diff options
author | Karl Berry <karl@freefriends.org> | 2007-08-20 00:09:19 +0000 |
---|---|---|
committer | Karl Berry <karl@freefriends.org> | 2007-08-20 00:09:19 +0000 |
commit | 5d15743e4114b97824c00eaa61eab488ba52b233 (patch) | |
tree | 96349eb65512f2fefd8a6d78c33462fa24834d0f /Master/texmf-dist/doc/generic/pst-3dplot | |
parent | 56c0da12a9fba35882b8b7073eb809804ebf1ee8 (diff) |
pst-3dplot 1.75 (18aug07)
git-svn-id: svn://tug.org/texlive/trunk@4766 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Master/texmf-dist/doc/generic/pst-3dplot')
-rw-r--r-- | Master/texmf-dist/doc/generic/pst-3dplot/Changes | 8 | ||||
-rw-r--r-- | Master/texmf-dist/doc/generic/pst-3dplot/README | 8 | ||||
-rw-r--r-- | Master/texmf-dist/doc/generic/pst-3dplot/pst-3dplot-doc.bib | 16 | ||||
-rw-r--r-- | Master/texmf-dist/doc/generic/pst-3dplot/pst-3dplot-doc.pdf | bin | 1377937 -> 2275318 bytes | |||
-rw-r--r-- | Master/texmf-dist/doc/generic/pst-3dplot/pst-3dplot-doc.tex | 352 | ||||
-rw-r--r-- | Master/texmf-dist/doc/generic/pst-3dplot/tb72voss3d.pdf | bin | 542949 -> 0 bytes |
6 files changed, 295 insertions, 89 deletions
diff --git a/Master/texmf-dist/doc/generic/pst-3dplot/Changes b/Master/texmf-dist/doc/generic/pst-3dplot/Changes index 24ad9f5145f..8ed258675e5 100644 --- a/Master/texmf-dist/doc/generic/pst-3dplot/Changes +++ b/Master/texmf-dist/doc/generic/pst-3dplot/Changes @@ -1,4 +1,7 @@ pst-3dplot.pro -------- +0.23 2007-08-18 - add coorType 0,1,2 code for convertTo2D + - add code IIIDCylinder and cylindrical coordinates + - add code for \psBox and \psCylinder 0.22 2006-01-11 add code for left-Handed coor (experimental) 0.21 2005-10-10 add code for 3D sphere 0.20 2005-01-14 add rotPoint subroutine with RotSequenz option @@ -6,9 +9,14 @@ pst-3dplot.pro -------- pst-3dplot.tex -------- +1.75 2007-08-18 - add optional argument coorType for different + types of coordinates + - add \psCylinder and \psBox with inside/outside view + - fix bug with the subticks option 1.74 2007-06-12 - fix bug with the optional argument of plane - fix typo for pstParaboloid - add macro pstIIIDCylinder + - add cylindrical coordinates - revert Changes to the hidden line support 1.73 2007-02-12 better support for hidden lines of a box 1.72 2006-02-07 - allow negative direction for ellipse diff --git a/Master/texmf-dist/doc/generic/pst-3dplot/README b/Master/texmf-dist/doc/generic/pst-3dplot/README index 01b1ff9c915..3e48431a5eb 100644 --- a/Master/texmf-dist/doc/generic/pst-3dplot/README +++ b/Master/texmf-dist/doc/generic/pst-3dplot/README @@ -2,7 +2,7 @@ %% %% Herbert Voss <voss _at_ pstricks.de> (Germany) %% -%% 2007-06-17 +%% 2004-12-04 %% PSTricks offers excellent macros to insert more or less complex @@ -26,14 +26,14 @@ pst-3dplot uses the extended version of the keyval package. So be sure that you - have installed xkeyval with the special pst-xkey (CTAN: tex-archive/macros/latex/contrib/xkeyval/) -- do not load another package behind pst-3dplot, which loads +- do not load another package after pst-3dplot, which loads the old keyval.sty or pst-key.tex If you like to get the documentation file in another format run latex pst-3dplot-doc.tex -bibtex pst-3dplot.doc +bibtex pst-3dplot-doc latex pst-3dplot-doc.tex dvips pst-3dplot-doc.dvi @@ -44,5 +44,5 @@ latex on the documentation file. The intermediate DVI file works only with viewers which can interprete the embedded PostScript code. -For another PDF output read the Introduction from +For another PDF output read the introduction from the documentation. diff --git a/Master/texmf-dist/doc/generic/pst-3dplot/pst-3dplot-doc.bib b/Master/texmf-dist/doc/generic/pst-3dplot/pst-3dplot-doc.bib index 3b785845e22..6d51864b381 100644 --- a/Master/texmf-dist/doc/generic/pst-3dplot/pst-3dplot-doc.bib +++ b/Master/texmf-dist/doc/generic/pst-3dplot/pst-3dplot-doc.bib @@ -99,14 +99,12 @@ gezeigt. } } - @Book{companion, - author = {Michel Goosens and Frank Mittelbach and Alexander - Samarin}, + author = {Michel Goosens and Frank Mittelbach and Sebastian Rahtz and Denis Roegel and Herbert Vo{\ss}}, title = {The {\LaTeX} {G}raphics {C}ompanion}, publisher = {{Addison-Wesley Publishing Company}}, - year = {2004}, - edition = {2.