summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc/generic/pst-contourplot/examples
diff options
context:
space:
mode:
authorKarl Berry <karl@freefriends.org>2018-07-19 22:55:42 +0000
committerKarl Berry <karl@freefriends.org>2018-07-19 22:55:42 +0000
commit8a7ec1021a1ed4ece8c842a258680c18becc74e8 (patch)
tree6f3bba45ae9483fb4721bfbb86bc029e16a3743b /Master/texmf-dist/doc/generic/pst-contourplot/examples
parent650a28baf6493c8072fcb2773ec4c814ce407982 (diff)
pst-contourplot (18jul18)
git-svn-id: svn://tug.org/texlive/trunk@48230 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Master/texmf-dist/doc/generic/pst-contourplot/examples')
-rw-r--r--Master/texmf-dist/doc/generic/pst-contourplot/examples/Les-Ovales-de-Descartes.pdfbin0 -> 75500 bytes
-rw-r--r--Master/texmf-dist/doc/generic/pst-contourplot/examples/Les-Ovales-de-Descartes.tex200
-rw-r--r--Master/texmf-dist/doc/generic/pst-contourplot/examples/README13
-rw-r--r--Master/texmf-dist/doc/generic/pst-contourplot/examples/bourke.pdfbin0 -> 45605 bytes
-rw-r--r--Master/texmf-dist/doc/generic/pst-contourplot/examples/bourke.tex14
-rw-r--r--Master/texmf-dist/doc/generic/pst-contourplot/examples/courbe-du-diable.pdfbin0 -> 59486 bytes
-rw-r--r--Master/texmf-dist/doc/generic/pst-contourplot/examples/courbe-du-diable.tex15
-rw-r--r--Master/texmf-dist/doc/generic/pst-contourplot/examples/courbes-diverses.tex90
-rw-r--r--Master/texmf-dist/doc/generic/pst-contourplot/examples/exemples-2.tex49
-rw-r--r--Master/texmf-dist/doc/generic/pst-contourplot/examples/exemples-3.tex35
-rw-r--r--Master/texmf-dist/doc/generic/pst-contourplot/examples/exemples-4.tex42
-rw-r--r--Master/texmf-dist/doc/generic/pst-contourplot/examples/four-dipoles-lignes.tex30
-rw-r--r--Master/texmf-dist/doc/generic/pst-contourplot/examples/four-dipoles-t.tex31
-rw-r--r--Master/texmf-dist/doc/generic/pst-contourplot/examples/four-dipoles.tex31
-rw-r--r--Master/texmf-dist/doc/generic/pst-contourplot/examples/four-leminscates.pdfbin0 -> 149361 bytes
-rw-r--r--Master/texmf-dist/doc/generic/pst-contourplot/examples/four-leminscates.tex92
-rw-r--r--Master/texmf-dist/doc/generic/pst-contourplot/examples/hertz.tex59
-rw-r--r--Master/texmf-dist/doc/generic/pst-contourplot/examples/pavage.tex10
-rw-r--r--Master/texmf-dist/doc/generic/pst-contourplot/examples/trefoil.tex19
-rw-r--r--Master/texmf-dist/doc/generic/pst-contourplot/examples/two-metaballs.tex17
20 files changed, 747 insertions, 0 deletions
diff --git a/Master/texmf-dist/doc/generic/pst-contourplot/examples/Les-Ovales-de-Descartes.pdf b/Master/texmf-dist/doc/generic/pst-contourplot/examples/Les-Ovales-de-Descartes.pdf
new file mode 100644
index 00000000000..5242567b5a3
--- /dev/null
+++ b/Master/texmf-dist/doc/generic/pst-contourplot/examples/Les-Ovales-de-Descartes.pdf
Binary files differ
diff --git a/Master/texmf-dist/doc/generic/pst-contourplot/examples/Les-Ovales-de-Descartes.tex b/Master/texmf-dist/doc/generic/pst-contourplot/examples/Les-Ovales-de-Descartes.tex
new file mode 100644
index 00000000000..073fd1c2410
--- /dev/null
+++ b/Master/texmf-dist/doc/generic/pst-contourplot/examples/Les-Ovales-de-Descartes.tex
@@ -0,0 +1,200 @@
+\documentclass{article}
+\usepackage[a4paper,margin=2cm]{geometry}
+\usepackage[latin1]{inputenc}
+\usepackage[T1]{fontenc}
+\usepackage[garamond]{mathdesign}
+\usepackage{pst-contourplot,pst-plot}
+\usepackage{amsmath}
+\usepackage[colorlinks=true]{hyperref}
+\usepackage{framed}
+\definecolor{Beige} {rgb}{0.93,0.93,0.85}
+\renewcommand{\FrameCommand}{\fcolorbox{Beige}{Beige}}
+
+\title{Ovales de Descartes}
+\date{14 juin - 11 juillet 2018}
+\author{manuel.luque27@gmail.com}
+\begin{document}
+\maketitle
+Henri Bouasse (1866-1953) est l'auteur d'une série d'ouvrages publiés sous l'intitulé ``Bibliothèque scientifique de l'ingénieur et du physicien'' à la librairie Delagrave à Paris entre les années 1900 et 1934. Chaque livre, et parfois deux sont nécessaires, traite d'un sujet particulier comme ``Gyroscopes et projectiles''(1923), ``Phénomènes liés à la symétrie''(1931), ``Vision et reproduction des formes et des couleurs''(1917). Cet ensemble d'ouvrages constitue l'encyclopédie la plus complète de la physique classique qui ait jamais été publiée. Chaque livre s'ouvre sur une préface d'Henri Bouasse dans laquelle celui-ci exprime ses idées sur l'enseignement des sciences. Ses propos y sont d'une telle franchise qu'on peut dire qu'Henri Bouasse n'était pas un adepte de la langue de bois ! J'avais mis en ligne quelques extraits sur le site :
+
+\centerline{\url{http://melusine.eu.org/syracuse/mluque/bouasse/}}
+
+où vous pourrez lire l'opinion d'Henri Bouasse sur le téléphone dans le document :
+
+\centerline{\url{http://melusine.eu.org/syracuse/mluque/bouasse/disqueBouasse.pdf}}
+
+Si on regroupait toutes ces préfaces, on obtiendrait un volume d'un intérêt certain par la qualité de son écriture, la pertinence de ses remarques qui paraissent toujours très actuelles, son humour et l'acidité de ses observations.
+
+Wikipedia donne la liste des ouvrages et le thème des préfaces :
+
+\centerline{\url{https://fr.wikipedia.org/wiki/Henri_Bouasse}}
+
+Deux ouvrages sont consacrés aux mathématiques :
+``Cours de Mathématiques générales''(1911) et, écrit avec Émile Turrière, ``Exercices et compléments de mathématiques générales''(1920). C'est de ce dernier ouvrage que j'extrais quelques exemples des exercices sur les ovales de Descartes afin de les illustrer avec PSTricks\footnote{Sur internet, de nombreux sites traitent des ovales de Descartes d'une manière très complète et avec de magnifiques illustrations comme :\newline
+\centerline{\url{https://www.mathcurve.com/courbes2d/descartes/descartes.shtml}} et \newline
+\centerline{\url{http://debart.pagesperso-orange.fr/geometrie/ovale.html}}}.
