diff options
author | Karl Berry <karl@freefriends.org> | 2019-11-21 21:48:21 +0000 |
---|---|---|
committer | Karl Berry <karl@freefriends.org> | 2019-11-21 21:48:21 +0000 |
commit | 396174ed6ea505d76b57ac8aba822b30ad934685 (patch) | |
tree | 87d482ca0cf9ecc051bf255ea07a301ddb2ab431 /Master/texmf-dist/doc/fonts/newcomputermodern | |
parent | 74f3b3ab5f722bd2fe871a67387802bf821aaf6c (diff) |
newcomputermodern (21nov19)
git-svn-id: svn://tug.org/texlive/trunk@52877 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Master/texmf-dist/doc/fonts/newcomputermodern')
-rw-r--r-- | Master/texmf-dist/doc/fonts/newcomputermodern/README | 55 | ||||
-rw-r--r-- | Master/texmf-dist/doc/fonts/newcomputermodern/newcomputermodern-sample.pdf | bin | 0 -> 87155 bytes | |||
-rw-r--r-- | Master/texmf-dist/doc/fonts/newcomputermodern/newcomputermodern-sample.tex | 172 |
3 files changed, 227 insertions, 0 deletions
diff --git a/Master/texmf-dist/doc/fonts/newcomputermodern/README b/Master/texmf-dist/doc/fonts/newcomputermodern/README new file mode 100644 index 00000000000..7dab88db078 --- /dev/null +++ b/Master/texmf-dist/doc/fonts/newcomputermodern/README @@ -0,0 +1,55 @@ + + New Computer Modern Fonts + (Version 1.001, GustFLv1 or later) + + Antonis Tsolomitis + Samos, Greece, 2019 + +This is the first release of a new assembly of ComputerModern +fonts plus glyphs for non latin alphabets which are considered +compatible in style to CM fonts. + +The fonts contain Latin and accented latin letters and combinations, +Greek (monotonic and polytonic) and Cyrillic. + +Curently they are distributed only at 10pt-size but more sizes +will be available in the near future. However, priority will be +given to the completeness in language support to the 10pt-size, +as the view is to have a font that works by default with +a broad set of languages. + +They differ from Latin Modern in that they contain Greek and Cyrillic. + +They differ from cm-unicode in that the latin part is more extended, +the are adjusted to work easier for users of the Greek language +(Small Caps and other Lookups should work in all scripts). + +They differ from both LatinModern and cm-unicode in that the BoldSans +font is properly designed and they are not just the stroke extension +of the SansRegular. This currently covers Latin but soon it will +cover Greek and Cyrillic. It also differs in that the kerning table +for Greek is much improved. + +NewComputerModern will try to be a language-complete font (as much as +this is possible). So if you can provide information about glyphs for +any language not covered at this point, I will gladly add the glyphs. +Please notice that I will not design new glyphs from scratch. I will +gladly correct faulty splines or compose a character from existing +ones (such as accented) but the suggested to be added glyphs, must be +available from some source. For example, I know that a compatible +to cm font for Hebrew exists but I do not have any information more +than that. + +As far as the NewCMMath font is concerned, this is the same with +lm-math with BoldSans glyphs improved. So if you do not need BoldSans, +please use lm-math. The credit belongs to the developers of lm-math. +Work in math fonts is very very demanding. I do not want to take +any credit that belongs to others. However, more imrovements will follow. + +Antonis Tsolomitis +Professor +University of the Aegean +Department of Mathematics +Samos, Greece +atsol@aegean.gr + diff --git