diff options
author | Karl Berry <karl@freefriends.org> | 2019-02-17 23:01:29 +0000 |
---|---|---|
committer | Karl Berry <karl@freefriends.org> | 2019-02-17 23:01:29 +0000 |
commit | 504fe273e928d794b6d3f78a106116142faca8f7 (patch) | |
tree | 05717df847eafa0b3bc002a5a6900d5fa3186a45 /Master/texmf-dist/doc/generic/poormanlog | |
parent | 51cb189341f942c521df0a0f50ff14fcc47259c9 (diff) |
poormanlog (17feb19)
git-svn-id: svn://tug.org/texlive/trunk@50044 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Master/texmf-dist/doc/generic/poormanlog')
-rw-r--r-- | Master/texmf-dist/doc/generic/poormanlog/README | 145 | ||||
-rw-r--r-- | Master/texmf-dist/doc/generic/poormanlog/poormanlog.tex | 421 |
2 files changed, 566 insertions, 0 deletions
diff --git a/Master/texmf-dist/doc/generic/poormanlog/README b/Master/texmf-dist/doc/generic/poormanlog/README new file mode 100644 index 00000000000..fc5f096fdc5 --- /dev/null +++ b/Master/texmf-dist/doc/generic/poormanlog/README @@ -0,0 +1,145 @@ +DOCUMENTATION OF POORMANLOG (v0.04, 2019/02/17) +=========================== + +(see License at bottom of this file) + +The poormanlog.tex file has no dependencies. It provides (expandable) +macros for base 10 logarithms and powers of 10 with a bit less than 9 +digits of precision (\PMLogZ and \PMPowTen), but its main use will be +in conjunction with xintexpr.sty, as it provides to the latter +functions log10() and pow10() and does on-demand modification of the +power operators ** or ^ to compute according to pow10(y*log10(x)). + +This usage will become obsolete when xintexpr will natively implement +in arbitrary precision the log10() and pow10() functions. + +The file can be used with Plain TeX (\input poormanlog) or as a +regular LaTeX package. + + +Example (with Plain TeX) +------------------------ + + \input xintexpr.sty + \input poormanlog.tex + + \xinteval{log10(3.14159265), pow10(2.71828183)} + + \poormanloghack{**} + + \xinteval{3.14159265**2.71828183} + + \poormanloghack{^} + + \xinteval{3.14159265^2.71828183} + + \bye + + +User interface +-------------- + +\PMLogZ{#1} expands in two steps. + +input: #1 is a mantissa ddddddddd (it may be an f-expandable macro) + with exactly 9 digits (the first one must not be zero) +output: 9 digits xxxxxxxxx such that log10(d.dddddddd) is about 0.xxxxxxxxx + +It seems from testing that absolute error is not much more than 1 unit in +the last place, and result differs from rounded mathematical value by at +most 1 unit in the 9th digit. (attention not rigorously proven). + +\PMPowTen{#1} expands in two steps. + +input: #1 is (or expands to) exactly 9 digits ddddddddd representing + 0.ddddddddd +output: 9 digits xxxxxxxxx, first one not zero, + such that 10^0.ddddddddd is about x.xxxxxxxx + +It seems from testing that absolute error is less than 2 units in +the last place, and result differs from rounded mathematical value by at +most 2 units in the 9th digit. (attention not rigorously proven). + +\PoorManLogBaseTen{#1} + + in presence of xintfrac this will accept input as recognized by xintfrac + and produce the logarithm in base 10 with an error (believed to be at + most) about 1 unit in the 9th (i.e. last) fractional digit. + + xintfrac