summaryrefslogtreecommitdiff
path: root/Build/source/utils/asymptote/gl-matrix-2.4.0-pruned
diff options
context:
space:
mode:
authorKarl Berry <karl@freefriends.org>2021-02-25 19:22:25 +0000
committerKarl Berry <karl@freefriends.org>2021-02-25 19:22:25 +0000
commitad547a6b5986815fda458221149728d9d9ab1d87 (patch)
tree16296910eb3eca724371474ea9aea3994dc69614 /Build/source/utils/asymptote/gl-matrix-2.4.0-pruned
parent947b43de3dd21d58ccc2ffadefc4441ea1c2a813 (diff)
restore Build,TODO from r57911
git-svn-id: svn://tug.org/texlive/trunk@57915 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Build/source/utils/asymptote/gl-matrix-2.4.0-pruned')
-rw-r--r--Build/source/utils/asymptote/gl-matrix-2.4.0-pruned/LICENSE.js20
-rw-r--r--Build/source/utils/asymptote/gl-matrix-2.4.0-pruned/dist/gl-matrix.js2907
2 files changed, 2927 insertions, 0 deletions
diff --git a/Build/source/utils/asymptote/gl-matrix-2.4.0-pruned/LICENSE.js b/Build/source/utils/asymptote/gl-matrix-2.4.0-pruned/LICENSE.js
new file mode 100644
index 00000000000..65e3083b312
--- /dev/null
+++ b/Build/source/utils/asymptote/gl-matrix-2.4.0-pruned/LICENSE.js
@@ -0,0 +1,20 @@
+/*@license for gl-matrix mat3 and mat4 functions:
+Copyright (c) 2015, Brandon Jones, Colin MacKenzie IV.
+
+Permission is hereby granted, free of charge, to any person obtaining a copy
+of this software and associated documentation files (the "Software"), to deal
+in the Software without restriction, including without limitation the rights
+to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+copies of the Software, and to permit persons to whom the Software is
+furnished to do so, subject to the following conditions:
+
+The above copyright notice and this permission notice shall be included in
+all copies or substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+THE SOFTWARE.*/
diff --git a/Build/source/utils/asymptote/gl-matrix-2.4.0-pruned/dist/gl-matrix.js b/Build/source/utils/asymptote/gl-matrix-2.4.0-pruned/dist/gl-matrix.js
new file mode 100644
index 00000000000..7a0f61547af
--- /dev/null
+++ b/Build/source/utils/asymptote/gl-matrix-2.4.0-pruned/dist/gl-matrix.js
@@ -0,0 +1,2907 @@
+/**
+ * @fileoverview gl-matrix - High performance matrix and vector operations
+ * @author Brandon Jones
+ * @author Colin MacKenzie IV
+ * @version 2.4.0
+ */
+
+/* Copyright (c) 2015, Brandon Jones, Colin MacKenzie IV.
+
+Permission is hereby granted, free of charge, to any person obtaining a copy
+of this software and associated documentation files (the "Software"), to deal
+in the Software without restriction, including without limitation the rights
+to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+copies of the Software, and to permit persons to whom the Software is
+furnished to do so, subject to the following conditions:
+
+The above copyright notice and this permission notice shall be included in
+all copies or substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+THE SOFTWARE. */
+
+(function webpackUniversalModuleDefinition(root, factory) {
+ if(typeof exports === 'object' && typeof module === 'object')
+ module.exports = factory();
+ else if(typeof define === 'function' && define.amd)
+ define([], factory);
+ else {
+ var a = factory();
+ for(var i in a) (typeof exports === 'object' ? exports : root)[i] = a[i];
+ }
+})(typeof self !== 'undefined' ? self : this, function() {
+return /******/ (function(modules) { // webpackBootstrap
+/******/ // The module cache
+/******/ var installedModules = {};
+/******/
+/******/ // The require function
+/******/ function __webpack_require__(moduleId) {
+/******/
+/******/ // Check if module is in cache
+/******/ if(installedModules[moduleId]) {
+/******/ return installedModules[moduleId].exports;
+/******/ }
+/******/ // Create a new module (and put it into the cache)
+/******/ var module = installedModules[moduleId] = {
+/******/ i: moduleId,
+/******/ l: false,
+/******/ exports: {}
+/******/ };
+/******/
+/******/ // Execute the module function
+/******/ modules[moduleId].call(module.exports, module, module.exports, __webpack_require__);
+/******/
+/******/ // Flag the module as loaded
+/******/ module.l = true;
+/******/
+/******/ // Return the exports of the module
+/******/ return module.exports;
+/******/ }
+/******/
+/******/
+/******/ // expose the modules object (__webpack_modules__)
+/******/ __webpack_require__.m = modules;
+/******/
+/******/ // expose the module cache
+/******/ __webpack_require__.c = installedModules;
+/******/
+/******/ // define getter function for harmony exports
+/******/ __webpack_require__.d = function(exports, name, getter) {
+/******/ if(!__webpack_require__.o(exports, name)) {
+/******/ Object.defineProperty(exports, name, {
+/******/ configurable: false,
+/******/ enumerable: true,
+/******/ get: getter
+/******/ });
+/******/ }
+/******/ };
+/******/
+/******/ // getDefaultExport function for compatibility with non-harmony modules
+/******/ __webpack_require__.n = function(module) {
+/******/ var getter = module && module.__esModule ?
+/******/ function getDefault() { return module['default']; } :
+/******/ function getModuleExports() { return module; };
+/******/ __webpack_require__.d(getter, 'a', getter);
+/******/ return getter;
+/******/ };
+/******/
+/******/ // Object.prototype.hasOwnProperty.call
+/******/ __webpack_require__.o = function(object, property) { return Object.prototype.hasOwnProperty.call(object, property); };
+/******/
+/******/ // __webpack_public_path__
+/******/ __webpack_require__.p = "";
+/******/
+/******/ // Load entry module and return exports
+/******/ return __webpack_require__(__webpack_require__.s = 1);
+/******/ })
+/************************************************************************/
+/******/ ([
+/* 0 */
+/***/ (function(module, exports, __webpack_require__) {
+
+"use strict";
+
+
+Object.defineProperty(exports, "__esModule", {
+ value: true
+});
+exports.setMatrixArrayType = setMatrixArrayType;
+exports.toRadian = toRadian;
+exports.equals = equals;
+/* Copyright (c) 2015, Brandon Jones, Colin MacKenzie IV.
+
+Permission is hereby granted, free of charge, to any person obtaining a copy
+of this software and associated documentation files (the "Software"), to deal
+in the Software without restriction, including without limitation the rights
+to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+copies of the Software, and to permit persons to whom the Software is
+furnished to do so, subject to the following conditions:
+
+The above copyright notice and this permission notice shall be included in
+all copies or substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+THE SOFTWARE. */
+
+/**
+ * Common utilities
+ * @module glMatrix
+ */
+
+// Configuration Constants
+var EPSILON = exports.EPSILON = 0.000001;
+var ARRAY_TYPE = exports.ARRAY_TYPE = typeof Float32Array !== 'undefined' ? Float32Array : Array;
+var RANDOM = exports.RANDOM = Math.random;
+
+/**
+ * Sets the type of array used when creating new vectors and matrices
+ *
+ * @param {Type} type Array type, such as Float32Array or Array
+ */
+function setMatrixArrayType(type) {
+ exports.ARRAY_TYPE = ARRAY_TYPE = type;
+}
+
+var degree = Math.PI / 180;
+
+/**
+ * Convert Degree To Radian
+ *
+ * @param {Number} a Angle in Degrees
+ */
+function toRadian(a) {
+ return a * degree;
+}
+
+/**
+ * Tests whether or not the arguments have approximately the same value, within an absolute
+ * or relative tolerance of glMatrix.EPSILON (an absolute tolerance is used for values less
+ * than or equal to 1.0, and a relative tolerance is used for larger values)
+ *
+ * @param {Number} a The first number to test.
+ * @param {Number} b The second number to test.
+ * @returns {Boolean} True if the numbers are approximately equal, false otherwise.
+ */
+function equals(a, b) {
+ return Math.abs(a - b) <= EPSILON * Math.max(1.0, Math.abs(a), Math.abs(b));
+}
+
+/***/ }),
+/* 1 */
+/***/ (function(module, exports, __webpack_require__) {
+
+"use strict";
+
+
+Object.defineProperty(exports, "__esModule", {
+ value: true
+});
+exports.mat4 = exports.mat3 = undefined;
+
+var _mat = __webpack_require__(2);
+
+var mat3 = _interopRequireWildcard(_mat);
+
+var _mat2 = __webpack_require__(3);
+
+var mat4 = _interopRequireWildcard(_mat2);
+
+function _interopRequireWildcard(obj) { if (obj && obj.__esModule) { return obj; } else { var newObj = {}; if (obj != null) { for (var key in obj) { if (Object.prototype.hasOwnProperty.call(obj, key)) newObj[key] = obj[key]; } } newObj.default = obj; return newObj; } }
+
+/**
+ * @fileoverview gl-matrix - High performance matrix and vector operations
+ * @author Brandon Jones
+ * @author Colin MacKenzie IV
+ * @version 2.4.0
+ */
+
+/* Copyright (c) 2015, Brandon Jones, Colin MacKenzie IV.
+
+Permission is hereby granted, free of charge, to any person obtaining a copy
+of this software and associated documentation files (the "Software"), to deal
+in the Software without restriction, including without limitation the rights
+to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+copies of the Software, and to permit persons to whom the Software is
+furnished to do so, subject to the following conditions:
+
+The above copyright notice and this permission notice shall be included in
+all copies or substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+THE SOFTWARE. */
+// END HEADER
+
+exports.mat3 = mat3;
+exports.mat4 = mat4;
+
+/***/ }),
+/* 2 */
+/***/ (function(module, exports, __webpack_require__) {
+
+"use strict";
+
+
+Object.defineProperty(exports, "__esModule", {
+ value: true
+});
+exports.create = create;
+exports.fromMat4 = fromMat4;
+exports.invert = invert;
+
+var _common = __webpack_require__(0);
+
+var glMatrix = _interopRequireWildcard(_common);
+
+function _interopRequireWildcard(obj) { if (obj && obj.__esModule) { return obj; } else { var newObj = {}; if (obj != null) { for (var key in obj) { if (Object.prototype.hasOwnProperty.call(obj, key)) newObj[key] = obj[key]; } } newObj.default = obj; return newObj; } }
+
+/**
+ * 3x3 Matrix
+ * @module mat3
+ */
+
+/**
+ * Creates a new identity mat3
+ *
+ * @returns {mat3} a new 3x3 matrix
+ */
+function create() {
+ var out = new glMatrix.ARRAY_TYPE(9);
+ out[0] = 1;
+ out[1] = 0;
+ out[2] = 0;
+ out[3] = 0;
+ out[4] = 1;
+ out[5] = 0;
+ out[6] = 0;
+ out[7] = 0;
+ out[8] = 1;
+ return out;
+}
+
+/**
+ * Copies the upper-left 3x3 values into the given mat3.
+ *
+ * @param {mat3} out the receiving 3x3 matrix
+ * @param {mat4} a the source 4x4 matrix
+ * @returns {mat3} out
+ */
+/* Copyright (c) 2015, Brandon Jones, Colin MacKenzie IV.