a/Master/texmf-dist/doc/fonts/newcomputermodern/newcomputermodern-sample.pdf b/Master/texmf-dist/doc/fonts/newcomputermodern/newcomputermodern-sample.pdf Binary files differnew file mode 100644 index 00000000000..2f5d064fcda --- /dev/null +++ b/Master/texmf-dist/doc/fonts/newcomputermodern/newcomputermodern-sample.pdf diff --git a/Master/texmf-dist/doc/fonts/newcomputermodern/newcomputermodern-sample.tex b/Master/texmf-dist/doc/fonts/newcomputermodern/newcomputermodern-sample.tex new file mode 100644 index 00000000000..a461d165f37 --- /dev/null +++ b/Master/texmf-dist/doc/fonts/newcomputermodern/newcomputermodern-sample.tex @@ -0,0 +1,172 @@ +\documentclass{article} +\pagestyle{empty} +\usepackage{xgreek,graphicx} + +\usepackage{fontspec} +\usepackage{unicode-math} + +\RequirePackage{fontspec} +\RequirePackage{unicode-math} +\setmainfont[% +ItalicFont=NewCM10-Italic.otf,% +BoldFont=NewCM10-Bold.otf,% +BoldItalicFont=NewCM10-BoldItalic.otf,% +SmallCapsFeatures={Numbers=OldStyle}]{NewCM10-Regular.otf} + +\setsansfont[% +ItalicFont=NewCMSans10-Oblique.otf,% +BoldFont=NewCMSans10-Bold.otf,% +BoldItalicFont=NewCMSans10-BoldOblique.otf,% +SmallCapsFeatures={Numbers=OldStyle}]{NewCMSans10-Regular.otf} + +\setmonofont[ItalicFont=NewCMMono10-Italic.otf,% +BoldFont=NewCMMono10-Bold.otf,% +BoldItalicFont=NewCMMono10-BoldOblique.otf,% +SmallCapsFeatures={Numbers=OldStyle}]{NewCMMono10-Regular.otf} + +\setmathfont{NewCMMath-Regular.otf} + +\newcommand{\tttextsc}[1]{{\ttscshape#1}} + +\newtheorem{theorem}{Theorem} +\newtheorem{theoremg}[theorem]{Θεώρημα} +\newtheorem{theoremr}[theorem]{теорема} + +\begin{document} + +\begin{theorem}[Dominated convergence of Lebesgue] +Assume that $g$ is an +in\-te\-grable func\-tion defined on the measurable set $E$ and hat + $(f_n)_{n\in\mathbb N}$ is a sequence of mea\-sur\-able function so that + $|f_n|\leq g$. If $f$ is a function so that $f_n\to f$ almost everywhere + then $$\lim_{n\to\infty}\int f_n=\int f.$$ +\end{theorem} +\textsc{Proof}: The function $g-f_n$ is non-negative and thus from Fatou lemma +we have that $\int(g-f)\leq\liminf\int(g-f_n)$. Since $|f|\leq g$ and +$|f_n|\leq g$ the functions $f$ and $f_n$ are integrable and we have +$$\int g-\int f\leq \int g-\limsup\int f_n,$$ so +$$\int f\geq \limsup \int f_n.$$ + +\begin{theoremg}[Κυριαρχημένης σύγκλισης του Lebesgue] + Έστω ότι +η $g$ είναι μια ολοκληρώσιμη συνάρτηση ορισμένη στο μετρήσιμο σύνολο +$E$ και η $(f_n)_{n\in\mathbb N}$ είναι μια ακολουθία μετρήσιμων συναρτήσεων ώστε +$|f_n| ≤ g$. Υποθέτουμε ότι υπάρχει μια συνάρτηση $f$ +ώστε η $(f_n)_{n\in\mathbb N}$ να +τείνει στην $f$ σχεδόν παντού. Τότε +$$\lim \int f_n =\int f.$$ +\end{theoremg} +\textsc{Απόδειξη}: Η συνάρτηση $g − f_n$ είναι μη αρνητική και άρα από +το Λήμμα του Fatou ισχύει +$\int (f-g) ≤ \liminf \int (g-f_n)$. Επειδή +$|f| ≤ g$ και $|f_n| ≤g$ οι $f$ και $f_n$ είναι ολοκληρώσιμες, έχουμε +$$\int g −\int f ≤ \int g − \limsup\int f_n,$$ +άρα +$$\int f\geq \limsup \int f_n.$$ + +(Russian translated by Google (probably erratic), hyphenation not enabled): + + +\begin{theoremr} +Предположим, что $g$ является +интегрируемая функция, определенная на измеримом множестве $E$ и +$(f_n)_{n\in\mathbb N}$ представляет собой последовательность измеримой функции, так что + $|f_n|\leq g$. Если $f$ является функцией, так что $f_n\to f$ почти везде + тогда +$$\lim \int f_n =\int f.