summaryrefslogtreecommitdiff
path: root/Build/source/utils/asymptote/doc
diff options
context:
space:
mode:
authorKarl Berry <karl@freefriends.org>2014-04-20 22:56:10 +0000
committerKarl Berry <karl@freefriends.org>2014-04-20 22:56:10 +0000
commitce5dd4137c8f88f9449e78ea4e02081bb589432e (patch)
tree1482a78c9484fb143211d3c1bb56d6c95f8393a1 /Build/source/utils/asymptote/doc
parentd7e9f3fbc05b16e08afeb5b2569cb39a9b03e661 (diff)
asy 2.25 sources
git-svn-id: svn://tug.org/texlive/trunk@33565 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Build/source/utils/asymptote/doc')
-rw-r--r--Build/source/utils/asymptote/doc/CAD.pdfbin68115 -> 0 bytes
-rw-r--r--Build/source/utils/asymptote/doc/FAQ/asy-faq.bfnn2
-rw-r--r--Build/source/utils/asymptote/doc/FAQ/asy-faq.info1671
-rwxr-xr-xBuild/source/utils/asymptote/doc/FAQ/install-sh356
-rwxr-xr-xBuild/source/utils/asymptote/doc/TeXShopAndAsymptote.pdfbin31686 -> 0 bytes
-rwxr-xr-xBuild/source/utils/asymptote/doc/asy-latex.pdfbin194493 -> 0 bytes
-rwxr-xr-xBuild/source/utils/asymptote/doc/asy.1297
-rw-r--r--Build/source/utils/asymptote/doc/asyRefCard.pdfbin53907 -> 0 bytes
-rw-r--r--Build/source/utils/asymptote/doc/asymptote.pdfbin1234562 -> 0 bytes
-rw-r--r--Build/source/utils/asymptote/doc/asymptote.texi98
-rw-r--r--Build/source/utils/asymptote/doc/externalprc.tex9
-rwxr-xr-xBuild/source/utils/asymptote/doc/install-sh356
-rw-r--r--Build/source/utils/asymptote/doc/latexmkrc_asydir4
-rw-r--r--Build/source/utils/asymptote/doc/png/Makefile.in3
-rw-r--r--Build/source/utils/asymptote/doc/png/asymptote.info9959
15 files changed, 471 insertions, 12284 deletions
diff --git a/Build/source/utils/asymptote/doc/CAD.pdf b/Build/source/utils/asymptote/doc/CAD.pdf
deleted file mode 100644
index 2fcce4251e6..00000000000
--- a/Build/source/utils/asymptote/doc/CAD.pdf
+++ /dev/null
Binary files differ
diff --git a/Build/source/utils/asymptote/doc/FAQ/asy-faq.bfnn b/Build/source/utils/asymptote/doc/FAQ/asy-faq.bfnn
index 26fcd14b628..21fb57233f0 100644
--- a/Build/source/utils/asymptote/doc/FAQ/asy-faq.bfnn
+++ b/Build/source/utils/asymptote/doc/FAQ/asy-faq.bfnn
@@ -421,7 +421,7 @@ size argument. If you want to do this globally, you can override the
pen-dependent arrowsize function like this:
\verbatim
-arrowsize=new real(pen p=currentpen) {return 2mm;};
+DefaultHead.size=new real(pen p=currentpen) {return 2mm;};
\endverbatim
\question 26jun:arrowhead Can I create other arrowhead styles?
diff --git a/Build/source/utils/asymptote/doc/FAQ/asy-faq.info b/Build/source/utils/asymptote/doc/FAQ/asy-faq.info
deleted file mode 100644
index aec3cabfcd0..00000000000
--- a/Build/source/utils/asymptote/doc/FAQ/asy-faq.info
+++ /dev/null
@@ -1,1671 +0,0 @@
-Info file: asy-faq.info, -*-Text-*-
-produced by bfnnconv.pl from the Bizarre Format With No Name.
-
-INFO-DIR-SECTION Languages
-START-INFO-DIR-ENTRY
-* asymptote FAQ: (asy-faq). Asymptote Frequently Asked Questions.
-END-INFO-DIR-ENTRY
-
-
-File: asy-faq.info, Node: Top, Next: Question 1.1, Up: (dir)
-
- ASYMPTOTE FREQUENTLY ASKED QUESTIONS
- 20 May 2013
-
-This is the list of Frequently Asked Questions about Asymptote (asy).
-
-Index
-
-* Menu:
-* Section 1:: About Asymptote
-* Section 2:: Questions about installation and setup
-* Section 3:: Questions about paths
-* Section 4:: Questions about labels
-* Section 5:: Questions about arrows
-* Section 6:: Questions about 2D graphs
-* Section 7:: Questions about programming
-* Section 8:: Questions about differences between Asymptote and
- MetaPost
-* Section 9:: Questions about output
-
-Section 1, About Asymptote
-* Question 1.1:: What is Asymptote?
-* Question 1.2:: How do I obtain Asymptote?
-* Question 1.3:: Where can I ask questions about Asymptote?
-* Question 1.4:: Why was the name Asymptote chosen?
-* Question 1.5:: In the internal Asymptote source code, what does the
- name camp refer to?
-
-Section 2, Questions about installation and setup
-* Question 2.1:: Is it possible to install Asymptote on Mac OS X?
-* Question 2.2:: Why do I get the error Bad CPU type in executable on
- installing Asymptote from the MAC OS binary?
-* Question 2.3:: What do I do if I get the error: Error: pdfetex (file
- pdftex.cfg): cannot open config file...texinfo.tex
- appears to be broken?
-* Question 2.4:: What do I do if I get the error: ! Undefined control
- sequence. l.6 @copying?
-* Question 2.5:: Is it possible to integrate Asymptote into LaTeX?
-* Question 2.6:: Is it possible to integrate Asymptote into latex or
- pdflatex?
-* Question 2.7:: Do I need the tkinter package to install an Asymptote
- rpm binary?
-* Question 2.8:: What does the path %USERPROFILE%\.asy\config.asy mean?
-* Question 2.9:: Why do I get the error "string not terminated" when I
- try to set settings.dir="C:\asymptote\";?
-* Question 2.10:: How do I change environment variables in Microsoft
- Windows, for example, in order to change the default
- PostScript viewer?
-* Question 2.11:: Under Microsoft Windows XP, why do I get an error like
- "Invalid Parameter - 432x432"?
-* Question 2.12:: Why does Asymptote freeze upon trying to draw a label
- with my MikTex installation under Microsoft Windows?
-
-Section 3, Questions about paths
-* Question 3.1:: Why do I get a syntax error message when I specify an
- integer value for the path tension?
-* Question 3.2:: Shouldn't dots always be the same size?
-
-Section 4, Questions about labels
-* Question 4.1:: How do I get Greek letters like omega to show up in my
- labels?
-* Question 4.2:: Can Asymptote use matrices as labels?
-* Question 4.3:: How do I tell Asymptote to load a particular LaTeX
- package, like mathptmx?
-* Question 4.4:: How can I use international fonts in Asymptote labels?
-* Question 4.5:: How can I use Fourier fonts?
-* Question 4.6:: Is there any way to change the default appearance of
- the decimal separator, using a comma instead of a dot?
-* Question 4.7:: How can I get a rotated label with the filled box
- rotated as well so that it fits the text?
-* Question 4.8:: How can I rotate labels in a 3D figure?
-* Question 4.9:: How can I draw some squares and circles of a fixed
- size and put a label in the middle of them?
-* Question 4.10:: The binary operator * can be used to scale the color
- of a pen by a real number. Does this scaling factor
- have to be less than 1?
-* Question 4.11:: Why is the space after the comma decimal separator in
- my locale so large?
-* Question 4.12:: How can I prevent
- texpreamble("\usepackage[pdftex]{hyperref}") from
- changing the page size?
-
-Section 5, Questions about arrows
-* Question 5.1:: How do I draw two arrows at arbitrary positions along
- a path?
-* Question 5.2:: How do I reverse the direction of an arrowhead?
-* Question 5.3:: How do I change the size of all arrows?
-* Question 5.4:: Can I create other arrowhead styles?
-
-Section 6, Questions about 2D graphs
-* Question 6.1:: How can I draw x axis ticks on the right side, with
- the tick labels on the left side (relative to the axis
- path)?
-* Question 6.2:: How can I reposition the x axis label to
- three-quarters along the axis length?
-* Question 6.3:: How can I move the x axis label down 10bp?
-* Question 6.4:: Can I use different pens for the axis, the axis label,
- and the tick labels?
-* Question 6.5:: How can I change the font type of the axes label?
-* Question 6.6:: How can I change the font type of the tick labels on
- an axis?
-* Question 6.7:: How can I prevent axes tick labels from rendering on
- top of each other?
-* Question 6.8:: How do I make the plot region of a graph, ignoring
- labels and legends, have a fixed size?
-* Question 6.9:: How can I plot a function f(x) within [0,1]x[0,2]
- without explicitly calculating the x values for which
- f(x) hits the boundary?
-* Question 6.10:: Is it possible to define customized palettes?
-* Question 6.11:: Is there an easy way to graph factorial functions
- nicely?
-* Question 6.12:: How do I indicate that a certain length should be
- exactly the size I prescribe with no rescaling, within
- a picture which has its own size?
-* Question 6.13:: How can I make the y axis display base-2 logarithmic
- values?
-* Question 6.14:: How can I align the x axes of two graphs on the same
- figure?
-* Question 6.15:: How can I change the direction of the y-axis, such
- that negatives values are on the upper y-axis?
-* Question 6.16:: How can I fill a path with a function that defines the
- color of each location?
-* Question 6.17:: Is there a way to draw a function that is not
- explicitly given, such as (y - 2)^2 = x - 1 ?
-* Question 6.18:: Is it possible to reverse or stretch an axis?
-* Question 6.19:: Why can't I use the UnFill option to draw graphs with
- empty markers?
-* Question 6.20:: How can I force several images to use the same palette
- range (e.g. the entire 0-255 grayscale range)?
-
-Section 7, Questions about programming
-* Question 7.1:: Is Asymptote an interpreter or a compiler?
-* Question 7.2:: What is the difference between a frame and a picture?
-* Question 7.3:: What is the difference between a path and a guide?
-* Question 7.4:: What is a convenient way to declare and initialize an
- array of pictures?
-* Question 7.5:: Is there a way to define functions that act on arrays
- in general (i.e. work for arrays of any type)?
-* Question 7.6:: Is there any way to declare structures ahead of their
- definition, e.g. where struct A performs some
- operation on struct B, but B contains an A member?
-* Question 7.7:: Where are static variables in for loops allocated?
-* Question 7.8:: Is there a debugger for asy?
-* Question 7.9:: Do you accept patches for Asymptote?
-
-Section 8, Questions about differences between Asymptote and
- MetaPost
-* Question 8.1:: What is the equivalent of the MetaPost c[a,b]
- interpolation operator?
-* Question 8.2:: How does picture scaling differ in Asymptote and
- MetaPost?
-* Question 8.3:: How can I avoid automatic scaling of a picture?
-* Question 8.4:: What is the equivalent of MetaPost ... command?
-* Question 8.5:: What is the equivalent of the MetaPost pickup command?
-* Question 8.6:: What is the equivalent of the MetaPost whatever
- command?
-* Question 8.7:: What is the equivalent for the MetaPost command for
- lray - horiz*v - verti*u = whatever*(LightSource - R),
- a system of three linear equations for three unknowns:
- horiz, verti, whatever?
-* Question 8.8:: In MetaPost, it is possible to have a drawing remain
- the same size in different pictures by defining a unit
- u and explicitly multiply all the coordinates by u. Is
- there a better way to do this in Asymptote?
