[drawcenters=false,choice=73,linewidth=0.01mm] %
+\end{pspicture}
+&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.5cm}
+\CoxeterCoordinates[drawedges=false,choice=73,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawvertices=false,choice=73]} &
+\texttt{[drawcenters=false,choice=73]} &
+\texttt{[drawedges=false,choice=73]}
+\end{tabular}
+\end{center}
+\begin{center}
+\begin{pspicture}(-4,-4)(4,4)
+\psset{unit=2cm}
+\CoxeterCoordinates[drawvertices=false,drawedges=false,drawcenters=false,drawcentersfaces=true,choice=73,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawvertices=false,drawedges=false,drawcenters=false,drawcentersfaces=true,choice=73]}
+\end{center}
+\begin{center}
+\begin{pspicture}(-4,-4)(4,4)
+\psset{unit=2cm}
+\CoxeterCoordinates[drawvertices=false,drawedges=false,drawcenters=false,drawcenterscells=true,choice=73,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawcenters=false,choice=73]}
+\end{center}\newpage
+%
+%
+%
+\begin{center}
+{\Huge $2\{3\}2\{5\}2\{\frac52\}2$}\\
+\begin{pspicture}(-9,-9)(9,9)
+\psset{unit=6cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=74,linewidth=0.01mm] % par défaut choice=1 (332)
+\end{pspicture}
+$\backslash$\texttt{CoxeterCoordinates[choice=74]}
+\end{center}
+\begin{center}
+\begin{tabular}{ccc}
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1.5cm}
+\CoxeterCoordinates[drawvertices=false,choice=74,linewidth=0.01mm] %
+\end{pspicture}
+&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1.5cm}
+\CoxeterCoordinates[drawcenters=false,choice=74,linewidth=0.01mm] %
+\end{pspicture}
+&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1.5cm}
+\CoxeterCoordinates[drawedges=false,choice=74,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawvertices=false,choice=74]} &
+\texttt{[drawcenters=false,choice=74]} &
+\texttt{[drawedges=false,choice=74]}
+\end{tabular}
+\end{center}
+\begin{center}
+\begin{pspicture}(-4,-4)(4,4)
+\psset{unit=3cm}
+\CoxeterCoordinates[drawvertices=false,drawedges=false,drawcenters=false,drawcentersfaces=true,choice=74,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawvertices=false,drawedges=false,drawcenters=false,drawcentersfaces=true,choice=74]}
+\end{center}
+\begin{center}
+\begin{pspicture}(-4,-4)(4,4)
+\psset{unit=3cm}
+\CoxeterCoordinates[drawvertices=false,drawedges=false,drawcenters=false,drawcenterscells=true,choice=74,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawcenters=false,choice=74]}
+\end{center}\newpage
+%
+%
+\begin{center}
+{\Huge $2\{\frac52\}2\{3\}2\{5\}2$}\\
+\begin{pspicture}(-9,-9)(9,9)
+\psset{unit=3cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=75,linewidth=0.01mm] % par défaut choice=1 (332)
+\end{pspicture}
+$\backslash$\texttt{CoxeterCoordinates[choice=75]}
+\end{center}
+\begin{center}
+\begin{tabular}{ccc}
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.7cm}
+\CoxeterCoordinates[drawvertices=false,choice=75,linewidth=0.01mm] %
+\end{pspicture}
+&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.7cm}
+\CoxeterCoordinates[drawcenters=false,choice=75,linewidth=0.01mm] %
+\end{pspicture}
+&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.7cm}
+\CoxeterCoordinates[drawedges=false,choice=75,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawvertices=false,choice=75]} &
+\texttt{[drawcenters=false,choice=75]} &
+\texttt{[drawedges=false,choice=75]}
+\end{tabular}
+\end{center}
+\begin{center}
+\begin{pspicture}(-4,-4)(4,4)
+\psset{unit=2.5cm}
+\CoxeterCoordinates[drawvertices=false,drawedges=false,drawcenters=false,drawcentersfaces=true,choice=75,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawvertices=false,drawedges=false,drawcenters=false,drawcentersfaces=true,choice=75]}
+\end{center}
+\begin{center}
+\begin{pspicture}(-4,-4)(4,4)
+\psset{unit=3cm}
+\CoxeterCoordinates[drawvertices=false,drawedges=false,drawcenters=false,drawcenterscells=true,choice=75,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawcenters=false,choice=75]}
+\end{center}\newpage
+%
+%
+\begin{center}
+{\Huge $2\{\frac52\}2\{5\}2\{3\}2$}\\
+\begin{pspicture}(-9,-9)(9,9)
+\psset{unit=3cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=76,linewidth=0.01mm] % par défaut choice=1 (332)
+\end{pspicture}
+$\backslash$\texttt{CoxeterCoordinates[choice=76]}
+\end{center}
+\begin{center}
+\begin{tabular}{ccc}
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.7cm}
+\CoxeterCoordinates[drawvertices=false,choice=76,linewidth=0.01mm] %
+\end{pspicture}
+&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.7cm}
+\CoxeterCoordinates[drawcenters=false,choice=76,linewidth=0.01mm] %
+\end{pspicture}
+&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.7cm}
+\CoxeterCoordinates[drawedges=false,choice=76,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawvertices=false,choice=76]} &
+\texttt{[drawcenters=false,choice=76]} &
+\texttt{[drawedges=false,choice=76]}
+\end{tabular}
+\end{center}
+\begin{center}
+\begin{pspicture}(-4,-4)(4,4)
+\psset{unit=2.5cm}
+\CoxeterCoordinates[drawvertices=false,drawedges=false,drawcenters=false,drawcentersfaces=true,choice=76,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawvertices=false,drawedges=false,drawcenters=false,drawcentersfaces=true,choice=76]}
+\end{center}
+\begin{center}
+\begin{pspicture}(-4,-4)(4,4)
+\psset{unit=3cm}
+\CoxeterCoordinates[drawvertices=false,drawedges=false,drawcenters=false,drawcenterscells=true,choice=76,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawcenters=false,choice=76]}
+\end{center}\newpage
+%
+\begin{center}
+{\Huge $2\{5\}2\{3\}2\{\frac52\}2$}\\
+\begin{pspicture}(-9,-9)(9,9)
+\psset{unit=3cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=77,linewidth=0.01mm] % par défaut choice=1 (332)
+\end{pspicture}
+$\backslash$\texttt{CoxeterCoordinates[choice=77]}
+\end{center}
+\begin{center}
+\begin{tabular}{ccc}
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.7cm}
+\CoxeterCoordinates[drawvertices=false,choice=77,linewidth=0.01mm] %
+\end{pspicture}
+&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.7cm}
+\CoxeterCoordinates[drawcenters=false,choice=77,linewidth=0.01mm] %
+\end{pspicture}
+&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.7cm}
+\CoxeterCoordinates[drawedges=false,choice=77,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawvertices=false,choice=77]} &
+\texttt{[drawcenters=false,choice=77]} &
+\texttt{[drawedges=false,choice=77]}
+\end{tabular}
+\end{center}
+\begin{center}
+\begin{pspicture}(-4,-4)(4,4)
+\psset{unit=2.5cm}
+\CoxeterCoordinates[drawvertices=false,drawedges=false,drawcenters=false,drawcentersfaces=true,choice=77,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawvertices=false,drawedges=false,drawcenters=false,drawcentersfaces=true,choice=77]}
+\end{center}
+\begin{center}
+\begin{pspicture}(-4,-4)(4,4)
+\psset{unit=3cm}
+\CoxeterCoordinates[drawvertices=false,drawedges=false,drawcenters=false,drawcenterscells=true,choice=77,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawcenters=false,choice=77]}
+\end{center}\newpage
+%
+\begin{center}
+{\Huge $2\{5\}2\{\frac52\}2\{3\}2$}\\
+\begin{pspicture}(-9,-9)(9,9)
+\psset{unit=5cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=78,linewidth=0.01mm] % par défaut choice=1 (332)
+\end{pspicture}
+$\backslash$\texttt{CoxeterCoordinates[choice=78]}
+\end{center}
+\begin{center}
+\begin{tabular}{ccc}
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.7cm}
+\CoxeterCoordinates[drawvertices=false,choice=78,linewidth=0.01mm] %
+\end{pspicture}
+&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.7cm}
+\CoxeterCoordinates[drawcenters=false,choice=78,linewidth=0.01mm] %
+\end{pspicture}
+&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.7cm}
+\CoxeterCoordinates[drawedges=false,choice=78,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawvertices=false,choice=78]} &
+\texttt{[drawcenters=false,choice=78]} &
+\texttt{[drawedges=false,choice=78]}
+\end{tabular}
+\end{center}
+\begin{center}
+\begin{pspicture}(-4,-4)(4,4)
+\psset{unit=2.5cm}