may be loaded before or after. + +\PoorManPowerOfTen{#1} + + in presence of package xintfrac this will accept input as recognized by + xintfrac and produce the 10^#1 with 9 digits of float precision, with an + error (believed to be) at most 2 units in the last place. Of course for + this the input must be precise enough to have 9 fractional digits of + **fixed point** precision. + + xintfrac may be loaded before or after. + +\PoorManPower{#1}{#2} + + in presence of package xintfrac computes #1 to the power #2 + + xintfrac may be loaded before or after. + +log10() + + the log10() function is made available, if xintexpr.sty is loaded, for + usage within \xinteval and \xintfloateval. If a log10() function is + already defined in xintexpr it will not be overwritten + + xintexpr may be loaded before or after. + +pow10() + + pow10() function is made available, if xintexpr.sty is loaded, for usage + within \xinteval and \xintfloateval. If a pow10() function is already + defined in xintexpr it will not be overwritten + + xintexpr may be loaded before or after. + +modification of ** or ^ operators in \xintexpr and \xintfloatexpr + + \poormanloghack{**} + \poormanloghack{^} + + They will now use pow10(y*log10(x)) formula to compute x to the power y + + Of course this means drop of precision, but allows non-integer exponents. + (half-integer exponents are already accepted in \xintfloatexpr natively). + + ** xintexpr must have been loaded before ** + +Example with LaTeX : + + \documentclass{article} + \usepackage{xintexpr} + \usepackage{poormanlog}% makes log10() and pow10() available + \poormanloghack{**} % modifies ** operator + \begin{document} + \xinteval{3.14159265**2.71828183, log10(3.14159265), pow10(2.71828)} + \end{document} + + +LICENSE +------- + +Copyright (C) 2019, Jean-Francois Burnol. + +This Work may be distributed and/or modified under the conditions of the +LaTeX Project Public License version 1.3c. This version of this license +is in + + <http://www.latex-project.org/lppl/lppl-1-3c.txt> + +and version 1.3 or later is part of all distributions of LaTeX version +2005/12/01 or later. + +This Work has the LPPL maintenance status `author-maintained'. + +The Author of this Work is Jean-Francois Burnol. + +This Work consists of files poormanlog.tex, poormanlog.sty and the +README. diff --git a/Master/texmf-dist/doc/generic/poormanlog/poormanlog.tex b/Master/texmf-dist/doc/generic/poormanlog/poormanlog.tex new file mode 100644 index 00000000000..e29c2089010 --- /dev/null +++ b/Master/texmf-dist/doc/generic/poormanlog/poormanlog.tex @@ -0,0 +1,421 @@ +%% poormanlog.tex v0.04, 2019/02/17 +%% +%% Copyright (C) 2019, Jean-Francois Burnol +%% +%% This Work may be distributed and/or modified under the +%% conditions of the LaTeX Project Public License version 1.3c. +%% +%% This Work has the LPPL maintenance status `author-maintained`. +%% +%% The Author of this Work is Jean-Francois Burnol (jfbu AT free DOT fr) +%% +%% This Work consists of files poormanlog.tex, poormanlog.sty and the +%% README +%% +%% ************ BARELY TESTED **************** +%% >>>>>>> WARNING FOR LACK OF TIME I HAVE NOT YET VALIDATED FULLY <<<<< +%% >>>>>>> NOR HAVE I MADE PRECISE ESTIMATES. USE