+
+Permission is hereby granted, free of charge, to any person obtaining a copy
+of this software and associated documentation files (the "Software"), to deal
+in the Software without restriction, including without limitation the rights
+to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+copies of the Software, and to permit persons to whom the Software is
+furnished to do so, subject to the following conditions:
+
+The above copyright notice and this permission notice shall be included in
+all copies or substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+THE SOFTWARE. */
+
+function fromMat4(out, a) {
+ out[0] = a[0];
+ out[1] = a[1];
+ out[2] = a[2];
+ out[3] = a[4];
+ out[4] = a[5];
+ out[5] = a[6];
+ out[6] = a[8];
+ out[7] = a[9];
+ out[8] = a[10];
+ return out;
+}
+
+/**
+ * Creates a new mat3 initialized with values from an existing matrix
+ *
+ * @param {mat3} a matrix to clone
+ * @returns {mat3} a new 3x3 matrix
+ */
+function clone(a) {
+ var out = new glMatrix.ARRAY_TYPE(9);
+ out[0] = a[0];
+ out[1] = a[1];
+ out[2] = a[2];
+ out[3] = a[3];
+ out[4] = a[4];
+ out[5] = a[5];
+ out[6] = a[6];
+ out[7] = a[7];
+ out[8] = a[8];
+ return out;
+}
+
+/**
+ * Copy the values from one mat3 to another
+ *
+ * @param {mat3} out the receiving matrix
+ * @param {mat3} a the source matrix
+ * @returns {mat3} out
+ */
+function copy(out, a) {
+ out[0] = a[0];
+ out[1] = a[1];
+ out[2] = a[2];
+ out[3] = a[3];
+ out[4] = a[4];
+ out[5] = a[5];
+ out[6] = a[6];
+ out[7] = a[7];
+ out[8] = a[8];
+ return out;
+}
+
+/**
+ * Create a new mat3 with the given values
+ *
+ * @param {Number} m00 Component in column 0, row 0 position (index 0)
+ * @param {Number} m01 Component in column 0, row 1 position (index 1)
+ * @param {Number} m02 Component in column 0, row 2 position (index 2)
+ * @param {Number} m10 Component in column 1, row 0 position (index 3)
+ * @param {Number} m11 Component in column 1, row 1 position (index 4)
+ * @param {Number} m12 Component in column 1, row 2 position (index 5)
+ * @param {Number} m20 Component in column 2, row 0 position (index 6)
+ * @param {Number} m21 Component in column 2, row 1 position (index 7)
+ * @param {Number} m22 Component in column 2, row 2 position (index 8)
+ * @returns {mat3} A new mat3
+ */
+function fromValues(m00, m01, m02, m10, m11, m12, m20, m21, m22) {
+ var out = new glMatrix.ARRAY_TYPE(9);
+ out[0] = m00;
+ out[1] = m01;
+ out[2] = m02;
+ out[3] = m10;
+ out[4] = m11;
+ out[5] = m12;
+ out[6] = m20;
+ out[7] = m21;
+ out[8] = m22;
+ return out;
+}
+
+/**
+ * Set the components of a mat3 to the given values
+ *
+ * @param {mat3} out the receiving matrix
+ * @param {Number} m00 Component in column 0, row 0 position (index 0)
+ * @param {Number} m01 Component in column 0, row 1 position (index 1)
+ * @param {Number} m02 Component in column 0, row 2 position (index 2)
+ * @param {Number} m10 Component in column 1, row 0 position (index 3)
+ * @param {Number} m11 Component in column 1, row 1 position (index 4)
+ * @param {Number} m12 Component in column 1, row 2 position (index 5)
+ * @param {Number} m20 Component in column 2, row 0 position (index 6)
+ * @param {Number} m21 Component in column 2, row 1 position (index 7)
+ * @param {Number} m22 Component in column 2, row 2 position (index 8)
+ * @returns {mat3} out
+ */
+function set(out, m00, m01, m02, m10, m11, m12, m20, m21, m22) {
+ out[0] = m00;
+ out[1] = m01;
+ out[2] = m02;
+ out[3] = m10;
+ out[4] = m11;
+ out[5] = m12;
+ out[6] = m20;
+ out[7] = m21;
+ out[8] = m22;
+ return out;
+}
+
+/**
+ * Set a mat3 to the identity matrix
+ *
+ * @param {mat3} out the receiving matrix
+ * @returns {mat3} out
+ */
+function identity(out) {
+ out[0] = 1;
+ out[1] = 0;
+ out[2] = 0;
+ out[3] = 0;
+ out[4] = 1;
+ out[5] = 0;
+ out[6] = 0;
+ out[7] = 0;
+ out[8] = 1;
+ return out;
+}
+
+/**
+ * Transpose the values of a mat3
+ *
+ * @param {mat3} out the receiving matrix
+ * @param {mat3} a the source matrix
+ * @returns {mat3} out
+ */
+function transpose(out, a) {
+ // If we are transposing ourselves we can skip a few steps but have to cache some values
+ if (out === a) {
+ var a01 = a[1],
+ a02 = a[2],
+ a12 = a[5];
+ out[1] = a[3];
+ out[2] = a[6];
+ out[3] = a01;
+ out[5] = a[7];
+ out[6] = a02;
+ out[7] = a12;
+ } else {
+ out[0] = a[0];
+ out[1] = a[3];
+ out[2] = a[6];
+ out[3] = a[1];
+ out[4] = a[4];
+ out[5] = a[7];
+ out[6] = a[2];
+ out[7] = a[5];
+ out[8] = a[8];
+ }
+
+ return out;
+}
+
+/**
+ * Inverts a mat3
+ *
+ * @param {mat3} out the receiving matrix
+ * @param {mat3} a the source matrix
+ * @returns {mat3} out
+ */
+function invert(out, a) {
+ var a00 = a[0],
+ a01 = a[1],
+ a02 = a[2];
+ var a10 = a[3],
+ a11 = a[4],
+ a12 = a[5];
+ var a20 = a[6],
+ a21 = a[7],
+ a22 = a[8];
+
+ var b01 = a22 * a11 - a12 * a21;
+ var b11 = -a22 * a10 + a12 * a20;
+ var b21 = a21 * a10 - a11 * a20;
+
+ // Calculate the determinant
+ var det = a00 * b01 + a01 * b11 + a02 * b21;
+
+ if (!det) {
+ return null;
+ }
+ det = 1.0 / det;
+
+ out[0] = b01 * det;
+ out[1] = (-a22 * a01 + a02 * a21) * det;
+ out[2] = (a12 * a01 - a02 * a11) * det;
+ out[3] = b11 * det;
+ out[4] = (a22 * a00 - a02 * a20) * det;
+ out[5] = (-a12 * a00 + a02 * a10) * det;
+ out[6] = b21 * det;
+ out[7] = (-a21 * a00 + a01 * a20) * det;
+ out[8] = (a11 * a00 - a01 * a10) * det;
+ return out;
+}
+
+/**
+ * Calculates the adjugate of a mat3
+ *
+ * @param {mat3} out the receiving matrix
+ * @param {mat3} a the source matrix
+ * @returns {mat3} out
+ */
+function adjoint(out, a) {
+ var a00 = a[0],
+ a01 = a[1],
+ a02 = a[2];
+ var a10 = a[3],
+ a11 = a[4],
+ a12 = a[5];
+ var a20 = a[6],
+ a21 = a[7],
+ a22 = a[8];
+
+ out[0] = a11 * a22 - a12 * a21;
+ out[1] = a02 * a21 - a01 * a22;
+ out[2] = a01 * a12 - a02 * a11;
+ out[3] = a12 * a20 - a10 * a22;
+ out[4] = a00 * a22 - a02 * a20;
+ out[5] = a02 * a10 - a00 * a12;
+ out[6] = a10 * a21 - a11 * a20;
+ out[7] = a01 * a20 - a00 * a21;
+ out[8] = a00 * a11 - a01 * a10;
+ return out;
+}
+
+/**
+ * Calculates the determinant of a mat3
+ *
+ * @param {mat3} a the source matrix
+ * @returns {Number} determinant of a
+ */
+function determinant(a) {
+ var a00 = a[0],
+ a01 = a[1],
+ a02 = a[2];
+ var a10 = a[3],
+ a11 = a[4],
+ a12 = a[5];
+ var a20 = a[6],
+ a21 = a[7],
+ a22 = a[8];
+
+ return a00 * (a22 * a11 - a12 * a21) + a01 * (-a22 * a10 + a12 * a20) + a02 * (a21 * a10 - a11 * a20);
+}
+
+/**
+ * Multiplies two mat3's
+ *
+ * @param {mat3} out the receiving matrix
+ * @param {mat3} a the first operand
+ * @param {mat3} b the second operand
+ * @returns {mat3} out
+ */
+function multiply(out, a, b) {
+ var a00 = a[0],
+ a01 = a[1],
+ a02 = a[2];
+ var a10 = a[3],
+ a11 = a[4],
+ a12 = a[5];
+ var a20 = a[6],
+ a21 = a[7],
+ a22 = a[8];
+
+ var b00 = b[0],
+ b01 = b[1],
+ b02 = b[2];
+ var b10 = b[3],
+ b11 = b[4],
+ b12 = b[5];
+ var b20 = b[6],
+ b21 = b[7],
+ b22 = b[8];
+
+ out[0] = b00 * a00 + b01 * a10 + b02 * a20;
+ out[1] = b00 * a01 + b01 * a11 + b02 * a21;
+ out[2] = b00 * a02 + b01 * a12 + b02 * a22;
+
+ out[3] = b10 * a00 + b11 * a10 + b12 * a20;
+ out[4] = b10 * a01 + b11 * a11 + b12 * a21;
+ out[5] = b10 * a02 + b11 * a12 + b12 * a22;
+
+ out[6] = b20 * a00 + b21 * a10 + b22 * a20;
+ out[7] = b20 * a01 + b21 * a11 + b22 * a21;
+ out[8] = b20 * a02 + b21 * a12 + b22 * a22;
+ return out;
+}
+
+/**
+ * Translate a mat3 by the given vector
+ *
+ * @param {mat3} out the receiving matrix
+ * @param {mat3} a the matrix to translate
+ * @param {vec2} v vector to translate by
+ * @returns {mat3} out
+ */
+function translate(out, a, v) {
+ var a00 = a[0],
+ a01 = a[1],
+ a02 = a[2],
+ a10 = a[3],
+ a11 = a[4],
+ a12 = a[5],
+ a20 = a[6],
+ a21 = a[7],
+ a22 = a[8],
+ x = v[0],
+ y = v[1];
+
+ out[0] = a00;
+ out[1] = a01;
+ out[2] = a02;
+
+ out[3] = a10;
+ out[4] = a11;
+ out[5] = a12;
+
+ out[6] = x * a00 + y * a10 + a20;
+ out[7] = x * a01 + y * a11 + a21;
+ out[8] = x * a02 + y * a12 + a22;
+ return out;
+}
+
+/**
+ * Rotates a mat3 by the given angle
+ *
+ * @param {mat3} out the receiving matrix
+ * @param {mat3} a the matrix to rotate
+ * @param {Number} rad the angle to rotate the matrix by
+ * @returns {mat3} out
+ */
+function rotate(out, a, rad) {
+ var a00 = a[0],
+ a01 = a[1],
+ a02 = a[2],
+ a10 = a[3],
+ a11 = a[4],
+ a12 = a[5],
+ a20 = a[6],
+ a21 = a[7],
+ a22 = a[8],
+ s = Math.sin(rad),
+ c = Math.cos(rad);
+
+ out[0] = c * a00 + s * a10;
+ out[1] = c * a01 + s * a11;
+ out[2] = c * a02 + s * a12;
+
+ out[3] = c * a10 - s * a00;
+ out[4] = c * a11 - s * a01;
+ out[5] = c * a12 - s * a02;
+
+ out[6] = a20;
+ out[7] = a21;
+ out[8] = a22;
+ return out;
+};
+
+/**
+ * Scales the mat3 by the dimensions in the given vec2
+ *
+ * @param {mat3} out the receiving matrix
+ * @param {mat3} a the matrix to rotate
+ * @param {vec2} v the vec2 to scale the matrix by
+ * @returns {mat3} out
+ **/
+function scale(out, a, v) {
+ var x = v[0],
+ y = v[1];
+
+ out[0] = x * a[0];
+ out[1] = x * a[1];
+ out[2] = x * a[2];
+
+ out[3] = y * a[3];
+ out[4] = y * a[4];
+ out[5] = y * a[5];
+
+ out[6] = a[6];
+ out[7] = a[7];
+ out[8] = a[8];
+ return out;
+}
+
+/**
+ * Creates a matrix from a vector translation
+ * This is equivalent to (but much faster than):
+ *
+ * mat3.identity(dest);
+ * mat3.translate(dest, dest, vec);
+ *
+ * @param {mat3} out mat3 receiving operation result
+ * @param {vec2} v Translation vector
+ * @returns {mat3} out
+ */
+function fromTranslation(out, v) {
+ out[0] = 1;
+ out[1] = 0;
+ out[2] = 0;
+ out[3] = 0;
+ out[4] = 1;
+ out[5] = 0;
+ out[6] = v[0];
+ out[7] = v[1];
+ out[8] = 1;
+ return out;
+}
+
+/**
+ * Creates a matrix from a given angle
+ * This is equivalent to (but much faster than):
+ *
+ * mat3.identity(dest);
+ * mat3.rotate(dest, dest, rad);
+ *
+ * @param {mat3} out mat3 receiving operation result
+ * @param {Number} rad the angle to rotate the matrix by
+ * @returns {mat3} out
+ */
+function fromRotation(out, rad) {
+ var s = Math.sin(rad),
+ c = Math.cos(rad);
+
+ out[0] = c;