+Le paragraphe §426 intitulé ``Ovales de Descartes'' débute ainsi (les auteurs prennent l'origine en $O_1$)~:
+
+\begin{framed}
+<<
+Construire les courbes d'équation bipolaire :
+\[r_1+\alpha r_2=V
+\]
+On supposera $\alpha>0$ : on vérifiera immédiatement que sans diminuer la généralité du problème on peut poser $\alpha >1$. On appellera $a$ la distance $\overline{O_1O_2}$ des pôles. Enfin on n'oubliera pas que les quantités $r_1$ et $r_2$ sont essentiellement positives.>>
+\begin{center}
+\begin{pspicture}[showgrid=false](-2,-3)(6,3)
+\psgrid[subgriddiv=1,gridcolor=lightgray,griddots=10,gridlabels=0pt]
+\pstVerb{/ai 2 def}%
+\psset{unit=2,algebraic,a=0.1}
+\psContourPlot[linecolor=red,function=sqrt(x^2+y^2)+2.25*sqrt((x-ai)^2+y^2)-4](-2,-3)(6,3)
+\pnode(2.25,0.688055){M}\psdot(M)
+\pnode(!ai 0){O2}\pnode(0,0){O1}
+\psline(O1)(M)(O2)
+\uput[ur](M){$M$}
+\pcline[offset=5pt,linestyle=none]{}(O1)(M)
+\ncput[nrot=:U]{$r_1$}
+\pcline[offset=5pt,linestyle=none]{}(O2)(M)
+\ncput[nrot=:U]{$r_2$}
+\pcline[offset=-5pt,linestyle=none]{}(O1)(O2)
+\ncput[nrot=:U]{$a$}
+\psline{<->}(0,1.5)(0,0)(3,0)
+\uput[d](0,0){$O_1$}
+\uput[l](0,1.5){$y$}
+\uput[u](3,0){$x$}
+\psdots(!ai 0)(0,0)
+\uput[d](!ai 0){$O_2$}
+\psline[linecolor=blue](O1)(O2)
+\end{pspicture}
+\end{center}
+%\end{document}
+<< Les pôles étant donnés, entre quelles limites $V$ peut-il varier ?
+\newline
+Montrer ques courbes sont fermées et ne peuvent rencontrer la droite $O_1O_2$ qu'en deux points.
+\newline
+Construire le faisceau pour une valeur donnée de $\alpha$. >>
+\begin{center}
+\begin{pspicture}(-2,-3)(7,4)
+\pstVerb{/ai 2 def
+% macro de Dominique Rodriguez
+% dans pst-eucl
+%% x -> true (if |x| < 1E-6)
+/ZeroEq { abs 1E-6 lt } bind def
+%% x f g -> x y n
+/NewtonSolving {
+ 3 dict begin
+ /g exch def /f exch def 0
+ { %%% STACK: x0 n
+ 1 add exch %% one more loop
+ dup ZeroEq
+ { dup 0.0005 add fgeval
+ 1 index 0.0005 sub fgeval sub .001 div }
+ { dup 1.0005 mul fgeval
+ 1 index 0.9995 mul fgeval sub .001 2 index mul div } ifelse %%% STACK: n x0 fg'(x0)
+ %%% compute x1=x0-fg(x0)/fg'(x0)
+ 1 index fgeval exch div dup 4 1 roll sub exch %% stack: dx x0 n
+ 3 -1 roll ZeroEq %% exit if root found
+ 1 index 100 eq or { exit } if %% or looping for more than 100 times
+ } loop
+ dup 100 lt { exch dup /x exch def f } { pop 0 0 } ifelse
+ 3 -1 roll
+ end
+} def
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+/fgeval { /x exch def f g sub } bind def
+ 0.2 { (sqrt(2.4^2+x^2)+2*sqrt((2.4-ai)^2+x^2)-4.6) AlgParser cvx exec } {0} NewtonSolving pop pop /y0 exch def
+ 0.2 { (sqrt(1.5^2+x^2)+2*sqrt((1.5-ai)^2+x^2)-4.6) AlgParser cvx exec } {0} NewtonSolving pop pop /y1 exch def
+ 0.2 { (sqrt(1.5^2+x^2)+2*sqrt((1.5-ai)^2+x^2)-3.8) AlgParser cvx exec } {0} NewtonSolving pop pop /y2 exch def
+ 0.2 { (sqrt(1.5^2+x^2)+2*sqrt((1.5-ai)^2+x^2)-3.0) AlgParser cvx exec } {0} NewtonSolving pop pop /y3 exch def}
+ %
+\psset{unit=2,a=0.05}% ncell=200 80,algebraic
+% function=sqrt(x^2+y^2)+2*sqrt((x-ai)^2+y^2)-\nV
+\multido{\nV=3.0+0.8}{3}{%
+\psContourPlot[function= x dup mul y dup mul add sqrt
+ 2 x ai sub dup mul y dup mul add sqrt mul add
+ \nV\space sub](-2,-3)(6,3)}
+\psline{<->}(0,2)(0,0)(3.5,0)
+\uput[d](0,0){$O_1$}
+\uput[l](0,1.9){$y$}
+\uput[u](3.5,0){$x$}
+\pnode(!ai 0){O2}\pnode(0,0){O1}
+\uput[d](!ai 0){$O_2$}
+\pnode(!2.4 y0){A}\psdots(A)(O1)(O2)\uput[ur](A){$A$}
+\psline(O1)(A)(O2)
+\pnode(!1.5 y1){V1}\pnode(!1.5 y2){V2}\pnode(!1.5 y3){V3}
+\uput[u](V1){$V=4.6$}\uput[u](V2){$V=3.8$}\uput[u](V3){$V=3.0$}
+\end{pspicture}
+
+Ovales de Descartes pour $r_1+2r_2=V$.
+\end{center}
+\end{framed}
+
+Cette figure est une reproduction de celle du livre.
+
+Le faisceau suivant est obtenu en faisant varier $\alpha$, pour $V=4$
+\begin{center}
+\begin{pspicture}[showgrid=false](-4,-5)(8,5)
+\psgrid[subgriddiv=1,gridcolor=lightgray,griddots=10,gridlabels=0pt]
+\pstVerb{/ai 2 def}
+\psset{unit=2,a=0.1}%,algebraic
+\multido{\n=3.50+-0.25}{12}{%
+% function=sqrt(x^2+y^2)+\n*sqrt((x-ai)^2+y^2)-4
+\ifnum\multidocount=11\psset{linecolor=red}\else\psset{linecolor=blue}\fi%
+\psContourPlot[function=x dup mul y dup mul add sqrt
+ \n\space x ai sub dup mul y dup mul add sqrt mul add
+ 4 sub](-2,-3)(6,3)}
+\psline{<->}(0,2.5)(0,0)(4,0)
+\uput[d](0,0){$O_1$}
+\uput[l](0,2.4){$y$}
+\uput[u](3.9,0){$x$}
+\psdots(!ai 0)(0,0)
+\uput[d](!ai 0){$O_2$}
+\end{pspicture}
+\end{center}
+Après un paragraphe sur les ``Applications des ovales de Descartes en optique'', Henri Bouasse et Émile Turrière reviennent aux ovales dans un nouveau paragraphe intitulé encore ``Ovales de Descartes', avec la définition suivante :
+\begin{framed}
+<<
+\[ -r_1+\alpha r_2=V\]
+On peut supposer encore que $\alpha \geq 1 $, le signe de $V$ restant arbitraire.
+
+Montrer que pour toutes les valeurs de $\alpha>1$, les courbes du faisceau ne peuvent avoir de points à l'infini. Ce sont encore des ovales, comme dans le premier cas.