-* Question 8.9:: In MetaPost, one could produce tiling pictures by
- generating a picture, and then clipping the picture to
- a rectangle of fixed dimensions around the center of
- the picture. How is that done in Asymptote?
-
-Section 9, Questions about output
-* Question 9.1:: How can I disable automatic invocation of the PS
- viewer after an asy file is done processing?
-* Question 9.2:: How do I output jpeg images?
-* Question 9.3:: Can I embed bitmaps (photos) into my drawings and
- position and scale them?
-* Question 9.4:: Does Asymptote support direct PDF output?
-* Question 9.5:: How to I produce large pictures of high quality in
- raster format (e.g. png, giff etc).
-* Question 9.6:: Is it possible to produce multi-page documents with
- asymptote?
-
-
-
-File: asy-faq.info, Node: Section 1, Next: Section 2, Previous: Top, Up: Top
-
-About Asymptote
-
-* Menu:
-* Question 1.1:: What is Asymptote?
-* Question 1.2:: How do I obtain Asymptote?
-* Question 1.3:: Where can I ask questions about Asymptote?
-* Question 1.4:: Why was the name Asymptote chosen?
-* Question 1.5:: In the internal Asymptote source code, what does the
- name camp refer to?
-
-
-
-File: asy-faq.info, Node: Question 1.1, Next: Question 1.2, Previous: Top, Up: Section 1
-
-Question 1.1. What is Asymptote?
-
-Asymptote is a vector graphics language designed for technical graphics,
-inspired by MetaPost but with IEEE floating-point numerics, native
-three-dimensional graphics, Grayscale/RGB/CMYK colourspaces, and a
-C++-like syntax. Unlike MetaPost, it natively supports multiple-segment
-paths (and hence regions other than simply connected ones), tiling
-patterns, Gouraud shading, tensor patch shading, and PostScript images.
-
-
-File: asy-faq.info, Node: Question 1.2, Next: Question 1.3, Previous: Question 1.1, Up: Section 1
-
-Question 1.2. How do I obtain Asymptote?
-
-Binary releases are available for Linux, MacOS X, and Microsoft Windows
-platforms, in addition to full source code, from the website
-http://asymptote.sourceforge.net/. Many Linux distributions (such as
-RedHat and Debian) now include an Asymptote package (check your
-distribution's documentation for further information about this).
-
-
-File: asy-faq.info, Node: Question 1.3, Next: Question 1.4, Previous: Question 1.2, Up: Section 1
-
-Question 1.3. Where can I ask questions about Asymptote?
-
-If you have a question, please try to find an answer in this FAQ, in the
-extensive Asymptote documentation at
-http://asymptote.sourceforge.net/doc/, or search the forum:
-http://sourceforge.net/forum/forum.php?forum_id=409349.
-
-
-File: asy-faq.info, Node: Question 1.4, Next: Question 1.5, Previous: Question 1.3, Up: Section 1
-
-Question 1.4. Why was the name Asymptote chosen?
-
-Well, it isn't the perfect graphics package, but we do think it is getting
-there asymptotically...
-
-
-File: asy-faq.info, Node: Question 1.5, Next: Question 2.1, Previous: Question 1.4, Up: Section 1
-
-Question 1.5. In the internal Asymptote source code, what does the name camp refer to?
-
-That was our original tentative name for this project, which stood for
-"C's Answer to MetaPost" (the language that inspired Asymptote). However,
-we eventually decided that the name Asymptote better emphasizes the
-mathematical and graphical nature of this language.
-
-
-File: asy-faq.info, Node: Section 2, Next: Section 3, Previous: Section 1, Up: Top
-
-Questions about installation and setup
-
-* Menu:
-* Question 2.1:: Is it possible to install Asymptote on Mac OS X?
-* Question 2.2:: Why do I get the error Bad CPU type in executable on
- installing Asymptote from the MAC OS binary?
-* Question 2.3:: What do I do if I get the error: Error: pdfetex (file
- pdftex.cfg): cannot open config file...texinfo.tex
- appears to be broken?
-* Question 2.4:: What do I do if I get the error: ! Undefined control
- sequence. l.6 @copying?
-* Question 2.5:: Is it possible to integrate Asymptote into LaTeX?
-* Question 2.6:: Is it possible to integrate Asymptote into latex or
- pdflatex?
-* Question 2.7:: Do I need the tkinter package to install an Asymptote
- rpm binary?
-* Question 2.8:: What does the path %USERPROFILE%\.asy\config.asy mean?
-* Question 2.9:: Why do I get the error "string not terminated" when I
- try to set settings.dir="C:\asymptote\";?
-* Question 2.10:: How do I change environment variables in Microsoft
- Windows, for example, in order to change the default
- PostScript viewer?
-* Question 2.11:: Under Microsoft Windows XP, why do I get an error like
- "Invalid Parameter - 432x432"?
-* Question 2.12:: Why does Asymptote freeze upon trying to draw a label
- with my MikTex installation under Microsoft Windows?
-
-
-
-File: asy-faq.info, Node: Question 2.1, Next: Question 2.2, Previous: Question 1.5, Up: Section 2
-
-Question 2.1. Is it possible to install Asymptote on Mac OS X?
-
-It is easy to compile Asymptote directly from the source code at
-http://sourceforge.net/project/showfiles.php?group_id=120000 We recommend
-first upgrading to the latest GNU readline library, unless you don't care
-about interactive readline support (in which case configure will
-automatically detect and disable obsolete versions of the readline
-library). Marius Schamschula also maintains a binary package for various
-MacOS X platforms
-http://www.hmug.org/pub/MacOS_X/X/Applications/Publishing/asymptote.
-
-
-File: asy-faq.info, Node: Question 2.2, Next: Question 2.3, Previous: Question 2.1, Up: Section 2
-
-Question 2.2. Why do I get the error Bad CPU type in executable on installing Asymptote from the MAC OS binary?
-
-This means either that you have a binary distribution for another MAC
-architecture, or (according to Marius Schamschula) that you may have a
-missing library. The simplest solution is to compile Asymptote directly
-from the official source:
-http://sourceforge.net/project/showfiles.php?group_id=120000.
-
-
-File: asy-faq.info, Node: Question 2.3, Next: Question 2.4, Previous: Question 2.2, Up: Section 2
-
-Question 2.3. What do I do if I get the error: Error: pdfetex (file pdftex.cfg): cannot open config file...texinfo.tex appears to be broken?
-
-Simply put http://asymptote.sourceforge.net/asymptote.pdf in the directory
-doc and repeat the command make all. Or, if you don't want to build a
-local copy of the documentation, simply proceed with make install-asy.
-
-
-File: asy-faq.info, Node: Question 2.4, Next: Question 2.5, Previous: Question 2.3, Up: Section 2
-
-Question 2.4. What do I do if I get the error: ! Undefined control sequence. l.6 @copying?
-
-Either upgrade your texinfo package or follow one of the easy work arounds
-in *Note Question 2.3:: `What do I do if I get the error: Error: pdfetex
-(file pdftex.cfg): cannot open config file...texinfo.tex appears to be
-broken?'.
-
-
-File: asy-faq.info, Node: Question 2.5, Next: Question 2.6, Previous: Question 2.4, Up: Section 2
-
-Question 2.5. Is it possible to integrate Asymptote into LaTeX?
-
-Yes, see the example latexusage.tex. Dario Teixeira has also written a
-detailed guide on the topic. You can download it from
-http://dario.dse.nl/projects/asylatex/.
-
-Philippe Ivaldi has contributed an Asymptote mode for Emacs users
-http://asymptote.sourceforge.net/doc/Editing-modes.html, which includes a
-lasy-mode that allows one to compile and view the output of one
-\begin{asy}...\end{asy} section at a time.
-
-
-File: asy-faq.info, Node: Question 2.6, Next: Question 2.7, Previous: Question 2.5, Up: Section 2
-
-Question 2.6. Is it possible to integrate Asymptote into latex or pdflatex?
-
-Yes, as of version 1.14, Asymptote supports latex and pdflatex (both in
-EPS/PDF and inline mode), as illustrated by the example latexusage.tex:
-
-pdflatex latexusage
-asy latexusage
-pdflatex latexusage
-
-File: asy-faq.info, Node: Question 2.7, Next: Question 2.8, Previous: Question 2.6, Up: Section 2
-
-Question 2.7. Do I need the tkinter package to install an Asymptote rpm binary?
-
-No, you don't need tkinter unless you want to try out the GUI xasy. Try
-
-rpm -Uvh --nodeps asymptote-x.xx-1.i386.rpm
-where x.xx represents the version number.
-
-
-File: asy-faq.info, Node: Question 2.8, Next: Question 2.9, Previous: Question 2.7, Up: Section 2
-
-Question 2.8. What does the path %USERPROFILE%\.asy\config.asy mean?
-
-That is the way that Microsoft Windows refers to the user profile
-directory. There's nothing really to understand here, just put your
-configuration commands in the file config.asy in a new folder
-%USERPROFILE%\.asy.
-
-
-File: asy-faq.info, Node: Question 2.9, Next: Question 2.10, Previous: Question 2.8, Up: Section 2
-
-Question 2.9. Why do I get the error "string not terminated" when I try to set settings.dir="C:\asymptote\";?
-
-The backslash is an escape character here, so \" is interpreted as a
-verbatim quotation mark, leaving the string without a terminating
-quotation mark. Fortunately, this is the only escaped character in
-double-quoted strings. A final backslash isn't needed here anyway, but
-should you really want one somewhere, you can say:
-settings.dir="C:\asymptote"+'\\';.
-
-
-File: asy-faq.info, Node: Question 2.10, Next: Question 2.11, Previous: Question 2.9, Up: Section 2
-
-Question 2.10. How do I change environment variables in Microsoft Windows, for example, in order to change the default PostScript viewer?
-
-While it is easier to set the corresponding Asymptote configuration
-variable in your config.asy file, here is the procedure for changing
-Microsoft Windows environment variables:
-
-Click on the [Start] button
-
-* RIGHT-click on 'My Computer'
-
-* Choose 'Properties' from the popup menu
-
-* Click the 'Advanced' tab
-
-* Click the 'Environment Variables' button.
-
-
-File: asy-faq.info, Node: Question 2.11, Next: Question 2.12, Previous: Question 2.10, Up: Section 2
-
-Question 2.11. Under Microsoft Windows XP, why do I get an error like "Invalid Parameter - 432x432"?
-
-This means that ImageMagick wasn't properly installed and you are using
-the MSDOS convert program rather than the ImageMagick one. Or you may have
-installed ImageMagick but ran Asymptote from an existing MSDOS window. In
-that case, simply open a new window and try again. If that doesn't work,
-check that
-
-convert --version
-returns something like
-
-Version: ImageMagick 6.2.8 06/27/06 Q16 http://www.imagemagick.org
-
-File: asy-faq.info, Node: Question 2.12, Next: Question 3.1, Previous: Question 2.11, Up: Section 2
-
-Question 2.12. Why does Asymptote freeze upon trying to draw a label with my MikTex installation under Microsoft Windows?
-
-Likely, this means that latex and dvips are not in your default path. Try
-adding the appropriate paths in your config.asy file, for example:
-
-import settings;
-latex="C:\Program Files\MiKTeX 2.7\miktex\bin\latex.exe";
-dvips="C:\Program Files\MiKTeX 2.7\miktex\bin\dvips.exe";
-
-File: asy-faq.info, Node: Section 3, Next: Section 4, Previous: Section 2, Up: Top
-
-Questions about paths
-
-* Menu:
-* Question 3.1:: Why do I get a syntax error message when I specify an
- integer value for the path tension?
-* Question 3.2:: Shouldn't dots always be the same size?
-
-
-
-File: asy-faq.info, Node: Question 3.1, Next: Question 3.2, Previous: Question 2.12, Up: Section 3
-
-Question 3.1. Why do I get a syntax error message when I specify an integer value for the path tension?