$$ +\end{theoremr} + +\newpage + +\sffamily + +\begin{theorem}[Dominated convergence of Lebesgue] +Assume that $g$ is an +in\-te\-grable func\-tion defined on the measurable set $E$ and hat + $(f_n)_{n\in\mathbb N}$ is a sequence of mea\-sur\-able function so that + $|f_n|\leq g$. If $f$ is a function so that $f_n\to f$ almost everywhere + then $$\lim_{n\to\infty}\int f_n=\int f.$$ +\end{theorem} +\textsc{Proof}: The function $g-f_n$ is non-negative and thus from Fatou lemma +we have that $\int(g-f)\leq\liminf\int(g-f_n)$. Since $|f|\leq g$ and +$|f_n|\leq g$ the functions $f$ and $f_n$ are integrable and we have +$$\int g-\int f\leq \int g-\limsup\int f_n,$$ so +$$\int f\geq \limsup \int f_n.$$ + +\begin{theoremg}[Κυριαρχημένης σύγκλισης του Lebesgue] + Έστω ότι +η $g$ είναι μια ολοκληρώσιμη συνάρτηση ορισμένη στο μετρήσιμο σύνολο +$E$ και η $(f_n)_{n\in\mathbb N}$ είναι μια ακολουθία μετρήσιμων συναρτήσεων ώστε +$|f_n| ≤ g$. Υποθέτουμε ότι υπάρχει μια συνάρτηση $f$ +ώστε η $(f_n)_{n\in\mathbb N}$ να +τείνει στην $f$ σχεδόν παντού. Τότε +$$\lim \int f_n =\int f.$$ +\end{theoremg} +\textsc{Απόδειξη}: Η συνάρτηση $g − f_n$ είναι μη αρνητική και άρα από +το Λήμμα του Fatou ισχύει +$\int (f-g) ≤ \liminf \int (g-f_n)$. Επειδή +$|f| ≤ g$ και $|f_n| ≤g$ οι $f$ και $f_n$ είναι ολοκληρώσιμες, έχουμε +$$\int g −\int f ≤ \int g − \limsup\int f_n,$$ +άρα +$$\int f\geq \limsup \int f_n.$$ + +(Russian translated by Google (probably erratic), hyphenation not enabled): + + +\begin{theoremr} +Предположим, что $g$ является +интегрируемая функция, определенная на измеримом множестве $E$ и +$(f_n)_{n\in\mathbb N}$ представляет собой последовательность измеримой функции, так что + $|f_n|\leq g$. Если $f$ является функцией, так что $f_n\to f$ почти везде + тогда +$$\lim \int f_n =\int f.$$ +\end{theoremr} + +\newpage + +\ttfamily + +\begin{theorem}[Dominated convergence of Lebesgue] +Assume that $g$ is an +in\-te\-grable func\-tion defined on the measurable set $E$ and hat + $(f_n)_{n\in\mathbb N}$ is a sequence of mea\-sur\-able function so that + $|f_n|\leq g$. If $f$ is a function so that $f_n\to f$ almost everywhere + then $$\lim_{n\to\infty}\int f_n=\int f.$$ +\end{theorem} +\textsc{Proof}: The function $g-f_n$ is non-negative and thus from Fatou lemma +we have that $\int(g-f)\leq\liminf\int(g-f_n)$. Since $|f|\leq g$ and +$|f_n|\leq g$ the functions $f$ and $f_n$ are integrable and we have +$$\int g-\int f\leq \int g-\limsup\int f_n,$$ so +$$\int f\geq \limsup \int f_n.$$ + +\begin{theoremg}[Κυριαρχημένης σύγκλισης του Lebesgue] + Έστω ότι +η $g$ είναι μια ολοκληρώσιμη συνάρτηση ορισμένη στο μετρήσιμο σύνολο +$E$ και η $(f_n)_{n\in\mathbb N}$ είναι μια ακολουθία μετρήσιμων συναρτήσεων ώστε +$|f_n| ≤ g$. Υποθέτουμε ότι υπάρχει μια συνάρτηση $f$ +ώστε η $(f_n)_{n\in\mathbb N}$ να +τείνει στην $f$ σχεδόν παντού. Τότε +$$\lim \int f_n =\int f.$$ +\end{theoremg} +\textsc{Απόδειξη}: Η συνάρτηση $g − f_n$ είναι μη αρνητική και άρα από +το Λήμμα του Fatou ισχύει +$\int (f-g) ≤ \liminf \int (g-f_n)$. Επειδή +$|f| ≤ g$ και $|f_n| ≤g$ οι $f$ και $f_n$ είναι ολοκληρώσιμες, έχουμε +$$\int g −\int f ≤ \int g − \limsup\int f_n,$$ +άρα +$$\int f\geq \limsup \int f_n.$$ + +(Russian translated by Google (probably erratic), hyphenation not enabled): + + +\begin{theoremr} +Предположим, что $g$ является +интегрируемая функция, определенная на измеримом множестве $E$ и +$(f_n)_{n\in\mathbb N}$ представляет собой последовательность измеримой функции, так что + $|f_n|\leq g$. Если $f$ является функцией, так что $f_n\to f$ почти везде + тогда +$$\lim \int f_n =\int f.$$ +\end{theoremr} + + +\end{document} |