+ out[1] = s;
+ out[2] = 0;
+
+ out[3] = -s;
+ out[4] = c;
+ out[5] = 0;
+
+ out[6] = 0;
+ out[7] = 0;
+ out[8] = 1;
+ return out;
+}
+
+/**
+ * Creates a matrix from a vector scaling
+ * This is equivalent to (but much faster than):
+ *
+ * mat3.identity(dest);
+ * mat3.scale(dest, dest, vec);
+ *
+ * @param {mat3} out mat3 receiving operation result
+ * @param {vec2} v Scaling vector
+ * @returns {mat3} out
+ */
+function fromScaling(out, v) {
+ out[0] = v[0];
+ out[1] = 0;
+ out[2] = 0;
+
+ out[3] = 0;
+ out[4] = v[1];
+ out[5] = 0;
+
+ out[6] = 0;
+ out[7] = 0;
+ out[8] = 1;
+ return out;
+}
+
+/**
+ * Copies the values from a mat2d into a mat3
+ *
+ * @param {mat3} out the receiving matrix
+ * @param {mat2d} a the matrix to copy
+ * @returns {mat3} out
+ **/
+function fromMat2d(out, a) {
+ out[0] = a[0];
+ out[1] = a[1];
+ out[2] = 0;
+
+ out[3] = a[2];
+ out[4] = a[3];
+ out[5] = 0;
+
+ out[6] = a[4];
+ out[7] = a[5];
+ out[8] = 1;
+ return out;
+}
+
+/**
+* Calculates a 3x3 matrix from the given quaternion
+*
+* @param {mat3} out mat3 receiving operation result
+* @param {quat} q Quaternion to create matrix from
+*
+* @returns {mat3} out
+*/
+function fromQuat(out, q) {
+ var x = q[0],
+ y = q[1],
+ z = q[2],
+ w = q[3];
+ var x2 = x + x;
+ var y2 = y + y;
+ var z2 = z + z;
+
+ var xx = x * x2;
+ var yx = y * x2;
+ var yy = y * y2;
+ var zx = z * x2;
+ var zy = z * y2;
+ var zz = z * z2;
+ var wx = w * x2;
+ var wy = w * y2;
+ var wz = w * z2;
+
+ out[0] = 1 - yy - zz;
+ out[3] = yx - wz;
+ out[6] = zx + wy;
+
+ out[1] = yx + wz;
+ out[4] = 1 - xx - zz;
+ out[7] = zy - wx;
+
+ out[2] = zx - wy;
+ out[5] = zy + wx;
+ out[8] = 1 - xx - yy;
+
+ return out;
+}
+
+/**
+* Calculates a 3x3 normal matrix (transpose inverse) from the 4x4 matrix
+*
+* @param {mat3} out mat3 receiving operation result
+* @param {mat4} a Mat4 to derive the normal matrix from
+*
+* @returns {mat3} out
+*/
+function normalFromMat4(out, a) {
+ var a00 = a[0],
+ a01 = a[1],
+ a02 = a[2],
+ a03 = a[3];
+ var a10 = a[4],
+ a11 = a[5],
+ a12 = a[6],
+ a13 = a[7];
+ var a20 = a[8],
+ a21 = a[9],
+ a22 = a[10],
+ a23 = a[11];
+ var a30 = a[12],
+ a31 = a[13],
+ a32 = a[14],
+ a33 = a[15];
+
+ var b00 = a00 * a11 - a01 * a10;
+ var b01 = a00 * a12 - a02 * a10;
+ var b02 = a00 * a13 - a03 * a10;
+ var b03 = a01 * a12 - a02 * a11;
+ var b04 = a01 * a13 - a03 * a11;
+ var b05 = a02 * a13 - a03 * a12;
+ var b06 = a20 * a31 - a21 * a30;
+ var b07 = a20 * a32 - a22 * a30;
+ var b08 = a20 * a33 - a23 * a30;
+ var b09 = a21 * a32 - a22 * a31;
+ var b10 = a21 * a33 - a23 * a31;
+ var b11 = a22 * a33 - a23 * a32;
+
+ // Calculate the determinant
+ var det = b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06;
+
+ if (!det) {
+ return null;
+ }
+ det = 1.0 / det;
+
+ out[0] = (a11 * b11 - a12 * b10 + a13 * b09) * det;
+ out[1] = (a12 * b08 - a10 * b11 - a13 * b07) * det;
+ out[2] = (a10 * b10 - a11 * b08 + a13 * b06) * det;
+
+ out[3] = (a02 * b10 - a01 * b11 - a03 * b09) * det;
+ out[4] = (a00 * b11 - a02 * b08 + a03 * b07) * det;
+ out[5] = (a01 * b08 - a00 * b10 - a03 * b06) * det;
+
+ out[6] = (a31 * b05 - a32 * b04 + a33 * b03) * det;
+ out[7] = (a32 * b02 - a30 * b05 - a33 * b01) * det;
+ out[8] = (a30 * b04 - a31 * b02 + a33 * b00) * det;
+
+ return out;
+}
+
+/**
+ * Generates a 2D projection matrix with the given bounds
+ *
+ * @param {mat3} out mat3 frustum matrix will be written into
+ * @param {number} width Width of your gl context
+ * @param {number} height Height of gl context
+ * @returns {mat3} out
+ */
+function projection(out, width, height) {
+ out[0] = 2 / width;
+ out[1] = 0;
+ out[2] = 0;
+ out[3] = 0;
+ out[4] = -2 / height;
+ out[5] = 0;
+ out[6] = -1;
+ out[7] = 1;
+ out[8] = 1;
+ return out;
+}
+
+/**
+ * Returns a string representation of a mat3
+ *
+ * @param {mat3} a matrix to represent as a string
+ * @returns {String} string representation of the matrix
+ */
+function str(a) {
+ return 'mat3(' + a[0] + ', ' + a[1] + ', ' + a[2] + ', ' + a[3] + ', ' + a[4] + ', ' + a[5] + ', ' + a[6] + ', ' + a[7] + ', ' + a[8] + ')';
+}
+
+/**
+ * Returns Frobenius norm of a mat3
+ *
+ * @param {mat3} a the matrix to calculate Frobenius norm of
+ * @returns {Number} Frobenius norm
+ */
+function frob(a) {
+ return Math.sqrt(Math.pow(a[0], 2) + Math.pow(a[1], 2) + Math.pow(a[2], 2) + Math.pow(a[3], 2) + Math.pow(a[4], 2) + Math.pow(a[5], 2) + Math.pow(a[6], 2) + Math.pow(a[7], 2) + Math.pow(a[8], 2));
+}
+
+/**
+ * Adds two mat3's
+ *
+ * @param {mat3} out the receiving matrix
+ * @param {mat3} a the first operand
+ * @param {mat3} b the second operand
+ * @returns {mat3} out
+ */
+function add(out, a, b) {
+ out[0] = a[0] + b[0];
+ out[1] = a[1] + b[1];
+ out[2] = a[2] + b[2];
+ out[3] = a[3] + b[3];
+ out[4] = a[4] + b[4];
+ out[5] = a[5] + b[5];
+ out[6] = a[6] + b[6];
+ out[7] = a[7] + b[7];
+ out[8] = a[8] + b[8];
+ return out;
+}
+
+/**
+ * Subtracts matrix b from matrix a
+ *
+ * @param {mat3} out the receiving matrix
+ * @param {mat3} a the first operand
+ * @param {mat3} b the second operand
+ * @returns {mat3} out
+ */
+function subtract(out, a, b) {
+ out[0] = a[0] - b[0];
+ out[1] = a[1] - b[1];
+ out[2] = a[2] - b[2];
+ out[3] = a[3] - b[3];
+ out[4] = a[4] - b[4];
+ out[5] = a[5] - b[5];
+ out[6] = a[6] - b[6];
+ out[7] = a[7] - b[7];
+ out[8] = a[8] - b[8];
+ return out;
+}
+
+/**
+ * Multiply each element of the matrix by a scalar.
+ *
+ * @param {mat3} out the receiving matrix
+ * @param {mat3} a the matrix to scale
+ * @param {Number} b amount to scale the matrix's elements by
+ * @returns {mat3} out
+ */
+function multiplyScalar(out, a, b) {
+ out[0] = a[0] * b;
+ out[1] = a[1] * b;
+ out[2] = a[2] * b;
+ out[3] = a[3] * b;
+ out[4] = a[4] * b;
+ out[5] = a[5] * b;
+ out[6] = a[6] * b;
+ out[7] = a[7] * b;
+ out[8] = a[8] * b;
+ return out;
+}
+
+/**
+ * Adds two mat3's after multiplying each element of the second operand by a scalar value.
+ *
+ * @param {mat3} out the receiving vector
+ * @param {mat3} a the first operand
+ * @param {mat3} b the second operand
+ * @param {Number} scale the amount to scale b's elements by before adding
+ * @returns {mat3} out
+ */
+function multiplyScalarAndAdd(out, a, b, scale) {
+ out[0] = a[0] + b[0] * scale;
+ out[1] = a[1] + b[1] * scale;
+ out[2] = a[2] + b[2] * scale;
+ out[3] = a[3] + b[3] * scale;
+ out[4] = a[4] + b[4] * scale;
+ out[5] = a[5] + b[5] * scale;
+ out[6] = a[6] + b[6] * scale;
+ out[7] = a[7] + b[7] * scale;
+ out[8] = a[8] + b[8] * scale;
+ return out;
+}
+
+/**
+ * Returns whether or not the matrices have exactly the same elements in the same position (when compared with ===)
+ *
+ * @param {mat3} a The first matrix.
+ * @param {mat3} b The second matrix.
+ * @returns {Boolean} True if the matrices are equal, false otherwise.
+ */
+function exactEquals(a, b) {
+ return a[0] === b[0] && a[1] === b[1] && a[2] === b[2] && a[3] === b[3] && a[4] === b[4] && a[5] === b[5] && a[6] === b[6] && a[7] === b[7] && a[8] === b[8];
+}
+
+/**
+ * Returns whether or not the matrices have approximately the same elements in the same position.
+ *
+ * @param {mat3} a The first matrix.
+ * @param {mat3} b The second matrix.
+ * @returns {Boolean} True if the matrices are equal, false otherwise.
+ */
+function equals(a, b) {
+ var a0 = a[0],
+ a1 = a[1],
+ a2 = a[2],
+ a3 = a[3],
+ a4 = a[4],
+ a5 = a[5],
+ a6 = a[6],
+ a7 = a[7],
+ a8 = a[8];
+ var b0 = b[0],
+ b1 = b[1],
+ b2 = b[2],
+ b3 = b[3],
+ b4 = b[4],
+ b5 = b[5],
+ b6 = b[6],
+ b7 = b[7],
+ b8 = b[8];
+ return Math.abs(a0 - b0) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a0), Math.abs(b0)) && Math.abs(a1 - b1) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a1), Math.abs(b1)) && Math.abs(a2 - b2) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a2), Math.abs(b2)) && Math.abs(a3 - b3) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a3), Math.abs(b3)) && Math.abs(a4 - b4) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a4), Math.abs(b4)) && Math.abs(a5 - b5) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a5), Math.abs(b5)) && Math.abs(a6 - b6) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a6), Math.abs(b6)) && Math.abs(a7 - b7) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a7), Math.abs(b7)) && Math.abs(a8 - b8) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a8), Math.abs(b8));
+}
+
+/**
+ * Alias for {@link mat3.multiply}
+ * @function
+ */
+var mul = multiply;
+
+/**
+ * Alias for {@link mat3.subtract}
+ * @function
+ */
+var sub = subtract;
+
+/***/ }),
+/* 3 */
+/***/ (function(module, exports, __webpack_require__) {
+
+"use strict";
+
+
+Object.defineProperty(exports, "__esModule", {
+ value: true
+});
+exports.create = create;
+exports.identity = identity;
+exports.invert = invert;
+exports.multiply = multiply;
+exports.translate = translate;
+exports.rotate = rotate;
+exports.fromTranslation = fromTranslation;
+exports.fromRotation = fromRotation;
+exports.frustum = frustum;
+exports.ortho = ortho;
+
+var _common = __webpack_require__(0);
+
+var glMatrix = _interopRequireWildcard(_common);
+
+function _interopRequireWildcard(obj) { if (obj && obj.__esModule) { return obj; } else { var newObj = {}; if (obj != null) { for (var key in obj) { if (Object.prototype.hasOwnProperty.call(obj, key)) newObj[key] = obj[key]; } } newObj.default = obj; return newObj; } }
+
+/**
+ * 4x4 Matrix
+ * @module mat4
+ */
+
+/**
+ * Creates a new identity mat4
+ *
+ * @returns {mat4} a new 4x4 matrix
+ */
+function create() {
+ var out = new glMatrix.ARRAY_TYPE(16);
+ out[0] = 1;
+ out[1] = 0;
+ out[2] = 0;
+ out[3] = 0;
+ out[4] = 0;
+ out[5] = 1;
+ out[6] = 0;
+ out[7] = 0;
+ out[8] = 0;
+ out[9] = 0;
+ out[10] = 1;
+ out[11] = 0;
+ out[12] = 0;
+ out[13] = 0;
+ out[14] = 0;
+ out[15] = 1;
+ return out;
+}
+
+/**
+ * Creates a new mat4 initialized with values from an existing matrix
+ *
+ * @param {mat4} a matrix to clone
+ * @returns {mat4} a new 4x4 matrix
+ */
+/* Copyright (c) 2015, Brandon Jones, Colin MacKenzie IV.