AT YOUR OWN RISK <<<<< +%% (bug reports welcome) +%% ************ BARELY TESTED **************** +% +% Package macro private prefix: \PML@ +% +% SEE README FOR USER DOCUMENTATION +% +\ifx\numexpr\JFBUundefined + \message{**** poormanlog requires e-TeX **** LOADING ABORTED ****}% +\endinput\fi +% +% CATCODES (AND AUXILIARIES FOR PLAIN TEX) +% +\expandafter\edef\csname @tempa\endcsname +{% + \catcode0 \the\catcode0 % + \catcode`\noexpand\_ \the\catcode`\_ % + \catcode`\noexpand\^ \the\catcode`\^ % + \catcode`\noexpand\: \the\catcode`\: % + \catcode`\noexpand\* \the\catcode`\* % + \catcode`\noexpand\@ \the\catcode`\@ % +}% +\catcode`\@ 11 % +\if1\ifx\@namedef\JFBUundefined1\else\ifx\@namedef\relax1\else0\fi\fi + \def\@namedef#1{\expandafter\def\csname #1\endcsname}% + \def\@nameuse#1{\csname #1\endcsname}% +\fi +\long\def\@gobble#1{}% +% +% TABLES +% +% The algorithm for \PMLogZ is the reverse engineering of the one I did +% for \PMPowTen. I had an other approach for log10 initially but it was +% less accurate than what testings of \PMPowTen showed. The same accuracy, even +% slightly better, was then obtain with \PMLogZ by imitating the latter +% algorithm (the original was faster but achieved only about 6ulp max error, +% although most of the time the result was correct up to +2 or -2, +% the present one appears to achieve not much worse than 1ulp maximal error). +% +% method of CORDIX type combined with usage of \numexpr "scaling" operations +% +\@namedef{PML@1@10}{}% +\@namedef{PML@1@9}{*1349157701/1071674055}% +\@namedef{PML@1@8}{*946017331/596896583}% +\@namedef{PML@1@7}{*495834591/248505967}% +\@namedef{PML@1@6}{*870020383/346361353}% +\@namedef{PML@1@5}{*1499219281/474094764}% +\@namedef{PML@1@4}{*1978893117/497075477}% +\@namedef{PML@1@3}{*368683859/73562101}% +\@namedef{PML@1@2}{*1295603161/205339263}% +\@namedef{PML@1@1}{*1268797901/159732192}% +\@namedef{PML@1@0}{*10}% +% +\@namedef{PML@P1@10}{}% +\@namedef{PML@P1@9}{*1071674055/1349157701}% +\@namedef{PML@P1@8}{*596896583/946017331}% +\@namedef{PML@P1@7}{*248505967/495834591}% +\@namedef{PML@P1@6}{*346361353/870020383}% +\@namedef{PML@P1@5}{*474094764/1499219281}% +\@namedef{PML@P1@4}{*497075477/1978893117}% +\@namedef{PML@P1@3}{*73562101/368683859}% +\@namedef{PML@P1@2}{*205339263/1295603161}% +\@namedef{PML@P1@1}{*159732192/1268797901}% +\@namedef{PML@P1@0}{/10}% +% +\@namedef{PML@2@12}{*1759219355/1983514284}% +\@namedef{PML@2@11}{*1038555297/1159316503}% +\@namedef{PML@2@10}{*1446048050/1598130251}% +\@namedef{PML@2@9}{*200795995/219705814}% +\@namedef{PML@2@8}{*19701438/21342313}% +\@namedef{PML@2@7}{*699035545/749721341}% +\@namedef{PML@2@6}{*342419462/363593499}% +\@namedef{PML@2@5}{*262151601/275592401}% +\@namedef{PML@2@4}{*643237001/669488001}% +\@namedef{PML@2@3}{*909207215/936896697}% +\@namedef{PML@2@2}{*14850599/15150601}% +\@namedef{PML@2@1}{*119401199/120601201}% +\@namedef{PML@2@0}{}% +\@namedef{PML@2@-1}{*120601201/119401199}% +\@namedef{PML@2@-2}{*15150601/14850599}% +\@namedef{PML@2@-3}{*936896697/909207215}% +\@namedef{PML@2@-4}{*669488001/643237001}% +\@namedef{PML@2@-5}{*275592401/262151601}% +\@namedef{PML@2@-6}{*363593499/342419462}% +\@namedef{PML@2@-7}{*749721341/699035545}% +\@namedef{PML@2@-8}{*21342313/19701438}% +\@namedef{PML@2@-9}{*219705814/200795995}% +\@namedef{PML@2@-10}{*1598130251/1446048050}% +\@namedef{PML@2@-11}{*1159316503/1038555297}% +\@namedef{PML@2@-12}{*1983514284/1759219355}% +% +%\@namedef{PML@3@9}{*166909427/168418392}% +%\@namedef{PML@3@8}{*233438999/235314001}% +%\@namedef{PML@3@7}{*921380630/927852921}% +\@namedef{PML@3@6}{*92333611/92889278}% +\@namedef{PML@3@5}{*957602399/962402401}% +\@namedef{PML@3@4}{*1871252999/1878753001}% +\@namedef{PML@3@3}{*739112555/741333222}% +\@namedef{PML@3@2}{*2997001/3003001}% +\@namedef{PML@3@1}{*11994001/12006001}% +\@namedef{PML@3@0}{}% +\@namedef{PML@3@-1}{*12006001/11994001}% +\@namedef{PML@3@-2}{*3003001/2997001}% +\@namedef{PML@3@-3}{*741333222/739112555}% +\@namedef{PML@3@-4}{*1878753001/1871252999}% +\@namedef{PML@3@-5}{*962402401/957602399}% +\@namedef{PML@3@-6}{*92889278/92333611}% +%\@namedef{PML@3@-7}{*927852921/921380630}% +%\@namedef{PML@3@-8}{*235314001/233438999}% +%\@namedef{PML@3@-9}{*168418392/166909427}% +% +\@namedef{PML@4@5}{*47988001/48012001}% +\@namedef{PML@4@4}{*74985001/75015001}% +\@namedef{PML@4@3}{*399940003/400060003}% +\@namedef{PML@4@2}{*299970001/300030001}% +\@namedef{PML@4@1}{*1199940001/1200060001}% +\@namedef{PML@4@0}{}% +\@namedef{PML@4@-1}{*1200060001/1199940001}% +\@namedef{PML@4@-2}{*300030001/299970001}% +\@namedef{PML@4@-3}{*400060003/399940003}% +\@namedef{PML@4@-4}{*75015001/74985001}% +\@namedef{PML@4@-5}{*48012001/47988001}% +%% +%% +%% LOG IN BASE 10 : \the\numexpr\PML@ ddddddddd.\relax +%% +%% Exactly 9 digits representing d.dddddddd, first one at least 1. +%% Goal is to compute log10(d.dddddddd) with 9 digits +%% +\def\PML@#1.{\expandafter\PML@a\the\numexpr#1/100000.#1.}% +\def\PML@a#1.{\expandafter\PML@ai + \the\numexpr + \ifnum#1>2817 % + \ifnum#1>5622 % + \ifnum#1>7078 \ifnum#1>8912 10\else 9\fi + \else 8% + \fi + \else + \ifnum#1>3547 \ifnum#1>4466 7\else 6\fi + \else 5% + \fi + \fi + \else + \ifnum#1>1412 % + \ifnum#1>1777 \ifnum#1>2238 4\else 3\fi + \else 2% + \fi + \else + \ifnum#1>1121 1\else 0\fi + \fi + \fi + .% +}% +\def\PML@ai #1.#2.% + {\expandafter\PML@b\the\numexpr#2\@nameuse{PML@1@#1}.% + )*774923109/1784326399+#100000000}% +% +\def\PML@b#1.{\expandafter\PML@bi\the\numexpr#1/1000000.#1.}% +\def\PML@bi#1.{\expandafter\PML@bii + \the\numexpr + \ifnum#1>994 % + \ifnum#1>1056 % + \ifnum#1>1088 % + \ifnum#1>1110 \ifnum#1>1121 12\else 11\fi + \else \ifnum#1>1099 10\else 9\fi + \fi + \else + \ifnum#1>1066 \ifnum#1>1077 8\else 7\fi + \else 6% + \fi + \fi + \else + \ifnum#1>1024 % + \ifnum#1>1035 \ifnum#1>1045 5\else 4\fi + \else 3% + \fi + \else + \ifnum#1>1004 \ifnum#1>1014 2\else 1\fi + \else 0% + \fi + \fi + \fi + \else + \ifnum#1>936 % + \ifnum#1>965 % + \ifnum#1>974 \ifnum#1>984 -1\else -2\fi + \else -3% + \fi + \else + \ifnum#1>945 \ifnum#1>955 -4\else -5\fi + \else -6% + \fi + \fi + \else + \ifnum#1>908 % + \ifnum#1>918 \ifnum#1>927 -7\else -8\fi + \else -9% + \fi + \else + \ifnum#1>890 \ifnum#1>899 -10\else -11\fi + \else -12% + \fi + \fi + \fi + \fi + .% +}% +\def\PML@bii#1.#2.% + {\expandafter\PML@c\the\numexpr#2\@nameuse{PML@2@#1}.+#10000000}% +% +\def\PML@c#1.% + {\expandafter\PML@ci\the\numexpr#1/1000000-1000.