+
+Le cas $\alpha=1$ est exceptionnel. On retrouve le faisceau d'hyperboles déjà rencontré (§ 423).
+\end{framed}
+
+Dans le paragraphe suivant (§429) les auteurs établissent l'équation cartésienne \textit{entière} des ovales et traitent les particuliers des limaçons de Pascal. Le paragraphe (§430) est consacré aux ovales de Cassini et le suivant(§431) aux courbes orthogonales des ovales de Cassini.
+
+\begin{framed}
+Lieu des points tels que le produit de leurs distances à deux points fixes $O_1$ et $O_2$ soit constant.
+
+Soit $2a$ la distance $\overline{O_1O_2}$.
+
+On trouve immédiatement pour équation des ovales :
+\[
+r_1r_2=k^2, \qquad (a^2+x^2+y^2)^2-4a^2x^2=k^4
+\]
+Pour que l'origine appartienne à une courbe du faisceau, il faut évidemment poser : $k^2=a^2$. L'équation devient :
+\[
+(x^2+y^2)^2=2a^2(x^2-y^2)
+\]
+C'est la lemniscate de Bernouilli.
+\end{framed}
+
+\begin{center}
+\begin{pspicture}[showgrid=false](-4,-4)(5,4)
+\psgrid[subgriddiv=1,gridcolor=lightgray,griddots=10,gridlabels=0pt]
+\pstVerb{/ai 2 def}
+\psset{unit=1,a=0.1}% ,algebraic
+% (ai^2+x^2+y^2)^2-4*ai^2*x^2-(\nk)^4
+\multido{\nk=3.50+-0.25}{10}{%
+\ifnum\multidocount=7\psset{linecolor=red}\else\psset{linecolor=blue}\fi%
+\psContourPlot[function=ai dup mul x dup mul add y dup mul add dup mul
+ 4 ai x mul dup mul mul sub \nk\space 4 exp sub](-6,-3)(6,3)}
+\psline{<->}(0,4)(0,0)(5,0)
+\uput[d](0,0){$O_1$}
+\uput[l](0,4){$y$}
+\uput[u](5,0){$x$}
+\psdots(!ai 0)(0,0)
+\uput[d](!ai 0){$O_2$}
+\end{pspicture}
+\end{center}
+\end{document} \ No newline at end of file
diff --git a/Master/texmf-dist/doc/generic/pst-contourplot/examples/README b/Master/texmf-dist/doc/generic/pst-contourplot/examples/README
new file mode 100644
index 00000000000..b05249a0a1d
--- /dev/null
+++ b/Master/texmf-dist/doc/generic/pst-contourplot/examples/README
@@ -0,0 +1,13 @@
+=================================
+ pst-contourplot PSTricks package
+ Examples
+=================================
+
+Manuel Luque (c) 2018
+
+The pst-contourplot package allows to draw implicit functions f(x,y)=0 with options for coloring the inside of the surfaces, to marking the points and arrowing the curve at points chosen by the user. This package uses the "marching squares" algorithm.
+
+This material is subject to the LaTeX Project Public License. See
+http://mirror.ctan.org/help/Catalogue/licenses.lppl.html
+for the details of that license.
+
diff --git a/Master/texmf-dist/doc/generic/pst-contourplot/examples/bourke.pdf b/Master/texmf-dist/doc/generic/pst-contourplot/examples/bourke.pdf
new file mode 100644
index 00000000000..8619179e924
--- /dev/null
+++ b/Master/texmf-dist/doc/generic/pst-contourplot/examples/bourke.pdf
Binary files differ
diff --git a/Master/texmf-dist/doc/generic/pst-contourplot/examples/bourke.tex b/Master/texmf-dist/doc/generic/pst-contourplot/examples/bourke.tex
new file mode 100644
index 00000000000..793925a48e1
--- /dev/null
+++ b/Master/texmf-dist/doc/generic/pst-contourplot/examples/bourke.tex
@@ -0,0 +1,14 @@
+\documentclass[pstricks]{standalone}
+\usepackage{pst-contourplot,multido,pst-plot}
+\begin{document}
+% équation donnée par Paul Bourke dans :
+% http://paulbourke.net/papers/conrec/
+\begin{pspicture}(-5,-5)(5,5)
+\multido{\r=0.25+0.25,\n=0.0+0.1}{11}{%
+\pstVerb{/isovalue \r\space def}%
+\psContourPlot[algebraic,unit=2.5,a=0.02,function=1/((y^2+x^2-0.71)^2+4*y^2*(x-0.842)^2)-isovalue,linecolor={[hsb]{\n,1,1}}](-2,-2)(2,2)
+}%
+\end{pspicture}
+
+\end{document}
+
diff --git a/Master/texmf-dist/doc/generic/pst-contourplot/examples/courbe-du-diable.pdf b/Master/texmf-dist/doc/generic/pst-contourplot/examples/courbe-du-diable.pdf
new file mode 100644
index 00000000000..0b8a0ecac38
--- /dev/null
+++ b/Master/texmf-dist/doc/generic/pst-contourplot/examples/courbe-du-diable.pdf
Binary files differ
diff --git a/Master/texmf-dist/doc/generic/pst-contourplot/examples/courbe-du-diable.tex b/Master/texmf-dist/doc/generic/pst-contourplot/examples/courbe-du-diable.tex
new file mode 100644
index 00000000000..200a4962e3e
--- /dev/null
+++ b/Master/texmf-dist/doc/generic/pst-contourplot/examples/courbe-du-diable.tex
@@ -0,0 +1,15 @@
+\documentclass[pstricks]{standalone}
+\usepackage{pst-contourplot}
+\begin{document}
+\begin{pspicture}(-6,-6)(6,6)
+% Courbe du diable
+% page 52 : Revue du Palais de la Découverte
+% Courbes mathématiques
+% Numéro spécial 8 . Juillet 1976
+% et Serge Mehl
+% http://serge.mehl.free.fr/anx/Diable.html
+\psframe*[linecolor=cyan](-6,-6)(6,6)
+\psContourPlot[a=0.1,linecolor=red,Fill,fillcolor=yellow,ReverseColors,
+ function=x 4 exp y 4 exp sub 24 y 2 exp mul add 25 x 2 exp mul sub](-6,-6)(6,6)
+\end{pspicture}
+\end{document} \ No newline at end of file
diff --git a/Master/texmf-dist/doc/generic/pst-contourplot/examples/courbes-diverses.tex b/Master/texmf-dist/doc/generic/pst-contourplot/examples/courbes-diverses.tex
new file mode 100644
index 00000000000..0aadc1a29e2
--- /dev/null
+++ b/Master/texmf-dist/doc/generic/pst-contourplot/examples/courbes-diverses.tex
@@ -0,0 +1,90 @@
+\documentclass[pstricks]{standalone}
+\usepackage{pst-contourplot,pst-plot}%,multido
+\begin{document}
+\begin{pspicture}[showgrid](-6,-4)(6,4)