+\CoxeterCoordinates[drawvertices=false,drawedges=false,drawcenters=false,drawcentersfaces=true,choice=78,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawvertices=false,drawedges=false,drawcenters=false,drawcentersfaces=true,choice=78]}
+\end{center}
+\begin{center}
+\begin{pspicture}(-4,-4)(4,4)
+\psset{unit=3cm}
+\CoxeterCoordinates[drawvertices=false,drawedges=false,drawcenters=false,drawcenterscells=true,choice=78,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawcenters=false,choice=78]}
+\end{center}\newpage
+
+%
+\begin{center}
+{\Huge $2\{5\}2\{\frac52\}2\{5\}2$}\\
+\begin{pspicture}(-9,-9)(9,9)
+\psset{unit=5cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=79,linewidth=0.01mm] % par défaut choice=1 (332)
+\end{pspicture}
+$\backslash$\texttt{CoxeterCoordinates[choice=79}
+\end{center}
+\begin{center}
+\begin{tabular}{ccc}
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.7cm}
+\CoxeterCoordinates[drawvertices=false,choice=79,linewidth=0.01mm] %
+\end{pspicture}
+&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.7cm}
+\CoxeterCoordinates[drawcenters=false,choice=79,linewidth=0.01mm] %
+\end{pspicture}
+&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.7cm}
+\CoxeterCoordinates[drawedges=false,choice=79,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawvertices=false,choice=79]} &
+\texttt{[drawcenters=false,choice=79]} &
+\texttt{[drawedges=false,choice=79]}
+\end{tabular}
+\end{center}
+\begin{center}
+\begin{pspicture}(-4,-4)(4,4)
+\psset{unit=2.5cm}
+\CoxeterCoordinates[drawvertices=false,drawedges=false,drawcenters=false,drawcentersfaces=true,choice=79,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawvertices=false,drawedges=false,drawcenters=false,drawcentersfaces=true,choice=79]}
+\end{center}
+\begin{center}
+\begin{pspicture}(-4,-4)(4,4)
+\psset{unit=3cm}
+\CoxeterCoordinates[drawvertices=false,drawedges=false,drawcenters=false,drawcenterscells=true,choice=79,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawcenters=false,choice=79]}
+\end{center}\newpage
+%
+\begin{center}
+{\Huge $2\{\frac525\}2\{5\}2\{\frac52\}2$}\\
+\begin{pspicture}(-9,-9)(9,9)
+\psset{unit=2cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=80,linewidth=0.01mm] % par défaut choice=1 (332)
+\end{pspicture}
+$\backslash$\texttt{CoxeterCoordinates[choice=80]}
+\end{center}
+\begin{center}
+\begin{tabular}{ccc}
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.4cm}
+\CoxeterCoordinates[drawvertices=false,choice=80,linewidth=0.01mm] %
+\end{pspicture}
+&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.4cm}
+\CoxeterCoordinates[drawcenters=false,choice=80,linewidth=0.01mm] %
+\end{pspicture}
+&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.4cm}
+\CoxeterCoordinates[drawedges=false,choice=80,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawvertices=false,choice=80]} &
+\texttt{[drawcenters=false,choice=80]} &
+\texttt{[drawedges=false,choice=80]}
+\end{tabular}
+\end{center}
+\begin{center}
+\begin{pspicture}(-4,-4)(4,4)
+\psset{unit=1cm}
+\CoxeterCoordinates[drawvertices=false,drawedges=false,drawcenters=false,drawcentersfaces=true,choice=80,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawvertices=false,drawedges=false,drawcenters=false,drawcentersfaces=true,choice=80]}
+\end{center}
+\begin{center}
+\begin{pspicture}(-4,-4)(4,4)
+\psset{unit=1cm}
+\CoxeterCoordinates[drawvertices=false,drawedges=false,drawcenters=false,drawcenterscells=true,choice=80,linewidth=0.01mm] %
+\end{pspicture}\\
+\texttt{[drawcenters=false,choice=80]}
+\end{center}\newpage
+
+
+\section{Examples}
+\begin{center}
+\begin{pspicture}(-5,-5)(5,5)
+\psset{unit=2}%\rotatebox{90}{
+\CoxeterCoordinates[drawcenters=false,drawcentersfaces=true,
+choice=8,linewidth=0.3mm,linecolor=green,linecolor=blue,sizeCentersFaces=0.15,
+colorCentersFaces=red,styleCentersFaces=pentagon]
+%}
+% \psset{unit=1}
+\CoxeterCoordinates[drawvertices=false,choice=9,linewidth=0.01mm,
+styleCenters=+,sizeCenters=0.1,colorCenters=black]
+\end{pspicture}\\
+%Les centres des ar\^etes d'un polytope Hessien sont les sommets
+%d'un polytope $2\{4\}3\{3\}3$.
+The centers of the edges of an Hessian are the vertices of a
+$2\{4\}3\{3\}3$.
+\begin{verbatim}
+\psset{unit=2}%\rotatebox{90}{
+\CoxeterCoordinates[drawcenters=false,drawcentersfaces=true,
+choice=8,linewidth=0.3mm,linecolor=green,linecolor=blue,sizeCentersFaces=0.15,
+colorCentersFaces=red,styleCentersFaces=pentagon]
+%}
+ \psset{unit=1}
+\CoxeterCoordinates[drawvertices=false,choice=9,linewidth=0.01mm,
+styleCenters=+,sizeCenters=0.1,colorCenters=black]
+\end{verbatim}
+\end{center}
+\newpage
+\begin{center}
+\begin{pspicture}(-2,-7)(2,10)
+\psset{unit=2} \rotatebox{90}{
+\CoxeterCoordinates[drawcenters=false,choice=10,linewidth=0.3mm,linecolor=green,sizeVertices=0.2,
+colorVertices=magenta]} \psset{unit=1.725}
+\CoxeterCoordinates[drawvertices=false,choice=9,linewidth=0.01mm,
+styleCenters=+,sizeCenters=0.1,colorCenters=black]
+\end{pspicture}\\
+%Les centres des ar\^etes d'un polytope Hessien sont les sommets
+%d'un polytope $2\{4\}3\{3\}3$.
+The centers of the edges of an Hessian are a the vertices of a
+$3\{3\}3\{4\}2$.
+\begin{verbatim}
+\psset{unit=2} \rotatebox{90}{
+\CoxeterCoordinates[drawcenters=false,choice=10,linewidth=0.3mm,linecolor=green,sizeVertices=0.2,
+colorVertices=magenta]} \psset{unit=1.725}
+\CoxeterCoordinates[drawvertices=false,choice=9,linewidth=0.01mm,
+styleCenters=+,sizeCenters=0.1,colorCenters=black]\end{verbatim}
+\end{center}
+\newpage
+\begin{center}
+\begin{pspicture}(-2,-7)(2,10)
+\psset{unit=3}
+\CoxeterCoordinates[drawcenters=false,choice=8,linewidth=1mm,sizeVertices=0.1,colorVertices=magenta]
+\psset{unit=1}
+\CoxeterCoordinates[drawcenters=false,choice=9,linewidth=0.01mm,linecolor=blue,
+styleVertices=triangle,sizeVertices=0.07,colorVertices=blue]
+\rotatebox{180}
+{\CoxeterCoordinates[drawcenters=false,choice=9,linewidth=0.01mm,linecolor=green,
+styleVertices=triangle,sizeVertices=0.07,colorVertices=green]}\end{pspicture}\\
+%Les sommets d'un polytope $2\{4\}3\{3\}3$ sont les sommets de deux
+%polytopes Hessien r\'eciproques.
+The vertices of a polytope $2\{4\}3\{3\}3$ are the vertices of two
+reciprocal Hessien polytopes
+\begin{verbatim}
+\psset{unit=3}
+\CoxeterCoordinates[drawcenters=false,choice=8,linewidth=1mm,
+sizeVertices=0.1,colorVertices=magenta]
+\psset{unit=1}
+\CoxeterCoordinates[drawcenters=false,choice=9,linewidth=0.01mm,linecolor=blue,
+styleVertices=+,sizeVertices=0.1,colorVertices=blue] \rotatebox{180}
+{\CoxeterCoordinates[drawcenters=false,choice=9,linewidth=0.01mm,linecolor=green,
+styleVertices=+,sizeVertices=0.1,colorVertices=green]}
+\end{verbatim}
+\end{center}\newpage
+\begin{center}
+\begin{pspicture}(-2,-8)(2,8)
+\psset{unit=2} \rotatebox{180}
+{\CoxeterCoordinates[drawcenters=false,choice=9,
+linewidth=0.3mm,linecolor=green,styleVertices=triangle,sizeVertices=0.1,colorVertices=blue]}
+\psset{unit=2}
+\CoxeterCoordinates[drawvertices=false,drawcenters=false,drawcentersfaces=true
+,choice=9,linewidth=0.01mm]
+\end{pspicture}\\
+%Les centres des faces d'un polytope Hessien sont les sommets d'un
+%polytope Hessien (r\'eciproque du premier).
+The centers of the faces of an Hessian are the vertices of its
+reciprocal.
+\begin{verbatim}
+\psset{unit=2} \rotatebox{180}
+{\CoxeterCoordinates[drawcenters=false,choice=9,
+linewidth=0.3mm,linecolor=green,styleVertices=triangle,sizeVertices=0.1,colorVertices=blue]}
+\psset{unit=2}
+\CoxeterCoordinates[drawvertices=false,drawcenters=false,drawcentersfaces=true
+,choice=9,linewidth=0.01mm]
+\end{verbatim}
+\end{center}
+\newpage
+\begin{center}
+\begin{pspicture}(-2,-8)(2,8)
+\psset{unit=1.5} \rotatebox{180}
+{\CoxeterCoordinates[drawcenters=false,choice=8,
+linewidth=0.3mm,linecolor=green,styleVertices=triangle,sizeVertices=0.1,colorVertices=blue]}
+\psset{unit=2}
+\CoxeterCoordinates[drawvertices=false,drawcenters=false,drawcentersfaces=true
+,choice=10,linewidth=0.01mm]
+\end{pspicture}\\
+%Les centres des faces d'un polytope $2\{4\}3\{3\}3$ sont les
+%sommets d'un polytope $3\{3\}3\{4\}2$ (r\'eciproque du premier).