+
+Permission is hereby granted, free of charge, to any person obtaining a copy
+of this software and associated documentation files (the "Software"), to deal
+in the Software without restriction, including without limitation the rights
+to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+copies of the Software, and to permit persons to whom the Software is
+furnished to do so, subject to the following conditions:
+
+The above copyright notice and this permission notice shall be included in
+all copies or substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+THE SOFTWARE. */
+
+function clone(a) {
+ var out = new glMatrix.ARRAY_TYPE(16);
+ out[0] = a[0];
+ out[1] = a[1];
+ out[2] = a[2];
+ out[3] = a[3];
+ out[4] = a[4];
+ out[5] = a[5];
+ out[6] = a[6];
+ out[7] = a[7];
+ out[8] = a[8];
+ out[9] = a[9];
+ out[10] = a[10];
+ out[11] = a[11];
+ out[12] = a[12];
+ out[13] = a[13];
+ out[14] = a[14];
+ out[15] = a[15];
+ return out;
+}
+
+/**
+ * Copy the values from one mat4 to another
+ *
+ * @param {mat4} out the receiving matrix
+ * @param {mat4} a the source matrix
+ * @returns {mat4} out
+ */
+function copy(out, a) {
+ out[0] = a[0];
+ out[1] = a[1];
+ out[2] = a[2];
+ out[3] = a[3];
+ out[4] = a[4];
+ out[5] = a[5];
+ out[6] = a[6];
+ out[7] = a[7];
+ out[8] = a[8];
+ out[9] = a[9];
+ out[10] = a[10];
+ out[11] = a[11];
+ out[12] = a[12];
+ out[13] = a[13];
+ out[14] = a[14];
+ out[15] = a[15];
+ return out;
+}
+
+/**
+ * Create a new mat4 with the given values
+ *
+ * @param {Number} m00 Component in column 0, row 0 position (index 0)
+ * @param {Number} m01 Component in column 0, row 1 position (index 1)
+ * @param {Number} m02 Component in column 0, row 2 position (index 2)
+ * @param {Number} m03 Component in column 0, row 3 position (index 3)
+ * @param {Number} m10 Component in column 1, row 0 position (index 4)
+ * @param {Number} m11 Component in column 1, row 1 position (index 5)
+ * @param {Number} m12 Component in column 1, row 2 position (index 6)
+ * @param {Number} m13 Component in column 1, row 3 position (index 7)
+ * @param {Number} m20 Component in column 2, row 0 position (index 8)
+ * @param {Number} m21 Component in column 2, row 1 position (index 9)
+ * @param {Number} m22 Component in column 2, row 2 position (index 10)
+ * @param {Number} m23 Component in column 2, row 3 position (index 11)
+ * @param {Number} m30 Component in column 3, row 0 position (index 12)
+ * @param {Number} m31 Component in column 3, row 1 position (index 13)
+ * @param {Number} m32 Component in column 3, row 2 position (index 14)
+ * @param {Number} m33 Component in column 3, row 3 position (index 15)
+ * @returns {mat4} A new mat4
+ */
+function fromValues(m00, m01, m02, m03, m10, m11, m12, m13, m20, m21, m22, m23, m30, m31, m32, m33) {
+ var out = new glMatrix.ARRAY_TYPE(16);
+ out[0] = m00;
+ out[1] = m01;
+ out[2] = m02;
+ out[3] = m03;
+ out[4] = m10;
+ out[5] = m11;
+ out[6] = m12;
+ out[7] = m13;
+ out[8] = m20;
+ out[9] = m21;
+ out[10] = m22;
+ out[11] = m23;
+ out[12] = m30;
+ out[13] = m31;
+ out[14] = m32;
+ out[15] = m33;
+ return out;
+}
+
+/**
+ * Set the components of a mat4 to the given values
+ *
+ * @param {mat4} out the receiving matrix
+ * @param {Number} m00 Component in column 0, row 0 position (index 0)
+ * @param {Number} m01 Component in column 0, row 1 position (index 1)
+ * @param {Number} m02 Component in column 0, row 2 position (index 2)
+ * @param {Number} m03 Component in column 0, row 3 position (index 3)
+ * @param {Number} m10 Component in column 1, row 0 position (index 4)
+ * @param {Number} m11 Component in column 1, row 1 position (index 5)
+ * @param {Number} m12 Component in column 1, row 2 position (index 6)
+ * @param {Number} m13 Component in column 1, row 3 position (index 7)
+ * @param {Number} m20 Component in column 2, row 0 position (index 8)
+ * @param {Number} m21 Component in column 2, row 1 position (index 9)
+ * @param {Number} m22 Component in column 2, row 2 position (index 10)
+ * @param {Number} m23 Component in column 2, row 3 position (index 11)
+ * @param {Number} m30 Component in column 3, row 0 position (index 12)
+ * @param {Number} m31 Component in column 3, row 1 position (index 13)
+ * @param {Number} m32 Component in column 3, row 2 position (index 14)
+ * @param {Number} m33 Component in column 3, row 3 position (index 15)
+ * @returns {mat4} out
+ */
+function set(out, m00, m01, m02, m03, m10, m11, m12, m13, m20, m21, m22, m23, m30, m31, m32, m33) {
+ out[0] = m00;
+ out[1] = m01;
+ out[2] = m02;
+ out[3] = m03;
+ out[4] = m10;
+ out[5] = m11;
+ out[6] = m12;
+ out[7] = m13;
+ out[8] = m20;
+ out[9] = m21;
+ out[10] = m22;
+ out[11] = m23;
+ out[12] = m30;
+ out[13] = m31;
+ out[14] = m32;
+ out[15] = m33;
+ return out;
+}
+
+/**
+ * Set a mat4 to the identity matrix
+ *
+ * @param {mat4} out the receiving matrix
+ * @returns {mat4} out
+ */
+function identity(out) {
+ out[0] = 1;
+ out[1] = 0;
+ out[2] = 0;
+ out[3] = 0;
+ out[4] = 0;
+ out[5] = 1;
+ out[6] = 0;
+ out[7] = 0;
+ out[8] = 0;
+ out[9] = 0;
+ out[10] = 1;
+ out[11] = 0;
+ out[12] = 0;
+ out[13] = 0;
+ out[14] = 0;
+ out[15] = 1;
+ return out;
+}
+
+/**
+ * Transpose the values of a mat4
+ *
+ * @param {mat4} out the receiving matrix
+ * @param {mat4} a the source matrix
+ * @returns {mat4} out
+ */
+function transpose(out, a) {
+ // If we are transposing ourselves we can skip a few steps but have to cache some values
+ if (out === a) {
+ var a01 = a[1],
+ a02 = a[2],
+ a03 = a[3];
+ var a12 = a[6],
+ a13 = a[7];
+ var a23 = a[11];
+
+ out[1] = a[4];
+ out[2] = a[8];
+ out[3] = a[12];
+ out[4] = a01;
+ out[6] = a[9];
+ out[7] = a[13];
+ out[8] = a02;
+ out[9] = a12;
+ out[11] = a[14];
+ out[12] = a03;
+ out[13] = a13;
+ out[14] = a23;
+ } else {
+ out[0] = a[0];
+ out[1] = a[4];
+ out[2] = a[8];
+ out[3] = a[12];
+ out[4] = a[1];
+ out[5] = a[5];
+ out[6] = a[9];
+ out[7] = a[13];
+ out[8] = a[2];
+ out[9] = a[6];
+ out[10] = a[10];
+ out[11] = a[14];
+ out[12] = a[3];
+ out[13] = a[7];
+ out[14] = a[11];
+ out[15] = a[15];
+ }
+
+ return out;
+}
+
+/**
+ * Inverts a mat4
+ *
+ * @param {mat4} out the receiving matrix
+ * @param {mat4} a the source matrix
+ * @returns {mat4} out
+ */
+function invert(out, a) {
+ var a00 = a[0],
+ a01 = a[1],
+ a02 = a[2],
+ a03 = a[3];
+ var a10 = a[4],
+ a11 = a[5],
+ a12 = a[6],
+ a13 = a[7];
+ var a20 = a[8],
+ a21 = a[9],
+ a22 = a[10],
+ a23 = a[11];
+ var a30 = a[12],
+ a31 = a[13],
+ a32 = a[14],
+ a33 = a[15];
+
+ var b00 = a00 * a11 - a01 * a10;
+ var b01 = a00 * a12 - a02 * a10;
+ var b02 = a00 * a13 - a03 * a10;
+ var b03 = a01 * a12 - a02 * a11;
+ var b04 = a01 * a13 - a03 * a11;
+ var b05 = a02 * a13 - a03 * a12;
+ var b06 = a20 * a31 - a21 * a30;
+ var b07 = a20 * a32 - a22 * a30;
+ var b08 = a20 * a33 - a23 * a30;
+ var b09 = a21 * a32 - a22 * a31;
+ var b10 = a21 * a33 - a23 * a31;
+ var b11 = a22 * a33 - a23 * a32;
+
+ // Calculate the determinant
+ var det = b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06;
+
+ if (!det) {
+ return null;
+ }
+ det = 1.0 / det;
+
+ out[0] = (a11 * b11 - a12 * b10 + a13 * b09) * det;
+ out[1] = (a02 * b10 - a01 * b11 - a03 * b09) * det;
+ out[2] = (a31 * b05 - a32 * b04 + a33 * b03) * det;
+ out[3] = (a22 * b04 - a21 * b05 - a23 * b03) * det;
+ out[4] = (a12 * b08 - a10 * b11 - a13 * b07) * det;
+ out[5] = (a00 * b11 - a02 * b08 + a03 * b07) * det;
+ out[6] = (a32 * b02 - a30 * b05 - a33 * b01) * det;
+ out[7] = (a20 * b05 - a22 * b02 + a23 * b01) * det;
+ out[8] = (a10 * b10 - a11 * b08 + a13 * b06) * det;
+ out[9] = (a01 * b08 - a00 * b10 - a03 * b06) * det;
+ out[10] = (a30 * b04 - a31 * b02 + a33 * b00) * det;
+ out[11] = (a21 * b02 - a20 * b04 - a23 * b00) * det;
+ out[12] = (a11 * b07 - a10 * b09 - a12 * b06) * det;
+ out[13] = (a00 * b09 - a01 * b07 + a02 * b06) * det;
+ out[14] = (a31 * b01 - a30 * b03 - a32 * b00) * det;
+ out[15] = (a20 * b03 - a21 * b01 + a22 * b00) * det;
+
+ return out;
+}
+
+/**
+ * Calculates the adjugate of a mat4
+ *
+ * @param {mat4} out the receiving matrix
+ * @param {mat4} a the source matrix
+ * @returns {mat4} out
+ */
+function adjoint(out, a) {
+ var a00 = a[0],
+ a01 = a[1],
+ a02 = a[2],
+ a03 = a[3];
+ var a10 = a[4],
+ a11 = a[5],
+ a12 = a[6],
+ a13 = a[7];
+ var a20 = a[8],
+ a21 = a[9],
+ a22 = a[10],
+ a23 = a[11];
+ var a30 = a[12],
+ a31 = a[13],
+ a32 = a[14],
+ a33 = a[15];
+
+ out[0] = a11 * (a22 * a33 - a23 * a32) - a21 * (a12 * a33 - a13 * a32) + a31 * (a12 * a23 - a13 * a22);
+ out[1] = -(a01 * (a22 * a33 - a23 * a32) - a21 * (a02 * a33 - a03 * a32) + a31 * (a02 * a23 - a03 * a22));
+ out[2] = a01 * (a12 * a33 - a13 * a32) - a11 * (a02 * a33 - a03 * a32) + a31 * (a02 * a13 - a03 * a12);
+ out[3] = -(a01 * (a12 * a23 - a13 * a22) - a11 * (a02 * a23 - a03 * a22) + a21 * (a02 * a13 - a03 * a12));
+ out[4] = -(a10 * (a22 * a33 - a23 * a32) - a20 * (a12 * a33 - a13 * a32) + a30 * (a12 * a23 - a13 * a22));
+ out[5] = a00 * (a22 * a33 - a23 * a32) - a20 * (a02 * a33 - a03 * a32) + a30 * (a02 * a23 - a03 * a22);