+\psContourPlot[unit=0.5,algebraic,a=0.4,linecolor=blue,Fill=false,fillcolor=red,function=x*(x^2+y^2)-10*(x^2-y^2)](-6,-8)(12,8)
+\psContourPlot[unit=0.5,algebraic,a=0.4,linecolor=blue,Fill=false,fillcolor=red,function=x*(x^2+y^2)-10*(x^2-y^2)-20](-6,-8)(12,8)
+\psline{<->}(0,3.5)(0,0)(5.5,0)
+\uput[d](0,0){$O$}
+\uput[u](0,3.5){$y$}
+\uput[r](5.5,0){$x$}
+\end{pspicture}
+
+\begin{pspicture}(-6,-4)(6,4)
+\psframe*(-6,-4)(6,4)
+\psContourPlot[unit=0.5,algebraic,a=0.4,linecolor=-red,Fill,fillcolor={[rgb]{0.5 0.5 1}},function=x*(x^2+y^2)-10*(x^2-y^2)-50](-6,-8)(12,8)
+\psContourPlot[unit=0.5,algebraic,a=0.4,linecolor=-red,Fill,fillcolor=-blue,function=x*(x^2+y^2)-10*(x^2-y^2)-20](-6,-8)(12,8)
+\psContourPlot[unit=0.5,algebraic,a=0.4,linecolor=-red,Fill,fillcolor=-green,function=x*(x^2+y^2)-10*(x^2-y^2)+10](-6,-8)(12,8)
+\psgrid[subgriddiv=0,gridcolor=white,griddots=10,gridlabels=5pt]
+\psline[linecolor=white]{<->}(0,3.5)(0,0)(5.5,0)
+\uput[d](0,0){\white$O$}
+\uput[u](0,3.5){\white$y$}
+\uput[r](5.5,0){\white$x$}
+\end{pspicture}
+
+\begin{pspicture}(-3,-3)(3,4)
+\psContourPlot[unit=2,a=0.02,linecolor=yellow,Fill,fillcolor=red,function=x dup mul y dup mul add 1 sub 3 exp
+ x dup mul y 3 exp mul sub](-2,-2)(2,2)
+\psgrid[subgriddiv=0,gridcolor=black,griddots=10,gridlabels=5pt]
+\psline{<->}(0,3.5)(0,0)(2.5,0)
+\uput[d](0,0){$O$}
+\uput[l](0,3.5){$y$}
+\uput[d](2.5,0){$x$}
+\end{pspicture}
+
+\begin{pspicture}(-5,-5)(5,5)
+\psset{unit=0.8333}%
+% https://www.maplesoft.com/applications/view.aspx?sid=1582&view=html
+\psContourPlot[algebraic,a=0.1,linecolor=red,Fill,fillcolor=yellow,ReverseColors,function=x*y*cos(x^2 + y^2)-1](-6,-6)(6,6)
+\psaxes[labelFontSize=\scriptstyle]{->}(0,0)(-6,-6)(6,6)
+\end{pspicture}
+
+\begin{pspicture}(-5,-5)(5,5)
+% https://www.maplesoft.com/applications/view.aspx?sid=1582&view=html
+\psset{unit=0.5}%
+\psContourPlot[algebraic,a=0.1,linecolor=red,function=sin(x + 2*sin(y))-cos(y + 3*cos(x))](-10,-10)(10,10)
+\psgrid[subgriddiv=0,gridcolor=black,griddots=10,gridlabels=0pt](-10,-10)(10,10)
+\psaxes[labelFontSize=\scriptstyle]{->}(0,0)(-10,-10)(10,10)%}
+\end{pspicture}
+
+\begin{pspicture}(-5,-5)(5,5)
+% https://www.maplesoft.com/applications/view.aspx?sid=1582&view=html
+\psframe*[linecolor=cyan](-5,-5)(5,5)
+\psset{unit=0.5}%
+\psContourPlot[algebraic,a=0.1,linecolor=red,Fill,fillcolor=yellow,ReverseColors,function=sin(x + 2*sin(y))-cos(y + 3*cos(x))](-10,-10)(10,10)
+%\psgrid[subgriddiv=0,gridcolor=black,griddots=10,gridlabels=0pt](-10,-10)(10,10)
+\psaxes[labelFontSize=\scriptstyle]{->}(0,0)(-10,-10)(10,10)%}
+\end{pspicture}
+
+\begin{pspicture}(-5,-5)(5,5)
+\psframe*[linecolor=cyan](-5,-5)(5,5)
+% https://www.maplesoft.com/applications/view.aspx?sid=1582&view=html
+\psset{unit=0.5}%
+\psContourPlot[algebraic,a=0.1,linecolor=blue,Fill,fillcolor=orange,ReverseColors,function=ln((x + 7*sin(y))^2)- EXP(y + 2*cos(x))](-10,-10)(10,10)
+\psaxes[labelFontSize=\scriptstyle]{->}(0,0)(-10,-10)(10,10)%}
+\end{pspicture}
+
+\begin{pspicture}(-4,-4)(4.1,4.1)
+\psframe*[linecolor=cyan](-4,-4)(4.1,4.1)
+% Courbe déduite de 8 droites
+% page 124 : Revue du Palais de la Découverte
+% Courbes mathématiques
+% Numéro spécial 8 . Juillet 1976
+\psContourPlot[algebraic,a=0.1,linecolor=blue,Fill,fillcolor=orange,ReverseColors,function=(x^4-5*x^2+4)*(y^4-5*y^2+4)+1](-4,-4)(4,4)
+\psaxes[labelFontSize=\scriptstyle]{->}(0,0)(-4,-4)(4,4)
+\end{pspicture}
+
+\multido{\r=4+-0.05}{25}{%
+\begin{pspicture}(-4,-4)(4,4)
+\psframe*[linecolor=orange](-4,-4)(4,4)
+\pstVerb{/rayon 1 def}%
+\psContourPlot[unit=2,a=0.02,linecolor={[rgb]{0 0 0.5}},Fill,fillcolor=cyan,ReverseColors,
+ function=
+ 1 x rayon 30 cos mul sub dup mul y rayon 30 sin mul add dup mul add div
+ 1 x rayon 30 cos mul add dup mul y rayon 30 sin mul add dup mul add div add
+ 1 x dup mul y rayon sub dup mul add div add
+ \r\space sub](-4,-4)(4,4)
+\psgrid[subgriddiv=0,gridcolor=black,griddots=10,gridlabels=0pt]
+\end{pspicture}}
+\end{document}
+
diff --git a/Master/texmf-dist/doc/generic/pst-contourplot/examples/exemples-2.tex b/Master/texmf-dist/doc/generic/pst-contourplot/examples/exemples-2.tex
new file mode 100644
index 00000000000..c7abdda1f36
--- /dev/null
+++ b/Master/texmf-dist/doc/generic/pst-contourplot/examples/exemples-2.tex
@@ -0,0 +1,49 @@
+\documentclass[pstricks]{standalone}
+\usepackage{pst-contourplot,multido,pst-math}
+\begin{document}
+\begin{pspicture}[showgrid](-4,-4)(8,4)
+\pstVerb{/ai 2 def}%
+\psset{a=0.1}% ncell=150 80,
+\multido{\n=-3.50+0.25,\r=0+0.0476}{21}{
+\definecolor{Descartes}{hsb}{\r\space 1 1}
+\psContourPlot[linecolor=Descartes,function=
+ -0.75 x dup mul y dup mul add sqrt mul
+ 1.25 x ai sub dup mul y dup mul add sqrt mul add
+ \n\space add](-4,-4)(8,4)}
+\psline{<->}(0,4)(0,0)(8,0)
+\uput[d](0,0){$O_1$}
+\uput[l](0,3.75){$y$}
+\uput[u](7.9,0){$x$}
+\psdots(!ai 0)(0,0)
+\uput[d](!ai 0){$O_2$}
+\end{pspicture}
+
+\begin{pspicture}[showgrid=false](-4,-4)(8,4)
+\pstVerb{/ai 2 def}%
+\psset{a=0.1}
+\multido{\n=-3.50+0.25,\r=0+0.0476}{21}{
+\definecolor{Descartes}{hsb}{\r\space 1 1}
+\psContourPlot[linecolor=Descartes,fillcolor=Descartes,Fill,
+ function=
+ -0.75 x dup mul y dup mul add sqrt mul
+ 1.25 x ai sub dup mul y dup mul add sqrt mul add
+ \n\space add](-4,-4)(8,4)}
+\end{pspicture}
+
+\begin{pspicture}(-5,-5)(5,5)