+The centers of the faces of a $2\{4\}3\{3\}3$ are the vertices of a
+$3\{3\}3\{4\}2$.
+\begin{verbatim}
+\psset{unit=1.5} \rotatebox{180}
+{\CoxeterCoordinates[drawcenters=false,choice=8,
+linewidth=0.3mm,linecolor=green,styleVertices=triangle,sizeVertices=0.1,colorVertices=blue]}
+\psset{unit=2}
+\CoxeterCoordinates[drawvertices=false,drawcenters=false,drawcentersfaces=true
+,choice=10,linewidth=0.01mm]
+\end{verbatim}
+\end{center}
+\newpage
+\begin{center}
+\begin{pspicture}(-2,-8)(2,8)
+ \psset{unit=2.5}
+\CoxeterCoordinates[drawvertices=false,drawcenters=false,choice=11,linewidth=0.01mm,
+linecolor=black] \psset{unit=0.575} \reflectbox
+{\CoxeterCoordinates[drawcenters=false,choice=11,
+linewidth=0.01mm,linecolor=yellow,styleVertices=triangle,sizeVertices=0.1,colorVertices=blue]}
+\psset{unit=1.73}
+\CoxeterCoordinates[drawedges=false,drawvertices=false,drawcenters=false,
+drawcenterscells=true ,choice=11]
+\end{pspicture}\\
+The centers of the cells of a Witting polytope are the vertices of
+its reciprocal.
+\begin{verbatim}
+ \psset{unit=2.5}
+\CoxeterCoordinates[drawvertices=false,drawcenters=false,choice=11,linewidth=0.01mm,
+linecolor=black] \psset{unit=0.575} \reflectbox
+{\CoxeterCoordinates[drawcenters=false,choice=11,
+linewidth=0.01mm,linecolor=yellow,styleVertices=triangle,sizeVertices=0.1,colorVertices=blue]}
+\psset{unit=1.73}
+\CoxeterCoordinates[drawedges=false,drawvertices=false,drawcenters=false,
+drawcenterscells=true ,choice=11]
+\end{verbatim}
+\end{center}
+\newpage
+\begin{center}
+\begin{pspicture}(-2,-8)(2,8)
+\psset{unit=3}
+\CoxeterCoordinates[drawedges=false,drawcenters=false,
+ choice=10,linewidth=0.1mm,colorVertices=blue,sizeVertices=0.1]
+\CoxeterCoordinates[drawvertices=false,drawcenters=false,choice=27]
+\end{pspicture}\\ One of the eight $3\{4\}2\{3\}2$ contained in a $3\{3\}3\{4\}2$.
+\begin{verbatim}
+\psset{unit=3}
+\CoxeterCoordinates[drawedges=false,drawcenters=false,
+ choice=10,linewidth=0.1mm,colorVertices=blue,sizeVertices=0.1]
+\CoxeterCoordinates[drawvertices=false,drawcenters=false,choice=27]
+\end{verbatim}
+\end{center}\newpage
+\begin{center}
+\begin{pspicture}(-2,-8)(2,8)
+\psset{unit=3}
+\CoxeterCoordinates[drawedges=false,drawcenters=false,
+ choice=10,linewidth=0.1mm,colorVertices=blue,sizeVertices=0.1]
+\rotatebox{10.5}{\psset{unit=1.75}\CoxeterCoordinates[drawvertices=false,drawcenters=false,choice=26]}
+\end{pspicture}\\ One of the $8$ $2\{3\}2\{4\}3$ contained in a $3\{3\}3\{4\}2$.
+\begin{verbatim}
+\psset{unit=3}
+\CoxeterCoordinates[drawedges=false,drawcenters=false,
+ choice=10,linewidth=0.1mm,colorVertices=blue,sizeVertices=0.1]
+\rotatebox{10.5} {\psset{unit=1.75}
+\CoxeterCoordinates[drawvertices=false,drawcenters=false,choice=26]}
+\end{verbatim}
+\end{center}
+\newpage
+\begin{center}
+\begin{pspicture}(-2,-8)(2,8)
+\psset{unit=3} \CoxeterCoordinates[drawcenters=false,
+ choice=32,linewidth=0.1mm,colorVertices=blue,sizeVertices=0.05,drawcenterscells=true,
+ sizeCentersCells=0.05,styleCentersCells=o]
+ \CoxeterCoordinates[drawcenters=false,
+ choice=33,linewidth=0.1mm,colorVertices=blue,sizeVertices=0.05,drawcenterscells=true]
+ \psset{unit=0.25}\CoxeterCoordinates[drawcenters=false,
+ choice=33,linecolor=blue,linewidth=0.6mm,colorVertices=blue,sizeVertices=0.1,drawcenterscells=true]
+\CoxeterCoordinates[drawcenters=false,
+ choice=32,linewidth=0.1mm,colorVertices=blue,sizeVertices=0.05,drawcenterscells=true,
+ sizeCentersCells=0.05,styleCentersCells=o]
+ \psset{unit=0.25}\CoxeterCoordinates[drawcenters=false,
+ choice=33,linecolor=blue,linewidth=0.6mm,colorVertices=blue,sizeVertices=0.1,drawcenterscells=true]
+\CoxeterCoordinates[drawcenters=false,
+ choice=32,linewidth=0.1mm,colorVertices=blue,sizeVertices=0.05,drawcenterscells=true,
+ sizeCentersCells=0.05,styleCentersCells=o]
+ \psset{unit=0.25}\CoxeterCoordinates[drawcenters=false,
+ choice=33,linecolor=blue,linewidth=0.6mm,colorVertices=blue,sizeVertices=0.1,drawcenterscells=true]
+\CoxeterCoordinates[drawcenters=false,
+ choice=32,linewidth=0.1mm,colorVertices=blue,sizeVertices=0.05,drawcenterscells=true,
+ sizeCentersCells=0.05,styleCentersCells=o]
+\end{pspicture}
+\end{center}
+A 16-tope in an hypercube in a 16-tope in an hypercube in ...
+\begin{verbatim}
+\psset{unit=3} \CoxeterCoordinates[drawcenters=false,
+ choice=32,linewidth=0.1mm,colorVertices=blue,sizeVertices=0.05,drawcenterscells=true,
+ sizeCentersCells=0.05,styleCentersCells=o]
+ \CoxeterCoordinates[drawcenters=false,
+ choice=33,linewidth=0.1mm,colorVertices=blue,sizeVertices=0.05,drawcenterscells=true]
+ \psset{unit=0.25}\CoxeterCoordinates[drawcenters=false,
+ choice=33,linecolor=blue,linewidth=0.6mm,colorVertices=blue,sizeVertices=0.1,drawcenterscells=true]
+\CoxeterCoordinates[drawcenters=false,
+ choice=32,linewidth=0.1mm,colorVertices=blue,sizeVertices=0.05,drawcenterscells=true,
+ sizeCentersCells=0.05,styleCentersCells=o]
+ \psset{unit=0.25}\CoxeterCoordinates[drawcenters=false,
+ choice=33,linecolor=blue,linewidth=0.6mm,colorVertices=blue,sizeVertices=0.1,drawcenterscells=true]
+\CoxeterCoordinates[drawcenters=false,
+ choice=32,linewidth=0.1mm,colorVertices=blue,sizeVertices=0.05,drawcenterscells=true,
+ sizeCentersCells=0.05,styleCentersCells=o]
+ \psset{unit=0.25}\CoxeterCoordinates[drawcenters=false,
+ choice=33,linecolor=blue,linewidth=0.6mm,colorVertices=blue,sizeVertices=0.1,drawcenterscells=true]
+\CoxeterCoordinates[drawcenters=false,
+ choice=32,linewidth=0.1mm,colorVertices=blue,sizeVertices=0.05,drawcenterscells=true,
+ sizeCentersCells=0.05,styleCentersCells=o]\end{verbatim}
+\newpage
+\newpage
+\begin{center}
+\begin{pspicture}(-2,-4)(2,4)
+\psset{unit=2}
+\CoxeterCoordinates[drawcenters=false,drawcentersfaces=false,drawvertices=false,
+ choice=30,linewidth=0.1mm,linecolor=blue]
+ \CoxeterCoordinates[drawcenters=false,
+ choice=31,linewidth=0.1mm,colorVertices=blue,sizeVertices=0.05,linecolor=magenta]
+ \CoxeterCoordinates[drawcenters=false,drawcentersfaces=true,drawvertices=false,
+ drawedges=false,choice=30]
+\end{pspicture}
+\begin{pspicture}(-2,-4)(2,4)
+\psset{unit=2} \CoxeterCoordinates[drawcenters=false,
+ choice=31,linewidth=0.1mm,drawvertices=false,linecolor=magenta]
+{\psset{unit=0.635}\CoxeterCoordinates[drawcenters=false,drawcentersfaces=false,
+ choice=30,linewidth=0.1mm,linecolor=blue,colorVertices=blue,sizeVertices=0.1]
+ }
+ \CoxeterCoordinates[drawcenters=false,drawedges=false,drawcentersfaces=true,
+ choice=31,linewidth=0.1mm,drawvertices=false]
+\end{pspicture}
+
+\end{center}
+A dodec\ae dron in an ikos\ae dron and an iko\ae dron in a dodec\ae
+dron.