-
-What is happening here is that
-
-draw((0,0)..tension 2..(0,50)..(100,100));
-is read as
-
-draw((0,0)..tension 2. .(0,50)..(100,100));
-So the first . after the two is treated as a decimal point. Just put a
-space after the integer tension value:
-
-draw((0,0)..tension 2 ..(0,50)..(100,100));
-
-File: asy-faq.info, Node: Question 3.2, Next: Question 4.1, Previous: Question 3.1, Up: Section 3
-
-Question 3.2. Shouldn't dots always be the same size?
-
-From the documentation:
-
-"The dot command defined in the module plain draws a dot having a diameter
-equal to an explicit pen linewidth or the default linewidth magnified by
-dotfactor (6 by default)."
-
-Thus, when you use the default pen, the dot will have size 6*linewidth,
-but when you give a pen with an explicit width specified, you will have a
-dot of size linewidth. If you want the first case to behave like the
-second, you may set dotfactor=1.
-
-
-File: asy-faq.info, Node: Section 4, Next: Section 5, Previous: Section 3, Up: Top
-
-Questions about labels
-
-* Menu:
-* Question 4.1:: How do I get Greek letters like omega to show up in my
- labels?
-* Question 4.2:: Can Asymptote use matrices as labels?
-* Question 4.3:: How do I tell Asymptote to load a particular LaTeX
- package, like mathptmx?
-* Question 4.4:: How can I use international fonts in Asymptote labels?
-* Question 4.5:: How can I use Fourier fonts?
-* Question 4.6:: Is there any way to change the default appearance of
- the decimal separator, using a comma instead of a dot?
-* Question 4.7:: How can I get a rotated label with the filled box
- rotated as well so that it fits the text?
-* Question 4.8:: How can I rotate labels in a 3D figure?
-* Question 4.9:: How can I draw some squares and circles of a fixed
- size and put a label in the middle of them?
-* Question 4.10:: The binary operator * can be used to scale the color
- of a pen by a real number. Does this scaling factor
- have to be less than 1?
-* Question 4.11:: Why is the space after the comma decimal separator in
- my locale so large?
-* Question 4.12:: How can I prevent
- texpreamble("\usepackage[pdftex]{hyperref}") from
- changing the page size?
-
-
-
-File: asy-faq.info, Node: Question 4.1, Next: Question 4.2, Previous: Question 3.2, Up: Section 4
-
-Question 4.1. How do I get Greek letters like omega to show up in my labels?
-
-In (La)TeX, Greek letters can be obtained in math mode by prepending a
-backslash to the letter name. So for a omega symbol, use "$\omega$".
-Everything between the dollar signs is considered to be a math formula.
-Uppercase Greek letters can be used by capitalizing the first letter of
-the name:
-
-label("$\omega$",(0,0));
-label("$\Omega$",(20,0));
-
-File: asy-faq.info, Node: Question 4.2, Next: Question 4.3, Previous: Question 4.1, Up: Section 4
-
-Question 4.2. Can Asymptote use matrices as labels?
-
-Yes:
-usepackage("amsmath");
-label("$\begin{matrix} 1 & 2 \\\ 1 & 1 \end{matrix}$",(0,0));
-
-File: asy-faq.info, Node: Question 4.3, Next: Question 4.4, Previous: Question 4.2, Up: Section 4
-
-Question 4.3. How do I tell Asymptote to load a particular LaTeX package, like mathptmx?
-
-Put
-
-usepackage("mathptmx");
-at the beginning of your file. Note: to enable the Adobe Times Roman font
-for text, you will also need to say:
-defaultpen(TimesRoman());
-
-File: asy-faq.info, Node: Question 4.4, Next: Question 4.5, Previous: Question 4.3, Up: Section 4
-
-Question 4.4. How can I use international fonts in Asymptote labels?
-
-See http://asymptote.sourceforge.net/doc/unicode.html.
-
-
-File: asy-faq.info, Node: Question 4.5, Next: Question 4.6, Previous: Question 4.4, Up: Section 4
-
-Question 4.5. How can I use Fourier fonts?
-
-usepackage("fourier");
-defaultpen(font("T1","fut\textfamilyextension","m","n"));
-
-File: asy-faq.info, Node: Question 4.6, Next: Question 4.7, Previous: Question 4.5, Up: Section 4
-
-Question 4.6. Is there any way to change the default appearance of the decimal separator, using a comma instead of a dot?
-
-Just set your locale appropriately:
-
-locale("it_IT");
-usepackage("icomma");
-label(format(0.5));
-
-File: asy-faq.info, Node: Question 4.7, Next: Question 4.8, Previous: Question 4.6, Up: Section 4
-
-Question 4.7. How can I get a rotated label with the filled box rotated as well so that it fits the text?
-
-frame f;
-label(f,"This is some text",white,Fill(blue));
-add(rotate(65)*f);
-
-File: asy-faq.info, Node: Question 4.8, Next: Question 4.9, Previous: Question 4.7, Up: Section 4
-
-Question 4.8. How can I rotate labels in a 3D figure?
-
-You need to first project the triple to a pair like this:
-
-import three;
-size(100,100);
-
-draw(rotate(90,project(Z))*"A",O--X);
-
-File: asy-faq.info, Node: Question 4.9, Next: Question 4.10, Previous: Question 4.8, Up: Section 4
-
-Question 4.9. How can I draw some squares and circles of a fixed size and put a label in the middle of them?
-
-Fixed-size objects should be drawn on a separate picture and then added to
-currentpicture. Here is one way (see also
-http://asymptote.sourceforge.net/gallery/subpictures.asy and
-http://asymptote.sourceforge.net/gallery/mosquito.asy):
-
-real u=2cm;
-
-picture square;
-draw(square,scale(u)*shift(-0.5,-0.5)*unitsquare);
-
-picture circle;
-draw(circle,scale(0.5u)*unitcircle);
-
-void add(picture pic=currentpicture, Label L, picture object, pair z) {
-add(pic,object,z);
-label(pic,L,z);
-}
-
-add("square",square,(0,0));
-add("circle",circle,(5cm,0));
-
-File: asy-faq.info, Node: Question 4.10, Next: Question 4.11, Previous: Question 4.9, Up: Section 4
-
-Question 4.10. The binary operator * can be used to scale the color of a pen by a real number. Does this scaling factor have to be less than 1?
-
-The scaling factor can be greater than 1. But keep in mind that the rgb
-color components saturate at 1.
-
-Try
-write(cyan); write(0.8*cyan); write(1.5*cyan);
-and you will quickly see what is going on.
-
-To get a lighter cyan you can say white+cyan, which yields rgb(0.5,1,1).
-If you want something even lighter specify the rgb colors directly, for
-example, rgb(0.9,1,1).
-
-Alternatively, work in cmyk colour space, which is nicer in that it
-handles saturation separately from hue:
-
-0.1*Cyan is light and 0.9*Cyan is dark. You can also say 0.1*cmyk(red).
-
-
-File: asy-faq.info, Node: Question 4.11, Next: Question 4.12, Previous: Question 4.10, Up: Section 4
-
-Question 4.11. Why is the space after the comma decimal separator in my locale so large?
-
-LaTeX is treating the comma as punctuation and not as a decimal separator.
-The solution is to load the icomma package near the beginning of your
-file:
-usepackage("icomma");
-
-File: asy-faq.info, Node: Question 4.12, Next: Question 5.1, Previous: Question 4.11, Up: Section 4
-
-Question 4.12. How can I prevent texpreamble("\usepackage[pdftex]{hyperref}") from changing the page size?
-
-texpreamble("\usepackage[pdftex,setpagesize=false]{hyperref}");
-
-File: asy-faq.info, Node: Section 5, Next: Section 6, Previous: Section 4, Up: Top
-
-Questions about arrows
-
-* Menu:
-* Question 5.1:: How do I draw two arrows at arbitrary positions along
- a path?
-* Question 5.2:: How do I reverse the direction of an arrowhead?
-* Question 5.3:: How do I change the size of all arrows?
-* Question 5.4:: Can I create other arrowhead styles?
-
-
-
-File: asy-faq.info, Node: Question 5.1, Next: Question 5.2, Previous: Question 4.12, Up: Section 5
-
-Question 5.1. How do I draw two arrows at arbitrary positions along a path?
-
-Assuming that at least one of the arrowheads is to be filled, you can do
-this:
-
-size(200);
-path g = (0,0)..(1,3)..(3,0);
-draw(g,Arrow(Relative(0.9)));
-add(arrow(g,invisible,FillDraw(black),Relative(0.5)));
-add(arrow(reverse(g),invisible,FillDraw(white,black),Relative(0.9)));
-If both of the arrowheads are to be drawn with filltype NoFill, one will
-need to create a specialized version of the arrow routine in
-plain_arrows.asy:
-
-void arrow(frame f, arrowhead arrowhead=DefaultHead,
- path g, pen p=currentpen, real size=0,
- real angle=arrowangle, filltype filltype=arrowhead.defaultfilltype,
- position position=EndPoint, bool forwards=true,
- margin margin=NoMargin, bool center=false);
-
-File: asy-faq.info, Node: Question 5.2, Next: Question 5.3, Previous: Question 5.1, Up: Section 5
-
-Question 5.2. How do I reverse the direction of an arrowhead?
-
-Simply reverse the direction of the path.
-
-path g=((0,0)--(5cm,0));
-draw(reverse(g),Arrow(Relative(0.55)));
-
-File: asy-faq.info, Node: Question 5.3, Next: Question 5.4, Previous: Question 5.2, Up: Section 5
-
-Question 5.3. How do I change the size of all arrows?
-
-To override the arrowsize you can give every Arrow drawing attribute a
-real size argument. If you want to do this globally, you can override the
-pen-dependent arrowsize function like this:
-
-arrowsize=new real(pen p=currentpen) {return 2mm;};
-
-File: asy-faq.info, Node: Question 5.4, Next: Question 6.1, Previous: Question 5.3, Up: Section 5
-
-Question 5.4. Can I create other arrowhead styles?
-
-Yes, you can build custom arrowheads like this (see the predefined
-arrowhead styles in plain_arrows.asy for further examples):
-
-arrowhead DotHead;
-DotHead.head=new path(path g, position position=EndPoint, pen p=currentpen,
- real size=0, real angle=arrowangle) {
- if(size == 0) size=DotHead.size(p);
- bool relative=position.relative;
- real position=position.position.x;
- if(relative) position=reltime(g,position);
- path r=subpath(g,position,0);
- pair x=point(r,0);
- real t=arctime(r,size);
- pair y=point(r,t);
- return circle(0.5(x+y),0.5size);
-};
-
-size(100);
-draw((0,0)..(1,1)..(2,0),Arrow(DotHead));
-dot((2,0),red);
-If you submit your alternate arrowheads to the Forum or the Patch
-Tracking System, we'll consider including them in a future release.
-
-
-File: asy-faq.info, Node: Section 6, Next: Section 7, Previous: Section 5, Up: Top
-
-Questions about 2D graphs
-
-* Menu:
-* Question 6.1:: How can I draw x axis ticks on the right side, with
- the tick labels on the left side (relative to the axis
- path)?
-* Question 6.2:: How can I reposition the x axis label to
- three-quarters along the axis length?
-* Question 6.3:: How can I move the x axis label down 10bp?
-* Question 6.4:: Can I use different pens for the axis, the axis label,
- and the tick labels?
-* Question 6.5:: How can I change the font type of the axes label?
-* Question 6.6:: How can I change the font type of the tick labels on
- an axis?
-* Question 6.7:: How can I prevent axes tick labels from rendering on
- top of each other?
-* Question 6.8:: How do I make the plot region of a graph, ignoring
- labels and legends, have a fixed size?