+ out[6] = -(a00 * (a12 * a33 - a13 * a32) - a10 * (a02 * a33 - a03 * a32) + a30 * (a02 * a13 - a03 * a12));
+ out[7] = a00 * (a12 * a23 - a13 * a22) - a10 * (a02 * a23 - a03 * a22) + a20 * (a02 * a13 - a03 * a12);
+ out[8] = a10 * (a21 * a33 - a23 * a31) - a20 * (a11 * a33 - a13 * a31) + a30 * (a11 * a23 - a13 * a21);
+ out[9] = -(a00 * (a21 * a33 - a23 * a31) - a20 * (a01 * a33 - a03 * a31) + a30 * (a01 * a23 - a03 * a21));
+ out[10] = a00 * (a11 * a33 - a13 * a31) - a10 * (a01 * a33 - a03 * a31) + a30 * (a01 * a13 - a03 * a11);
+ out[11] = -(a00 * (a11 * a23 - a13 * a21) - a10 * (a01 * a23 - a03 * a21) + a20 * (a01 * a13 - a03 * a11));
+ out[12] = -(a10 * (a21 * a32 - a22 * a31) - a20 * (a11 * a32 - a12 * a31) + a30 * (a11 * a22 - a12 * a21));
+ out[13] = a00 * (a21 * a32 - a22 * a31) - a20 * (a01 * a32 - a02 * a31) + a30 * (a01 * a22 - a02 * a21);
+ out[14] = -(a00 * (a11 * a32 - a12 * a31) - a10 * (a01 * a32 - a02 * a31) + a30 * (a01 * a12 - a02 * a11));
+ out[15] = a00 * (a11 * a22 - a12 * a21) - a10 * (a01 * a22 - a02 * a21) + a20 * (a01 * a12 - a02 * a11);
+ return out;
+}
+
+/**
+ * Calculates the determinant of a mat4
+ *
+ * @param {mat4} a the source matrix
+ * @returns {Number} determinant of a
+ */
+function determinant(a) {
+ var a00 = a[0],
+ a01 = a[1],
+ a02 = a[2],
+ a03 = a[3];
+ var a10 = a[4],
+ a11 = a[5],
+ a12 = a[6],
+ a13 = a[7];
+ var a20 = a[8],
+ a21 = a[9],
+ a22 = a[10],
+ a23 = a[11];
+ var a30 = a[12],
+ a31 = a[13],
+ a32 = a[14],
+ a33 = a[15];
+
+ var b00 = a00 * a11 - a01 * a10;
+ var b01 = a00 * a12 - a02 * a10;
+ var b02 = a00 * a13 - a03 * a10;
+ var b03 = a01 * a12 - a02 * a11;
+ var b04 = a01 * a13 - a03 * a11;
+ var b05 = a02 * a13 - a03 * a12;
+ var b06 = a20 * a31 - a21 * a30;
+ var b07 = a20 * a32 - a22 * a30;
+ var b08 = a20 * a33 - a23 * a30;
+ var b09 = a21 * a32 - a22 * a31;
+ var b10 = a21 * a33 - a23 * a31;
+ var b11 = a22 * a33 - a23 * a32;
+
+ // Calculate the determinant
+ return b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06;
+}
+
+/**
+ * Multiplies two mat4s
+ *
+ * @param {mat4} out the receiving matrix
+ * @param {mat4} a the first operand
+ * @param {mat4} b the second operand
+ * @returns {mat4} out
+ */
+function multiply(out, a, b) {
+ var a00 = a[0],
+ a01 = a[1],
+ a02 = a[2],
+ a03 = a[3];
+ var a10 = a[4],
+ a11 = a[5],
+ a12 = a[6],
+ a13 = a[7];
+ var a20 = a[8],
+ a21 = a[9],
+ a22 = a[10],
+ a23 = a[11];
+ var a30 = a[12],
+ a31 = a[13],
+ a32 = a[14],
+ a33 = a[15];
+
+ // Cache only the current line of the second matrix
+ var b0 = b[0],
+ b1 = b[1],
+ b2 = b[2],
+ b3 = b[3];
+ out[0] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30;
+ out[1] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31;
+ out[2] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32;
+ out[3] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33;
+
+ b0 = b[4];b1 = b[5];b2 = b[6];b3 = b[7];
+ out[4] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30;
+ out[5] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31;
+ out[6] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32;
+ out[7] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33;
+
+ b0 = b[8];b1 = b[9];b2 = b[10];b3 = b[11];
+ out[8] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30;
+ out[9] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31;
+ out[10] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32;
+ out[11] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33;
+
+ b0 = b[12];b1 = b[13];b2 = b[14];b3 = b[15];
+ out[12] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30;
+ out[13] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31;
+ out[14] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32;
+ out[15] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33;
+ return out;
+}
+
+/**
+ * Translate a mat4 by the given vector
+ *
+ * @param {mat4} out the receiving matrix
+ * @param {mat4} a the matrix to translate
+ * @param {vec3} v vector to translate by
+ * @returns {mat4} out
+ */
+function translate(out, a, v) {
+ var x = v[0],
+ y = v[1],
+ z = v[2];
+ var a00 = void 0,
+ a01 = void 0,
+ a02 = void 0,
+ a03 = void 0;
+ var a10 = void 0,
+ a11 = void 0,
+ a12 = void 0,
+ a13 = void 0;
+ var a20 = void 0,
+ a21 = void 0,
+ a22 = void 0,
+ a23 = void 0;
+
+ if (a === out) {
+ out[12] = a[0] * x + a[4] * y + a[8] * z + a[12];
+ out[13] = a[1] * x + a[5] * y + a[9] * z + a[13];
+ out[14] = a[2] * x + a[6] * y + a[10] * z + a[14];
+ out[15] = a[3] * x + a[7] * y + a[11] * z + a[15];
+ } else {
+ a00 = a[0];a01 = a[1];a02 = a[2];a03 = a[3];
+ a10 = a[4];a11 = a[5];a12 = a[6];a13 = a[7];
+ a20 = a[8];a21 = a[9];a22 = a[10];a23 = a[11];
+
+ out[0] = a00;out[1] = a01;out[2] = a02;out[3] = a03;
+ out[4] = a10;out[5] = a11;out[6] = a12;out[7] = a13;
+ out[8] = a20;out[9] = a21;out[10] = a22;out[11] = a23;
+
+ out[12] = a00 * x + a10 * y + a20 * z + a[12];
+ out[13] = a01 * x + a11 * y + a21 * z + a[13];
+ out[14] = a02 * x + a12 * y + a22 * z + a[14];
+ out[15] = a03 * x + a13 * y + a23 * z + a[15];
+ }
+
+ return out;
+}
+
+/**
+ * Scales the mat4 by the dimensions in the given vec3 not using vectorization
+ *
+ * @param {mat4} out the receiving matrix
+ * @param {mat4} a the matrix to scale
+ * @param {vec3} v the vec3 to scale the matrix by
+ * @returns {mat4} out
+ **/
+function scale(out, a, v) {
+ var x = v[0],
+ y = v[1],
+ z = v[2];
+
+ out[0] = a[0] * x;
+ out[1] = a[1] * x;
+ out[2] = a[2] * x;
+ out[3] = a[3] * x;
+ out[4] = a[4] * y;
+ out[5] = a[5] * y;
+ out[6] = a[6] * y;
+ out[7] = a[7] * y;
+ out[8] = a[8] * z;
+ out[9] = a[9] * z;
+ out[10] = a[10] * z;
+ out[11] = a[11] * z;
+ out[12] = a[12];
+ out[13] = a[13];
+ out[14] = a[14];
+ out[15] = a[15];
+ return out;
+}
+
+/**
+ * Rotates a mat4 by the given angle around the given axis
+ *
+ * @param {mat4} out the receiving matrix
+ * @param {mat4} a the matrix to rotate
+ * @param {Number} rad the angle to rotate the matrix by
+ * @param {vec3} axis the axis to rotate around
+ * @returns {mat4} out
+ */
+function rotate(out, a, rad, axis) {
+ var x = axis[0],
+ y = axis[1],
+ z = axis[2];
+ var len = Math.sqrt(x * x + y * y + z * z);
+ var s = void 0,
+ c = void 0,
+ t = void 0;
+ var a00 = void 0,
+ a01 = void 0,
+ a02 = void 0,
+ a03 = void 0;
+ var a10 = void 0,
+ a11 = void 0,
+ a12 = void 0,
+ a13 = void 0;
+ var a20 = void 0,
+ a21 = void 0,
+ a22 = void 0,
+ a23 = void 0;
+ var b00 = void 0,
+ b01 = void 0,
+ b02 = void 0;
+ var b10 = void 0,
+ b11 = void 0,
+ b12 = void 0;
+ var b20 = void 0,
+ b21 = void 0,
+ b22 = void 0;
+
+ if (Math.abs(len) < glMatrix.EPSILON) {
+ return null;
+ }
+
+ len = 1 / len;
+ x *= len;
+ y *= len;
+ z *= len;
+
+ s = Math.sin(rad);
+ c = Math.cos(rad);
+ t = 1 - c;
+
+ a00 = a[0];a01 = a[1];a02 = a[2];a03 = a[3];
+ a10 = a[4];a11 = a[5];a12 = a[6];a13 = a[7];
+ a20 = a[8];a21 = a[9];a22 = a[10];a23 = a[11];
+
+ // Construct the elements of the rotation matrix
+ b00 = x * x * t + c;b01 = y * x * t + z * s;b02 = z * x * t - y * s;
+ b10 = x * y * t - z * s;b11 = y * y * t + c;b12 = z * y * t + x * s;
+ b20 = x * z * t + y * s;b21 = y * z * t - x * s;b22 = z * z * t + c;
+
+ // Perform rotation-specific matrix multiplication
+ out[0] = a00 * b00 + a10 * b01 + a20 * b02;
+ out[1] = a01 * b00 + a11 * b01 + a21 * b02;
+ out[2] = a02 * b00 + a12 * b01 + a22 * b02;
+ out[3] = a03 * b00 + a13 * b01 + a23 * b02;
+ out[4] = a00 * b10 + a10 * b11 + a20 * b12;
+ out[5] = a01 * b10 + a11 * b11 + a21 * b12;
+ out[6] = a02 * b10 + a12 * b11 + a22 * b12;
+ out[7] = a03 * b10 + a13 * b11 + a23 * b12;
+ out[8] = a00 * b20 + a10 * b21 + a20 * b22;
+ out[9] = a01 * b20 + a11 * b21 + a21 * b22;
+ out[10] = a02 * b20 + a12 * b21 + a22 * b22;
+ out[11] = a03 * b20 + a13 * b21 + a23 * b22;
+
+ if (a !== out) {
+ // If the source and destination differ, copy the unchanged last row
+ out[12] = a[12];
+ out[13] = a[13];
+ out[14] = a[14];
+ out[15] = a[15];
+ }
+ return out;
+}
+
+/**
+ * Rotates a matrix by the given angle around the X axis
+ *
+ * @param {mat4} out the receiving matrix
+ * @param {mat4} a the matrix to rotate
+ * @param {Number} rad the angle to rotate the matrix by
+ * @returns {mat4} out
+ */
+function rotateX(out, a, rad) {
+ var s = Math.sin(rad);
+ var c = Math.cos(rad);
+ var a10 = a[4];
+ var a11 = a[5];
+ var a12 = a[6];
+ var a13 = a[7];
+ var a20 = a[8];
+ var a21 = a[9];
+ var a22 = a[10];
+ var a23 = a[11];
+
+ if (a !== out) {
+ // If the source and destination differ, copy the unchanged rows
+ out[0] = a[0];
+ out[1] = a[1];
+ out[2] = a[2];
+ out[3] = a[3];
+ out[12] = a[12];
+ out[13] = a[13];
+ out[14] = a[14];
+ out[15] = a[15];
+ }
+
+ // Perform axis-specific matrix multiplication
+ out[4] = a10 * c + a20 * s;
+ out[5] = a11 * c + a21 * s;
+ out[6] = a12 * c + a22 * s;
+ out[7] = a13 * c + a23 * s;
+ out[8] = a20 * c - a10 * s;
+ out[9] = a21 * c - a11 * s;
+ out[10] = a22 * c - a12 * s;
+ out[11] = a23 * c - a13 * s;
+ return out;
+}
+
+/**
+ * Rotates a matrix by the given angle around the Y axis
+ *
+ * @param {mat4} out the receiving matrix