+\psframe*[linecolor=cyan](-5,-5)(5,5)
+\psset{unit=0.5}%
+\psContourPlot[linecolor=red,Fill,fillcolor=yellow,ReverseColors,a=0.05,function=x SIN y SIN 1 sub mul y SIN mul x SIN 1 sub mul](-10,-10)(10,10)
+\end{pspicture}
+
+\begin{pspicture}(-6.28,-6.28)(6.28,6.28)
+% http://www.ensiie.fr/~gacogne/courbes.pdf
+\psframe*[linecolor=cyan](-6.28,-6.28)(6.28,6.28)
+\psset{unit=0.5}%
+\psContourPlot[a=0.05,linecolor=red,Fill,fillcolor=yellow,ReverseColors,
+ function=y SIN x COS mul x SIN sub
+ x SIN y COS mul y SIN sub mul](-12.57,-12.57)(12.57,12.57)
+\end{pspicture}
+\end{document}
+
+
diff --git a/Master/texmf-dist/doc/generic/pst-contourplot/examples/exemples-3.tex b/Master/texmf-dist/doc/generic/pst-contourplot/examples/exemples-3.tex
new file mode 100644
index 00000000000..e317a9a014e
--- /dev/null
+++ b/Master/texmf-dist/doc/generic/pst-contourplot/examples/exemples-3.tex
@@ -0,0 +1,35 @@
+\documentclass[pstricks]{standalone}
+\usepackage{pst-contourplot,multido,pst-plot}
+\begin{document}
+
+\begin{pspicture}(-6.25,-6.25)(6.25,6.25)
+% https://mathematica.stackexchange.com/questions/547/plotting-an-implicit-polar-equation
+\psframe(-6.25,-6.25)(6.25,6.25)
+\pstVerb{
+/arctan {
+ 3 dict begin
+ /x exch def
+ /y exch def
+ /Arc y x atan def
+ Arc 180 ge {/Arc Arc 360 sub def} if
+ Arc
+ end
+} def
+}%
+\psContourPlot[unit=0.25,a=0.1,function=y x arctan DegToRad dup mul 5.55 x dup mul y dup mul add sqrt RadToDeg cos mul sub,linewidth=0.2,Fill,fillcolor=orange](-25,-25)(25,25)
+% \psContourPlot[unit=0.25,a=0.1,function=y x arctan DegToRad dup mul 5.55 x dup mul y dup mul add sqrt RadToDeg sin mul sub,linewidth=0.2,linecolor=cyan](-25,-25)(25,25)
+\end{pspicture}
+
+\begin{pspicture}[showgrid](-0.5,-0.5)(10,10)
+% https://stackoverflow.com/questions/42076864/plotting-the-implicit-function-xy-logx-logy-2-0-on-matlab
+\multido{\nC=5.6+-0.5,\n=0.0+0.1}{8}{
+\psContourPlot[unit=1,a=0.1,algebraic,function=-ln(x)-ln(y)+x+y-\nC,Fill,fillcolor={[hsb]{\n,1,1}}](0.01,0.01)(10,10)}
+\end{pspicture}
+
+\begin{pspicture}(-5,-5)(5,5)
+% https://mathsbyagirl.wordpress.com/2015/12/04/math-isnt-cool/
+\psframe*[linecolor=cyan](-5,-5)(5,5)
+\psContourPlot[unit=1,a=0.02,algebraic,function=sin(x^2+y^2)-cos(x*y),Fill,fillcolor=orange](-5,-5)(5,5)
+\end{pspicture}
+\end{document}
+
diff --git a/Master/texmf-dist/doc/generic/pst-contourplot/examples/exemples-4.tex b/Master/texmf-dist/doc/generic/pst-contourplot/examples/exemples-4.tex
new file mode 100644
index 00000000000..df74dec6ef2
--- /dev/null
+++ b/Master/texmf-dist/doc/generic/pst-contourplot/examples/exemples-4.tex
@@ -0,0 +1,42 @@
+\documentclass[pstricks]{standalone}
+\usepackage{pst-solides3d,pst-contourplot}
+\begin{document}
+
+\begin{pspicture}(-5,-5)(5,5)
+% Julien Royer
+% https://www.math.univ-toulouse.fr/~jroyer/TD/2015-16-L2PS/L2PS-poly.pdf
+\psframe(-5,-5)(5,5)
+\multido{\n=-2.0+.2,\nH=0.0+0.05}{20}{
+\psContourPlot[unit=1,a=0.05,algebraic,function=sin(x)-sin(y)-\n,Fill,fillcolor={[hsb]{\nH,1,1}},ReverseColors](-5,-5)(5,5)}
+\end{pspicture}
+
+\begin{pspicture}(-5,-5)(5,5)
+% Julien Royer
+% https://www.math.univ-toulouse.fr/~jroyer/TD/2015-16-L2PS/L2PS-poly.pdf
+\psframe(-5,-5)(5,5)
+\multido{\n=-2.0+.2,\nH=0.0+0.05}{20}{
+\psContourPlot[unit=1,a=0.05,algebraic,function=sin(x)-sin(y)-\n,linecolor={[hsb]{\nH,1,1}}](-5,-5)(5,5)}
+\end{pspicture}
+
+\begin{pspicture}(-5,-5)(5,5)
+% https://www.math.univ-toulouse.fr/~jroyer/TD/2015-16-L2PS/L2PS-poly.pdf
+\psframe(-5,-5)(5,5)
+\multido{\n=-1.00+.05,\nH=0.0+0.04}{25}{
+\psContourPlot[unit=2,a=0.05,algebraic,function=(x^2-2*y^2)*Euler^(-2*x^2-y^2)-\n,linecolor={[hsb]{\nH,1,1}}](-2.5,-2.5)(2.5,2.5)}
+\end{pspicture}
+
+\begin{pspicture}(-5,-5)(5,5)
+\psframe(-5,-5)(5,5)
+\psset{viewpoint=50 40 20 rtp2xyz,Decran=70,lightsrc=50 30 35 rtp2xyz}
+\psSurface[
+ fillcolor=white,algebraic,
+ intersectionplan={[0 0 1 -0.1] [0 0 1 0.3] [0 0 1 0.2]},
+ intersectioncolor=(bleu) (red) (green),
+ intersectionlinewidth=1,
+ intersectiontype=0,
+ ngrid=.1 .1,incolor=yellow!50,linewidth=0.01](-2.5,-2.5)(2.5,2.5){2*(x^2-2*y^2)*Euler^(-2*x^2-y^2)}
+\end{pspicture}
+\end{document}
+
+
+
diff --git a/Master/texmf-dist/doc/generic/pst-contourplot/examples/four-dipoles-lignes.tex b/Master/texmf-dist/doc/generic/pst-contourplot/examples/four-dipoles-lignes.tex
new file mode 100644
index 00000000000..2858256f592
--- /dev/null
+++ b/Master/texmf-dist/doc/generic/pst-contourplot/examples/four-dipoles-lignes.tex
@@ -0,0 +1,30 @@
+\documentclass[pstricks]{standalone}
+\usepackage{pst-contourplot,pst-math,multido}
+\begin{document}
+% 4 dipôles de Hertz aux sommets d'un carré
+% dont les sommets se rapprochent
+\multido{\rX=1.1+-0.05}{22}{%
+\begin{pspicture}(-6.25,-6.25)(6.25,6.25)
+\pstVerb{/t 0 def /k0 2 PI mul def
+ /xi1 -\rX\space def /xi2 \rX\space def /xi3 -\rX\space def /xi4 \rX\space def
+ /yi1 -\rX\space def /yi2 \rX\space def /yi3 \rX\space def /yi4 -\rX\space def}%
+\psframe*(-6.25,-6.25)(6.25,6.25)
+\multido{\rc=-1.1+0.2,\n=0.0+0.1}{11}{
+\definecolor{HERTZ}{hsb}{\n,1,1}
+\psContourPlot[unit=5,a=0.0125,linewidth=0.01,linecolor=HERTZ,
+ function=/r1 x xi1 sub dup mul y yi1 sub dup mul add sqrt k0 mul def
+ /theta1 y yi1 sub x xi1 sub atan def
+ /r2 x xi2 sub dup mul y yi2 sub dup mul add sqrt k0 mul def