-* Question 6.9:: How can I plot a function f(x) within [0,1]x[0,2]
- without explicitly calculating the x values for which
- f(x) hits the boundary?
-* Question 6.10:: Is it possible to define customized palettes?
-* Question 6.11:: Is there an easy way to graph factorial functions
- nicely?
-* Question 6.12:: How do I indicate that a certain length should be
- exactly the size I prescribe with no rescaling, within
- a picture which has its own size?
-* Question 6.13:: How can I make the y axis display base-2 logarithmic
- values?
-* Question 6.14:: How can I align the x axes of two graphs on the same
- figure?
-* Question 6.15:: How can I change the direction of the y-axis, such
- that negatives values are on the upper y-axis?
-* Question 6.16:: How can I fill a path with a function that defines the
- color of each location?
-* Question 6.17:: Is there a way to draw a function that is not
- explicitly given, such as (y - 2)^2 = x - 1 ?
-* Question 6.18:: Is it possible to reverse or stretch an axis?
-* Question 6.19:: Why can't I use the UnFill option to draw graphs with
- empty markers?
-* Question 6.20:: How can I force several images to use the same palette
- range (e.g. the entire 0-255 grayscale range)?
-
-
-
-File: asy-faq.info, Node: Question 6.1, Next: Question 6.2, Previous: Question 5.4, Up: Section 6
-
-Question 6.1. How can I draw x axis ticks on the right side, with the tick labels on the left side (relative to the axis path)?
-
-import graph;
-
-size(250,200,IgnoreAspect);
-
-draw(graph(exp,-1,1),red);
-
-xaxis("$x$",RightTicks(Label(align=left)));
-yaxis("$y$",RightTicks);
-
-File: asy-faq.info, Node: Question 6.2, Next: Question 6.3, Previous: Question 6.1, Up: Section 6
-
-Question 6.2. How can I reposition the x axis label to three-quarters along the axis length?
-
-import graph;
-
-size(250,200,IgnoreAspect);
-
-draw(graph(exp,-1,1),red);
-
-xaxis(Label("$x$",0.75),LeftTicks);
-yaxis("$y$",RightTicks);
-
-File: asy-faq.info, Node: Question 6.3, Next: Question 6.4, Previous: Question 6.2, Up: Section 6
-
-Question 6.3. How can I move the x axis label down 10bp?
-
-import graph;
-size(250,200,IgnoreAspect);
-
-draw(graph(exp,-1,1),red);
-
-xaxis(shift(0,-10)*"$x$",LeftTicks);
-yaxis("$y$",RightTicks);
-
-File: asy-faq.info, Node: Question 6.4, Next: Question 6.5, Previous: Question 6.3, Up: Section 6
-
-Question 6.4. Can I use different pens for the axis, the axis label, and the tick labels?
-
-Yes:
-
-import graph;
-size(300,200,IgnoreAspect);
-
-xlimits(-50,50);
-ylimits(0,100);
-
-xaxis(Label("$x$",MidPoint,red),Bottom,blue,LeftTicks(green));
-yaxis("$y$",Left,RightTicks);
-
-File: asy-faq.info, Node: Question 6.5, Next: Question 6.6, Previous: Question 6.4, Up: Section 6
-
-Question 6.5. How can I change the font type of the axes label?
-
-import graph;
-size(300,200,IgnoreAspect);
-
-xlimits(-50,50);
-ylimits(0,100);
-
-xaxis("x",Bottom,Courier("m","n"),LeftTicks);
-yaxis("$y$",Left,RightTicks);
-
-File: asy-faq.info, Node: Question 6.6, Next: Question 6.7, Previous: Question 6.5, Up: Section 6
-
-Question 6.6. How can I change the font type of the tick labels on an axis?
-
-Tick labels are by default typeset in (TeX) math mode, so to use other
-fonts you need to override the default tick format:
-
-import graph;
-size(300,200,IgnoreAspect);
-
-xlimits(-50,50);
-ylimits(0,100);
-
-xaxis("$x$",Bottom,LeftTicks("%.4g",Courier("m","n")+fontsize(12)));
-yaxis("$y$",Left,RightTicks);
-
-File: asy-faq.info, Node: Question 6.7, Next: Question 6.8, Previous: Question 6.6, Up: Section 6
-
-Question 6.7. How can I prevent axes tick labels from rendering on top of each other?
-
-Either:
-
-(i) give LeftTicks/RightTicks/Ticks the arguments beginlabel=false and/or
-endlabel=false;
-
-(ii) explicitly remove specific ticks and their labels (drawing them
-manually; see
-http://asymptote.svn.sourceforge.net/viewvc/asymptote/trunk/asymptote/base/graph.asy
-for the definition of NoZero):
-
-import graph;
-
-size(10cm);
-
-real f(real x) {return x^2;}
-
-draw(graph(f,-2,2));
-
-xaxis(Ticks(NoZero));
-yaxis(Ticks(NoZero));
-
-label("$0$",(0,0),SW);
-(iii) explicitly remove specific tick labels and draw them manually (see
-http://asymptote.svn.sourceforge.net/viewvc/asymptote/trunk/asymptote/base/graph.asy
-for the definition of NoZeroFormat):
-
-import graph;
-
-size(10cm);
-
-real f(real x) {return x^2;}
-
-draw(graph(f,-2,2));
-
-xaxis(Ticks(NoZeroFormat));
-yaxis(Ticks(NoZeroFormat));
-
-label("$0$",(0,0),SW);
-(iv) use the xasy GUI to move overlapping labels;
-
-(v) change the Label argument of LeftTicks, RightTicks, or Ticks to:
-
-Label(currentpen+overwrite(Move))
-Solution (v) will move labels that might otherwise overwrite a previous
-label. Other possible overwrite arguments are Allow (allows overlapping
-labels; the default), Suppress (an overlapping label will not be written
-at all), SuppressQuiet, and MoveQuiet. The last two achieve the same
-result as the non-quiet types, but will not notify you which labels are
-overlapping. See: http://asymptote.sourceforge.net/doc/Pens.html.
-
-In the case of a user-specified tick array, you can change which labels
-get suppressed/moved by changing the order of array entries.
-
-
-File: asy-faq.info, Node: Question 6.8, Next: Question 6.9, Previous: Question 6.7, Up: Section 6
-
-Question 6.8. How do I make the plot region of a graph, ignoring labels and legends, have a fixed size?
-
-Either:
-
-i) Specify an explicit unitsize, which overrides any call to size:
-unitsize(x=1cm,y=2cm);
-ii) Explicitly tell Asymptote to map the plot region to a specific size:
-import graph;
-real[] x={0,1,2,3};
-real[] y=x^2;
-draw(graph(x,y),red);
-xaxis("$x$",BottomTop,LeftTicks);
-yaxis("$y$",LeftRight,RightTicks);
-
-size(5cm,5cm,point(SW),point(NE));
-
-label("$f_\mathrm{T}$",point(N),2N);
-iii) Specify the points in user coordinates that should correspond to a
-given picture size:
-
-import graph;
-
-size(250,200,IgnoreAspect);
-
-draw(graph(exp,-1,1),red);
-
-xaxis("$x$",BottomTop,LeftTicks);
-yaxis("$y$",LeftRight,RightTicks);
-
-fixedscaling((-1.5,-0.5),(1.5,3.5));
-In this example, the user coordinate (-1.5,-0.5) will end up being the
-lower left corner of the figure and (1.5,3.5) will be the upper right
-corner. You can use this option to ensure multiple figures have the same
-scaling and same resulting figure size (just ensure the two coordinates
-given to fixedscaling() leaves room for any labels).
-
-See also http://asymptote.sourceforge.net/doc/Frames-and-pictures.html.
-
-
-File: asy-faq.info, Node: Question 6.9, Next: Question 6.10, Previous: Question 6.8, Up: Section 6
-
-Question 6.9. How can I plot a function f(x) within [0,1]x[0,2] without explicitly calculating the x values for which f(x) hits the boundary?
-
-Call limits with the Crop option before drawing the graph:
-import graph;
-
-size(250,200,IgnoreAspect);
-
-draw(graph(exp,-1,1),red);
-
-limits((0,0),(1,2),Crop);
-
-xaxis("$x$",BottomTop,LeftTicks);
-yaxis("$y$",LeftRight,RightTicks);
-See also http://asymptote.sourceforge.net/doc/graph.html.
-
-
-File: asy-faq.info, Node: Question 6.10, Next: Question 6.11, Previous: Question 6.9, Up: Section 6
-
-Question 6.10. Is it possible to define customized palettes?
-
-Yes, you may generate your own pen[] array. For example:
-
-int NColors=32768;
-pen[] MyPalette=new pen[NColors];
-real step=1/(NColors-1.0);
-// Start at black: rgb(0,0,0)
-// End at yellow: rgb(1,1,0)
-for(int i=0; i < NColors; ++i) {
- real rgval=i*step;
- MyPalette[i]=rgb(rgval,rgval,0.0);
-}
-
-File: asy-faq.info, Node: Question 6.11, Next: Question 6.12, Previous: Question 6.10, Up: Section 6
-
-Question 6.11. Is there an easy way to graph factorial functions nicely?
-
-The example below shows a continuous function and two methods for placing
-markers at integer values of x:
-
-import graph;
-
-size(200,200,IgnoreAspect);
-
-real factorial(real t) {return gamma(t+1);}
-
-scale(Linear,Log);
-
-// Graph the factorial function.
-draw(graph(factorial,0,10));
-
-// Method 1: Draw nodes, but hide line
-pair F(int t) {return (t,factorial(t));}
-// Graph of factorial function from 0 to 10
-pair[] z=sequence(F,11);
-draw(graph(z),invisible,marker(scale(0.8mm)*unitcircle,blue,Fill));
-
-// Method 2: Nongraphing routines require explicit scaling:
-pair dotloc(int t) {return Scale(F(t));}
-pair[] dotlocs=sequence(dotloc,11);
-dot(dotlocs);
-
-xaxis("$x$",BottomTop,LeftTicks);
-yaxis("$y$",LeftRight,RightTicks);
-
-File: asy-faq.info, Node: Question 6.12, Next: Question 6.13, Previous: Question 6.11, Up: Section 6
-
-Question 6.12. How do I indicate that a certain length should be exactly the size I prescribe with no rescaling, within a picture which has its own size?
-
-Here's an easy way to do this.
-
-size(12cm,0);
-
-void distance(picture pic=currentpicture, pair A, pair B, Label L="", real n=0,
- pen p=currentpen)
-{
- real d=3mm;
- path g=A--B;
- transform T=shift(-n*d*unit(B-A)*I);
- pic.add(new void(frame f, transform t) {
- picture opic;
- path G=T*t*g;
- draw(opic,Label(L,Center,UnFill(1)),G,p,Arrows(NoFill),Bars,PenMargins);
- add(f,opic.fit());
- });
- pic.addBox(min(g),max(g),T*min(p),T*max(p));
-}
-
-pair A=(0,0), B=(3,3);
-
-dot(A);
-dot(B);
-
-distance(A,B,"$\ell$",1);
-
-File: asy-faq.info, Node: Question 6.13, Next: Question 6.14, Previous: Question 6.12, Up: Section 6
-
-Question 6.13. How can I make the y axis display base-2 logarithmic values?
-
-See the example http://asymptote.sourceforge.net/gallery/2D
-graphs/log2graph.asy.
-
-
-File: asy-faq.info, Node: Question 6.14, Next: Question 6.15, Previous: Question 6.13, Up: Section 6
-
-Question 6.14. How can I align the x axes of two graphs on the same figure?
-
-An easy way to do this, if the axes to be aligned have the same scaling
-and size, is illustrated in the example
-http://asymptote.sourceforge.net/gallery/2D graphs/alignedaxis.asy.