+ * @param {mat4} a the matrix to rotate
+ * @param {Number} rad the angle to rotate the matrix by
+ * @returns {mat4} out
+ */
+function rotateY(out, a, rad) {
+ var s = Math.sin(rad);
+ var c = Math.cos(rad);
+ var a00 = a[0];
+ var a01 = a[1];
+ var a02 = a[2];
+ var a03 = a[3];
+ var a20 = a[8];
+ var a21 = a[9];
+ var a22 = a[10];
+ var a23 = a[11];
+
+ if (a !== out) {
+ // If the source and destination differ, copy the unchanged rows
+ out[4] = a[4];
+ out[5] = a[5];
+ out[6] = a[6];
+ out[7] = a[7];
+ out[12] = a[12];
+ out[13] = a[13];
+ out[14] = a[14];
+ out[15] = a[15];
+ }
+
+ // Perform axis-specific matrix multiplication
+ out[0] = a00 * c - a20 * s;
+ out[1] = a01 * c - a21 * s;
+ out[2] = a02 * c - a22 * s;
+ out[3] = a03 * c - a23 * s;
+ out[8] = a00 * s + a20 * c;
+ out[9] = a01 * s + a21 * c;
+ out[10] = a02 * s + a22 * c;
+ out[11] = a03 * s + a23 * c;
+ return out;
+}
+
+/**
+ * Rotates a matrix by the given angle around the Z axis
+ *
+ * @param {mat4} out the receiving matrix
+ * @param {mat4} a the matrix to rotate
+ * @param {Number} rad the angle to rotate the matrix by
+ * @returns {mat4} out
+ */
+function rotateZ(out, a, rad) {
+ var s = Math.sin(rad);
+ var c = Math.cos(rad);
+ var a00 = a[0];
+ var a01 = a[1];
+ var a02 = a[2];
+ var a03 = a[3];
+ var a10 = a[4];
+ var a11 = a[5];
+ var a12 = a[6];
+ var a13 = a[7];
+
+ if (a !== out) {
+ // If the source and destination differ, copy the unchanged last row
+ out[8] = a[8];
+ out[9] = a[9];
+ out[10] = a[10];
+ out[11] = a[11];
+ out[12] = a[12];
+ out[13] = a[13];
+ out[14] = a[14];
+ out[15] = a[15];
+ }
+
+ // Perform axis-specific matrix multiplication
+ out[0] = a00 * c + a10 * s;
+ out[1] = a01 * c + a11 * s;
+ out[2] = a02 * c + a12 * s;
+ out[3] = a03 * c + a13 * s;
+ out[4] = a10 * c - a00 * s;
+ out[5] = a11 * c - a01 * s;
+ out[6] = a12 * c - a02 * s;
+ out[7] = a13 * c - a03 * s;
+ return out;
+}
+
+/**
+ * Creates a matrix from a vector translation
+ * This is equivalent to (but much faster than):
+ *
+ * mat4.identity(dest);
+ * mat4.translate(dest, dest, vec);
+ *
+ * @param {mat4} out mat4 receiving operation result
+ * @param {vec3} v Translation vector
+ * @returns {mat4} out
+ */
+function fromTranslation(out, v) {
+ out[0] = 1;
+ out[1] = 0;
+ out[2] = 0;
+ out[3] = 0;
+ out[4] = 0;
+ out[5] = 1;
+ out[6] = 0;
+ out[7] = 0;
+ out[8] = 0;
+ out[9] = 0;
+ out[10] = 1;
+ out[11] = 0;
+ out[12] = v[0];
+ out[13] = v[1];
+ out[14] = v[2];
+ out[15] = 1;
+ return out;
+}
+
+/**
+ * Creates a matrix from a vector scaling
+ * This is equivalent to (but much faster than):
+ *
+ * mat4.identity(dest);
+ * mat4.scale(dest, dest, vec);
+ *
+ * @param {mat4} out mat4 receiving operation result
+ * @param {vec3} v Scaling vector
+ * @returns {mat4} out
+ */
+function fromScaling(out, v) {
+ out[0] = v[0];
+ out[1] = 0;
+ out[2] = 0;
+ out[3] = 0;
+ out[4] = 0;
+ out[5] = v[1];
+ out[6] = 0;
+ out[7] = 0;
+ out[8] = 0;
+ out[9] = 0;
+ out[10] = v[2];
+ out[11] = 0;
+ out[12] = 0;
+ out[13] = 0;
+ out[14] = 0;
+ out[15] = 1;
+ return out;
+}
+
+/**
+ * Creates a matrix from a given angle around a given axis
+ * This is equivalent to (but much faster than):
+ *
+ * mat4.identity(dest);
+ * mat4.rotate(dest, dest, rad, axis);
+ *
+ * @param {mat4} out mat4 receiving operation result
+ * @param {Number} rad the angle to rotate the matrix by
+ * @param {vec3} axis the axis to rotate around
+ * @returns {mat4} out
+ */
+function fromRotation(out, rad, axis) {
+ var x = axis[0],
+ y = axis[1],
+ z = axis[2];
+ var len = Math.sqrt(x * x + y * y + z * z);
+ var s = void 0,
+ c = void 0,
+ t = void 0;
+
+ if (Math.abs(len) < glMatrix.EPSILON) {
+ return null;
+ }
+
+ len = 1 / len;
+ x *= len;
+ y *= len;
+ z *= len;
+
+ s = Math.sin(rad);
+ c = Math.cos(rad);
+ t = 1 - c;
+
+ // Perform rotation-specific matrix multiplication
+ out[0] = x * x * t + c;
+ out[1] = y * x * t + z * s;
+ out[2] = z * x * t - y * s;
+ out[3] = 0;
+ out[4] = x * y * t - z * s;
+ out[5] = y * y * t + c;
+ out[6] = z * y * t + x * s;
+ out[7] = 0;
+ out[8] = x * z * t + y * s;
+ out[9] = y * z * t - x * s;
+ out[10] = z * z * t + c;
+ out[11] = 0;
+ out[12] = 0;
+ out[13] = 0;
+ out[14] = 0;
+ out[15] = 1;
+ return out;
+}
+
+/**
+ * Creates a matrix from the given angle around the X axis
+ * This is equivalent to (but much faster than):
+ *
+ * mat4.identity(dest);
+ * mat4.rotateX(dest, dest, rad);
+ *
+ * @param {mat4} out mat4 receiving operation result
+ * @param {Number} rad the angle to rotate the matrix by
+ * @returns {mat4} out
+ */
+function fromXRotation(out, rad) {
+ var s = Math.sin(rad);
+ var c = Math.cos(rad);
+
+ // Perform axis-specific matrix multiplication
+ out[0] = 1;
+ out[1] = 0;
+ out[2] = 0;
+ out[3] = 0;
+ out[4] = 0;
+ out[5] = c;
+ out[6] = s;
+ out[7] = 0;
+ out[8] = 0;
+ out[9] = -s;
+ out[10] = c;
+ out[11] = 0;
+ out[12] = 0;
+ out[13] = 0;
+ out[14] = 0;
+ out[15] = 1;
+ return out;
+}
+
+/**
+ * Creates a matrix from the given angle around the Y axis
+ * This is equivalent to (but much faster than):
+ *
+ * mat4.identity(dest);
+ * mat4.rotateY(dest, dest, rad);
+ *
+ * @param {mat4} out mat4 receiving operation result
+ * @param {Number} rad the angle to rotate the matrix by
+ * @returns {mat4} out
+ */
+function fromYRotation(out, rad) {
+ var s = Math.sin(rad);
+ var c = Math.cos(rad);
+
+ // Perform axis-specific matrix multiplication
+ out[0] = c;
+ out[1] = 0;
+ out[2] = -s;
+ out[3] = 0;
+ out[4] = 0;
+ out[5] = 1;
+ out[6] = 0;
+ out[7] = 0;
+ out[8] = s;
+ out[9] = 0;
+ out[10] = c;
+ out[11] = 0;
+ out[12] = 0;
+ out[13] = 0;
+ out[14] = 0;
+ out[15] = 1;
+ return out;
+}
+
+/**
+ * Creates a matrix from the given angle around the Z axis
+ * This is equivalent to (but much faster than):
+ *
+ * mat4.identity(dest);
+ * mat4.rotateZ(dest, dest, rad);
+ *
+ * @param {mat4} out mat4 receiving operation result
+ * @param {Number} rad the angle to rotate the matrix by
+ * @returns {mat4} out
+ */
+function fromZRotation(out, rad) {
+ var s = Math.sin(rad);
+ var c = Math.cos(rad);
+
+ // Perform axis-specific matrix multiplication
+ out[0] = c;
+ out[1] = s;
+ out[2] = 0;
+ out[3] = 0;
+ out[4] = -s;
+ out[5] = c;
+ out[6] = 0;
+ out[7] = 0;
+ out[8] = 0;
+ out[9] = 0;
+ out[10] = 1;
+ out[11] = 0;
+ out[12] = 0;
+ out[13] = 0;
+ out[14] = 0;
+ out[15] = 1;
+ return out;
+}
+
+/**
+ * Creates a matrix from a quaternion rotation and vector translation
+ * This is equivalent to (but much faster than):
+ *
+ * mat4.identity(dest);
+ * mat4.translate(dest, vec);
+ * let quatMat = mat4.create();
+ * quat4.toMat4(quat, quatMat);
+ * mat4.multiply(dest, quatMat);
+ *
+ * @param {mat4} out mat4 receiving operation result
+ * @param {quat4} q Rotation quaternion
+ * @param {vec3} v Translation vector
+ * @returns {mat4} out
+ */
+function fromRotationTranslation(out, q, v) {
+ // Quaternion math
+ var x = q[0],
+ y = q[1],
+ z = q[2],
+ w = q[3];
+ var x2 = x + x;
+ var y2 = y + y;
+ var z2 = z + z;
+
+ var xx = x * x2;
+ var xy = x * y2;
+ var xz = x * z2;
+ var yy = y * y2;
+ var yz = y * z2;
+ var zz = z * z2;
+ var wx = w * x2;
+ var wy = w * y2;
+ var wz = w * z2;
+
+ out[0] = 1 - (yy + zz);
+ out[1] = xy + wz;
+ out[2] = xz - wy;
+ out[3] = 0;
+ out[4] = xy - wz;
+ out[5] = 1 - (xx + zz);
+ out[6] = yz + wx;
+ out[7] = 0;
+ out[8] = xz + wy;
+ out[9] = yz - wx;
+ out[10] = 1 - (xx + yy);
+ out[11] = 0;
+ out[12] = v[0];
+ out[13] = v[1];
+ out[14] = v[2];
+ out[15] = 1;
+
+ return out;
+}
+
+/**
+ * Returns the translation vector component of a transformation
+ * matrix. If a matrix is built with fromRotationTranslation,
+ * the returned vector will be the same as the translation vector
+ * originally supplied.
+ * @param {vec3} out Vector to receive translation component
+ * @param {mat4} mat Matrix to be decomposed (input)
+ * @return {vec3} out
+ */
+function getTranslation(out, mat) {
+ out[0] = mat[12];
+ out[1] = mat[13];
+ out[2] = mat[14];
+
+ return out;
+}
+
+/**
+ * Returns the scaling factor component of a transformation
+ * matrix. If a matrix is built with fromRotationTranslationScale
+ * with a normalized Quaternion paramter, the returned vector will be
+ * the same as the scaling vector
+ * originally supplied.
+ * @param {vec3} out Vector to receive scaling factor component
+ * @param {mat4} mat Matrix to be decomposed (input)
+ * @return {vec3} out
+ */
+function getScaling(out, mat) {
+ var m11 = mat[0];
+ var m12 = mat[1];
+ var m13 = mat[2];
+ var m21 = mat[4];
+ var m22 = mat[5];
+ var m23 = mat[6];
+ var m31 = mat[8];
+ var m32 = mat[9];
+ var m33 = mat[10];
+
+ out[0] = Math.sqrt(m11 * m11 + m12 * m12 + m13 * m13);
+ out[1] = Math.sqrt(m21 * m21 + m22 * m22 + m23 * m23);
+ out[2] = Math.sqrt(m31 * m31 + m32 * m32 + m33 * m33);
+
+ return out;
+}
+
+/**
+ * Returns a quaternion representing the rotational component
+ * of a transformation matrix. If a matrix is built with
+ * fromRotationTranslation, the returned quaternion will be the
+ * same as the quaternion originally supplied.