+ /theta2 y yi2 sub x xi2 sub atan def
+ /r3 x xi3 sub dup mul y yi3 sub dup mul add sqrt k0 mul def
+ /theta3 y yi3 sub x xi3 sub atan def
+ /r4 x xi4 sub dup mul y yi4 sub dup mul add sqrt k0 mul def
+ /theta4 y yi4 sub x xi4 sub atan def
+ r1 t sub COS r1 t sub SIN r1 div add theta1 sin dup mul mul
+ r2 t sub COS r2 t sub SIN r2 div add theta2 sin dup mul mul add
+ r3 t sub COS r3 t sub SIN r3 div add theta3 sin dup mul mul add
+ r4 t sub COS r4 t sub SIN r4 div add theta4 sin dup mul mul add
+ \rc\space sub](-1.25,-1.25)(1.25,1.25)}%
+\end{pspicture}}
+
+\end{document} \ No newline at end of file
diff --git a/Master/texmf-dist/doc/generic/pst-contourplot/examples/four-dipoles-t.tex b/Master/texmf-dist/doc/generic/pst-contourplot/examples/four-dipoles-t.tex
new file mode 100644
index 00000000000..7c23c0e648a
--- /dev/null
+++ b/Master/texmf-dist/doc/generic/pst-contourplot/examples/four-dipoles-t.tex
@@ -0,0 +1,31 @@
+\documentclass[pstricks]{standalone}
+\usepackage{pst-contourplot,pst-math,multido}
+\begin{document}
+% 4 dipôles de Hertz aux sommets d'un carré
+% évolution du champ au cours du temps
+\multido{\rt=0+0.2}{32}{%
+\begin{pspicture}(-6.25,-6.25)(6.25,6.25)
+\pstVerb{/t \rt\space def /k0 2 PI mul def
+ /xi1 -1 def /xi2 1 def /xi3 -1 def /xi4 1 def
+ /yi1 -1 def /yi2 1 def /yi3 1 def /yi4 -1 def}%
+%\psframe*(-6.25,-6.25)(6.25,6.25)
+\multido{\rc=-1.1+0.2,\n=0.0+0.1}{11}{
+\definecolor{HERTZ}{hsb}{\n,1,1}
+\psContourPlot[unit=2.5,a=0.025,linewidth=0.02,linecolor=HERTZ,
+ function=
+ /r1 x xi1 sub dup mul y yi1 sub dup mul add sqrt k0 mul def
+ /theta1 y yi1 sub x xi1 sub atan def
+ /r2 x xi2 sub dup mul y yi2 sub dup mul add sqrt k0 mul def
+ /theta2 y yi2 sub x xi2 sub atan def
+ /r3 x xi3 sub dup mul y yi3 sub dup mul add sqrt k0 mul def
+ /theta3 y yi3 sub x xi3 sub atan def
+ /r4 x xi4 sub dup mul y yi4 sub dup mul add sqrt k0 mul def
+ /theta4 y yi4 sub x xi4 sub atan def
+ r1 t sub COS r1 t sub SIN r1 div add theta1 sin dup mul mul
+ r2 t sub COS r2 t sub SIN r2 div add theta2 sin dup mul mul add
+ r3 t sub COS r3 t sub SIN r3 div add theta3 sin dup mul mul add
+ r4 t sub COS r4 t sub SIN r4 div add theta4 sin dup mul mul add
+ \rc\space sub](-2.5,-2.5)(2.5,2.5)}%
+\end{pspicture}}
+
+\end{document} \ No newline at end of file
diff --git a/Master/texmf-dist/doc/generic/pst-contourplot/examples/four-dipoles.tex b/Master/texmf-dist/doc/generic/pst-contourplot/examples/four-dipoles.tex
new file mode 100644
index 00000000000..c771311dcf0
--- /dev/null
+++ b/Master/texmf-dist/doc/generic/pst-contourplot/examples/four-dipoles.tex
@@ -0,0 +1,31 @@
+\documentclass[pstricks]{standalone}
+\usepackage{pst-contourplot,pst-math,multido}
+\begin{document}
+% 4 dipôles de Hertz aux sommets d'un carré
+% dont les sommets se rapprochent
+\multido{\rX=1.1+-0.05}{22}{%
+\begin{pspicture}(-6.25,-6.25)(6.25,6.25)
+\pstVerb{/t 0 def /k0 2 PI mul def
+ /xi1 -\rX\space def /xi2 \rX\space def /xi3 -\rX\space def /xi4 \rX\space def
+ /yi1 -\rX\space def /yi2 \rX\space def /yi3 \rX\space def /yi4 -\rX\space def}%
+\psframe*[linecolor=yellow](-6.25,-6.25)(6.25,6.25)
+\multido{\rc=-1.1+0.2,\n=0.0+0.1}{11}{
+\definecolor{HERTZ}{hsb}{\n,1,1}
+\psContourPlot[unit=5,a=0.0125,linewidth=0.005,fillcolor=HERTZ,Fill,ReverseColors,linecolor=HERTZ,
+ function=
+ /r1 x xi1 sub dup mul y yi1 sub dup mul add sqrt k0 mul def
+ /theta1 y yi1 sub x xi1 sub atan def
+ /r2 x xi2 sub dup mul y yi2 sub dup mul add sqrt k0 mul def
+ /theta2 y yi2 sub x xi2 sub atan def
+ /r3 x xi3 sub dup mul y yi3 sub dup mul add sqrt k0 mul def
+ /theta3 y yi3 sub x xi3 sub atan def
+ /r4 x xi4 sub dup mul y yi4 sub dup mul add sqrt k0 mul def
+ /theta4 y yi4 sub x xi4 sub atan def
+ r1 t sub COS r1 t sub SIN r1 div add theta1 sin dup mul mul
+ r2 t sub COS r2 t sub SIN r2 div add theta2 sin dup mul mul add
+ r3 t sub COS r3 t sub SIN r3 div add theta3 sin dup mul mul add
+ r4 t sub COS r4 t sub SIN r4 div add theta4 sin dup mul mul add
+ \rc\space sub](-1.25,-1.25)(1.25,1.25)}%
+\end{pspicture}}
+
+\end{document} \ No newline at end of file
diff --git a/Master/texmf-dist/doc/generic/pst-contourplot/examples/four-leminscates.pdf b/Master/texmf-dist/doc/generic/pst-contourplot/examples/four-leminscates.pdf
new file mode 100644
index 00000000000..729aad879da
--- /dev/null
+++ b/Master/texmf-dist/doc/generic/pst-contourplot/examples/four-leminscates.pdf
Binary files differ
diff --git a/Master/texmf-dist/doc/generic/pst-contourplot/examples/four-leminscates.tex b/Master/texmf-dist/doc/generic/pst-contourplot/examples/four-leminscates.tex
new file mode 100644
index 00000000000..69f9e7f1203
--- /dev/null
+++ b/Master/texmf-dist/doc/generic/pst-contourplot/examples/four-leminscates.tex
@@ -0,0 +1,92 @@
+\documentclass[11pt]{article}
+\usepackage[a4paper,margin=2cm]{geometry}
+\usepackage[latin1]{inputenc}
+\usepackage[T1]{fontenc}
+\usepackage[garamond]{mathdesign}
+\usepackage{pst-contourplot,pst-plot}
+\title{Exemples avec pst-contourplot : \\ courbe déduite de quatre lemniscates}
+\date{27 mai 2018}
+\author{manuel.luque27@gmail.com}
+\begin{document}
+\maketitle
+Cette courbe est à la page 126 du numéro spécial 8 (Juillet 1976) `\textit{Courbes mathématiques}' de la revue du Palais de la Découverte.