}, + edition = second, + year = {2007}, address = {Reading, Mass.} } @@ -127,3 +125,11 @@ address = {Poing} } +@Book{LaTeXRef, + author = {Herbert Vo\ss}, + title = {\LaTeX\ Referenz}, + edition = {1.}, + publisher = {DANTE -- Lehmanns}, + year = {2007}, + address = {Heidelberg/Hamburg} +} diff --git a/Master/texmf-dist/doc/generic/pst-3dplot/pst-3dplot-doc.pdf b/Master/texmf-dist/doc/generic/pst-3dplot/pst-3dplot-doc.pdf Binary files differindex 9f53681952b..5affd88cc37 100644 --- a/Master/texmf-dist/doc/generic/pst-3dplot/pst-3dplot-doc.pdf +++ b/Master/texmf-dist/doc/generic/pst-3dplot/pst-3dplot-doc.pdf diff --git a/Master/texmf-dist/doc/generic/pst-3dplot/pst-3dplot-doc.tex b/Master/texmf-dist/doc/generic/pst-3dplot/pst-3dplot-doc.tex index b3af53cb325..ea88c16703f 100644 --- a/Master/texmf-dist/doc/generic/pst-3dplot/pst-3dplot-doc.tex +++ b/Master/texmf-dist/doc/generic/pst-3dplot/pst-3dplot-doc.tex @@ -450,14 +450,19 @@ \end{filecontents} + +\usepackage{ccfonts} +\usepackage[euler-digits]{eulervm} \usepackage[T1]{fontenc} \usepackage[latin1]{inputenc} +\usepackage[scaled=0.85]{luximono} \usepackage{amsmath} \usepackage{graphicx} -\usepackage{geometry,lmodern} +\usepackage{geometry} \usepackage{pstricks} \usepackage{pst-grad} \usepackage{showexpl} +\usepackage{tabularx} \lstset{wide=true} \usepackage{pst-3dplot} \let\myFV\fileversion @@ -478,8 +483,9 @@ \makeatother \def\Lcs#1{{\ttfamily\textbackslash #1}} \lfoot{\small\ttfamily\jobname.tex} -\cfoot{} +\cfoot{Documentation} \rfoot{\thepage} +\lhead{PSTricks}% package \texttt{pst-3dplot}} \renewcommand{\headrulewidth}{0pt} \renewcommand{\footrulewidth}{0pt} \let\myPart\part @@ -518,6 +524,7 @@ It is also important that after \verb+pst-3dplot+ no package is loaded, which us \clearpage \section{The Parallel projection} +%\psset{coorType=1} Figure \ref{Abb0-1} shows a point $P(x,y,z)$ in a three dimensional coordinate system ($x,y,z$) with a transformation into $P^*(x^*,y^*)$, the Point in the two dimensional system ($x_E,y_E$). @@ -886,6 +893,35 @@ The following example shows a wrong placing of the labels, the planes should be \end{pspicture} \end{LTXexample} + +\subsection{Experimental features} +All features are as long as they are not really tested called experimental. With the optional +argument \texttt{coorType}, which is by default 0, one can change the the viewing of the axes +and all other three dimensional objects. + +With \texttt{coorType=1} the y--z-axes are orthogonal and the angle between x- and y-axis +is \texttt{Alpha}. The angle \texttt{Beta} is not valid. + +\begin{LTXexample}[width=9.75cm] +\psset{coorType=1,Alpha=135} +\begin{pspicture}(-2,-3)(3,3) +\pstThreeDCoor[IIIDticks,zMax=3]% +\end{pspicture} +\end{LTXexample} + +With \texttt{coorType=2} the y--z-axes are orthogonal and the angle between x- and y-axis +is always 135 degrees and the x-axis is shortened by a factor of $1/\sqrt{2}$. +The angle \texttt{Alpha} is only valid for placing the ticks, if any. The angle \texttt{Beta} is not valid. + +\begin{LTXexample}[width=9.75cm] +\psset{coorType=2,Alpha=90, + IIIDxTicksPlane=yz} +\begin{pspicture}(-2,-2)(3,3) +\pstThreeDCoor[IIIDticks,zMax=3]% +\end{pspicture} +\end{LTXexample} + +\clearpage \section{Rotation} The coordinate system can be rotated independent from the given Alpha and Beta values. This makes it possible to place @@ -900,6 +936,7 @@ additional one for the rotating sequence, which can be any combination of the th \end{pspicture} \end{LTXexample} + \begin{LTXexample}[pos=t] \psset{unit=2,linewidth=1.5pt,drawCoor=false} \begin{pspicture}(-2,-1.5)(2,2.5)% @@ -921,6 +958,7 @@ additional one for the rotating sequence, which can