#1.}% +\def\PML@ci#1.#2.% + {\expandafter\PML@d\the\numexpr#2\@nameuse{PML@3@#1}.+#1000000}% +% +\def\PML@d#1.% + {\expandafter\PML@di\the\numexpr#1/100000-10000.#1.}% +\def\PML@di#1.#2.% + {\expandafter\PML@e\the\numexpr#2\@nameuse{PML@4@#1}-1000000000.+#100000}% +% we have reached +% x = 1 + t/10^9 represented by t +% log(x) represented by 10^9 times (t/10^9 (2.10^9 - t)/2.10^9) +\def\PML@e #1.{(#1*(2000000000-#1)/2000000000+}% +%% +%% +%% POWER OF TEN : \the\numexpr\PML@Pa ddddddddd.\relax +%% +%% Exactly 9 digits in input representing number 0.ddddddddd +%% Goal is to compute 10^0.ddddddddd with 9 digits. +%% +\def\PML@Pa#1#2{\expandafter\PML@Pai\the\numexpr#1#2/10.#1#2}% +\def\PML@Pai#1.#2.{% + \expandafter\PML@Pb\the\numexpr(#2-#100000000)*2079839159/90326267.% + \@nameuse{PML@P1@#1}% +}% +% problem with minus sign interfering with token count so simply fetch all +% the -#1 is to re-use constants already defined for log +\def\PML@Pb#1.{\expandafter\PML@Pbi\the\numexpr-#1/100000000.#1.}% +\def\PML@Pbi#1.#2.% + {\expandafter\PML@Pc\the\numexpr#2+#100000000.\@nameuse{PML@2@#1}}% +% \pm 0.00d, d at most 5, 8 digits integer N for N/10^10 +\def\PML@Pc#1.{\expandafter\PML@Pci\the\numexpr-#1/10000000.#1.}% +\def\PML@Pci#1.#2.% + {\expandafter\PML@Pd\the\numexpr#2+#10000000.\@nameuse{PML@3@#1}}% +% \pm 0.000d, d at most 5, 7 digits +\def\PML@Pd#1.{\expandafter\PML@Pdi\the\numexpr-#1/1000000.#1.}% +\def\PML@Pdi#1.#2.% + {\expandafter\PML@Pe\the\numexpr#2+#1000000.\@nameuse{PML@4@#1}}% +% \pm 0.0000d, d at most 5, 6 digits integer N for N/10^10 +% exp of that must fit in 10 digits, and there will be leading 1, hence +% only 9 digits available for fitting x + x^2/2, x = Ne-10 +% so we must compute via numexpr +% 10^9*x*(1+x/2) = 10^9*N/10^10*(2.10^10+ N)/2.10^10 +% with N in absolute value at most 500000. +% N*(2.10^9+N/10)/2.10^10 which is about N/10 +\def\PML@Pe#1.{(1000000000+#1*(200000000+#1/100)/2000000000)}% +%% +%% +%% BASIC USER INTERFACE : \PMLogZ, \PMPowTen +%% +% Another way of inserting leading zeros is found in xint source code, +% maybe faster. "Z" is for reminding that output has leading zeros. +\def\PMLogZ#1% +{% + \romannumeral-`0\expandafter\@gobble + % \PML@ never gives something negative, hopefully... + \the\numexpr1000000000+\expandafter\PML@\romannumeral-`0#1.\relax +}% +\def\PMPowTen#1{\the\numexpr\expandafter\PML@Pa\romannumeral-`0#1.\relax}% +%% +%% +%% ADD-ONS TO XINTFRAC : \PoorManLogBaseTen{#1}, \PoorManPowerOfTen{#1} +%% and \PoorManPower{#1}{#2} +%% Does not matter if xintfrac loaded before or after. +%% +\def\PoorManLogBaseTen{\romannumeral0\poormanlogbaseten}% +\def\poormanlogbaseten #1% + {\expandafter\PML@logbaseten\romannumeral0\XINTinfloat[9]{#1}}% +\def\PML@logbaseten#1[#2]% +{% + \xintiiadd{\xintDSx{-9}{\the\numexpr#2+8\relax}}{\the\numexpr\PML@#1.}% + [-9]% +}% +% +\def\PoorManPowerOfTen{\the\numexpr\poormanpoweroften}% +\def\poormanpoweroften #1% + {\expandafter\PML@powoften\romannumeral0\xintraw{#1}}% +\catcode`\_ 11 % +\def\PML@powoften#1{% + \xint_UDzerominusfork + #1-\PML@powoften@zero + 0#1\PML@powoften@neg + 0-\PML@powoften@pos + \krof #1% +}% +\catcode`\_ 8 % +\def\PML@powoften@zero 0{1\relax}%/1[0] +\def\PML@powoften@pos#1[#2]{% + \expandafter\PML@powoften@pos@a\romannumeral0\xintround{9}{#1[#2]}.