+\begin{verbatim}
+\begin{pspicture}(-2,-4)(2,4)
+\psset{unit=2}
+\CoxeterCoordinates[drawcenters=false,drawcentersfaces=false,drawvertices=false,
+ choice=30,linewidth=0.1mm,linecolor=blue]
+ \CoxeterCoordinates[drawcenters=false,
+ choice=31,linewidth=0.1mm,colorVertices=blue,sizeVertices=0.05,linecolor=magenta]
+ \CoxeterCoordinates[drawcenters=false,drawcentersfaces=true,drawvertices=false,
+ drawedges=false,choice=30]
+\end{pspicture}
+\begin{pspicture}(-2,-4)(2,4)
+\psset{unit=2} \CoxeterCoordinates[drawcenters=false,
+ choice=31,linewidth=0.1mm,drawvertices=false,linecolor=magenta]
+{\psset{unit=0.635}\CoxeterCoordinates[drawcenters=false,drawcentersfaces=false,
+ choice=30,linewidth=0.1mm,linecolor=blue,colorVertices=blue,sizeVertices=0.1]
+ }
+ \CoxeterCoordinates[drawcenters=false,drawedges=false,drawcentersfaces=true,
+ choice=31,linewidth=0.1mm,drawvertices=false]
+\end{pspicture}
+\end{verbatim}
+\newpage
+%%%%
+\begin{center}
+\begin{pspicture}(-7,-7)(7,7)
+\psset{unit=5}
+\CoxeterCoordinates[drawcenters=false,drawcentersfaces=false,drawvertices=false,
+ choice=35,linewidth=0.1mm,linecolor=blue]
+ {\psset{unit=0.86}
+ \CoxeterCoordinates[drawcenters=false,
+ choice=36,linewidth=0.1mm,colorVertices=blue,sizeVertices=0.05,linecolor=red]
+ }
+ \CoxeterCoordinates[drawcenters=false,drawcenterscells=true,drawvertices=false,
+ drawedges=false,choice=35]
+\end{pspicture}
+\end{center}
+A $120$-tope in a $600$-tope.
+\begin{verbatim}
+\begin{pspicture}(-7,-7)(7,7)
+\psset{unit=5}
+\CoxeterCoordinates[drawcenters=false,drawcentersfaces=false,drawvertices=false,
+ choice=35,linewidth=0.1mm,linecolor=blue]
+ {\psset{unit=0.86}
+ \CoxeterCoordinates[drawcenters=false,
+ choice=36,linewidth=0.1mm,colorVertices=blue,sizeVertices=0.05,linecolor=red]
+ }
+ \CoxeterCoordinates[drawcenters=false,drawcenterscells=true,drawvertices=false,
+ drawedges=false,choice=35]
+\end{pspicture}
+\end{verbatim}
+\newpage
+%%%%
+\begin{center}
+\begin{pspicture}(-7,-7)(7,7)
+\psset{unit=5}
+\CoxeterCoordinates[drawcenters=false,drawcentersfaces=false,drawvertices=false,
+ choice=36,linewidth=0.1mm,linecolor=blue]
+ \CoxeterCoordinates[drawcenters=false,
+ choice=35,linewidth=0.1mm,colorVertices=blue,sizeVertices=0.05,linecolor=red]
+ \CoxeterCoordinates[drawcenters=false,drawcenterscells=true,drawvertices=false,
+ drawedges=false,choice=36]
+\end{pspicture}
+\end{center}
+A $600$-tope in a $120$-tope.
+\begin{verbatim}
+\begin{pspicture}(-7,-7)(7,7)
+\psset{unit=5}
+\CoxeterCoordinates[drawcenters=false,drawcentersfaces=false,drawvertices=false,
+ choice=36,linewidth=0.1mm,linecolor=blue]
+ \CoxeterCoordinates[drawcenters=false,
+ choice=35,linewidth=0.1mm,colorVertices=blue,sizeVertices=0.05,linecolor=red]
+ \CoxeterCoordinates[drawcenters=false,drawcenterscells=true,drawvertices=false,
+ drawedges=false,choice=36]
+\end{pspicture}
+\end{verbatim}
+\newpage
+%%%%
+%%%%
+\begin{center}
+\begin{pspicture}(-7,-7)(7,7)
+\psset{unit=0.5} \CoxeterCoordinates[drawcenters=false,
+ choice=71,linewidth=0.1mm,colorVertices=blue,sizeVertices=0.05,linecolor=magenta]
+ \rotatebox{4.5}{\psset{unit=6.9}\CoxeterCoordinates[drawcenters=false,
+choice=36,styleVertices=*,linewidth=0.1mm,linecolor=blue]}
+\end{pspicture}
+\end{center}
+A starry $120$-tope in a $120$-tope.
+\begin{verbatim}
+\psset{unit=0.5} \CoxeterCoordinates[drawcenters=false,
+ choice=71,linewidth=0.1mm,colorVertices=blue,sizeVertices=0.05,linecolor=magenta]
+ \rotatebox{4.5}{\psset{unit=6.9}\CoxeterCoordinates[drawcenters=false,
+choice=36,styleVertices=*,linewidth=
+\end{verbatim}
+%%%%
+%\begin{center}
+%\begin{pspicture}(-7,-7)(7,7)
+%{\psset{unit=5} \CoxeterCoordinates[drawcenters=false,
+% choice=72,linewidth=0.1mm,colorVertices=blue,sizeVertices=0.05,linecolor=magenta]}
+% \rotatebox{5}{\CoxeterCoordinates[unit=4.98,drawcenters=false,
+%choice=35,styleVertices=*,linewidth=0.1mm,linecolor=blue]}
+%\end{pspicture}
+%\end{center}
+%A starry $600$-tope in a $600$-tope.
+%\begin{verbatim}
+%\begin{pspicture}(-7,-7)(7,7)
+%\psset{unit=0.5} \CoxeterCoordinates[drawcenters=false,
+% choice=72,linewidth=0.1mm,colorVertices=blue,sizeVertices=0.05,linecolor=magenta]
+% \CoxeterCoordinates[unit=7,drawcenters=false,
+%choice=35,styleVertices=*,linewidth=0.1mm,linecolor=blue]
+%\end{pspicture}\end{verbatim}
+\end{document}
diff --git a/Master/texmf-dist/doc/generic/pst-cox/pst-coxcoor/pst-coxcoor_doc.pdf b/Master/texmf-dist/doc/generic/pst-cox/pst-coxcoor/pst-coxcoor_doc.pdf
new file mode 100644
index 00000000000..4b24fd50775
--- /dev/null
+++ b/Master/texmf-dist/doc/generic/pst-cox/pst-coxcoor/pst-coxcoor_doc.pdf
Binary files differ
diff --git a/Master/texmf-dist/doc/generic/pst-cox/pst-coxcoor/pst-coxcoor_doc.tex b/Master/texmf-dist/doc/generic/pst-cox/pst-coxcoor/pst-coxcoor_doc.tex
new file mode 100644
index 00000000000..f346c7e410a
--- /dev/null
+++ b/Master/texmf-dist/doc/generic/pst-cox/pst-coxcoor/pst-coxcoor_doc.tex
@@ -0,0 +1,1118 @@
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+% polygonesCoordinate\pst-coxcoor_doc.tex
+% 7 Authors: J.-G. Luque and M. Luque
+% 8 Purpose: Documentation for pst-coxcoor
+% 9 Created: 02/02/2008
+% 10 License: LGPL
+% 11 Project: PST-Cox V1.00
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+% polygonesCoordinate\Gallery.tex
+% Authors: J.-G. Luque and M. Luque
+% Purpose: Demonstration of the library pst-coxcoor
+% Created: 02/02/2008
+% License: LGPL
+% Project: PST-Cox V1.00
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+% Copyright © 2008 Jean-Gabriel Luque, Manuel Luque.
+% This work may be distributed and/or modified under the condition of
+% the Lesser GPL.
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+% This file is part of PST-Cox V1.00.
+%
+% PST-Cox V1.00 is free software: you can redistribute it and/or modify
+% it under the terms of the Lesser GNU General Public License as published by
+% the Free Software Foundation, either version 3 of the License, or
+% (at your option) any later version.
+%
+% PST-Cox V1.00 is distributed in the hope that it will be useful,
+% but WITHOUT ANY WARRANTY; without even the implied warranty of
+% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+% Lesser GNU General Public License for more details.
+%
+% You should have received a copy of the Lesser GNU General Public License
+% along with PST-Cox V1.00. If not, see <http://www.gnu.org/licenses/>.
+%
+
+\documentclass[a4paper]{article}
+\usepackage[latin1]{inputenc}%
+\usepackage[margin=2cm]{geometry}
+\usepackage{pst-coxcoor}
+\usepackage{multido}
+\usepackage{amssymb}
+\usepackage{amsfonts}
+\usepackage{amsmath}
+\usepackage{graphics}
+% d\'emonstration
+% JG Luque 12 août 2003
+\newtheorem{example}{Example}[section]
+\newcount\ChoicePolytope
+\def\C{{\mathbb C}}
+
+\title{The Library {\tt pst-coxcoor}}
+\author{Jean-Gabriel \textsc{Luque}\footnote{Universit\'e Paris-Est, Laboratoire d'informatique
+de l'Institut-Gaspard Monge, Jean-Gabriel.Luque@univ-mlv.fr} and
+Manuel
+ \textsc{Luque}\footnote{mluque5130@aol.com}}
+\begin{document}
+\maketitle
+ \begin{abstract}
+ We describe the {\tt LaTex} library {\tt pst-coxcoor} devoted to
+ draw regular complex polytopes.