be any combination of the th \end{pspicture}% \end{LTXexample} + \begin{LTXexample}[pos=t] \begin{pspicture}(-2,-1.5)(2,2.5)% \pstThreeDCoor[xMin=0,xMax=2,yMin=0,yMax=2,zMin=0,zMax=2]% @@ -934,6 +972,7 @@ additional one for the rotating sequence, which can be any combination of the th +\clearpage \psset{unit=1cm,gridlabels=7pt} @@ -943,27 +982,52 @@ additional one for the rotating sequence, which can be any combination of the th \end{verbatim} There are three additional options -\begin{description} -\item[planeGrid] can be one of the following values: \verb+xy, xz, yz+. Default is \verb+xy+. -\item[subticks] Number of ticks. Default is \verb+10+.\footnote{This options is also defined -in the package \texttt{pstricks-add}, so it is nessecary to to set this option -locally or with the family option of \texttt{pst-xkey}} -\item[planeGridOffset] a length for the shift of the grid. Default is \verb+0+. -\end{description} +\noindent +\begin{tabularx}{\linewidth}{@{}>{\bfseries\ttfamily}lX@{}} +planeGrid & can be one of the following values: \verb+xy, xz, yz+. Default is \verb+xy+.\\ +subticks & Number of ticks. Default is \verb+10+.\footnotemark \\ +planeGridOffset & a length for the shift of the grid. Default is \verb+0+. +\end{tabularx} + +\footnotetext{This options is also defined +in the package \texttt{pstricks-add}, so it is nessecary to to set this option +locally or with the family option of \texttt{pst-xkey}, eg \CMD{psset[pst-3dplot]\{subticks=...\}}} This macro is a special one for the coordinate system to show the units, but can be used in any way. \verb+subticks+ defines the number of ticklines for both axes and \verb+xsubticks+ and \verb+ysubticks+ for each one. -\begin{LTXexample}[pos=t] -\begin{pspicture}(-5,-5)(5,6.5) - \pstThreeDCoor[xMin=0,yMin=0,zMin=0,xMax=7,yMax=7,zMax=7,linewidth=2pt] +\iffalse +\newpsstyle{xyPlane}{fillstyle=solid,fillcolor=black!20} +\newpsstyle{xzPlane}{fillstyle=solid,fillcolor=black!35,planeGrid=xz} +\newpsstyle{yzPlane}{fillstyle=solid,fillcolor=black!50,planeGrid=yz} +\fi + +\noindent +\begin{minipage}{0.49\linewidth} +\begin{LTXexample}[pos=t,wide=false] +\begin{pspicture}(-4,-3.5)(5,4) + \pstThreeDCoor[xMin=0,yMin=0,zMin=0,linewidth=2pt] \psset{linewidth=0.1pt,linecolor=lightgray} - \pstThreeDPlaneGrid(0,0)(7,7) - \pstThreeDPlaneGrid[planeGrid=xz](0,0)(7,7) - \pstThreeDPlaneGrid[planeGrid=yz](0,0)(7,7) + \pstThreeDPlaneGrid(0,0)(4,4) + \pstThreeDPlaneGrid[planeGrid=xz](0,0)(4,4) + \pstThreeDPlaneGrid[planeGrid=yz](0,0)(4,4) +\end{pspicture} +\end{LTXexample} +\end{minipage}\hfill +\begin{minipage}{0.49\linewidth} +\begin{LTXexample}[pos=t,wide=false] +\begin{pspicture}(-3,-3.5)(5,4) + \psset{coorType=2}% set it globally! + \pstThreeDCoor[xMin=0,yMin=0,zMin=0,linewidth=2pt] + \psset{linewidth=0.1pt,linecolor=lightgray} + \pstThreeDPlaneGrid(0,0)(4,4) + \pstThreeDPlaneGrid[planeGrid=xz](0,0)(4,4) + \pstThreeDPlaneGrid[planeGrid=yz](0,0)(4,4) \end{pspicture} \end{LTXexample} +\end{minipage} + \begin{LTXexample}[pos=t] \begin{pspicture}(-1,-2)(10,10) @@ -973,20 +1037,15 @@ be used in any way. \verb+subticks+ defines the number of ticklines for both axe \pstThreeDPlaneGrid(0,0)(7,7) \pstThreeDPlaneGrid[planeGrid=xz,planeGridOffset=7](0,0)(7,7) \pstThreeDPlaneGrid[planeGrid=yz](0,0)(7,7) - \pscustom[linewidth=0.1pt,fillstyle=gradient,gradbegin=gray,gradmidpoint=0.5,plotstyle=curve]{ + \pscustom[linewidth=0.1pt,fillstyle=gradient,gradbegin=gray,gradmidpoint=0.5,plotstyle=curve]{% \psset{xPlotpoints=200,yPlotpoints=1} - \psplotThreeD(0,7)(0,0){% - x dup mul y dup mul 2 mul add x 6 mul sub y 4 mul sub 3 add 10 div } + \psplotThreeD(0,7)(0,0){ x dup mul y dup mul 2 mul add x 6 mul sub y 4 mul sub 3 add 10 div } \psset{xPlotpoints=1,yPlotpoints=200,drawStyle=yLines} - \psplotThreeD(7,7)(0,7){% - x dup mul y dup mul 2 mul add x 6 mul sub y 4 mul sub 3 add 10 div } + \psplotThreeD(7,7)(0,7){ x dup mul y dup mul 2 mul add x 6 mul sub y 4 