+ * @param {quat} out Quaternion to receive the rotation component
+ * @param {mat4} mat Matrix to be decomposed (input)
+ * @return {quat} out
+ */
+function getRotation(out, mat) {
+ // Algorithm taken from http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/index.htm
+ var trace = mat[0] + mat[5] + mat[10];
+ var S = 0;
+
+ if (trace > 0) {
+ S = Math.sqrt(trace + 1.0) * 2;
+ out[3] = 0.25 * S;
+ out[0] = (mat[6] - mat[9]) / S;
+ out[1] = (mat[8] - mat[2]) / S;
+ out[2] = (mat[1] - mat[4]) / S;
+ } else if (mat[0] > mat[5] & mat[0] > mat[10]) {
+ S = Math.sqrt(1.0 + mat[0] - mat[5] - mat[10]) * 2;
+ out[3] = (mat[6] - mat[9]) / S;
+ out[0] = 0.25 * S;
+ out[1] = (mat[1] + mat[4]) / S;
+ out[2] = (mat[8] + mat[2]) / S;
+ } else if (mat[5] > mat[10]) {
+ S = Math.sqrt(1.0 + mat[5] - mat[0] - mat[10]) * 2;
+ out[3] = (mat[8] - mat[2]) / S;
+ out[0] = (mat[1] + mat[4]) / S;
+ out[1] = 0.25 * S;
+ out[2] = (mat[6] + mat[9]) / S;
+ } else {
+ S = Math.sqrt(1.0 + mat[10] - mat[0] - mat[5]) * 2;
+ out[3] = (mat[1] - mat[4]) / S;
+ out[0] = (mat[8] + mat[2]) / S;
+ out[1] = (mat[6] + mat[9]) / S;
+ out[2] = 0.25 * S;
+ }
+
+ return out;
+}
+
+/**
+ * Creates a matrix from a quaternion rotation, vector translation and vector scale
+ * This is equivalent to (but much faster than):
+ *
+ * mat4.identity(dest);
+ * mat4.translate(dest, vec);
+ * let quatMat = mat4.create();
+ * quat4.toMat4(quat, quatMat);
+ * mat4.multiply(dest, quatMat);
+ * mat4.scale(dest, scale)
+ *
+ * @param {mat4} out mat4 receiving operation result
+ * @param {quat4} q Rotation quaternion
+ * @param {vec3} v Translation vector
+ * @param {vec3} s Scaling vector
+ * @returns {mat4} out
+ */
+function fromRotationTranslationScale(out, q, v, s) {
+ // Quaternion math
+ var x = q[0],
+ y = q[1],
+ z = q[2],
+ w = q[3];
+ var x2 = x + x;
+ var y2 = y + y;
+ var z2 = z + z;
+
+ var xx = x * x2;
+ var xy = x * y2;
+ var xz = x * z2;
+ var yy = y * y2;
+ var yz = y * z2;
+ var zz = z * z2;
+ var wx = w * x2;
+ var wy = w * y2;
+ var wz = w * z2;
+ var sx = s[0];
+ var sy = s[1];
+ var sz = s[2];
+
+ out[0] = (1 - (yy + zz)) * sx;
+ out[1] = (xy + wz) * sx;
+ out[2] = (xz - wy) * sx;
+ out[3] = 0;
+ out[4] = (xy - wz) * sy;
+ out[5] = (1 - (xx + zz)) * sy;
+ out[6] = (yz + wx) * sy;
+ out[7] = 0;
+ out[8] = (xz + wy) * sz;
+ out[9] = (yz - wx) * sz;
+ out[10] = (1 - (xx + yy)) * sz;
+ out[11] = 0;
+ out[12] = v[0];
+ out[13] = v[1];
+ out[14] = v[2];
+ out[15] = 1;
+
+ return out;
+}
+
+/**
+ * Creates a matrix from a quaternion rotation, vector translation and vector scale, rotating and scaling around the given origin
+ * This is equivalent to (but much faster than):
+ *
+ * mat4.identity(dest);
+ * mat4.translate(dest, vec);
+ * mat4.translate(dest, origin);
+ * let quatMat = mat4.create();
+ * quat4.toMat4(quat, quatMat);
+ * mat4.multiply(dest, quatMat);
+ * mat4.scale(dest, scale)
+ * mat4.translate(dest, negativeOrigin);
+ *
+ * @param {mat4} out mat4 receiving operation result
+ * @param {quat4} q Rotation quaternion
+ * @param {vec3} v Translation vector
+ * @param {vec3} s Scaling vector
+ * @param {vec3} o The origin vector around which to scale and rotate
+ * @returns {mat4} out
+ */
+function fromRotationTranslationScaleOrigin(out, q, v, s, o) {
+ // Quaternion math
+ var x = q[0],
+ y = q[1],
+ z = q[2],
+ w = q[3];
+ var x2 = x + x;
+ var y2 = y + y;
+ var z2 = z + z;
+
+ var xx = x * x2;
+ var xy = x * y2;
+ var xz = x * z2;
+ var yy = y * y2;
+ var yz = y * z2;
+ var zz = z * z2;
+ var wx = w * x2;
+ var wy = w * y2;
+ var wz = w * z2;
+
+ var sx = s[0];
+ var sy = s[1];
+ var sz = s[2];
+
+ var ox = o[0];
+ var oy = o[1];
+ var oz = o[2];
+
+ out[0] = (1 - (yy + zz)) * sx;
+ out[1] = (xy + wz) * sx;
+ out[2] = (xz - wy) * sx;
+ out[3] = 0;
+ out[4] = (xy - wz) * sy;
+ out[5] = (1 - (xx + zz)) * sy;
+ out[6] = (yz + wx) * sy;
+ out[7] = 0;
+ out[8] = (xz + wy) * sz;
+ out[9] = (yz - wx) * sz;
+ out[10] = (1 - (xx + yy)) * sz;
+ out[11] = 0;
+ out[12] = v[0] + ox - (out[0] * ox + out[4] * oy + out[8] * oz);
+ out[13] = v[1] + oy - (out[1] * ox + out[5] * oy + out[9] * oz);
+ out[14] = v[2] + oz - (out[2] * ox + out[6] * oy + out[10] * oz);
+ out[15] = 1;
+
+ return out;
+}
+
+/**
+ * Calculates a 4x4 matrix from the given quaternion
+ *
+ * @param {mat4} out mat4 receiving operation result
+ * @param {quat} q Quaternion to create matrix from
+ *
+ * @returns {mat4} out
+ */
+function fromQuat(out, q) {
+ var x = q[0],
+ y = q[1],
+ z = q[2],
+ w = q[3];
+ var x2 = x + x;
+ var y2 = y + y;
+ var z2 = z + z;
+
+ var xx = x * x2;
+ var yx = y * x2;
+ var yy = y * y2;
+ var zx = z * x2;
+ var zy = z * y2;
+ var zz = z * z2;
+ var wx = w * x2;
+ var wy = w * y2;
+ var wz = w * z2;
+
+ out[0] = 1 - yy - zz;
+ out[1] = yx + wz;
+ out[2] = zx - wy;
+ out[3] = 0;
+
+ out[4] = yx - wz;
+ out[5] = 1 - xx - zz;
+ out[6] = zy + wx;
+ out[7] = 0;
+
+ out[8] = zx + wy;
+ out[9] = zy - wx;
+ out[10] = 1 - xx - yy;
+ out[11] = 0;
+
+ out[12] = 0;
+ out[13] = 0;
+ out[14] = 0;
+ out[15] = 1;
+
+ return out;
+}
+
+/**
+ * Generates a frustum matrix with the given bounds
+ *
+ * @param {mat4} out mat4 frustum matrix will be written into
+ * @param {Number} left Left bound of the frustum
+ * @param {Number} right Right bound of the frustum
+ * @param {Number} bottom Bottom bound of the frustum
+ * @param {Number} top Top bound of the frustum
+ * @param {Number} near Near bound of the frustum
+ * @param {Number} far Far bound of the frustum
+ * @returns {mat4} out
+ */
+function frustum(out, left, right, bottom, top, near, far) {
+ var rl = 1 / (right - left);
+ var tb = 1 / (top - bottom);
+ var nf = 1 / (near - far);
+ out[0] = near * 2 * rl;
+ out[1] = 0;
+ out[2] = 0;
+ out[3] = 0;
+ out[4] = 0;
+ out[5] = near * 2 * tb;
+ out[6] = 0;
+ out[7] = 0;
+ out[8] = (right + left) * rl;
+ out[9] = (top + bottom) * tb;
+ out[10] = (far + near) * nf;
+ out[11] = -1;
+ out[12] = 0;
+ out[13] = 0;
+ out[14] = far * near * 2 * nf;
+ out[15] = 0;
+ return out;
+}
+
+/**
+ * Generates a perspective projection matrix with the given bounds
+ *
+ * @param {mat4} out mat4 frustum matrix will be written into
+ * @param {number} fovy Vertical field of view in radians
+ * @param {number} aspect Aspect ratio. typically viewport width/height
+ * @param {number} near Near bound of the frustum
+ * @param {number} far Far bound of the frustum
+ * @returns {mat4} out
+ */
+function perspective(out, fovy, aspect, near, far) {
+ var f = 1.0 / Math.tan(fovy / 2);
+ var nf = 1 / (near - far);
+ out[0] = f / aspect;
+ out[1] = 0;
+ out[2] = 0;
+ out[3] = 0;
+ out[4] = 0;
+ out[5] = f;
+ out[6] = 0;
+ out[7] = 0;
+ out[8] = 0;
+ out[9] = 0;
+ out[10] = (far + near) * nf;
+ out[11] = -1;
+ out[12] = 0;
+ out[13] = 0;
+ out[14] = 2 * far * near * nf;
+ out[15] = 0;
+ return out;
+}
+
+/**
+ * Generates a perspective projection matrix with the given field of view.
+ * This is primarily useful for generating projection matrices to be used
+ * with the still experiemental WebVR API.
+ *
+ * @param {mat4} out mat4 frustum matrix will be written into
+ * @param {Object} fov Object containing the following values: upDegrees, downDegrees, leftDegrees, rightDegrees
+ * @param {number} near Near bound of the frustum
+ * @param {number} far Far bound of the frustum
+ * @returns {mat4} out
+ */
+function perspectiveFromFieldOfView(out, fov, near, far) {
+ var upTan = Math.tan(fov.upDegrees * Math.PI / 180.0);
+ var downTan = Math.tan(fov.downDegrees * Math.PI / 180.0);
+ var leftTan = Math.tan(fov.leftDegrees * Math.PI / 180.0);
+ var rightTan = Math.tan(fov.rightDegrees * Math.PI / 180.0);
+ var xScale = 2.0 / (leftTan + rightTan);
+ var yScale = 2.0 / (upTan + downTan);
+
+ out[0] = xScale;
+ out[1] = 0.0;
+ out[2] = 0.0;
+ out[3] = 0.0;
+ out[4] = 0.0;
+ out[5] = yScale;
+ out[6] = 0.0;
+ out[7] = 0.0;
+ out[8] = -((leftTan - rightTan) * xScale * 0.5);
+ out[9] = (upTan - downTan) * yScale * 0.5;
+ out[10] = far / (near - far);
+ out[11] = -1.0;
+ out[12] = 0.0;
+ out[13] = 0.0;
+ out[14] = far * near / (near - far);
+ out[15] = 0.0;
+ return out;
+}
+
+/**
+ * Generates a orthogonal projection matrix with the given bounds
+ *
+ * @param {mat4} out mat4 frustum matrix will be written into
+ * @param {number} left Left bound of the frustum
+ * @param {number} right Right bound of the frustum
+ * @param {number} bottom Bottom bound of the frustum
+ * @param {number} top Top bound of the frustum
+ * @param {number} near Near bound of the frustum
+ * @param {number} far Far bound of the frustum
+ * @returns {mat4} out
+ */
+function ortho(out, left, right, bottom, top, near, far) {
+ var lr = 1 / (left - right);
+ var bt = 1 / (bottom - top);
+ var nf = 1 / (near - far);
+ out[0] = -2 * lr;
+ out[1] = 0;
+ out[2] = 0;
+ out[3] = 0;
+ out[4] = 0;
+ out[5] = -2 * bt;
+ out[6] = 0;
+ out[7] = 0;
+ out[8] = 0;
+ out[9] = 0;
+ out[10] = 2 * nf;
+ out[11] = 0;
+ out[12] = (left + right) * lr;
+ out[13] = (top + bottom) * bt;
+ out[14] = (far + near) * nf;
+ out[15] = 1;
+ return out;
+}
+
+/**
+ * Generates a look-at matrix with the given eye position, focal point, and up axis
+ *
+ * @param {mat4} out mat4 frustum matrix will be written into
+ * @param {vec3} eye Position of the viewer
+ * @param {vec3} center Point the viewer is looking at
+ * @param {vec3} up vec3 pointing up
+ * @returns {mat4} out
+ */
+function lookAt(out, eye, center, up) {
+ var x0 = void 0,
+ x1 = void 0,
+ x2 = void 0,
+ y0 = void 0,
+ y1 = void 0,
+ y2 = void 0,
+ z0 = void 0,
+ z1 = void 0,
+ z2 = void 0,
+ len = void 0;
+ var eyex = eye[0];
+ var eyey = eye[1];
+ var eyez = eye[2];
+ var upx = up[0];
+ var upy = up[1];
+ var upz = up[2];
+ var centerx = center[0];
+ var centery = center[1];
+ var centerz = center[2];
+
+ if (Math.abs(eyex - centerx) < glMatrix.EPSILON && Math.abs(eyey - centery) < glMatrix.EPSILON && Math.abs(eyez - centerz) < glMatrix.EPSILON) {
+ return mat4.identity(out);
+ }
+
+ z0 = eyex - centerx;
+ z1 = eyey - centery;
+ z2 = eyez - centerz;
+
+ len = 1 / Math.sqrt(z0 * z0 + z1 * z1 + z2 * z2);
+ z0 *= len;
+ z1 *= len;
+ z2 *= len;
+
+ x0 = upy * z2 - upz * z1;
+ x1 = upz * z0 - upx * z2;
+ x2 = upx * z1 - upy * z0;
+ len = Math.sqrt(x0 * x0 + x1 * x1 + x2 * x2);
+ if (!len) {
+ x0 = 0;
+ x1 = 0;
+ x2 = 0;
+ } else {
+ len = 1 / len;
+ x0 *= len;
+ x1 *= len;
+ x2 *= len;
+ }
+
+ y0 = z1 * x2 - z2 * x1;
+ y1 = z2 * x0 - z0 * x2;
+ y2 = z0 * x1 - z1 * x0;
+
+ len = Math.sqrt(y0 * y0 + y1 * y1 + y2 * y2);
+ if (!len) {
+ y0 = 0;
+ y1 = 0;
+ y2 = 0;
+ } else {
+ len = 1 / len;
+ y0 *= len;
+ y1 *= len;
+ y2 *= len;
+ }
+
+ out[0] = x0;
+ out[1] = y0;
+ out[2] = z0;
+ out[3] = 0;
+ out[4] = x1;
+ out[5] = y1;
+ out[6] = z1;
+ out[7] = 0;
+ out[8] = x2;
+ out[9] = y2;
+ out[10] = z2;
+ out[11] = 0;
+ out[12] = -(x0 * eyex + x1 * eyey + x2 * eyez);
+ out[13] = -(y0 * eyex + y1 * eyey + y2 * eyez);
+ out[14] = -(z0 * eyex + z1 * eyey + z2 * eyez);
+ out[15] = 1;
+
+ return out;
+}
+
+/**
+ * Generates a matrix that makes something look at something else.