+% Courbe déduite de quatre lemniscates
+% page 126 : Revue du Palais de la Découverte
+% Courbes mathématiques
+% Numéro spécial 8 . Juillet 1976
+
+Les équations des lemniscates sont :
+\[
+\left\{
+\begin{array}[m]{l}
+f_1(x,y)=\sqrt{[(a+x)^2+y^2][x^2+(a-y)^2]}-\frac{a^2}{2}\\[1em]
+f_2(x,y)=\sqrt{[(a-x)^2+y^2][x^2+(a-y)^2]}-\frac{a^2}{2}\\[1em]
+f_3(x,y)=\sqrt{[(a-x)^2+y^2][x^2+(a+y)^2]}-\frac{a^2}{2}\\[1em]
+f_4(x,y)=\sqrt{[(a+x)^2+y^2][x^2+(a+y)^2]}-\frac{a^2}{2}\\[1em]
+\end{array}
+\right.
+\]
+Ils sont représentés ci-dessous :
+%\def\lemniscateA{sqrt(((ai+x)^2+y^2)*(x^2+(ai-y)^2))-AI}
+%\def\lemniscateB{sqrt(((ai-x)^2+y^2)*(x^2+(ai-y)^2))-AI}
+%\def\lemniscateC{sqrt(((ai-x)^2+y^2)*(x^2+(ai+y)^2))-AI}
+%\def\lemniscateD{sqrt(((ai+x)^2+y^2)*(x^2+(ai+y)^2))-AI}
+\def\lemniscateA{ai x add dup mul y dup mul add
+ x dup mul ai y sub dup mul add
+ mul sqrt AI sub }
+\def\lemniscateB{ai x sub dup mul y dup mul add
+ x dup mul ai y sub dup mul add
+ mul sqrt AI sub }
+\def\lemniscateC{ai x sub dup mul y dup mul add
+ x dup mul ai y add dup mul add
+ mul sqrt AI sub }
+\def\lemniscateD{ai x add dup mul y dup mul add
+ x dup mul ai y add dup mul add
+ mul sqrt AI sub }
+\begin{center}
+\begin{pspicture}(-4,-4)(4,4)
+\pstVerb{/ai 2 def /AI ai dup mul 2 div def}%
+\psContourPlot[a=0.1,linecolor=blue,function=\lemniscateA](-4,-4)(4,4)
+\psContourPlot[,a=0.1,linecolor=red,function=\lemniscateB](-4,-4)(4,4)
+\psContourPlot[a=0.1,linecolor=green,function=\lemniscateC](-4,-4)(4,4)
+\psContourPlot[a=0.1,linecolor=cyan,function=\lemniscateD](-4,-4)(4,4)
+\psaxes[labelFontSize=\scriptstyle]{->}(0,0)(-4,-4)(4,4)
+\end{pspicture}
+\end{center}
+
+On représente ensuite la courbe définie par :
+\[
+f_1(x,y)f_2(x,y)f_3(x,y)f_4(x,y)+K=0
+\]
+\newpage
+Suivant les valeurs de $K$ on obtient :
+\begin{center}
+$K=0$
+
+\begin{pspicture}(-4,-4)(4,4)
+\pstVerb{/ai 2 def /AI ai dup mul 2 div def}%
+\psContourPlot[a=0.04,linecolor=blue,Fill,fillcolor=orange,function=\lemniscateA \lemniscateB mul \lemniscateC mul \lemniscateD mul ](-4,-4)(4,4)
+\psaxes[labelFontSize=\scriptstyle]{->}(0,0)(-4,-4)(4,4)
+\end{pspicture}
+\end{center}
+
+\begin{center}
+$K=-5$
+
+\begin{pspicture}(-4,-4)(4,4)
+\pstVerb{/ai 2 def /AI ai dup mul 2 div def}%
+\psContourPlot[a=0.04,linecolor=blue,Fill,fillcolor=orange,function=\lemniscateA \lemniscateB mul \lemniscateC mul \lemniscateD mul 5 sub](-4,-4)(4,4)
+\psaxes[labelFontSize=\scriptstyle]{->}(0,0)(-4,-4)(4,4)
+\end{pspicture}
+\end{center}
+\newpage
+\begin{center}
+$K=5$
+
+\begin{pspicture}(-4,-4)(4,4)
+\pstVerb{/ai 2 def /AI ai dup mul 2 div def}%
+\psContourPlot[a=0.04,linecolor=blue,Fill,fillcolor=orange,function=\lemniscateA \lemniscateB mul \lemniscateC mul \lemniscateD mul 5 add](-4,-4)(4,4)
+\psaxes[labelFontSize=\scriptstyle]{->}(0,0)(-4,-4)(4,4)
+\end{pspicture}
+\end{center}
+\end{document} \ No newline at end of file
diff --git a/Master/texmf-dist/doc/generic/pst-contourplot/examples/hertz.tex b/Master/texmf-dist/doc/generic/pst-contourplot/examples/hertz.tex
new file mode 100644
index 00000000000..bbd1254554f
--- /dev/null
+++ b/Master/texmf-dist/doc/generic/pst-contourplot/examples/hertz.tex
@@ -0,0 +1,59 @@
+\documentclass[pstricks]{standalone}
+\usepackage{pst-contourplot,pst-math,multido}
+\begin{document}
+%\begin{pspicture}(-7,-7)(7,7)
+%\pstVerb{/t 0 def /k0 2 PI mul def}%
+%\multido{\rc=-1.1+0.2,\n=0.0+0.1}{11}{
+%\definecolor{HERTZ}{hsb}{\n,1,1}
+%\psContourPlot[unit=5,ncell=120 120,a=0.025,linewidth=0.005,linecolor={[rgb]{0 0.5 0}},fillcolor=HERTZ,Fill,ReverseColors]{
+% /r x dup mul y dup mul add sqrt k0 mul def
+% /theta x y atan def
+% r t sub COS r t sub SIN r div add theta sin dup mul mul \rc\space sub}
+%}
+%\end{pspicture}
+
+\begin{pspicture}(-6.25,-6.25)(6.25,6.25)
+\pstVerb{/t 0 def /k0 2 PI mul def /xi1 -0.4 def /xi2 0.4 def /yi1 0 def /yi2 0 def}%
+\psframe*(-7,-7)(7,7)
+\psset{unit=5}%
+\multido{\rc=-1.1+0.2,\n=0.0+0.1}{11}{
+\definecolor{HERTZ}{hsb}{\n,1,1}
+%\psContourPlot[ncell=200 200,a=0.0125,linewidth=0.005,fillcolor=HERTZ,Fill,ReverseColors]{
+\psContourPlot[ncell=200 200,a=0.0125,linewidth=0.005,linecolor=HERTZ]{
+ /r1 x xi1 sub dup mul y yi1 sub dup mul add sqrt k0 mul def
+ /theta1 y yi1 sub x xi1 sub atan def
+ /r2 x xi2 sub dup mul y yi2 sub dup mul add sqrt k0 mul def