-
-Here is a more general solution to the problem of aligning two arbitrary
-axes. One fits the second picture to a frame based on the horizontal
-scaling for the first picture:
-
-import graph;
-
-real width=15cm;
-real aspect=0.3;
-
-picture pic1,pic2;
-
-size(pic1,width,aspect*width,IgnoreAspect);
-size(pic2,width,aspect*width,IgnoreAspect);
-
-scale(pic1,false);
-scale(pic2,false);
-
-real xmin1=6;
-real xmax1=9;
-real xmin2=8;
-real xmax2=16;
-
-real a1=1;
-real a2=0.001;
-
-real f1(real x) {return a1*sin(x/2*pi);}
-real f2(real x) {return a2*sin(x/4*pi);}
-
-draw(pic1,graph(pic1,f1,xmin1,xmax1));
-draw(pic2,graph(pic2,f2,xmin2,xmax2));
-
-xaxis(pic1,Bottom,LeftTicks());
-yaxis(pic1,"$f_1(x)$",Left,RightTicks);
-
-xaxis(pic2,"$x$",Bottom,LeftTicks(Step=4));
-yaxis(pic2,"$f_2(x)$",Left,RightTicks);
-
-yequals(pic1,0,Dotted);
-yequals(pic2,0,Dotted);
-
-pair min1=point(pic1,SW);
-pair max1=point(pic1,NE);
-
-pair min2=point(pic2,SW);
-pair max2=point(pic2,NE);
-
-real scale=(max1.x-min1.x)/(max2.x-min2.x);
-real shift=min1.x/scale-min2.x;
-
-transform t1=pic1.calculateTransform();
-transform t2=pic2.calculateTransform();
-transform T=xscale(scale*t1.xx)*yscale(t2.yy);
-
-add(pic1.fit());
-real height=truepoint(N,user=false).y-truepoint(S,user=false).y;
-add(shift(0,-height)*(shift(shift)*pic2).fit(T));
-
-File: asy-faq.info, Node: Question 6.15, Next: Question 6.16, Previous: Question 6.14, Up: Section 6
-
-Question 6.15. How can I change the direction of the y-axis, such that negatives values are on the upper y-axis?
-
-Here is a simple example (see also the example
-http://asymptote.sourceforge.net/gallery/2D graphs/diatom.asy or the
-discussion of Linear(-1) in the documentation):
-
-import graph;
-size(250,200,IgnoreAspect);
-
-scale(Linear,Linear(-1));
-
-draw(graph(log,0.1,10),red);
-
-xaxis("$x$",LeftTicks);
-yaxis("$y$",RightTicks);
-
-File: asy-faq.info, Node: Question 6.16, Next: Question 6.17, Previous: Question 6.15, Up: Section 6
-
-Question 6.16. How can I fill a path with a function that defines the color of each location?
-
-Use functionshade with a PDF tex engine, as illustrated by the example
-{functionshading.asy}.
-
-If you want to produce PostScript output, an approximate solution for now
-would be to superimpose a fine grid and specify colors to latticeshade
-that depend on position as a single pen[][] lattice. Alternatively, it may
-be more efficient to use tensorshade}.
-
-
-File: asy-faq.info, Node: Question 6.17, Next: Question 6.18, Previous: Question 6.16, Up: Section 6
-
-Question 6.17. Is there a way to draw a function that is not explicitly given, such as (y - 2)^2 = x - 1 ?
-
-Yes, use the parametric form
-
-y=t
-x=(t-2)^2+1
-See the example http://asymptote.sourceforge.net/gallery/2D
-graphs/parametricgraph.asy.
-
-
-File: asy-faq.info, Node: Question 6.18, Next: Question 6.19, Previous: Question 6.17, Up: Section 6
-
-Question 6.18. Is it possible to reverse or stretch an axis?
-
-The real scaling argument to Linear is used to stretch (or reverse) the
-axis. To see the effect of axis stretching, be sure not to specify
-IgnoreAspect in the picture size command.
-
-A secondary axis has the same length as the primary axis, so stretching
-cannot have any effect. But one can still reverse the axis, with
-Linear(-1).
-
-
-File: asy-faq.info, Node: Question 6.19, Next: Question 6.20, Previous: Question 6.18, Up: Section 6
-
-Question 6.19. Why can't I use the UnFill option to draw graphs with empty markers?
-
-UnFill won't work here because it only affects the local frame the markers
-are initially drawn on, before being added to currentpicture. Here is a
-way of achieving the desired effect (assuming a white background):
-
-import graph;
-size(10cm,0);
-pair[] z={(0,0),(0.5,0.5),(1,1)};
-path g=graph(z);
-
-draw(shift(0,.5)*g,marker(scale(5)*unitcircle,FillDraw(white)));
-
-xaxis(BottomTop,LeftTicks);
-yaxis(LeftRight,RightTicks);
-
-File: asy-faq.info, Node: Question 6.20, Next: Question 7.1, Previous: Question 6.19, Up: Section 6
-
-Question 6.20. How can I force several images to use the same palette range (e.g. the entire 0-255 grayscale range)?
-
-The palette color space corresponds to a range of values specified by the
-argument range, which can be Full, Automatic or an explicit range
-Range(pair min, pair max). Here Full} specifies a range varying from the
-minimum to maximum values of the function over the sampling interval,
-while Automatic selects "nice" limits.
-
-
-File: asy-faq.info, Node: Section 7, Next: Section 8, Previous: Section 6, Up: Top
-
-Questions about programming
-
-* Menu:
-* Question 7.1:: Is Asymptote an interpreter or a compiler?
-* Question 7.2:: What is the difference between a frame and a picture?
-* Question 7.3:: What is the difference between a path and a guide?
-* Question 7.4:: What is a convenient way to declare and initialize an
- array of pictures?
-* Question 7.5:: Is there a way to define functions that act on arrays
- in general (i.e. work for arrays of any type)?
-* Question 7.6:: Is there any way to declare structures ahead of their
- definition, e.g. where struct A performs some
- operation on struct B, but B contains an A member?
-* Question 7.7:: Where are static variables in for loops allocated?
-* Question 7.8:: Is there a debugger for asy?
-* Question 7.9:: Do you accept patches for Asymptote?
-
-
-
-File: asy-faq.info, Node: Question 7.1, Next: Question 7.2, Previous: Question 6.20, Up: Section 7
-
-Question 7.1. Is Asymptote an interpreter or a compiler?
-
-Asymptote compiles Asymptote commands into its own virtual machine code.
-It then runs this pseudocode on a virtual machine to produce PostScript
-code.
-
-
-File: asy-faq.info, Node: Question 7.2, Next: Question 7.3, Previous: Question 7.1, Up: Section 7
-
-Question 7.2. What is the difference between a frame and a picture?
-
-Frames are canvases for drawing in PostScript coordinates. While working
-with frames directly is occasionally necessary for constructing deferred
-drawing routines, pictures are usually more convenient to work with. See
-*Note Question 8.8:: `In MetaPost, it is possible to have a drawing remain
-the same size in different pictures by defining a unit u and explicitly
-multiply all the coordinates by u. Is there a better way to do this in
-Asymptote?'.
-
-
-File: asy-faq.info, Node: Question 7.3, Next: Question 7.4, Previous: Question 7.2, Up: Section 7
-
-Question 7.3. What is the difference between a path and a guide?
-
-A path is a cubic spline with fixed endpoint conditions.
-
-A guide is an unresolved cubic spline (list of cubic-spline nodes and
-control points). A guide is like a path except that the computation of the
-cubic spline is deferred until drawing time (when it is resolved into a
-path); this allows two guides with free endpoint conditions to be joined
-together smoothly.
-
-
-File: asy-faq.info, Node: Question 7.4, Next: Question 7.5, Previous: Question 7.3, Up: Section 7
-
-Question 7.4. What is a convenient way to declare and initialize an array of pictures?
-
-You could write yourself a routine such as:
-picture[] picture(int n) {
- picture[] pic;
- for(int i=0; i < n; ++i) {
- pic[i]=new picture;
- size(pic[i],19cm,0);
- }
- return pic;
-}
-
-picture[] pic=picture(6);
-
-File: asy-faq.info, Node: Question 7.5, Next: Question 7.6, Previous: Question 7.4, Up: Section 7
-
-Question 7.5. Is there a way to define functions that act on arrays in general (i.e. work for arrays of any type)?
-
-Generic types aren't yet implemented.
-
-But for now you can at least say
-typedef string T;
-include F;
-
-typedef real T;
-include F;
-where F.asy contains some type-dependent code like
-T[] operator $(T A, T B) {return new T[] {A,B};}
-
-File: asy-faq.info, Node: Question 7.6, Next: Question 7.7, Previous: Question 7.5, Up: Section 7
-
-Question 7.6. Is there any way to declare structures ahead of their definition, e.g. where struct A performs some operation on struct B, but B contains an A member?
-
-Asymptote does not support forward declaration of types. You can, however,
-nest structures, so that both types are visible for parts of the bodies of
-both structure definitions. For example:
-
-struct B {
- typedef void someroutine(B b);
-
- static struct A {
- someroutine routine;
- void operator init(someroutine routine) {
- this.routine=routine;
- }
- }
-
- string test="Testing";
-}
-
-typedef B.A A;
-
-A a=B.A(new void(B b){write(b.test);});
-
-B b;
-a.routine(b);
-
-File: asy-faq.info, Node: Question 7.7, Next: Question 7.8, Previous: Question 7.6, Up: Section 7
-
-Question 7.7. Where are static variables in for loops allocated?
-
-In the example
-
-void f() {
- for(int i=0; i < 3; ++i) {
- static int n;
- ++n;
- write(n);
- }
-}
-
-f(); // Writes 1, 2, 3
-the static qualifier means that n is allocated not just outside of the for
-loop, but also outside the function. This is clear if you call f multiple
-times; there is still only one instance of n.
-
-The "level" of a variable (where it is allocated) has nothing to do with
-the "scope" of a variable (how long it can be referred to by name). The
-curly braces enclosing a block affect only a variable's scope, not its
-level.
-
-Static modifiers are meaningless at the top level; they generate a warning
-and are simply ignored:
-
-for(int i=0; i < 3; ++i) {
- static int n;
- ++n;
- write(n);
-}
-// Writes warning about top-level static modifier and then 1, 1, 1
-Since version 1.22, non-static variables allocated in a loop body are
-allocated anew every iteration. This is only noticable in obscure cases
-where a variable in a loop is accessed in the closure of a function
-defined in the loop:
-
-int f();
-
-for(int i=0; i < 10; ++i) {
- int j=10*i;
- if(i == 5)
- f=new int() {return j;};
-}
-
-write(f()); // Writes 50
-Variables in the body of a loop last as long as that iteration of the
-loop, unless they are kept alive by a function closure as in the example
-above. In a function body, variables will last at least as long as the
-function call, though because of closures and garbage collection, they may
-last longer than that. If defined at the top level of a file or at the
-interactive prompt, they will last at least until the end of the file or
-prompt's run.
-
-
-File: asy-faq.info, Node: Question 7.8, Next: Question 7.9, Previous: Question 7.7, Up: Section 7
-
-Question 7.8. Is there a debugger for asy?
-
-Yes, Asymptote includes a line-based debugger:
-
-http://asymptote.sourceforge.net/doc/Debugger.html
-
-
-File: asy-faq.info, Node: Question 7.9, Next: Question 8.1, Previous: Question 7.8, Up: Section 7
-
-Question 7.9. Do you accept patches for Asymptote?
-
-Yes, in fact we would prefer that users submit patches for customized
-features (to http://sourceforge.net/tracker/?atid=685685&group_id=120000)
-instead of relying on us to do all of the coding. Development will proceed
-faster that way.