+ *
+ * @param {mat4} out mat4 frustum matrix will be written into
+ * @param {vec3} eye Position of the viewer
+ * @param {vec3} center Point the viewer is looking at
+ * @param {vec3} up vec3 pointing up
+ * @returns {mat4} out
+ */
+function targetTo(out, eye, target, up) {
+ var eyex = eye[0],
+ eyey = eye[1],
+ eyez = eye[2],
+ upx = up[0],
+ upy = up[1],
+ upz = up[2];
+
+ var z0 = eyex - target[0],
+ z1 = eyey - target[1],
+ z2 = eyez - target[2];
+
+ var len = z0 * z0 + z1 * z1 + z2 * z2;
+ if (len > 0) {
+ len = 1 / Math.sqrt(len);
+ z0 *= len;
+ z1 *= len;
+ z2 *= len;
+ }
+
+ var x0 = upy * z2 - upz * z1,
+ x1 = upz * z0 - upx * z2,
+ x2 = upx * z1 - upy * z0;
+
+ out[0] = x0;
+ out[1] = x1;
+ out[2] = x2;
+ out[3] = 0;
+ out[4] = z1 * x2 - z2 * x1;
+ out[5] = z2 * x0 - z0 * x2;
+ out[6] = z0 * x1 - z1 * x0;
+ out[7] = 0;
+ out[8] = z0;
+ out[9] = z1;
+ out[10] = z2;
+ out[11] = 0;
+ out[12] = eyex;
+ out[13] = eyey;
+ out[14] = eyez;
+ out[15] = 1;
+ return out;
+};
+
+/**
+ * Returns a string representation of a mat4
+ *
+ * @param {mat4} a matrix to represent as a string
+ * @returns {String} string representation of the matrix
+ */
+function str(a) {
+ return 'mat4(' + a[0] + ', ' + a[1] + ', ' + a[2] + ', ' + a[3] + ', ' + a[4] + ', ' + a[5] + ', ' + a[6] + ', ' + a[7] + ', ' + a[8] + ', ' + a[9] + ', ' + a[10] + ', ' + a[11] + ', ' + a[12] + ', ' + a[13] + ', ' + a[14] + ', ' + a[15] + ')';
+}
+
+/**
+ * Returns Frobenius norm of a mat4
+ *
+ * @param {mat4} a the matrix to calculate Frobenius norm of
+ * @returns {Number} Frobenius norm
+ */
+function frob(a) {
+ return Math.sqrt(Math.pow(a[0], 2) + Math.pow(a[1], 2) + Math.pow(a[2], 2) + Math.pow(a[3], 2) + Math.pow(a[4], 2) + Math.pow(a[5], 2) + Math.pow(a[6], 2) + Math.pow(a[7], 2) + Math.pow(a[8], 2) + Math.pow(a[9], 2) + Math.pow(a[10], 2) + Math.pow(a[11], 2) + Math.pow(a[12], 2) + Math.pow(a[13], 2) + Math.pow(a[14], 2) + Math.pow(a[15], 2));
+}
+
+/**
+ * Adds two mat4's
+ *
+ * @param {mat4} out the receiving matrix
+ * @param {mat4} a the first operand
+ * @param {mat4} b the second operand
+ * @returns {mat4} out
+ */
+function add(out, a, b) {
+ out[0] = a[0] + b[0];
+ out[1] = a[1] + b[1];
+ out[2] = a[2] + b[2];
+ out[3] = a[3] + b[3];
+ out[4] = a[4] + b[4];
+ out[5] = a[5] + b[5];
+ out[6] = a[6] + b[6];
+ out[7] = a[7] + b[7];
+ out[8] = a[8] + b[8];
+ out[9] = a[9] + b[9];
+ out[10] = a[10] + b[10];
+ out[11] = a[11] + b[11];
+ out[12] = a[12] + b[12];
+ out[13] = a[13] + b[13];
+ out[14] = a[14] + b[14];
+ out[15] = a[15] + b[15];
+ return out;
+}
+
+/**
+ * Subtracts matrix b from matrix a
+ *
+ * @param {mat4} out the receiving matrix
+ * @param {mat4} a the first operand
+ * @param {mat4} b the second operand
+ * @returns {mat4} out
+ */
+function subtract(out, a, b) {
+ out[0] = a[0] - b[0];
+ out[1] = a[1] - b[1];
+ out[2] = a[2] - b[2];
+ out[3] = a[3] - b[3];
+ out[4] = a[4] - b[4];
+ out[5] = a[5] - b[5];
+ out[6] = a[6] - b[6];
+ out[7] = a[7] - b[7];
+ out[8] = a[8] - b[8];
+ out[9] = a[9] - b[9];
+ out[10] = a[10] - b[10];
+ out[11] = a[11] - b[11];
+ out[12] = a[12] - b[12];
+ out[13] = a[13] - b[13];
+ out[14] = a[14] - b[14];
+ out[15] = a[15] - b[15];
+ return out;
+}
+
+/**
+ * Multiply each element of the matrix by a scalar.
+ *
+ * @param {mat4} out the receiving matrix
+ * @param {mat4} a the matrix to scale
+ * @param {Number} b amount to scale the matrix's elements by
+ * @returns {mat4} out
+ */
+function multiplyScalar(out, a, b) {
+ out[0] = a[0] * b;
+ out[1] = a[1] * b;
+ out[2] = a[2] * b;
+ out[3] = a[3] * b;
+ out[4] = a[4] * b;
+ out[5] = a[5] * b;
+ out[6] = a[6] * b;
+ out[7] = a[7] * b;
+ out[8] = a[8] * b;
+ out[9] = a[9] * b;
+ out[10] = a[10] * b;
+ out[11] = a[11] * b;
+ out[12] = a[12] * b;
+ out[13] = a[13] * b;
+ out[14] = a[14] * b;
+ out[15] = a[15] * b;
+ return out;
+}
+
+/**
+ * Adds two mat4's after multiplying each element of the second operand by a scalar value.
+ *
+ * @param {mat4} out the receiving vector
+ * @param {mat4} a the first operand
+ * @param {mat4} b the second operand
+ * @param {Number} scale the amount to scale b's elements by before adding
+ * @returns {mat4} out
+ */
+function multiplyScalarAndAdd(out, a, b, scale) {
+ out[0] = a[0] + b[0] * scale;
+ out[1] = a[1] + b[1] * scale;
+ out[2] = a[2] + b[2] * scale;
+ out[3] = a[3] + b[3] * scale;
+ out[4] = a[4] + b[4] * scale;
+ out[5] = a[5] + b[5] * scale;
+ out[6] = a[6] + b[6] * scale;
+ out[7] = a[7] + b[7] * scale;
+ out[8] = a[8] + b[8] * scale;
+ out[9] = a[9] + b[9] * scale;
+ out[10] = a[10] + b[10] * scale;
+ out[11] = a[11] + b[11] * scale;
+ out[12] = a[12] + b[12] * scale;
+ out[13] = a[13] + b[13] * scale;
+ out[14] = a[14] + b[14] * scale;
+ out[15] = a[15] + b[15] * scale;
+ return out;
+}
+
+/**
+ * Returns whether or not the matrices have exactly the same elements in the same position (when compared with ===)
+ *
+ * @param {mat4} a The first matrix.
+ * @param {mat4} b The second matrix.
+ * @returns {Boolean} True if the matrices are equal, false otherwise.
+ */
+function exactEquals(a, b) {
+ return a[0] === b[0] && a[1] === b[1] && a[2] === b[2] && a[3] === b[3] && a[4] === b[4] && a[5] === b[5] && a[6] === b[6] && a[7] === b[7] && a[8] === b[8] && a[9] === b[9] && a[10] === b[10] && a[11] === b[11] && a[12] === b[12] && a[13] === b[13] && a[14] === b[14] && a[15] === b[15];
+}
+
+/**
+ * Returns whether or not the matrices have approximately the same elements in the same position.
+ *
+ * @param {mat4} a The first matrix.
+ * @param {mat4} b The second matrix.
+ * @returns {Boolean} True if the matrices are equal, false otherwise.
+ */
+function equals(a, b) {
+ var a0 = a[0],
+ a1 = a[1],
+ a2 = a[2],
+ a3 = a[3];
+ var a4 = a[4],
+ a5 = a[5],
+ a6 = a[6],
+ a7 = a[7];
+ var a8 = a[8],
+ a9 = a[9],
+ a10 = a[10],
+ a11 = a[11];
+ var a12 = a[12],
+ a13 = a[13],
+ a14 = a[14],
+ a15 = a[15];
+
+ var b0 = b[0],
+ b1 = b[1],
+ b2 = b[2],
+ b3 = b[3];
+ var b4 = b[4],
+ b5 = b[5],
+ b6 = b[6],
+ b7 = b[7];
+ var b8 = b[8],
+ b9 = b[9],
+ b10 = b[10],
+ b11 = b[11];
+ var b12 = b[12],
+ b13 = b[13],
+ b14 = b[14],
+ b15 = b[15];
+
+ return Math.abs(a0 - b0) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a0), Math.abs(b0)) && Math.abs(a1 - b1) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a1), Math.abs(b1)) && Math.abs(a2 - b2) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a2), Math.abs(b2)) && Math.abs(a3 - b3) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a3), Math.abs(b3)) && Math.abs(a4 - b4) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a4), Math.abs(b4)) && Math.abs(a5 - b5) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a5), Math.abs(b5)) && Math.abs(a6 - b6) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a6), Math.abs(b6)) && Math.abs(a7 - b7) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a7), Math.abs(b7)) && Math.abs(a8 - b8) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a8), Math.abs(b8)) && Math.abs(a9 - b9) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a9), Math.abs(b9)) && Math.abs(a10 - b10) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a10), Math.abs(b10)) && Math.abs(a11 - b11) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a11), Math.abs(b11)) && Math.abs(a12 - b12) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a12), Math.abs(b12)) && Math.abs(a13 - b13) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a13), Math.abs(b13)) && Math.abs(a14 - b14) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a14), Math.abs(b14)) && Math.abs(a15 - b15) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a15), Math.abs(b15));
+}
+
+/**
+ * Alias for {@link mat4.multiply}
+ * @function
+ */
+var mul = multiply;
+
+/**
+ * Alias for {@link mat4.subtract}
+ * @function
+ */
+var sub = subtract;
+
+/***/ })
+/******/ ]);
+}); \ No newline at end of file