mul sub 3 add 10 div } \psset{xPlotpoints=200,yPlotpoints=1,drawStyle=xLines} - \psplotThreeD(7,0)(7,7){% - x dup mul y dup mul 2 mul add x 6 mul sub y 4 mul sub 3 add 10 div } + \psplotThreeD(7,0)(7,7){ x dup mul y dup mul 2 mul add x 6 mul sub y 4 mul sub 3 add 10 div } \psset{xPlotpoints=1,yPlotpoints=200,drawStyle=yLines} - \psplotThreeD(0,0)(7,0){% - x dup mul y dup mul 2 mul add x 6 mul sub y 4 mul sub 3 add 10 div } - } + \psplotThreeD(0,0)(7,0){ x dup mul y dup mul 2 mul add x 6 mul sub y 4 mul sub 3 add 10 div }} \pstThreeDPlaneGrid[planeGrid=yz,planeGridOffset=7](0,0)(7,7) \end{pspicture} \end{LTXexample} @@ -1000,20 +1059,16 @@ be used in any way. \verb+subticks+ defines the number of ticklines for both axe \pstThreeDPlaneGrid(0,0)(7,7) \pstThreeDPlaneGrid[planeGrid=xz](0,0)(7,7) \pstThreeDPlaneGrid[planeGrid=yz](0,0)(7,7) - \pscustom[linewidth=0.1pt,fillstyle=gradient,gradbegin=gray,gradend=white,gradmidpoint=0.5,plotstyle=curve]{ + \pscustom[linewidth=0.1pt,fillstyle=gradient,gradbegin=gray,gradend=white,gradmidpoint=0.5, + plotstyle=curve]{% \psset{xPlotpoints=200,yPlotpoints=1} - \psplotThreeD(0,7)(0,0){% - x dup mul y dup mul 2 mul add x 6 mul sub y 4 mul sub 3 add 10 div } + \psplotThreeD(0,7)(0,0){ x dup mul y dup mul 2 mul add x 6 mul sub y 4 mul sub 3 add 10 div } \psset{xPlotpoints=1,yPlotpoints=200,drawStyle=yLines} - \psplotThreeD(7,7)(0,7){% - x dup mul y dup mul 2 mul add x 6 mul sub y 4 mul sub 3 add 10 div } + \psplotThreeD(7,7)(0,7){ x dup mul y dup mul 2 mul add x 6 mul sub y 4 mul sub 3 add 10 div } \psset{xPlotpoints=200,yPlotpoints=1,drawStyle=xLines} - \psplotThreeD(7,0)(7,7){% - x dup mul y dup mul 2 mul add x 6 mul sub y 4 mul sub 3 add 10 div } + \psplotThreeD(7,0)(7,7){ x dup mul y dup mul 2 mul add x 6 mul sub y 4 mul sub 3 add 10 div } \psset{xPlotpoints=1,yPlotpoints=200,drawStyle=yLines} - \psplotThreeD(0,0)(7,0){% - x dup mul y dup mul 2 mul add x 6 mul sub y 4 mul sub 3 add 10 div } - } + \psplotThreeD(0,0)(7,0){ x dup mul y dup mul 2 mul add x 6 mul sub y 4 mul sub 3 add 10 div }} \pstThreeDPlaneGrid[planeGrid=xz,planeGridOffset=7](0,0)(7,7) \pstThreeDPlaneGrid[planeGrid=yz,planeGridOffset=7](0,0)(7,7) \end{pspicture} @@ -1021,9 +1076,7 @@ be used in any way. \verb+subticks+ defines the number of ticklines for both axe \medskip The equation for the examples is -\[ -f(x,y)=\frac{x^2+2y^2-6x-4y+3}{10} -\] +\[ f(x,y)=\frac{x^2+2y^2-6x-4y+3}{10} \] \section{Put} There exists a special option for the put macros: @@ -1084,7 +1137,6 @@ The syntax is similiar to the \verb|\rput| macro: \begin{LTXexample}[width=3.25cm] \begin{pspicture}(-2,-1.25)(1,2.25) - \psgrid \psset{Alpha=-60,Beta=30} \pstThreeDCoor[linecolor=blue,% xMin=-1,xMax=2,yMin=-1,yMax=2,zMin=-1,zMax=2] @@ -1121,7 +1173,6 @@ The object can be of any type, in most cases it will be some kind of text. The r \begin{LTXexample}[width=7.25cm] \begin{pspicture}(-4,-4)(3,4) - \psgrid \psset{Alpha=30} \pstThreeDCoor[xMin=-4,yMin=-4,zMin=-4] \pstPlanePut[plane=xy](0,0,-3){\fbox{\Huge\red xy plane}} @@ -1132,7 +1183,6 @@ The object can be of any type, in most cases it will be some kind of text. The r \begin{LTXexample}[width=7.25cm] \begin{pspicture}(-5,-3)(2,3) - \psgrid \pstThreeDCoor[xMin=2,yMin=-4,zMin=-3,zMax=2] \pstPlanePut[plane=xz](0,-3,0){\fbox{\Huge\green\textbf{xz plane}}} \pstPlanePut[plane=xz](0,0,0){\fbox{\Huge\green\textbf{xz plane}}} @@ -1143,7 +1193,6 @@ The object can be of any type, in most cases it will be some kind of text. The r \begin{LTXexample}[width=7.25cm] \begin{pspicture}(-2,-4)(6,2) - \psgrid \pstThreeDCoor[xMin=-4,yMin=-4,zMin=-4,xMax=2,zMax=2] \pstPlanePut[plane=yz](-3,0,0){\fbox{\Huge\blue\textbf{yz plane}}} \pstPlanePut[plane=yz](0,0,0){\fbox{\Huge\blue\textbf{yz plane}}} @@ -1190,7 +1239,7 @@ If you want to keep the labels readable for every view, i.\,e.