-
-
-File: asy-faq.info, Node: Section 8, Next: Section 9, Previous: Section 7, Up: Top
-
-Questions about differences between Asymptote and MetaPost
-
-* Menu:
-* Question 8.1:: What is the equivalent of the MetaPost c[a,b]
- interpolation operator?
-* Question 8.2:: How does picture scaling differ in Asymptote and
- MetaPost?
-* Question 8.3:: How can I avoid automatic scaling of a picture?
-* Question 8.4:: What is the equivalent of MetaPost ... command?
-* Question 8.5:: What is the equivalent of the MetaPost pickup command?
-* Question 8.6:: What is the equivalent of the MetaPost whatever
- command?
-* Question 8.7:: What is the equivalent for the MetaPost command for
- lray - horiz*v - verti*u = whatever*(LightSource - R),
- a system of three linear equations for three unknowns:
- horiz, verti, whatever?
-* Question 8.8:: In MetaPost, it is possible to have a drawing remain
- the same size in different pictures by defining a unit
- u and explicitly multiply all the coordinates by u. Is
- there a better way to do this in Asymptote?
-* Question 8.9:: In MetaPost, one could produce tiling pictures by
- generating a picture, and then clipping the picture to
- a rectangle of fixed dimensions around the center of
- the picture. How is that done in Asymptote?
-
-
-
-File: asy-faq.info, Node: Question 8.1, Next: Question 8.2, Previous: Question 7.9, Up: Section 8
-
-Question 8.1. What is the equivalent of the MetaPost c[a,b] interpolation operator?
-
-interp(a,b,c);
-
-File: asy-faq.info, Node: Question 8.2, Next: Question 8.3, Previous: Question 8.1, Up: Section 8
-
-Question 8.2. How does picture scaling differ in Asymptote and MetaPost?
-
-Asymptote includes an optional facility to do automatic scaling of
-pictures to achieve a given overall picture size, whereas Metapost only
-supports manual scaling. Asymptote defers drawing of objects drawn to
-pictures and distinguishes between true-size objects and objects that
-should scale with the picture size. The resulting linear programming
-problem is solved via the Simplex method.
-
-See the http://asymptote.sourceforge.net/gallery/dimension.asy example for
-an example of how deferred drawing is used to accomodate both user and
-true-size (PostScript) coordinates.
-
-
-File: asy-faq.info, Node: Question 8.3, Next: Question 8.4, Previous: Question 8.2, Up: Section 8
-
-Question 8.3. How can I avoid automatic scaling of a picture?
-
-If you really like Metapost-style manual (hard-wired) scaling either:
-
-(i) use the default size(0,0) for the entire picture and do all of the
-scaling by hand, just like in MetaPost;
-
-(ii) draw to a separate picture pic and add(pic.fit());
-
-(iii) use frames.
-
-
-File: asy-faq.info, Node: Question 8.4, Next: Question 8.5, Previous: Question 8.3, Up: Section 8
-
-Question 8.4. What is the equivalent of MetaPost ... command?
-
-The connector :: is a macro for tension atleast 1:
-
-size(100);
-pair z0=(0,0);
-pair z1=(1,0.25);
-pair z2=(2,0);
-draw(z0{up}::z1{right}::z2{down});
-
-File: asy-faq.info, Node: Question 8.5, Next: Question 8.6, Previous: Question 8.4, Up: Section 8
-
-Question 8.5. What is the equivalent of the MetaPost pickup command?
-
-Just say, for example:
-
-currentpen=red;
-
-File: asy-faq.info, Node: Question 8.6, Next: Question 8.7, Previous: Question 8.5, Up: Section 8
-
-Question 8.6. What is the equivalent of the MetaPost whatever command?
-
-Asymptote does not implicitly solve linear equations and therefore does
-not have the notion of a whatever unknown. Such a facility could certainly
-be added (perhaps using the notation ?= since = means assignment).
-However, the most common uses of whatever in MetaPost are covered by
-functions like extension in math.asy:
-pair extension(pair P, pair Q, pair p, pair q);
-this returns the intersection point of the extensions of the line segments
-PQ and pq. We find using routines like extension more explicit and less
-confusing to new users. But we could be persuaded to add something similar
-if someone can justify the need. In the meantime, one can always use the
-explicit built-in linear solver solve (see
-http://asymptote.sourceforge.net/doc/solve.html), which uses LU
-decomposition.
-
-
-File: asy-faq.info, Node: Question 8.7, Next: Question 8.8, Previous: Question 8.6, Up: Section 8
-
-Question 8.7. What is the equivalent for the MetaPost command for lray - horiz*v - verti*u = whatever*(LightSource - R), a system of three linear equations for three unknowns: horiz, verti, whatever?
-
-Since horiz*v+verti*u spans a plane, you could use
-real intersect(vector P, vector Q, vector n, vector Z);
-to find the intersection time for the line lray-whatever*(LightSource -
-R) and then extract the three desired values from there. (You'll still
-need to use the built-in explicit linear solver to solve a 2x2 system to
-get horiz and verti.)
-
-
-File: asy-faq.info, Node: Question 8.8, Next: Question 8.9, Previous: Question 8.7, Up: Section 8
-
-Question 8.8. In MetaPost, it is possible to have a drawing remain the same size in different pictures by defining a unit u and explicitly multiply all the coordinates by u. Is there a better way to do this in Asymptote?
-
-Yes, Asymptote has a better way: you definitely don't want to manually
-scale all of your coordinates. To make the user coordinates represent
-multiples of exactly 1cm:
-
-unitsize(1cm);
-draw(unitsquare);
-One can also specify different x and y unit sizes:
-
-unitsize(x=1cm,y=2cm);
-draw(unitsquare);
-Another way is to draw your fixed size object to a frame and add it to
-currentpicture like this:
-
-path p=(0,0)--(1,0);
-frame object;
-draw(object,scale(100)*p);
-
-add(object);
-add(object,(0,-10));
-To understand the difference between frames and pictures, try this:
-
-size(300,300);
-
-path p=(0,0)--(1,0);
-picture object;
-draw(object,scale(100)*p);
-
-add(object);
-add(object,(0,-10)); // Adds truesize object to currentpicture
-
-File: asy-faq.info, Node: Question 8.9, Next: Question 9.1, Previous: Question 8.8, Up: Section 8
-
-Question 8.9. In MetaPost, one could produce tiling pictures by generating a picture, and then clipping the picture to a rectangle of fixed dimensions around the center of the picture. How is that done in Asymptote?
-
-If you are using currentpicture the way one would in MetaPost (drawing in
-raw PostScript coordinates), you can simply do something like:
-
-fill((0,0)--(100,100)--(200,0)--cycle);
-
-pair center(picture pic=currentpicture) {return 0.5*(pic.min()+pic.max());}
-
-real height=100;
-real width=100;
-pair delta=0.5(width,height);
-pair c=center();
-clip(box(c-delta,c+delta));
-However, drawing in PostScript coordinates is often inconvenient. Here's
-the Asymptote way of doing the same thing, using deferred drawing:
-
-size(200,100);
-fill((0,0)--(1,1)--(2,0)--cycle);
-
-void clip(picture pic=currentpicture, real width, real height)
-{
- pic.clip(new void (frame f, transform) {
- pair center=0.5(min(f)+max(f));
- pair delta=0.5(width,height);
- clip(f,box(center-delta,center+delta));
- });
-}
-
-clip(100,100);
-See also the discussion of tilings in the documentation:
-http://asymptote.sourceforge.net/doc/Pens.html.
-
-
-File: asy-faq.info, Node: Section 9, Previous: Section 8, Up: Top
-
-Questions about output
-
-* Menu:
-* Question 9.1:: How can I disable automatic invocation of the PS
- viewer after an asy file is done processing?
-* Question 9.2:: How do I output jpeg images?
-* Question 9.3:: Can I embed bitmaps (photos) into my drawings and
- position and scale them?
-* Question 9.4:: Does Asymptote support direct PDF output?
-* Question 9.5:: How to I produce large pictures of high quality in
- raster format (e.g. png, giff etc).
-* Question 9.6:: Is it possible to produce multi-page documents with
- asymptote?
-
-
-
-File: asy-faq.info, Node: Question 9.1, Next: Question 9.2, Previous: Question 8.9, Up: Section 9
-
-Question 9.1. How can I disable automatic invocation of the PS viewer after an asy file is done processing?
-
-It's actually not on by default, unless you happen to be using Microsoft
-Windows (because that is what most Microsoft Windows users expect).
-Microsoft Windows users can turn this feature off with the command-line
-option -noV or by putting
-
-import settings;
-interactiveView=false;
-batchView=false;
-in their config.asy file. See
-http://asymptote.sourceforge.net/doc/Options.html.
-
-
-File: asy-faq.info, Node: Question 9.2, Next: Question 9.3, Previous: Question 9.1, Up: Section 9
-
-Question 9.2. How do I output jpeg images?
-
-If you have the ImageMagick convert program installed, simply type
-
-asy -f jpg test.asy
-
-File: asy-faq.info, Node: Question 9.3, Next: Question 9.4, Previous: Question 9.2, Up: Section 9
-
-Question 9.3. Can I embed bitmaps (photos) into my drawings and position and scale them?
-
-Convert them to eps format and use the graphic(string) function just like
-a Label:
-
-label(graphic("file"),(0,0));
-See the example http://asymptote.sourceforge.net/gallery/orthocenter.asy
-and http://asymptote.sourceforge.net/doc/label.html.
-
-
-File: asy-faq.info, Node: Question 9.4, Next: Question 9.5, Previous: Question 9.3, Up: Section 9
-
-Question 9.4. Does Asymptote support direct PDF output?
-
-Yes, PDF output can be produced by the -f pdf option or -tex pdflatex
-option. This supports transparency, annotations, embedded movies, and
-U3D/PRC content.
-
-
-File: asy-faq.info, Node: Question 9.5, Next: Question 9.6, Previous: Question 9.4, Up: Section 9
-
-Question 9.5. How to I produce large pictures of high quality in raster format (e.g. png, giff etc).
-
-Try using some of the options to convert, mainly -geometry and -density.
-For example:
-convert -geometry 1000x3000 example.eps example.png
-You can also change the default resolution of the image with:
-convert -geometry 1000x3000 -density 300 -units PixelsPerInch example.eps example.png
-This does not change the number of pixels in the image, but just gives a
-hint as to how large each pixel should be displayed.
-
-If you include the -density option without the -geometry option, convert
-will keep the image size constant (so a 4cm x 3cm eps figure will
-generate a 4cm x 3cm png image).
-
-
-File: asy-faq.info, Node: Question 9.6, Previous: Question 9.5, Up: Section 9
-
-Question 9.6. Is it possible to produce multi-page documents with asymptote?
-
-Yes, simply call the newpage() function. This is used by the slide.asy
-package to produce high-quality slide presentations (easier to use than
-Prosper).
-
diff --git a/Build/source/utils/asymptote/doc/FAQ/install-sh b/Build/source/utils/asymptote/doc/FAQ/install-sh
index 04367377519..6781b987bdb 100755
--- a/Build/source/utils/asymptote/doc/FAQ/install-sh
+++ b/Build/source/utils/asymptote/doc/FAQ/install-sh
@@ -1,7 +1,7 @@
#!/bin/sh
# install - install a program, script, or datafile
-scriptversion=2013-10-30.23; # UTC
+scriptversion=2009-04-28.21; # UTC
# This originates from X11R5 (mit/util/scripts/install.sh), which was
# later released in X11R6 (xc/config/util/install.sh) with the
@@ -35,21 +35,25 @@ scriptversion=2013-10-30.23; # UTC
# FSF changes to this file are in the public domain.
#
# Calling this script install-sh is preferred over install.sh, to prevent
-# 'make' implicit rules from creating a file called install from it
+# `make' implicit rules from creating a file called install from it
# when there is no Makefile.
#
# This script is compatible with the BSD install script, but was written
# from scratch.
-tab=' '
nl='
'
-IFS=" $tab$nl"
+IFS=" "" $nl"
-# Set DOITPROG to "echo" to test this script.