+ /theta2 y yi2 sub x xi2 sub atan def
+ 2 setlinejoin
+ r1 t sub COS r1 t sub SIN r1 div add theta1 sin dup mul mul
+ r2 t sub COS r2 t sub SIN r2 div add theta2 sin dup mul mul add
+ \rc\space sub}}%
+\psdots(!xi1 yi1)(!xi2 yi2)
+\end{pspicture}
+
+\begin{pspicture}(-6.25,-6.25)(6.25,6.25)
+\pstVerb{/t 0 def /k0 2 PI mul def
+ /xi1 -1 def /xi2 1 def /xi3 -1 def /xi4 1 def
+ /yi1 -1 def /yi2 1 def /yi3 1 def /yi4 -1 def}%
+\psframe*[linecolor=yellow](-6.25,-6.25)(6.25,6.25)
+\psset{unit=5}%
+\multido{\rc=-1.1+0.2,\n=0.0+0.1}{11}{
+\definecolor{HERTZ}{hsb}{\n,1,1}
+\psContourPlot[ncell=200 200,a=0.0125,linewidth=0.005,fillcolor=HERTZ,Fill,ReverseColors,linecolor=HERTZ]{
+%\psContourPlot[ncell=400 400,a=0.00625,linewidth=0.01,linecolor=HERTZ,Fill,ReverseColors,fillcolor=HERTZ]{
+ /r1 x xi1 sub dup mul y yi1 sub dup mul add sqrt k0 mul def
+ /theta1 y yi1 sub x xi1 sub atan def
+ /r2 x xi2 sub dup mul y yi2 sub dup mul add sqrt k0 mul def
+ /theta2 y yi2 sub x xi2 sub atan def
+ /r3 x xi3 sub dup mul y yi3 sub dup mul add sqrt k0 mul def
+ /theta3 y yi3 sub x xi3 sub atan def
+ /r4 x xi4 sub dup mul y yi4 sub dup mul add sqrt k0 mul def
+ /theta4 y yi4 sub x xi4 sub atan def
+ r1 t sub COS r1 t sub SIN r1 div add theta1 sin dup mul mul
+ r2 t sub COS r2 t sub SIN r2 div add theta2 sin dup mul mul add
+ r3 t sub COS r3 t sub SIN r3 div add theta3 sin dup mul mul add
+ r4 t sub COS r4 t sub SIN r4 div add theta4 sin dup mul mul add
+ \rc\space sub}}%
+% \psdots[linecolor=white](!xi1 yi1)(!xi2 yi2)(!xi3 yi3)(!xi4 yi4)
+\end{pspicture}
+\end{document} \ No newline at end of file
diff --git a/Master/texmf-dist/doc/generic/pst-contourplot/examples/pavage.tex b/Master/texmf-dist/doc/generic/pst-contourplot/examples/pavage.tex
new file mode 100644
index 00000000000..8ab7f7f0961
--- /dev/null
+++ b/Master/texmf-dist/doc/generic/pst-contourplot/examples/pavage.tex
@@ -0,0 +1,10 @@
+\documentclass[pstricks]{standalone}
+\usepackage{pst-contourplot,pst-math}
+\begin{document}
+\begin{pspicture}(-5,-5)(5,5)
+% https://www.maplesoft.com/applications/view.aspx?sid=1582&view=html
+\psframe*[linecolor=cyan](-5,-5)(5,5)
+\psset{unit=0.5}%
+\psContourPlot[a=0.1,linecolor=red,Fill,fillcolor=yellow,ReverseColors,function=x y SIN 2 mul add SIN y x COS 3 mul add COS sub](-10,-10)(10,10)
+\end{pspicture}
+\end{document} \ No newline at end of file
diff --git a/Master/texmf-dist/doc/generic/pst-contourplot/examples/trefoil.tex b/Master/texmf-dist/doc/generic/pst-contourplot/examples/trefoil.tex
new file mode 100644
index 00000000000..cb6a29db4e2
--- /dev/null
+++ b/Master/texmf-dist/doc/generic/pst-contourplot/examples/trefoil.tex
@@ -0,0 +1,19 @@
+\documentclass{article}
+\usepackage{pst-contourplot,animate}
+
+\begin{document}
+\begin{animateinline}[controls,palindrome,
+ begin={\begin{pspicture}(-4,-4)(4,4)},
+ end={\end{pspicture}}]{10}% 10 images/s
+\multiframe{20}{r=4+-0.1}{%
+\psframe*[linecolor=orange](-4,-4)(4,4)
+\pstVerb{/rayon 1 def}%
+\psContourPlot[unit=2,a=0.02,linecolor={[rgb]{0 0 0.5}},Fill,fillcolor=cyan,ReverseColors,
+ function=
+ 1 x rayon 30 cos mul sub dup mul y rayon 30 sin mul add dup mul add div
+ 1 x rayon 30 cos mul add dup mul y rayon 30 sin mul add dup mul add div add
+ 1 x dup mul y rayon sub dup mul add div add
+ \r\space sub ](-2,-2)(2,2)
+\psgrid[subgriddiv=0,gridcolor=black,griddots=10]}
+\end{animateinline}
+\end{document} \ No newline at end of file
diff --git a/Master/texmf-dist/doc/generic/pst-contourplot/examples/two-metaballs.tex b/Master/texmf-dist/doc/generic/pst-contourplot/examples/two-metaballs.tex
new file mode 100644
index 00000000000..732b177d517
--- /dev/null
+++ b/Master/texmf-dist/doc/generic/pst-contourplot/examples/two-metaballs.tex
@@ -0,0 +1,17 @@
+\documentclass[pstricks]{standalone}
+\usepackage{pst-contourplot,multido}
+\begin{document}
+\multido{\r=-2+0.08}{50}{
+\begin{pspicture}(-6.4,-4)(6.4,4)
+\psframe*(-6.4,-4)(6.4,4)
+\pstVerb{/xC \r\space def
+ /FonctionMetaballs {
+ 1 x xC sub dup mul y dup mul add sqrt div
+ 0.5 x xC add dup mul y dup mul add sqrt div
+ add
+ 1 sub
+ } def}%
+\psContourPlot[unit=2,a=0.1,linewidth=0.025,linecolor=red,fillcolor=cyan,Fill,ReverseColors,function=FonctionMetaballs](-4,-2)(4,2)
+\psdots(! xC 2 mul 0)(! xC neg 2 mul 0)
+\end{pspicture}}
+\end{document} \ No newline at end of file