\ for every value \medskip \begin{LTXexample}[width=6cm] -\begin{pspicture}(-3,-2)(3,4)\psgrid +\begin{pspicture}(-3,-2)(3,4) \psset{origin=lb} \pstThreeDCoor[xMax=3.2,yMax=3.2,zMax=4] \pstThreeDDot[drawCoor=true,linecolor=red](1,-1,2) @@ -1215,7 +1264,7 @@ letters is parallel to the $y$ axis. It's done by setting \medskip \begin{LTXexample}[width=6cm] -\begin{pspicture}(-2,-2)(4,4)\psgrid +\begin{pspicture}(-2,-2)(4,4) \psset{origin=lb} \psset{Alpha=69.3,Beta=19.43} \pstThreeDCoor[xMax=4,yMax=4,zMax=4] @@ -1255,7 +1304,7 @@ with the option \verb|dotstyle=none|.\index{dotstyle} In this case the macro dra when the \verb|drawCoor| option is set to true. \begin{LTXexample}[width=4.25cm] -\begin{pspicture}(-2,-2)(2,2)\psgrid +\begin{pspicture}(-2,-2)(2,2) \pstThreeDCoor[xMin=-2,xMax=2,yMin=-2,yMax=2,zMin=-2,zMax=2] \psset{dotstyle=*,dotscale=2,linecolor=red,drawCoor=true} \pstThreeDDot(-1,1,1) @@ -1267,7 +1316,7 @@ In the following figure the coordinates of the dots are $(a,a,a)$ where a is $-2 \begin{LTXexample}[width=5.25cm] -\begin{pspicture}(-3,-3.25)(2,3.25)\psgrid +\begin{pspicture}(-3,-3.25)(2,3.25) \psset{Alpha=30,Beta=60,dotstyle=square*,dotsize=3pt,% linecolor=blue,drawCoor=true} \pstThreeDCoor[xMin=-3,xMax=3,yMin=-3,yMax=3,zMin=-3,zMax=3] @@ -1290,7 +1339,7 @@ There is no special \verb+polygon+ macro, because you can get nearlx the same wi \verb+\pstThreeDLine+. \begin{LTXexample}[width=4.25cm] -\begin{pspicture}(-2,-2.25)(2,2.25)\psgrid +\begin{pspicture}(-2,-2.25)(2,2.25) \pstThreeDCoor[xMin=-2,xMax=2,yMin=-2,yMax=2,zMin=-2,zMax=2] \psset{dotstyle=*,linecolor=red,drawCoor=true} \pstThreeDDot(-1,1,0.5) @@ -1304,7 +1353,7 @@ There is no special \verb+polygon+ macro, because you can get nearlx the same wi \begin{LTXexample}[width=4.25cm] -\begin{pspicture}(-2,-2.25)(2,2.25)\psgrid +\begin{pspicture}(-2,-2.25)(2,2.25) \pstThreeDCoor[xMin=-2,xMax=2,yMin=-2,yMax=2,zMin=-2,zMax=2] \psset{dotstyle=*,linecolor=red,drawCoor=true} \pstThreeDDot(-1,1,1) @@ -1315,7 +1364,7 @@ There is no special \verb+polygon+ macro, because you can get nearlx the same wi \begin{LTXexample}[width=4.25cm] -\begin{pspicture}(-2,-2.25)(2,2.25)\psgrid +\begin{pspicture}(-2,-2.25)(2,2.25) \psset{Alpha=30,Beta=60,dotstyle=pentagon*,dotsize=5pt,% linecolor=red,drawCoor=true} \pstThreeDCoor[xMin=-2,xMax=2,yMin=-2,yMax=2,zMin=-2,zMax=2] @@ -1326,7 +1375,7 @@ There is no special \verb+polygon+ macro, because you can get nearlx the same wi \end{LTXexample} \begin{LTXexample}[width=4.25cm] -\begin{pspicture}(-2,-2.25)(2,2.25)\psgrid +\begin{pspicture}(-2,-2.25)(2,2.25) \psset{Alpha=30,Beta=-60} \pstThreeDCoor[xMin=-2,xMax=2,yMin=-2,yMax=2,zMin=-2,zMax=2] \pstThreeDDot[dotstyle=square,linecolor=blue,drawCoor=true](-1,1,1) @@ -1337,7 +1386,7 @@ There is no special \verb+polygon+ macro, because you can get nearlx the same wi \begin{LTXexample}[width=4.25cm] -\begin{pspicture}(-2,-2.25)(2,2.25)\psgrid +\begin{pspicture}(-2,-2.25)(2,2.25) \psset{Alpha=30,Beta=-60} \pstThreeDCoor[xMin=-2,xMax=2,yMin=-2,yMax=2,zMin=-2,zMax=2] \pstThreeDDot[dotstyle=square,linecolor=blue,drawCoor=true](-1,1,1) @@ -1376,7 +1425,7 @@ A triangle is given with its three points: When the option \verb|fillstyle| is set to another value than \verb|none| the triangle is filled with the active color or with the one which is set with the option \verb|fillcolor|. \begin{LTXexample}[width=6.25cm] -\begin{pspicture}(-3,-4.25)(3,3.25)\psgrid +\begin{pspicture}(-3,-4.25)(3,3.25) \pstThreeDCoor[xMin=-4,xMax=4,yMin=-3,yMax=5,zMin=-4,zMax=3] \pstThreeDTriangle[fillcolor=yellow,fillstyle=solid,% linecolor=blue,linewidth=1.5pt](5,1,2)(3,4,-1)(-1,-2,2) @@ -1390,15 +1439,15 @@ Especially for triangles the option \verb|linejoin| is important. The default va \begin{figure}[htb] \centering \psset{linewidth=0.2} -\begin{pspicture}(3,2.25)\psgrid +\begin{pspicture}(3,2.25) \psline(0,0)(1,2)(2,0)(3,2) \end{pspicture}% \hspace{0.4cm}% -\begin{pspicture}(4,2.25)\psgrid +\begin{pspicture}(4,2.25) \pscustom{\code{1 