+ \end{abstract}
+ \section{Introduction}
+ Inspired by the dissertation of G.C. Shephard \cite{Sh}, Coxeter
+ toke twenty years to write his most famous book {\em Regular Complex Polytopes} \cite{Cox}. But its
+ interest for the polytope dates from the beginning of his career as
+ shown his numerous publications on the subject (reader can refer to
+ \cite{Reg} or \cite{Kalei}). According to the preface of
+ \cite{Cox}, the term of complex polytopes is due to D.M.Y.
+ Sommerville \cite{Som}. A complex polytope may have more than two
+ vertices on an edge (and in particular the polygons may have more
+ than two edges at a vertice). It is a finite set of flags of subspaces in $\C^n$
+ with certain constraints
+ which will be not developed here \footnote{For a precise
+ definition, see \cite{Cox} Ch12}.
+ In fact, a complex polytope can be generated from one vertice by a finite number of pseudo-reflections.
+ More precisely, as for the classical solids, it
+ can be constructed from an arrangement of mirrors,
+ considering a point in the intersection of all but one the mirrors
+ and computing the orbit of this point by the pseudo-reflections generated by the mirrors. In the
+ case of the real polytopes, one uses classical reflections which are
+ involutions. It is not the case for general complex polytopes, since
+ a reflection may include a component which is a rotation.
+The classification of the complex polytopes is due to G.C. Shephard
+\cite{Sh} and is closely related to the classification of the
+complex unitary reflection groups \cite{ST}. Many of these groups
+are fundamental in geometry. For example, the polytope Hessian is a
+$3$-dimensional polytope whose symmetry group is generated by $3$
+pseudo-reflections $s_1$, $s_2$ and $s_3$ verifying
+$s_1^3=s_2^3=s_3^3=Id$, $s_1s_2s_1=s_2s_1s_2$, $s_2s_3s_2=s_3s_2s_3$
+and $s_1s_3=s_3s_1$ and which is related to the determination of the
+nine inflection points of a cubic curve and the 27 lines in a cubic
+plane.\\
+The library described here is a {\tt LaTex} package for drawing two
+dimensional projections of regular complex polytopes. The
+coordinates of the vertices, edges, faces... of the projections have
+been pre-calculated using a formal computer system.\\
+The polytopes considered are exceptional polytopes, for drawing
+infinite series use the package {\it pst-coxeterp}.\\
+ Note that this package have already been used by one of the author
+ to illustrate an article \cite{qutrit} in collaboration with E. Briand,
+ J.-Y. Thibon and F. Verstraete and in his ``{\it habilitation \`a
+ diriger les recherches}'' \cite{Luque}.
+\section{Install {\tt pst-coxcoor}}
+The package contains three files: A latex style file {\tt
+pst-coxcoor.sty} which call the latex file {\tt pst-coxcoor.tex}
+containing the description of the macro {\tt
+$\setminus$CoxeterCoordinates} and a data file {\tt pst-coxcoor.pro}
+which contains the list of the coordinates of each polytope.\\ The
+installation is very simple. It suffices to
+copy the files {\tt pst-coxcoor.sty}, {\tt pst-coxcoor.tex} and\\
+{\tt pst-coxcoor.pro} in the appropriate directories.
+\begin{example}\rm
+The file {\tt pst-coxcoor.sty} may be copy in the directory \\ {\tt
+c:/texmf/tex/latex/pst-coxcoor},\\
+ the file {\tt pst-coxcoor.tex} in\\
+{\tt c:/texmf/tex/generic/pst-coxcoor}\\ and the file {\tt
+pst-coxcoor.pro} in\\ {\tt c:/texmf/tex/dvips/pst-coxcoor}.
+\end{example}
+To use the package add the code
+\begin{verbatim}
+\usepackage{pst-coxcoor}}
+\end{verbatim}
+in the beginning of your LaTex-file.
+\begin{example}\rm
+\begin{verbatim}
+\documentclass[a4paper]{article}
+...
+\usepackage{pst-coxcoor}
+....
+\end{verbatim}
+\end{example}
+The library needs the packages {\tt PSTrick} and {\tt pst-xkey}.
+
+\section{Characteristics of the polytopes}
+ The polytope considered here are two, three or four
+ ($\C$)-dimensional objects which generalizes the classical platonic
+ solids. They are constituted of vertices, edges, faces and cells
+ (four dimensional faces). The package contains only one macro {\tt $\setminus$CoxeterCoordinates}
+ which draws the vertices,
+ the edges, the centers of the edges\footnote{In general, for a complex polytope, the edges are
+ polygonal.}, the centers of the faces and the centers of the cells.
+ All the coordinates of the polytopes have been pre-computed and
+ stored in the file {\tt pst-coxcoor.pro}.
+\subsection{List of the polytopes}
+The parameter {\tt ichoice} contains the number identifying the
+polytope.
+\begin{example}
+\rm Setting {\tt choice=9} makes the macro draw the (3 dimensional)
+Hessian polytope which has $27$ vertices, $72$ triangular edges and
+$27$ faces.
+\[
+\begin{pspicture}(-4,-4)(4,4)
+\psset{unit=1.5cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=9] %
+\end{pspicture}
+\]
+\begin{verbatim}
+\begin{pspicture}(-4,-4)(4,4)
+\psset{unit=1.5cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=9] %
+\end{pspicture}
+\end{verbatim}
+\end{example}
+There is $80$ pre-calculated polytopes in the file {\tt
+pst-coxcoor.pro}. Almost all the complex regular polytopes up to the
+dimension four have been computed. Only some starry polytopes in
+dimension $4$ are not in the list. The following tableau contains
+the list of the polytopes with their names in the notation of
+Coxeter \cite{Cox}.
+\[
+\begin{array}{|c|c|c|}
+\hline 2\{3\}3&3\{3\}3&3\{3\}3\\\hline
+ \begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=1] %
+\end{pspicture}&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=2] %
+\end{pspicture}
+ &\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.7cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=3] %
+\end{pspicture}\\\hline
+{\tt choice=1}&{\tt choice=2}&{\tt choice=3}\\\hline
+\end{array}\]
+ %%%%
+\[
+\begin{array}{|c|c|c|}\hline
+ 3\{4\}2&3\{4\}4&3\{4\}3\\\hline
+ \begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.8cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=4] %
+\end{pspicture}&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.6cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=5] %
+\end{pspicture}
+ &\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=6] %
+\end{pspicture}\\\hline
+{\tt choice=4}&{\tt choice=5}&{\tt choice=6}\\\hline
+ %%%%
+\end{array}\]
+ %%%%
+\[
+\begin{array}{|c|c|c|}\hline
+4\{3\}4&2\{4\}3\{3\}3&3\{3\}3\{3\}3\\\hline
+ \begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=7] %
+\end{pspicture}&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.8cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=8] %
+\end{pspicture}
+ &\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.7cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=9] %
+\end{pspicture}\\\hline
+{\tt choice=7}&{\tt choice=8}&{\tt choice=9}\\\hline
+\end{array}
+\]
+%%%
+\[
+\begin{array}{|c|c|c|}\hline
+3\{3\}3\{4\}2&3\{3\}3\{3\}3\{3\}3&3\{8\}2\\\hline
+ \begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.7cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=10] %
+\end{pspicture}&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.6cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=11,drawcenters=false] %
+\end{pspicture}
+ &\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.4cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=12] %
+\end{pspicture}\\\hline
+{\tt choice=10}&{\tt choice=11}&{\tt choice=12}\\\hline
+\end{array}
+\]
+%%%%
+%%%%
+\[
+\begin{array}{|c|c|c|}\hline
+2\{8\}3&3\{5\}3&4\{4\}3\\\hline
+ \begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.4cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=13] %
+\end{pspicture}&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.6cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=14] %
+\end{pspicture}
+ &\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.7cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=15] %
+\end{pspicture}\\\hline
+{\tt choice=13}&{\tt choice=14}&{\tt choice=15}\\\hline
+\end{array}
+\]
+%%%
+%%%
+\[
+\begin{array}{|c|c|c|}\hline
+4\{3\}2&2\{3\}4&2\{6\}4\\\hline
+ \begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=16] %
+\end{pspicture}&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.6cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=17] %
+\end{pspicture}
+ &\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.7cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=18] %
+\end{pspicture}\\\hline
+{\tt choice=16}&{\tt choice=17}&{\tt choice=18}\\\hline
+\end{array}
+\]
+%%%%%
+\[
+\begin{array}{|c|c|c|}\hline
+4\{6\}2&5\{3\}5&2\{10\}3\\\hline
+ \begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.7cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=19] %
+\end{pspicture}&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.6cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=20] %
+\end{pspicture}
+ &\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.7cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=21] %
+\end{pspicture}\\\hline
+{\tt choice=19}&{\tt choice=20}&{\tt choice=21}\\\hline
+\end{array}
+\]
+%%%%%
+\[
+\begin{array}{|c|c|c|}\hline
+3\{10\}2&2\{5\}3&3\{5\}2\\\hline
+ \begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=22] %
+\end{pspicture}&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.5cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=23] %
+\end{pspicture}
+ &\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.6cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=24] %
+\end{pspicture}\\\hline
+{\tt choice=22}&{\tt choice=23}&{\tt choice=24}\\\hline
+\end{array}
+\]
+%%%%
+\[
+\begin{array}{|c|c|c|}\hline
+2\{4\}3&2\{3\}2\{4\}3&3\{4\}2\{3\}2\\\hline
+ \begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=25] %
+\end{pspicture}&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.8cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=26] %
+\end{pspicture}
+ &\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.7cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=27] %
+\end{pspicture}\\\hline
+{\tt choice=25}&{\tt choice=26}&{\tt choice=27}\\\hline
+\end{array}
+\]
+%%%%
+\[
+\begin{array}{|c|c|c|}\hline
+3\{4\}2\{3\}2\{3\}2&2\{3\}2\{3\}2\{4\}3&2\{3\}2\{5\}2\\\hline