% +}% +\def\PML@powoften@pos@a#1.#2.{\PML@Pa#2.\expandafter[\the\numexpr-8+#1]}% +\def\PML@powoften@neg#1[#2]{% + \expandafter\PML@powoften@neg@a\romannumeral0\xintround{9}{#1[#2]}.% +}% +\def\PML@powoften@neg@a#1.#2.{\ifnum#2=0 \xint_afterfi{1\relax/1[#1]}\else + \expandafter\expandafter\expandafter + \PML@Pa\expandafter\@gobble\the\numexpr2000000000-#2.% + \expandafter[\the\numexpr-9+#1\expandafter]\fi +}% +% +\def\PoorManPower#1#2% #1**#2 +{% + \PoorManPowerOfTen{\xintMul{#2}{\PoorManLogBaseTen{#1}}}% +}% +%% +%% ADD-ONS TO XINTEXPR : +%% +%% log10(), pow10() +%% +%% Does not matter if xintexpr loaded before or after. +%% +\catcode`\_ 11 \catcode`\: 11 % +\unless\ifcsname XINT_expr_func_log10\endcsname +\@namedef{XINT_expr_func_log10}#1#2#3% +{% + \expandafter #1\expandafter #2\csname.=% + \XINT:NEhook:one\PoorManLogBaseTen{\XINT_expr_unlock #3}\endcsname +}% +\fi +\unless\ifcsname XINT_flexpr_func_log10\endcsname +\expandafter\let\csname XINT_flexpr_func_log10\expandafter\endcsname + \csname XINT_expr_func_log10\endcsname +\fi +% +\unless\ifcsname XINT_expr_func_pow10\endcsname +\@namedef{XINT_expr_func_pow10}#1#2#3% +{% + \expandafter #1\expandafter #2\csname.=% + \XINT:NEhook:one\PoorManPowerOfTen{\XINT_expr_unlock #3}\endcsname +}% +\fi +\unless\ifcsname XINT_flexpr_func_pow10\endcsname +\expandafter\let\csname XINT_flexpr_func_pow10\expandafter\endcsname + \csname XINT_expr_func_pow10\endcsname +\fi +%% +%% On-demand modification of ** or ^ operators in \xintexpr and \xintfloatexpr +%% +\catcode`\* 11 \catcode0 12 % +% +\def\poormanloghack**{% +\def\XINT_expr_op_** ##1% +{% + \expandafter \XINT_expr_until_**_a + \expandafter ##1\romannumeral`^^@\expandafter\XINT_expr_getnext +}% +\def\XINT_expr_until_**_a ##1{% +\def\XINT_expr_until_**_a ####1####2% +{% + \xint_UDsignfork + ####2{\expandafter \XINT_expr_until_**_a \expandafter ##1% + \romannumeral`^^@##1}% + -{\XINT_expr_until_**_b ####1####2}% + \krof +}}\expandafter\XINT_expr_until_**_a\csname XINT_expr_op_-ix\endcsname +\def\XINT_expr_until_**_b ##1##2##3##4% +{% + \ifnum ##2>\XINT_expr_precedence_** + \xint_afterfi + {\expandafter \XINT_expr_until_**_a \expandafter ##1% + \romannumeral`^^@\csname XINT_expr_op_##3\endcsname {##4}}% + \else + \xint_afterfi + {\expandafter ##2\expandafter ##3% + \csname .=\XINT:NEhook:two + \PoorManPower{\XINT_expr_unlock ##1}{\XINT_expr_unlock ##4}\endcsname + }% + \fi +}% +\let\XINT_flexpr_op_** \XINT_expr_op_** +\let\XINT_flexpr_until_**_a\XINT_expr_until_**_a +\let\XINT_flexpr_until_**_b\XINT_expr_until_**_b +}% +\catcode`\^ 11 \catcode`\* 7 % +\def\poormanloghack^{% +\def\XINT_expr_until_^_b ##1##2##3##4% +{% + \ifnum ##2>\XINT_expr_precedence_^ + \xint_afterfi + {\expandafter \XINT_expr_until_^_a \expandafter ##1% + \romannumeral`**@\csname XINT_expr_op_##3\endcsname {##4}}% + \else + \xint_afterfi + {\expandafter ##2\expandafter ##3% + \csname .=\XINT:NEhook:two + \PoorManPower{\XINT_expr_unlock ##1}{\XINT_expr_unlock ##4}\endcsname + }% + \fi +}% +\let\XINT_flexpr_until_^_b\XINT_expr_until_^_b +}% +\@tempa +\def\poormanloghack#1{\csname poormanloghack#1\endcsname}% +\endinput |