setlinejoin}\psline(0,0)(1,2)(2,0)(3,2)(4,0)} \end{pspicture}% \hspace{0.4cm}% -\begin{pspicture}(3,2.25)\psgrid +\begin{pspicture}(3,2.25) \pscustom{\code{2 setlinejoin}\psline(0,0)(1,2)(2,0)(3,2)} \end{pspicture} \caption{The meaning of the option \texttt{linejoin=0|1|2} for drawing lines} @@ -1412,7 +1461,7 @@ The syntax for a 3D square is: \end{verbatim} \begin{LTXexample}[width=5cm] -\begin{pspicture}(-1,-1)(4,3)\psgrid +\begin{pspicture}(-1,-1)(4,3) \pstThreeDCoor[xMin=-3,xMax=1,yMin=-1,yMax=2,zMin=-1,zMax=3] \psset{arrows=->,arrowsize=0.2,linecolor=blue,linewidth=1.5pt} \pstThreeDLine[linecolor=green](0,0,0)(-2,2,3)\uput[45](1.5,1){$\vec{o}$} @@ -1426,7 +1475,7 @@ Squares are nothing else than a polygon with the starting point $P_o$ given with \begin{LTXexample}[width=7.25cm] -\begin{pspicture}(-3,-2)(4,3)\psgrid +\begin{pspicture}(-3,-2)(4,3) \pstThreeDCoor[xMin=-3,xMax=3,yMin=-1,yMax=4,zMin=-1,zMax=3] {\psset{fillcolor=blue,fillstyle=solid,drawCoor=true,dotstyle=*} \pstThreeDSquare(-2,2,3)(4,0,0)(0,1,0)} @@ -1507,6 +1556,79 @@ These are the origin vector $\vec{o}$ and three direction vectors $\vec{u}$, $\v \end{pspicture} \end{LTXexample} + +\begin{verbatim} +\psBox[<options>](<vector o>){width}{depth}{height} +\end{verbatim} + +The origin vector $\vec{o}$ determines the left corner of the box. + + +\begin{LTXexample}[width=6.25cm] +\begin{pspicture}(-3,-2)(3,5) +\psset{Alpha=2,Beta=10} +\pstThreeDCoor[zMax=5,yMax=7] + \psBox(0,0,0){2}{4}{3} +\end{pspicture} +\end{LTXexample} + +\begin{LTXexample}[width=6.25cm] +\begin{pspicture}(-3,-3)(3,3) +\psset{Beta=50} +\pstThreeDCoor[xMax=3,zMax=6,yMax=6] + \psBox[showInside=false](0,0,0){2}{5}{3} +\end{pspicture} +\end{LTXexample} + + +\begin{LTXexample}[width=6.25cm] +\begin{pspicture}(-3,-4)(3,2) +\psset{Beta=40} +\pstThreeDCoor[zMax=3] + \psBox[RotY=20,showInside=false](0,0,0){2}{5}{3} +\end{pspicture} +\end{LTXexample} + + + +\begin{LTXexample}[width=6.25cm] +\psset{Beta=10,xyzLight=-7 3 4} +\begin{pspicture}(-3,-2)(3,4) +\pstThreeDCoor[zMax=5] + \psBox(0,0,0){2}{5}{3} +\end{pspicture} +\end{LTXexample} + +\begin{LTXexample}[width=6.25cm] +\psset{Beta=10,xyzLight=-7 3 4} +\begin{pspicture}(-3,-2)(3,4) +\psset{Alpha=110} +\pstThreeDCoor[zMax=5] + \psBox(0,0,0){2}{5}{3} +\end{pspicture} +\end{LTXexample} + +\begin{LTXexample}[width=6.25cm] +\psset{Beta=10,xyzLight=-7 3 4} +\begin{pspicture}(-3,-2)(3,4) +\psset{Alpha=200} +\pstThreeDCoor[zMax=5] + \psBox(0,0,0){2}{5}{3} +\end{pspicture} +\end{LTXexample} + +\begin{LTXexample}[width=6.25cm] +\psset{Beta=10,xyzLight=-7 3 4} +\begin{pspicture}(-3,-2)(3,4) +\psset{Alpha=290} +\pstThreeDCoor[zMax=5] + \psBox(0,0,0){2}{5}{3} +\end{pspicture} +\end{LTXexample} + + + + \section{Ellipses and circles} The equation for a two dimensional ellipse (figure \ref{fig:ellipse})is: @@ -1612,7 +1734,7 @@ shortest way into the second one $\vec{u}$, then you'll get the positive rotati \begin{LTXexample}[width=4.25cm] -\begin{pspicture}(-2,-2.25)(2,2.25)\psgrid +\begin{pspicture}(-2,-2.25)(2,2.25) \pstThreeDCoor[xMax=2,yMax=2,zMax=2] \pstThreeDDot[linecolor=red,drawCoor=true](1,0.5,0.5) \psset{linecolor=blue, linewidth=1.5pt} @@ -1636,7 +1758,7 @@ The macro \verb|\pstThreeDCircle| is nothing else than a synonym for \verb|\pstT In the following example the circle is drawn with only $20$ plotpoints and the option \verb|showpoints=true|. \begin{LTXexample}[width=4.25cm] -\begin{pspicture}(-2,-1.25)(2,2.25)\psgrid +\begin{pspicture}(-2,-1.25)(2,2.25) \pstThreeDCoor[xMax=2,yMax=2,zMax=2,linecolor=black] \psset{linecolor=red,linewidth=2pt,plotpoints=20,showpoints=true} \pstThreeDCircle(1.6,+0.6,1.7)(0.8,0.4,0.8)(0.8,-0.8,-0.4) @@ -1810,6 +1932,55 @@ missing, then \verb+(0,0,0)+ are taken into account. } \end{LTXexample} + + +% --------------------------------------------------------------------------------------- +\section{\CMD{psCylinder}} +% --------------------------------------------------------------------------------------- +The