+ \begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.6cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=28] %
+\end{pspicture}&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1.3cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=29] %
+\end{pspicture}
+ &\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=30] %
+\end{pspicture}\\\hline
+{\tt choice=28}&{\tt choice=29}&{\tt choice=30}\\\hline
+\end{array}
+\]
+%%%%
+\[
+\begin{array}{|c|c|c|}\hline
+2\{5\}2\{3\}2&2\{3\}2\{3\}2\{4\}2&2\{4\}2\{3\}2\{3\}2\\\hline
+ \begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=31] %
+\end{pspicture}&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=32] %
+\end{pspicture}
+ &\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.7cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=33] %
+\end{pspicture}\\\hline
+{\tt choice=31}&{\tt choice=32}&{\tt choice=33}\\\hline
+\end{array}
+\]
+%%%%
+\[
+\begin{array}{|c|c|c|}\hline
+2\{3\}2\{4\}2\{3\}2&2\{3\}2\{3\}2\{5\}2&2\{5\}2\{3\}2\{3\}2\\\hline
+ \begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.7cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=34] %
+\end{pspicture}&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1.3cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=35,drawcenters=false] %
+\end{pspicture}
+ &\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1.3cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=36,drawcenters=false] %
+\end{pspicture}\\\hline
+{\tt choice=34}&{\tt choice=35}&{\tt choice=36}\\\hline
+\end{array}
+\]
+%%%%
+%%%%
+%%%%%
+\[
+\begin{array}{|c|c|c|}\hline
+3\{\frac52\}3&5\{\frac52\}5&2\{\frac52\}3\\\hline
+ \begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.5cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=37] %
+\end{pspicture}&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.7cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=38] %
+\end{pspicture}
+ &\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.8cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=39] %
+\end{pspicture}\\\hline
+{\tt choice=37}&{\tt choice=38}&{\tt choice=39}\\\hline
+\end{array}
+\]
+%%%%%
+\[
+\begin{array}{|c|c|c|}\hline
+3\{\frac52\}2&3\{\frac{10}3\}2&2\{\frac{103}\}3\\\hline
+ \begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=40] %
+\end{pspicture}&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1.4cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=41] %
+\end{pspicture}
+ &\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1.2cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=42] %
+\end{pspicture}\\\hline
+{\tt choice=40}&{\tt choice=41}&{\tt choice=42}\\\hline
+\end{array}
+\]
+%%%%%
+\[
+\begin{array}{|c|c|c|}\hline
+3\{\frac83\}2&2\{\frac83\}3&5\{6\}2\\\hline
+ \begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1.1 cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=43] %
+\end{pspicture}&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1.2cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=44] %
+\end{pspicture}
+ &\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1.7cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=45] %
+\end{pspicture}\\\hline
+{\tt choice=43}&{\tt choice=44}&{\tt choice=45}\\\hline
+\end{array}
+\]
+%%%%%
+\[
+\begin{array}{|c|c|c|}\hline
+2\{6\}5&4\{\frac83\}3&3\{\frac83\}4\\\hline
+ \begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.7cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=46] %
+\end{pspicture}&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1.2cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=47] %
+\end{pspicture}
+ &\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1.2cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=48] %
+\end{pspicture}\\\hline
+{\tt choice=46}&{\tt choice=47}&{\tt choice=48}\\\hline
+\end{array}
+\]
+%%%%%
+\[
+\begin{array}{|c|c|c|}\hline
+5\{5\}2&2\{5\}5&5\{\frac{10}3\}2\\\hline
+ \begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=49] %
+\end{pspicture}&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1.2cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=50] %
+\end{pspicture}
+ &\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.7cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=51] %
+\end{pspicture}\\\hline
+{\tt choice=49}&{\tt choice=50}&{\tt choice=51}\\\hline
+\end{array}
+\]
+%%%%%
+\[
+\begin{array}{|c|c|c|}\hline
+2\{\frac{10}3\}5&5\{3\}2&2\{3\}5\\\hline
+ \begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.6cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=52] %
+\end{pspicture}&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.5cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=53] %
+\end{pspicture}
+ &\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.7cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=54] %
+\end{pspicture}\\\hline
+{\tt choice=52}&{\tt choice=53}&{\tt choice=54}\\\hline
+\end{array}
+\]
+%%%
+%%%%%
+\[
+\begin{array}{|c|c|c|}\hline
+5\{4\}2&2\{4\}5&5\{\frac{10}3\}3\\\hline
+ \begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.8cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=55] %
+\end{pspicture}&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=56] %
+\end{pspicture}
+ &\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1.3cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=57] %
+\end{pspicture}\\\hline
+{\tt choice=55}&{\tt choice=56}&{\tt choice=57}\\\hline
+\end{array}
+\]
+%%%%
+%%%%%
+\[
+\begin{array}{|c|c|c|}\hline
+3\{\frac{10}3\}5&5\{4\}3&3\{4\}5\\\hline
+ \begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.6cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=58] %
+\end{pspicture}&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.6cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=59] %
+\end{pspicture}
+ &\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.25cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=60] %
+\end{pspicture}\\\hline
+{\tt choice=58}&{\tt choice=59}&{\tt choice=60}\\\hline
+\end{array}
+\]
+%%%%%
+\[
+\begin{array}{|c|c|c|}\hline
+5\{3\}3&3\{3\}5&5\{\frac52\}3\\\hline
+ \begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1.2cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=61] %
+\end{pspicture}&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.7cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=62] %
+\end{pspicture}
+ &\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.6cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=63] %
+\end{pspicture}\\\hline
+{\tt choice=61}&{\tt choice=62}&{\tt choice=63}\\\hline
+\end{array}
+\]
+%%%%%
+\[
+\begin{array}{|c|c|c|}\hline
+3\{\frac52\}5&2\{\frac52\}2\{3\}2&2\{3\}2\{\frac52\}2\\\hline
+ \begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.7cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=64] %
+\end{pspicture}&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=2cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=65] %
+\end{pspicture}
+ &\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=3cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=66] %
+\end{pspicture}\\\hline
+{\tt choice=64}&{\tt choice=65}&{\tt choice=66}\\\hline
+\end{array}
+\]
+%%%%%
+\[
+\begin{array}{|c|c|c|}\hline
+2\{\frac52\}2\{3\}2&2\{5\}2\{\frac52\}2&2\{6\}3\\\hline
+ \begin{pspicture}(-2,-2)(2,2)
+\psset{unit=2.5cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=67] %
+\end{pspicture}&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=5cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=68] %
+\end{pspicture}
+ &\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=2.5cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=69] %
+\end{pspicture}\\\hline
+{\tt choice=67}&{\tt choice=68}&{\tt choice=69}\\\hline
+\end{array}
+\]
+%%%%%
+\[
+\begin{array}{|c|c|c|}\hline
+3\{6\}2&2\{\frac52\}2\{3\}2\{3\}2&2\{3\}2\{3\}2\{\frac52\}2\\\hline
+ \begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1.5cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=70] %
+\end{pspicture}&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.17cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=71] %
+\end{pspicture}&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1.4cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=72] %
+\end{pspicture}\\
+ \hline
+{\tt choice=70}&{\tt choice=71}&{\tt choice=72}\\\hline
+\end{array}
+\]
+\[
+\begin{array}{|c|c|c|}\hline
+2\{3\}2\{\frac52\}2\{5\}2&2\{3\}2\{5\}2\{\frac52\}2&2\{\frac52\}2\{3\}2\{5\}2\\\hline
+ \begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.4cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=73] %
+\end{pspicture}&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1.3cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=74] %
+\end{pspicture}&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.7cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=75] %
+\end{pspicture}\\
+ \hline
+{\tt choice=73}&{\tt choice=74}&{\tt choice=75}\\\hline
+\end{array}
+\]
+%
+\[
+\begin{array}{|c|c|c|}\hline
+2\{\frac52\}2\{5\}2\{3\}2&2\{5\}2\{3\}2\{\frac52\}2&2\{5\}2\{\frac52\}2\{3\}2\\\hline
+ \begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=76] %
+\end{pspicture}&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1.3cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=77] %
+\end{pspicture}&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1.3cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=78] %
+\end{pspicture}\\
+ \hline
+{\tt choice=76}&{\tt choice=77}&{\tt choice=78}\\\hline
+\end{array}
+\]
+\[
+\begin{array}{|c|c|c|}\hline
+2\{5\}2\{\frac52\}2\{5\}2&2\{\frac525\}2\{5\}2\{\frac52\}2\\\hline
+ \begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=79] %
+\end{pspicture}&
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.4cm,linewidth=0.01mm}
+\CoxeterCoordinates[choice=80] %
+\end{pspicture}\\
+ \hline
+{\tt choice=79}&{\tt choice=80}\\\hline
+\end{array}
+\]
+
+
+
+\subsection{The components of a polytope}
+ The library {\tt pst-coxcoor.sty} contains a macro for
+drawing the vertices, the edges, the centers of the edges, the
+centers of the faces and the centers of the cells of many
+pre-calculated regular complex polytopes.