+# set DOITPROG to echo to test this script
+# Don't use :- since 4.3BSD and earlier shells don't like it.
doit=${DOITPROG-}
-doit_exec=${doit:-exec}
+if test -z "$doit"; then
+ doit_exec=exec
+else
+ doit_exec=$doit
+fi
# Put in absolute file names if you don't have them in your path;
# or use environment vars.
@@ -64,6 +68,17 @@ mvprog=${MVPROG-mv}
rmprog=${RMPROG-rm}
stripprog=${STRIPPROG-strip}
+posix_glob='?'
+initialize_posix_glob='
+ test "$posix_glob" != "?" || {
+ if (set -f) 2>/dev/null; then
+ posix_glob=
+ else
+ posix_glob=:
+ fi
+ }
+'
+
posix_mkdir=
# Desired mode of installed file.
@@ -122,39 +137,36 @@ while test $# -ne 0; do
-d) dir_arg=true;;
-g) chgrpcmd="$chgrpprog $2"
- shift;;
+ shift;;
--help) echo "$usage"; exit $?;;
-m) mode=$2
- case $mode in
- *' '* | *"$tab"* | *"$nl"* | *'*'* | *'?'* | *'['*)
- echo "$0: invalid mode: $mode" >&2
- exit 1;;
- esac
- shift;;
+ case $mode in
+ *' '* | *' '* | *'
+'* | *'*'* | *'?'* | *'['*)
+ echo "$0: invalid mode: $mode" >&2
+ exit 1;;
+ esac
+ shift;;
-o) chowncmd="$chownprog $2"
- shift;;
+ shift;;
-s) stripcmd=$stripprog;;
-t) dst_arg=$2
- # Protect names problematic for 'test' and other utilities.
- case $dst_arg in
- -* | [=\(\)!]) dst_arg=./$dst_arg;;
- esac
- shift;;
+ shift;;
-T) no_target_directory=true;;
--version) echo "$0 $scriptversion"; exit $?;;
- --) shift
- break;;
+ --) shift
+ break;;
- -*) echo "$0: invalid option: $1" >&2
- exit 1;;
+ -*) echo "$0: invalid option: $1" >&2
+ exit 1;;
*) break;;
esac
@@ -174,10 +186,6 @@ if test $# -ne 0 && test -z "$dir_arg$dst_arg"; then
fi
shift # arg
dst_arg=$arg
- # Protect names problematic for 'test' and other utilities.
- case $dst_arg in
- -* | [=\(\)!]) dst_arg=./$dst_arg;;
- esac
done
fi
@@ -186,17 +194,13 @@ if test $# -eq 0; then
echo "$0: no input file specified." >&2
exit 1
fi
- # It's OK to call 'install-sh -d' without argument.
+ # It's OK to call `install-sh -d' without argument.
# This can happen when creating conditional directories.
exit 0
fi
if test -z "$dir_arg"; then
- do_exit='(exit $ret); exit $ret'
- trap "ret=129; $do_exit" 1
- trap "ret=130; $do_exit" 2
- trap "ret=141; $do_exit" 13
- trap "ret=143; $do_exit" 15
+ trap '(exit $?); exit' 1 2 13 15
# Set umask so as not to create temps with too-generous modes.
# However, 'strip' requires both read and write access to temps.
@@ -207,16 +211,16 @@ if test -z "$dir_arg"; then
*[0-7])
if test -z "$stripcmd"; then
- u_plus_rw=
+ u_plus_rw=
else
- u_plus_rw='% 200'
+ u_plus_rw='% 200'
fi
cp_umask=`expr '(' 777 - $mode % 1000 ')' $u_plus_rw`;;
*)
if test -z "$stripcmd"; then
- u_plus_rw=
+ u_plus_rw=
else
- u_plus_rw=,u+rw
+ u_plus_rw=,u+rw
fi
cp_umask=$mode$u_plus_rw;;
esac
@@ -224,9 +228,9 @@ fi
for src
do
- # Protect names problematic for 'test' and other utilities.
+ # Protect names starting with `-'.
case $src in
- -* | [=\(\)!]) src=./$src;;
+ -*) src=./$src;;
esac
if test -n "$dir_arg"; then
@@ -248,20 +252,51 @@ do
echo "$0: no destination specified." >&2
exit 1
fi
+
dst=$dst_arg
+ # Protect names starting with `-'.
+ case $dst in
+ -*) dst=./$dst;;
+ esac
# If destination is a directory, append the input filename; won't work
# if double slashes aren't ignored.
if test -d "$dst"; then
if test -n "$no_target_directory"; then
- echo "$0: $dst_arg: Is a directory" >&2
- exit 1
+ echo "$0: $dst_arg: Is a directory" >&2
+ exit 1
fi
dstdir=$dst
dst=$dstdir/`basename "$src"`
dstdir_status=0
else
- dstdir=`dirname "$dst"`
+ # Prefer dirname, but fall back on a substitute if dirname fails.
+ dstdir=`
+ (dirname "$dst") 2>/dev/null ||
+ expr X"$dst" : 'X\(.*[^/]\)//*[^/][^/]*/*$' \| \
+ X"$dst" : 'X\(//\)[^/]' \| \
+ X"$dst" : 'X\(//\)$' \| \
+ X"$dst" : 'X\(/\)' \| . 2>/dev/null ||
+ echo X"$dst" |
+ sed '/^X\(.*[^/]\)\/\/*[^/][^/]*\/*$/{
+ s//\1/
+ q
+ }
+ /^X\(\/\/\)[^/].*/{
+ s//\1/
+ q
+ }
+ /^X\(\/\/\)$/{
+ s//\1/
+ q
+ }
+ /^X\(\/\).*/{
+ s//\1/
+ q
+ }
+ s/.*/./; q'
+ `
+
test -d "$dstdir"
dstdir_status=$?
fi
@@ -272,74 +307,74 @@ do
if test $dstdir_status != 0; then
case $posix_mkdir in
'')
- # Create intermediate dirs using mode 755 as modified by the umask.
- # This is like FreeBSD 'install' as of 1997-10-28.
- umask=`umask`
- case $stripcmd.$umask in
- # Optimize common cases.
- *[2367][2367]) mkdir_umask=$umask;;
- .*0[02][02] | .[02][02] | .[02]) mkdir_umask=22;;
-
- *[0-7])
- mkdir_umask=`expr $umask + 22 \
- - $umask % 100 % 40 + $umask % 20 \
- - $umask % 10 % 4 + $umask % 2
- `;;
- *) mkdir_umask=$umask,go-w;;
- esac
-
- # With -d, create the new directory with the user-specified mode.
- # Otherwise, rely on $mkdir_umask.
- if test -n "$dir_arg"; then
- mkdir_mode=-m$mode
- else
- mkdir_mode=
- fi
-
- posix_mkdir=false
- case $umask in
- *[123567][0-7][0-7])
- # POSIX mkdir -p sets u+wx bits regardless of umask, which
- # is incompatible with FreeBSD 'install' when (umask & 300) != 0.
- ;;
- *)
- tmpdir=${TMPDIR-/tmp}/ins$RANDOM-$$
- trap 'ret=$?; rmdir "$tmpdir/d" "$tmpdir" 2>/dev/null; exit $ret' 0
-
- if (umask $mkdir_umask &&
- exec $mkdirprog $mkdir_mode -p -- "$tmpdir/d") >/dev/null 2>&1
- then
- if test -z "$dir_arg" || {
- # Check for POSIX incompatibilities with -m.
- # HP-UX 11.23 and IRIX 6.5 mkdir -m -p sets group- or
- # other-writable bit of parent directory when it shouldn't.
- # FreeBSD 6.1 mkdir -m -p sets mode of existing directory.
- ls_ld_tmpdir=`ls -ld "$tmpdir"`
- case $ls_ld_tmpdir in
- d????-?r-*) different_mode=700;;
- d????-?--*) different_mode=755;;
- *) false;;
- esac &&
- $mkdirprog -m$different_mode -p -- "$tmpdir" && {
- ls_ld_tmpdir_1=`ls -ld "$tmpdir"`
- test "$ls_ld_tmpdir" = "$ls_ld_tmpdir_1"
- }
- }
- then posix_mkdir=:
- fi
- rmdir "$tmpdir/d" "$tmpdir"
- else
- # Remove any dirs left behind by ancient mkdir implementations.
- rmdir ./$mkdir_mode ./-p ./-- 2>/dev/null
- fi
- trap '' 0;;
- esac;;
+ # Create intermediate dirs using mode 755 as modified by the umask.
+ # This is like FreeBSD 'install' as of 1997-10-28.
+ umask=`umask`
+ case $stripcmd.$umask in
+ # Optimize common cases.
+ *[2367][2367]) mkdir_umask=$umask;;
+ .*0[02][02] | .[02][02] | .[02]) mkdir_umask=22;;
+
+ *[0-7])
+ mkdir_umask=`expr $umask + 22 \
+ - $umask % 100 % 40 + $umask % 20 \
+ - $umask % 10 % 4 + $umask % 2
+ `;;
+ *) mkdir_umask=$umask,go-w;;
+ esac
+
+ # With -d, create the new directory with the user-specified mode.
+ # Otherwise, rely on $mkdir_umask.
+ if test -n "$dir_arg"; then
+ mkdir_mode=-m$mode
+ else
+ mkdir_mode=
+ fi
+
+ posix_mkdir=false
+ case $umask in
+ *[123567][0-7][0-7])
+ # POSIX mkdir -p sets u+wx bits regardless of umask, which
+ # is incompatible with FreeBSD 'install' when (umask & 300) != 0.
+ ;;
+ *)
+ tmpdir=${TMPDIR-/tmp}/ins$RANDOM-$$
+ trap 'ret=$?; rmdir "$tmpdir/d" "$tmpdir" 2>/dev/null; exit $ret' 0
+
+ if (umask $mkdir_umask &&
+ exec $mkdirprog $mkdir_mode -p -- "$tmpdir/d") >/dev/null 2>&1
+ then
+ if test -z "$dir_arg" || {
+ # Check for POSIX incompatibilities with -m.
+ # HP-UX 11.23 and IRIX 6.5 mkdir -m -p sets group- or
+ # other-writeable bit of parent directory when it shouldn't.
+ # FreeBSD 6.1 mkdir -m -p sets mode of existing directory.
+ ls_ld_tmpdir=`ls -ld "$tmpdir"`
+ case $ls_ld_tmpdir in
+ d????-?r-*) different_mode=700;;
+ d????-?--*) different_mode=755;;
+ *) false;;
+ esac &&
+ $mkdirprog -m$different_mode -p -- "$tmpdir" && {
+ ls_ld_tmpdir_1=`ls -ld "$tmpdir"`
+ test "$ls_ld_tmpdir" = "$ls_ld_tmpdir_1"
+ }
+ }
+ then posix_mkdir=:
+ fi
+ rmdir "$tmpdir/d" "$tmpdir"
+ else
+ # Remove any dirs left behind by ancient mkdir implementations.