syntax is + +\begin{verbatim} +\psCylinder[Parameter](x,y,z){radius}{height} +\end{verbatim} + +\verb+(x,y,z)+ defines the center of the lower part of the cylinder. If it is +missing, then \verb+(0,0,0)+ are taken into account. + +\begin{LTXexample}[width=7cm] +\begin{pspicture}(-3,-2)(3,7) +\psset{Beta=10} +\pstThreeDCoor[zMax=7] + \psCylinder[increment=5]{2}{5} +\end{pspicture} +\end{LTXexample} + +\begin{LTXexample}[width=7cm] +\begin{pspicture}(-3,-2)(3,6) +\psset{Beta=60} +\pstThreeDCoor[zMax=9] + \psCylinder[RotX=10,increment=5]{3}{5} + \pstThreeDLine[linecolor=red](0,0,0)(0,0,8.5) +\end{pspicture} +\end{LTXexample} + +\begin{LTXexample}[width=7cm] +\begin{pspicture}(-3,-2)(3,6) +\psset{Beta=60} +\pstThreeDCoor[zMax=9] + \psCylinder[RotX=10,RotY=45,showInside=false]{2}{5} + \pstThreeDLine[linecolor=red](0,0,0)(0,0,8.5) +\end{pspicture} +\end{LTXexample} + +\begin{LTXexample}[width=7cm] +\begin{pspicture}(-3,-2)(3,6) +\psset{Beta=60} +\pstThreeDCoor[zMax=9] + \psCylinder[RotY=-45](0,1,0){2}{5} +\end{pspicture} +\end{LTXexample} + + \clearpage % --------------------------------------------------------------------------------------- @@ -1848,22 +2019,40 @@ otherwise \verb|xcolor| cannot read the values. A white color is given by \verb| \begin{LTXexample}[width=4cm] \begin{pspicture}(-2,-1)(2,5) \pstThreeDCoor[xMax=2,yMax=2,zMin=0,zMax=6,IIIDticks]% -\pstParaboloid{5}{1}% Höhe 5 und Radius 1 +\pstParaboloid{5}{1}% Hoehe 5 und Radius 1 \end{pspicture} \end{LTXexample} -\begin{LTXexample}[pos=t] -\begin{pspicture}(-.5\linewidth,-1)(.5\linewidth,7.5) -\pstParaboloid[showInside=false,SegmentColor={[cmyk]{0.8,0.1,.11,0}}]{4}{5}% -\pstThreeDCoor[xMax=3,yMax=3,zMax=7.5,IIIDticks] +\begin{LTXexample}[width=.65\linewidth,wide] +\begin{pspicture}(-.25\linewidth,-1)% + (.25\linewidth,7.5) +\pstParaboloid[showInside=false, + SegmentColor={[cmyk]{0.8,0.1,.11,0}}]{4}{5}% +\pstThreeDCoor[xMax=3,yMax=3, + zMax=7.5,IIIDticks] \end{pspicture} \end{LTXexample} +\begin{LTXexample}[width=9cm,wide] +\begin{pspicture}(0,-3)(7,5) +\pstThreeDCoor[xMax=2,yMax=13,zMin=0,zMax=6,IIIDticks]% +\multido{\rA=2.0+2.5, + \rB=0.15+0.20}{5}{% + \pstParaboloid[% + SegmentColor={[cmyk]% + {\rB,0.1,0.11,0.1}}]% + (0,\rA,0){5}{1}}% height 5 and radius 1 +\pstThreeDLine[linestyle=dashed]{->}(0,0,5)(0,13,5) +\end{pspicture} +\end{LTXexample} + + +\clearpage \section{Spheres}\label{sec:spheres} \begin{LTXexample}[width=6.25cm] -\begin{pspicture}(-4,-2.25)(2,4.25)\psgrid +\begin{pspicture}(-4,-2.25)(2,4.25) \pstThreeDCoor[xMin=-3,yMax=2] \pstThreeDSphere(1,-1,2){2} \pstThreeDDot[dotstyle=x,linecolor=red,drawCoor=true](1,-1,2) @@ -1891,7 +2080,7 @@ otherwise \verb|xcolor| cannot read the values. A white color is given by \verb| \begin{LTXexample}[width=6.25cm] -\begin{pspicture}(-4,-2.25)(2,4.25)\psgrid +\begin{pspicture}(-4,-2.25)(2,4.25) \pstThreeDCoor[xMin=-3,yMax=2] \pstThreeDSphere[SegmentColor={[cmyk]{0,0,0,0}}](1,-1,2){2} \pstThreeDDot[dotstyle=x,linecolor=red,drawCoor=true](1,-1,2) @@ -1969,7 +2158,7 @@ In fact of the inner loop it is only possible to get a closed curve in the defin Drawing three dimensional functions with curves which are transparent makes it difficult to see if a point is before or behind another one. \verb|\psplotThreeD| has an option \verb|hiddenLine| for a primitive hidden line mode, which only works when the y-intervall is defined in a way that $y_2>y_1$. Then every new curve is plotted over the forgoing one and filled with the color white. Figure \ref{fig:3dfunc-hidden} is the same as figure \ref{fig:3dfunc}, only with the option \verb|hiddenLine=true|. \begin{lstlisting} -\begin{pspicture}(-6,-4)(6,5)\psgrid +\begin{pspicture}(-6,-4)(6,5) \psset{Beta=15} \psplotThreeD[plotstyle=line,drawStyle=xLines,% is the default anyway yPlotpoints=50,xPlotpoints=50,linewidth=1pt](-4,4)(-4,4){% @@ -1983,7 +2172,7 @@ Drawing three dimensional functions with curves which are transparent