+
+It is possible to choice which components of the polytope will be
+drawn. It suffices to use the boolean parameters {\tt drawedges},
+{\tt drawvertices}, {\tt drawcenters}, {\tt drawcentersface}, and
+{\tt drawcenterscells}.
+
+ By default the values of the parameters {\tt
+drawedges}, {\tt drawvertices}, {\tt drawcenters} are set to {\tt
+true} and the values of {\tt drawcentersface} and {\tt
+drawcenterscells} are set to {\tt false}.
+\begin{example}
+\rm By default, the vertices, the edges and the centers of the edges
+are drawn but not the centers of the faces and the cells.
+\[
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.7cm}
+\CoxeterCoordinates[choice=28] %
+\end{pspicture}
+\]
+\begin{verbatim}
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1cm}
+ \CoxeterCoordinates[choice=28]
+\end{pspicture}
+\end{verbatim}
+The macro does not draw the edges
+\[
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.7cm}
+\CoxeterCoordinates[choice=28,drawedges=false] %
+\end{pspicture}
+\]
+\begin{verbatim}
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1cm}
+ \CoxeterCoordinates[choice=28,drawedges=false]
+\end{pspicture}
+\end{verbatim}
+or the vertices
+\[
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.7cm}
+\CoxeterCoordinates[choice=28,drawvertices=false] %
+\end{pspicture}
+\]
+\begin{verbatim}
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1cm}
+ \CoxeterCoordinates[choice=28,drawvertices=false]
+\end{pspicture}
+\end{verbatim}
+or the centers of the edges.
+\[
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.7cm}
+\CoxeterCoordinates[choice=28,drawcenters=false] %
+\end{pspicture}
+\]
+\begin{verbatim}
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1cm}
+ \CoxeterCoordinates[choice=28,drawcenters=false]
+\end{pspicture}
+\end{verbatim}
+Furthermore, one can draw the centers of the faces (when the
+dimension of the polytope is at least 3)
+\[
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.7cm}
+\CoxeterCoordinates[choice=28,drawvertices=false,drawcenters=false,drawcentersfaces=true] %
+\end{pspicture}
+\]
+\begin{verbatim}
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1cm}
+ \CoxeterCoordinates[choice=28,drawvertices=false,drawcenters=false,drawcentersfaces=true]
+\end{pspicture}
+\end{verbatim}
+and the centers of the cells (when the dimension of the polytope is
+at least 4).
+\[
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.7cm}
+\CoxeterCoordinates[choice=28,drawvertices=false,drawcenters=false,drawcenterscells=true] %
+\end{pspicture}
+\]
+\begin{verbatim}
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=1cm}
+ \CoxeterCoordinates[choice=28,drawvertices=false,drawcenters=false,drawcenterscells=true]
+\end{pspicture}
+\end{verbatim}
+\end{example}
+
+\section{Graphical parameters}
+It is possible to change the graphical characteristics of a
+polytope.\\
+The size of the polytope depends on the parameter {\tt unit}.
+\begin{example}
+\rm
+ \[
+ \begin{pspicture}(-1,-1)(1,1)
+\CoxeterCoordinates[choice=4,unit=0.3cm] %
+\end{pspicture}
+ \begin{pspicture}(-2,-2)(2,2)
+\CoxeterCoordinates[choice=4,unit=0.8cm] %
+\end{pspicture}
+ \begin{pspicture}(-4,-4)(4,4)
+\CoxeterCoordinates[choice=4,unit=2cm] %
+\end{pspicture}
+\]
+\begin{verbatim}
+\begin{pspicture}(-1,-1)(1,1)
+\CoxeterCoordinates[choice=4,unit=0.3cm] %
+\end{pspicture}
+ \begin{pspicture}(-2,-2)(2,2)
+\CoxeterCoordinates[choice=4,unit=0.8cm] %
+\end{pspicture}
+ \begin{pspicture}(-4,-4)(4,4)
+\CoxeterCoordinates[choice=4,unit=2cm] %
+\end{pspicture}
+\end{verbatim}
+\end{example}
+Classically, one can modify the color and the width of the edges
+using the parameter {\tt linecolor} and {\it linewidth}.
+\begin{example}
+\rm
+ \[
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.8,linewidth=0.01,linecolor=red}
+\CoxeterCoordinates[choice=4] %
+\end{pspicture}
+ \begin{pspicture}(-2,-2)(2,2)
+\CoxeterCoordinates[choice=4,linewidth=0.1] %
+\end{pspicture}
+\]
+\begin{verbatim}
+\begin{pspicture}(-2,-2)(2,2)
+\psset{unit=0.8,linewidth=0.01,linecolor=red}
+\CoxeterCoordinates[choice=4] %
+\end{pspicture}
+ \begin{pspicture}(-2,-2)(2,2)
+\CoxeterCoordinates[choice=4,linewidth=0.1] %
+\end{pspicture}
+\end{verbatim}
+\end{example}
+The color, the style and the size of the vertices can be modify
+using the parameters {\tt colorVertices}, {\tt styleVertices} and
+{\tt sizeVertices}. The style of the vertices can be chosen in the
+classical dot styles.
+\begin{example}
+\rm
+ \[
+\begin{pspicture}(-2,-2)(2,2)
+\CoxeterCoordinates[choice=4,colorVertices=blue,styleVertices=pentagon,sizeVertices=0.2] %
+\end{pspicture}
+ \begin{pspicture}(-2,-2)(2,2)
+\CoxeterCoordinates[choice=4,colorVertices=magenta,sizeVertices=0.1,styleVertices=triangle] %
+\end{pspicture}
+ \begin{pspicture}(-2,-2)(2,2)
+\CoxeterCoordinates[choice=4,colorVertices=red,styleVertices=+,sizeVertices=0.2] %
+\end{pspicture}
+\]
+\begin{verbatim}
+\begin{pspicture}(-2,-2)(2,2)
+\CoxeterCoordinates[choice=4,colorVertices=blue,styleVertices=pentagon,sizeVertices=0.2] %
+\end{pspicture}
+ \begin{pspicture}(-2,-2)(2,2)
+\CoxeterCoordinates[choice=4,colorVertices=magenta,sizeVertices=0.1,styleVertices=triangle] %
+\end{pspicture}
+ \begin{pspicture}(-2,-2)(2,2)
+\CoxeterCoordinates[choice=4,colorVertices=red,styleVertices=+,sizeVertices=0.2] %
+\end{pspicture}
+\end{verbatim}
+\end{example}
+The color, the style and the size of the centers of the edges can be
+modify using the parameters {\tt colorCenters}, {\tt styleCenters}
+and {\tt sizeCenters}.
+\begin{example}
+\rm
+ \[
+\begin{pspicture}(-2,-2)(2,2)
+\CoxeterCoordinates[choice=4,colorCenters=blue,styleCenters=pentagon,sizeCenters=0.2] %
+\end{pspicture}
+ \begin{pspicture}(-2,-2)(2,2)
+\CoxeterCoordinates[choice=4,colorCenters=magenta,sizeCenters=0.1,styleCenters=triangle] %
+\end{pspicture}
+ \begin{pspicture}(-2,-2)(2,2)
+\CoxeterCoordinates[choice=4,colorCenters=red,styleCenters=+,sizeCenters=0.2] %
+\end{pspicture}
+\]
+\begin{verbatim}
+\begin{pspicture}(-2,-2)(2,2)
+\CoxeterCoordinates[choice=4,colorCenters=blue,styleCenters=pentagon,sizeCenters=0.2] %
+\end{pspicture}
+ \begin{pspicture}(-2,-2)(2,2)
+\CoxeterCoordinates[choice=4,colorCenters=magenta,sizeCenters=0.1,styleCenters=triangle] %
+\end{pspicture}
+ \begin{pspicture}(-2,-2)(2,2)
+\CoxeterCoordinates[choice=4,colorCenters=red,styleCenters=+,sizeCenters=0.2] %
+\end{pspicture}
+\end{verbatim}
+\end{example}
+
+The color, the style and the size of the centers of the faces can be
+modify using the parameters {\tt colorCentersFaces}, {\tt
+styleCentersFaces} and {\tt sizeCentersFaces}.
+\begin{example}
+\rm
+ \[\psset{unit=0.8cm,drawcentersfaces=true}
+\begin{pspicture}(-3,-3)(3,3)
+\CoxeterCoordinates[choice=33,styleCentersFaces=pentagon,sizeCentersFaces=0.2] %
+\end{pspicture}
+ \begin{pspicture}(-3,-3)(3,3)
+\CoxeterCoordinates[choice=33,colorCentersFaces=magenta,sizeCentersFaces=0.1] %
+\end{pspicture}
+ \begin{pspicture}(-3,-3)(3,3)
+\CoxeterCoordinates[choice=33,colorCentersFaces=red,styleCentersFaces=+] %
+\end{pspicture}
+\]
+\begin{verbatim}
+\psset{unit=0.8cm,drawcentersfaces=true}
+\begin{pspicture}(-3,-3)(3,3)
+\CoxeterCoordinates[choice=33,styleCentersFaces=pentagon,sizeCentersFaces=0.2] %
+\end{pspicture}
+ \begin{pspicture}(-3,-3)(3,3)
+\CoxeterCoordinates[choice=33,colorCentersFaces=magenta,sizeCentersFaces=0.1] %
+\end{pspicture}
+ \begin{pspicture}(-3,-3)(3,3)
+\CoxeterCoordinates[choice=33,colorCentersFaces=red,styleCentersFaces=+] %
+\end{pspicture}\end{verbatim}
+\end{example}
+
+The color, the style and the size of the centers of the cells can be
+modify using the parameters {\tt colorCentersCells}, {\tt
+styleCentersCells} and {\tt sizeCentersCells}.
+\begin{example}
+\rm
+ \[\psset{unit=0.8cm,drawcenterscells=true,drawcentersfaces=false}
+\begin{pspicture}(-3,-3)(3,3)
+\CoxeterCoordinates[choice=33,styleCentersCells=pentagon,sizeCentersCells=0.2] %
+\end{pspicture}
+ \begin{pspicture}(-3,-3)(3,3)
+\CoxeterCoordinates[choice=33,colorCentersCells=magenta,sizeCentersCells=0.1] %
+\end{pspicture}
+ \begin{pspicture}(-3,-3)(3,3)
+\CoxeterCoordinates[choice=33,colorCentersCells=red,styleCentersCells=+] %
+\end{pspicture}
+\]
+\begin{verbatim}
+\psset{unit=0.8cm,drawcenterscells=true,drawcentersfaces=false}
+\begin{pspicture}(-3,-3)(3,3)
+\CoxeterCoordinates[choice=33,styleCentersCells=pentagon,sizeCentersCells=0.2] %
+\end{pspicture}
+ \begin{pspicture}(-3,-3)(3,3)
+\CoxeterCoordinates[choice=33,colorCentersCells=magenta,sizeCentersCells=0.1] %
+\end{pspicture}
+ \begin{pspicture}(-3,-3)(3,3)
+\CoxeterCoordinates[choice=33,colorCentersCells=red,styleCentersCells=+] %
+\end{pspicture}\end{verbatim}
+\end{example}
+\section{How to modify or add a polytope to the Library}
+The polytopes described in this library are the regular complex
+polytopes as considered by Coxeter \cite{Cox}. But, in fact, the
+same library can be used to draw any kind of polytopes (not
+necessarily regular) if the user add the datas corresponding to the
+vertices, the edges, the faces and the cells of the polytopes.
+
+To add a polytope, one has to modify the file {\tt
+pst-coxeterp.pro}. This file contains the list of the polytopes
+which can be drawn with the macro {\tt CoxeterCoordinates}.
+ For each polytope, the datas are organized as follows
+ \begin{verbatim}
+ /cox+name+datas{% The name of the Polytope
+ /ListePoints [
+ % List of the edges
+ ] def
+ /ListeFaces [
+ % List of the centers of the faces
+ ] def
+ /ListeCells [
+ % List of the centers of the cells
+ ] def
+ /NbrFaces nf def % nb of faces
+ /NbrCells nc def % nb of cells
+ /NbrEdges ne def % nb of edges
+ /NbrVerticesInAnEdge nv def % nb of vertices per edge
+ } def
+ \end{verbatim}
+ The list {\tt /ListePoints} contains the description of the edges
+ of the polytope. The variable {\tt /NbrEdges} contains the number
+ of edges and the variables {\tt /NbrVerticesInAnEdges} contains the
+ number of vertices by edges. An edge is defined by its {\tt
+ /NbrVerticesInAnEdges} vertices. The list {\tt /ListePoints} of the
+ edges is the list of all edges described by the sequence of their
+ vertices.
+ \begin{example}\rm
+ Let us explain the structure on the example of the complex polytope
+ $3\{4\}2$.
+\begin{verbatim}
+/cox342datas{%
+ /ListePoints [
+ [-1.054405725 .6087614291]
+ [-1.717232873 -.9914448614]
+ [0 -.7653668647]
+ [1.054405725 .6087614291]
+ [1.717232873 -.9914448614]
+ [0 -.7653668647]
+ [-.6628271482 .3826834323]
+ [0 -1.217522858]
+ [-1.717232873 -.9914448614]
+ [0 1.982889723]
+ [.6628271482 .3826834323]
+ [-1.054405725 .6087614291]
+ [.6628271482 .3826834323]
+ [0 -1.217522858]
+ [1.717232873 -.9914448614]
+ [0 1.982889723]
+ [-.6628271482 .3826834323]
+ [1.054405725 .6087614291]
+ ] def
+ /ListeFaces [
+ [0 0]
+ ] def
+ /NbrFaces 1 def
+ /ListeCells [
+ [0 0]
+ ] def
+ /NbrCells 1 def
+ /NbrEdges 6 def
+ /NbrVerticesInAnEdge 3 def
+ } def
+\end{verbatim}
+ This is a complex polygon and the number $3$ indicates
+ that each edges is triangular and contains $3$ vertices. Hence, the
+ list {\tt /ListePoints} is a sequence of triplet of points.
+ For example, the first edge is constituted by the three vertices {\tt [-1.054405725 .6087614291] [-1.717232873 -.9914448614]
+ [0 -.7653668647]}.
+Here, since there is $6$ edges of $3$ vertices, the list {\tt
+/ListePoints} contains $18$ points with two coordinates.\\ Note
+that, since $3\{4\}2$ is a polygon, it has neither faces nor cells.
+In such a case, the variables {\tt ListeFaces} and {\tt ListeCells}
+must contain only one point {\tt [0 0]} and the variables {\tt
+/NbrFaces} and {\tt /NbrCells} contain $1$.
+ \end{example}
+When the polytope has more than two dimensions, it has faces. The
+number of faces is given by the variable {\tt /NbrFaces} and the
+variable {\tt /ListeFaces} contains the list of the centers of the
+faces.\\
+If the polytope has four dimensions, it has cells. The number of
+cells is given by the variable {\tt /NbrCells} and the variable {\tt
+/ListeCells} contains the list of the centers of the cells.\\ \\
+To add a polytope, add the datas in the files {\tt pst-coxeter.pro}
+and modify the file {\tt pst-coxeter.tex} as follows. Change the
+numbers of the polytopes at the line 26 of the file
+ \begin{verbatim}
+ %%% Parameter choice. Allows to choice the polytope. To each integer
+ %%% 0<i<81 corresponds a polytope.
+ \define@key[psset]{pst-coxeter}{choice}{%
+ \pst@cntg=#1\relax \ifnum\pst@cntg>80 \typeout{choice < or = 80 and
+ not `\the\pst@cntg'. Value 1 forced.} \pst@cntg=1
+ \fi
+ \edef\psk@pstCoxeter@choice{#1}}
+ \end{verbatim}
+Here, the number of polytope is $80$, if your add other datas you
+must increase this number.
+ \begin{verbatim}
+ %%% Parameter choice. Allows to choice the polytope. To each integer
+ %%% 0<i<82 corresponds a polytope.
+ \define@key[psset]{pst-coxeter}{choice}{%
+ \pst@cntg=#1\relax \ifnum\pst@cntg>81 \typeout{choice < or = 81 and
+ not `\the\pst@cntg'. Value 1 forced.} \pst@cntg=1
+ \fi
+ \edef\psk@pstCoxeter@choice{#1}}
+ \end{verbatim}
+ Hence, you must add the polytope to the list of polytopes (line 169
+- 251 of the file {\tt pst-coxcoor.tex}.
+\begin{verbatim}
+ /choice \the\pst@cntg\space def
+ choice 1 eq {cox233datas} if
+ ...
+ choice 78 eq {cox362datas} if
+ choice 79 eq {cox25223232datas} if
+ choice 80 eq {cox23232522datas} if
+%%% <-- add new polytope here
+ \end{verbatim}
+ For example, add the line
+ \begin{verbatim}
+ choice 81 eq {coxNEWdatas} if
+ \end{verbatim}
+ \begin{thebibliography}{ABC}
+\bibitem{qutrit} E. Briand, J.-G. Luque, J.-Y. Thibon and F. Verstrate, {\it the
+moduli space of the three qutrit states},Journal of Mathematical
+Physics, vol. 45, num. 12, pp. 4855--4867, 2004.
+%
+\bibitem{Reg} H. S. M. Coxeter, {\em Regular polytopes}, Third
+Edition, Dover Publication Inc., New-York, 1973.
+%
+\bibitem{Cox}
+H. S. M. Coxeter, {\em Regular Complex Polytopes}, Second Edition,
+Cambridge University Press, 1991 .
+%
+\bibitem{Kalei}
+ H.S.M. Coxeter, {\em Kaleidoscopes, selected writing of H.S.M.
+ Coxeter by F.A. Sherk, P. McMullen, A.C. Thompson, A. Ivi\'c Weiss}, Canadian Mathematical Society Series of Monographs and
+ Advanced texts, Published in conjunction with the fiftieth anniversary of
+ the canadian mathematical society, J. M. Borwein and P. B. Borwein
+ Ed., A Wiley-Interscience publication, 1995.
+%
+\bibitem{Luque} J.-G. Luque, {\em Invariants des hypermatrices},
+habilitation \`a diriger les recherches, Université Paris-Est,
+Décembre 2007.
+%
+\bibitem{Sh} G.C. Shephard, {\em Regular Complex Polytopes},
+Proceeding of the London Mathermatical Society (3), 2 82-97.
+%
+\bibitem{ST} G.C. Shephard and J.A. Todd, {\it Finite unitary
+reflection groups}, Canadian Journal of Mathematics 6, 274-304,
+1954.
+%
+\bibitem{Som} M.Y. Sommerville, {\it Geometry of $n$ dimension},
+Methuen, Lodon, 1929.
+\end{thebibliography}
+
+ \end{document}