makes it d \begin{figure*} \centering -\begin{pspicture}(-6,-4)(6,5)\psgrid +\begin{pspicture}(-6,-4)(6,5) \psset{Beta=15} \psplotThreeD[% plotstyle=curve,% @@ -2001,7 +2190,7 @@ Drawing three dimensional functions with curves which are transparent makes it d \begin{figure*} \centering \begin{pspicture}(-6,-4)(6,5) - \psgrid + \psset{Alpha=45,Beta=15} \psplotThreeD[% plotstyle=curve,% @@ -2020,7 +2209,7 @@ Drawing three dimensional functions with curves which are transparent makes it d \begin{figure*} \centering \begin{pspicture}(-6,-4)(6,5) - \psgrid + \psset{Alpha=45,Beta=15} \psplotThreeD[% plotstyle=line,% @@ -2038,7 +2227,7 @@ Drawing three dimensional functions with curves which are transparent makes it d \begin{figure*} \centering \begin{pspicture}(-6,-4)(6,5) - \psgrid + \psset{Alpha=45,Beta=15} \psplotThreeD[% plotstyle=curve,% @@ -2061,7 +2250,7 @@ Drawing three dimensional functions with curves which are transparent makes it d \begin{figure*} \centering \begin{pspicture}(-6,-4)(6,5) - \psgrid + \psset{Alpha=45,Beta=15} \psplotThreeD[% plotstyle=line,% @@ -2079,7 +2268,7 @@ Drawing three dimensional functions with curves which are transparent makes it d \begin{figure*}[htbp] \centering \begin{pspicture}(-6,-4)(6,5) - \psgrid + \psset{Alpha=45,Beta=15} \psplotThreeD[% plotstyle=curve,% @@ -2099,7 +2288,7 @@ Drawing three dimensional functions with curves which are transparent makes it d \begin{figure*}[htbp] \centering \begin{pspicture}(-6,-4)(6,5) - \psgrid + \psset{Alpha=45,Beta=15} \psplotThreeD[% plotstyle=curve,% @@ -2150,7 +2339,7 @@ In the example the $t$ value is divided by $600$ for the \verb|z| coordinate, be which is the same as \verb|(0,0)| for the parameter \verb|u|. \begin{LTXexample}[width=6.75cm] -\begin{pspicture}(-3.25,-2.25)(3.25,5.25)\psgrid +\begin{pspicture}(-3.25,-2.25)(3.25,5.25) \parametricplotThreeD[xPlotpoints=200,linecolor=blue,% linewidth=1.5pt,plotstyle=curve](0,2160){% 2.5 t cos mul 2.5 t sin mul t 600 div} @@ -2180,7 +2369,7 @@ z = \sin u and at last both together is also not a problem when having these parametric functions together in one \verb|pspicture| environment (see figure \ref{fig:paraSpheres}). \begin{lstlisting} -\begin{pspicture}(-1,-1)(1,1)\psgrid +\begin{pspicture}(-1,-1)(1,1) \parametricplotThreeD[plotstyle=curve,yPlotpoints=40](0,360)(0,360){% t cos u sin mul t cos u cos mul t sin } @@ -2194,7 +2383,7 @@ and at last both together is also not a problem when having these parametric fun \begin{figure}[htbp] {\psset{xunit=1.75cm,yunit=1.75cm} \begin{pspicture}(-1,-1)(1,1) -\psgrid + \setIIIDplotDefaults %\pstThreeDCoor[xMin=-1,xMax=1,yMin=-1,yMax=1,zMin=-1,zMax=1] \parametricplotThreeD[plotstyle=curve](0,360)(0,360){% @@ -2204,7 +2393,7 @@ and at last both together is also not a problem when having these parametric fun } \end{pspicture}\hfill% \begin{pspicture}(-1,-1)(1,1) -\psgrid + %\pstThreeDCoor[xMin=-1,xMax=1,yMin=-1,yMax=1,zMin=-1,zMax=1] \parametricplotThreeD[plotstyle=curve](0,360)(0,360){% u cos t sin mul @@ -2214,7 +2403,7 @@ and at last both together is also not a problem when having these parametric fun \end{pspicture}}\hfill {\psset{xunit=2.5cm,yunit=2.5cm} \begin{pspicture}(-1,-1)(1,1) -\psgrid + \pstThreeDCoor[xMin=-1,xMax=1,yMin=-1,yMax=1,zMin=-1,zMax=1] \parametricplotThreeD[plotstyle=curve](0,360)(0,360){% t cos u sin mul @@ -2504,9 +2693,12 @@ error. In this case save prevent expanding with e.g.: \verb+\psset{nameX=$\noexp \section{Credits} Bruce Burlton | Christophe Jorssen | Chris Kuklewicz | Thorsten Suhling +\bgroup \nocite{*} - +\raggedright \bibliographystyle{plain} \bibliography{pst-3dplot-doc} +\egroup + \end{document} diff --git a/Master/texmf-dist/doc/generic/pst-3dplot/tb72voss3d.pdf b/Master/texmf-dist/doc/generic/pst-3dplot/tb72voss3d.pdf Binary files differdeleted file mode 100644 index ef3bc1f69bb..00000000000 --- a/Master/texmf-dist/doc/generic/pst-3dplot/tb72voss3d.pdf +++ /dev/null |