+ rmdir ./$mkdir_mode ./-p ./-- 2>/dev/null
+ fi
+ trap '' 0;;
+ esac;;
esac
if
$posix_mkdir && (
- umask $mkdir_umask &&
- $doit_exec $mkdirprog $mkdir_mode -p -- "$dstdir"
+ umask $mkdir_umask &&
+ $doit_exec $mkdirprog $mkdir_mode -p -- "$dstdir"
)
then :
else
@@ -349,51 +384,53 @@ do
# directory the slow way, step by step, checking for races as we go.
case $dstdir in
- /*) prefix='/';;
- [-=\(\)!]*) prefix='./';;
- *) prefix='';;
+ /*) prefix='/';;
+ -*) prefix='./';;
+ *) prefix='';;
esac
+ eval "$initialize_posix_glob"
+
oIFS=$IFS
IFS=/
- set -f
+ $posix_glob set -f
set fnord $dstdir
shift
- set +f
+ $posix_glob set +f
IFS=$oIFS
prefixes=
for d
do
- test X"$d" = X && continue
-
- prefix=$prefix$d
- if test -d "$prefix"; then
- prefixes=
- else
- if $posix_mkdir; then
- (umask=$mkdir_umask &&
- $doit_exec $mkdirprog $mkdir_mode -p -- "$dstdir") && break
- # Don't fail if two instances are running concurrently.
- test -d "$prefix" || exit 1
- else
- case $prefix in
- *\'*) qprefix=`echo "$prefix" | sed "s/'/'\\\\\\\\''/g"`;;
- *) qprefix=$prefix;;
- esac
- prefixes="$prefixes '$qprefix'"
- fi
- fi
- prefix=$prefix/
+ test -z "$d" && continue
+
+ prefix=$prefix$d
+ if test -d "$prefix"; then
+ prefixes=
+ else
+ if $posix_mkdir; then
+ (umask=$mkdir_umask &&
+ $doit_exec $mkdirprog $mkdir_mode -p -- "$dstdir") && break
+ # Don't fail if two instances are running concurrently.
+ test -d "$prefix" || exit 1
+ else
+ case $prefix in
+ *\'*) qprefix=`echo "$prefix" | sed "s/'/'\\\\\\\\''/g"`;;
+ *) qprefix=$prefix;;
+ esac
+ prefixes="$prefixes '$qprefix'"
+ fi
+ fi
+ prefix=$prefix/
done
if test -n "$prefixes"; then
- # Don't fail if two instances are running concurrently.
- (umask $mkdir_umask &&
- eval "\$doit_exec \$mkdirprog $prefixes") ||
- test -d "$dstdir" || exit 1
- obsolete_mkdir_used=true
+ # Don't fail if two instances are running concurrently.
+ (umask $mkdir_umask &&
+ eval "\$doit_exec \$mkdirprog $prefixes") ||
+ test -d "$dstdir" || exit 1
+ obsolete_mkdir_used=true
fi
fi
fi
@@ -428,12 +465,15 @@ do
# If -C, don't bother to copy if it wouldn't change the file.
if $copy_on_change &&
- old=`LC_ALL=C ls -dlL "$dst" 2>/dev/null` &&
- new=`LC_ALL=C ls -dlL "$dsttmp" 2>/dev/null` &&
- set -f &&
+ old=`LC_ALL=C ls -dlL "$dst" 2>/dev/null` &&
+ new=`LC_ALL=C ls -dlL "$dsttmp" 2>/dev/null` &&
+
+ eval "$initialize_posix_glob" &&
+ $posix_glob set -f &&
set X $old && old=:$2:$4:$5:$6 &&
set X $new && new=:$2:$4:$5:$6 &&
- set +f &&
+ $posix_glob set +f &&
+
test "$old" = "$new" &&
$cmpprog "$dst" "$dsttmp" >/dev/null 2>&1
then
@@ -446,24 +486,24 @@ do
# to itself, or perhaps because mv is so ancient that it does not
# support -f.
{
- # Now remove or move aside any old file at destination location.
- # We try this two ways since rm can't unlink itself on some
- # systems and the destination file might be busy for other
- # reasons. In this case, the final cleanup might fail but the new
- # file should still install successfully.
- {
- test ! -f "$dst" ||
- $doit $rmcmd -f "$dst" 2>/dev/null ||
- { $doit $mvcmd -f "$dst" "$rmtmp" 2>/dev/null &&
- { $doit $rmcmd -f "$rmtmp" 2>/dev/null; :; }
- } ||
- { echo "$0: cannot unlink or rename $dst" >&2
- (exit 1); exit 1
- }
- } &&
-
- # Now rename the file to the real destination.
- $doit $mvcmd "$dsttmp" "$dst"
+ # Now remove or move aside any old file at destination location.
+ # We try this two ways since rm can't unlink itself on some
+ # systems and the destination file might be busy for other
+ # reasons. In this case, the final cleanup might fail but the new
+ # file should still install successfully.
+ {
+ test ! -f "$dst" ||
+ $doit $rmcmd -f "$dst" 2>/dev/null ||
+ { $doit $mvcmd -f "$dst" "$rmtmp" 2>/dev/null &&
+ { $doit $rmcmd -f "$rmtmp" 2>/dev/null; :; }
+ } ||
+ { echo "$0: cannot unlink or rename $dst" >&2
+ (exit 1); exit 1
+ }
+ } &&
+
+ # Now rename the file to the real destination.
+ $doit $mvcmd "$dsttmp" "$dst"
}
fi || exit 1
diff --git a/Build/source/utils/asymptote/doc/TeXShopAndAsymptote.pdf b/Build/source/utils/asymptote/doc/TeXShopAndAsymptote.pdf
deleted file mode 100755
index 9abdc656892..00000000000
--- a/Build/source/utils/asymptote/doc/TeXShopAndAsymptote.pdf
+++ /dev/null
Binary files differ
diff --git a/Build/source/utils/asymptote/doc/asy-latex.pdf b/Build/source/utils/asymptote/doc/asy-latex.pdf
deleted file mode 100755
index a91f302ce02..00000000000
--- a/Build/source/utils/asymptote/doc/asy-latex.pdf
+++ /dev/null
Binary files differ
diff --git a/Build/source/utils/asymptote/doc/asy.1 b/Build/source/utils/asymptote/doc/asy.1
deleted file mode 100755
index 979fd50ee38..00000000000
--- a/Build/source/utils/asymptote/doc/asy.1
+++ /dev/null
@@ -1,297 +0,0 @@
-.\" Hey, EMACS: -*- nroff -*-
-.TH ASY 1 "1 Dec 2004"
-.SH NAME
-asy \- Asymptote: a script-based vector graphics language
-.SH SYNOPSIS
-.B asy
-.RI [ options ]
-.RI [ file \ ...]
-.SH DESCRIPTION
-\fBAsymptote\fP is a powerful descriptive vector graphics language for
-technical drawings, inspired by MetaPost but with an improved C++-like syntax.
-Asymptote provides for figures the same high-quality level of typesetting that
-LaTeX does for scientific text.
-.SH OPTIONS
-If no arguments are given, Asymptote runs in interactive mode.
-.PP
-If "\-" is given as the file argument, Asymptote reads from standard input.
-.PP
-A summary of options is included below. The effect of most options
-can be negated by prepending
-.B no
-to the option name.
-Default values for most options may also be entered in the
-file
-.B .asy/config.asy
-in the user's home directory using the long form:
-.PP
- import settings;
- batchView=true;
-.PP
-For a complete
-description, see the Info files.
-.TP
-.B \-V,\-View
-View output; command-line only.
-.TP
-.B \-a,\-align C|B|T|Z
-Center, Bottom, Top, or Zero page alignment [C].
-.TP
-.B \-antialias n
-Antialiasing width for rasterized output [2].
-.TP
-.B \-arcballradius pixels
-Arcball radius [750].
-.TP
-.B \-auto3D
-Automatically activate 3D scene [true].
-.TP
-.B \-autobillboard
-3D labels always face viewer by default [true].
-.TP
-.B \-autoimport string
-Module to automatically import.
-.TP
-.B \-autoplain
-Enable automatic importing of plain [true].
-.TP
-.B \-autoplay
-Autoplay 3D animations [false].
-.TP
-.B \-autorotate
-Enable automatic PDF page rotation [false].
-.TP
-.B \-axes3
-Show 3D axes in PDF output [true].
-.TP
-.B \-batchMask
-Mask fpu exceptions in batch mode [false].
-.TP
-.B \-batchView
-View output in batch mode [false].
-.TP
-.B \-bw
-Convert all colors to black and white [false].
-.TP
-.B \-cd directory
-Set current directory; command-line only.
-.TP
-.B \-cmyk
-Convert rgb colors to cmyk [false].
-.TP
-.B \-c,\-command string
-Command to autoexecute.
-.TP
-.B \-compact
-Conserve memory at the expense of speed [false].
-.TP
-.B \-d,\-debug
-Enable debugging messages [false].
-.TP
-.B \-divisor n
-Garbage collect using purge(divisor=n) [2].
-.TP
-.B \-doubleclick ms
-Emulated double-click timeout [200].
-.TP
-.B \-embed
-Embed rendered preview image [true].
-.TP
-.B \-exitonEOF
-Exit interactive mode on EOF [true].
-.TP
-.B \-fitscreen
-Fit rendered image to screen [true].
-.TP
-.B \-framedelay ms
-Additional frame delay [0].
-.TP
-.B \-framerate frames/s
-Animation speed [30].
-.TP
-.B \-globalwrite
-Allow write to other directory [false].
-.TP
-.B \-gray
-Convert all colors to grayscale [false].
-.TP
-.B \-h,\-help
-Show summary of options; command-line only.
-.TP
-.B \-historylines n
-Retain n lines of history [1000].
-.TP
-.B \-iconify
-Iconify rendering window [false].
-.TP
-.B \-inlineimage
-Generate inline embedded image [false].
-.TP
-.B \-inlinetex
-Generate inline TeX code [false].
-.TP
-.B \-interactiveMask
-Mask fpu exceptions in interactive mode [true].
-.TP
-.B \-interactiveView
-View output in interactive mode [true].
-.TP
-.B \-interactiveWrite
-Write expressions entered at the prompt to stdout [true].
-.TP
-.B \-k,\-keep
-Keep intermediate files [false].
-.TP
-.B \-keepaux
-Keep intermediate LaTeX .aux files [false].
-.TP
-.B \-level n
-Postscript level [3].
-.TP
-.B \-l,\-listvariables
-List available global functions and variables [false].
-.TP
-.B \-localhistory
-Use a local interactive history file [false].
-.TP
-.B \-loop
-Loop 3D animations [false].
-.TP
-.B \-m,\-mask
-Mask fpu exceptions; command-line only.
-.TP
-.B \-maxtile pair
-Maximum rendering tile size [(1024,768)].
-.TP
-.B \-maxviewport pair
-Maximum viewport size [(2048,2048)].
-.TP
-.B \-multiline
-Input code over multiple lines at the prompt [false].
-.TP
-.B \-multipleView
-View output from multiple batch-mode files [false].
-.TP
-.B \-multisample n
-Multisampling width for screen images [4].
-.TP
-.B \-offscreen
-Use offscreen rendering [false].
-.TP
-.B \-O,\-offset pair
-PostScript offset [(0,0)].
-.TP
-.B \-f,\-outformat format
-Convert each output file to specified format.
-.TP
-.B \-o,\-outname name
-Alternative output directory/filename.
-.TP
-.B \-p,\-parseonly
-Parse file [false].
-.TP
-.B \-pdfreload
-Automatically reload document in pdfviewer [false].
-.TP
-.B \-pdfreloaddelay usec
-Delay before attempting initial pdf reload [750000].
-.TP
-.B \-position pair
-Initial 3D rendering screen position [(0,0)].
-.TP
-.B \-prc
-Embed 3D PRC graphics in PDF output [true].
-.TP
-.B \-prompt string
-Prompt [> ].
-.TP
-.B \-prompt2 string
-Continuation prompt for multiline input [..].
-.TP
-.B \-q,\-quiet
-Suppress welcome message [false].
-.TP
-.B \-render n
-Render 3D graphics using n pixels per bp (-1=auto) [-1].
-.TP
-.B \-resizestep step
-Resize step [1.2].
-.TP
-.B \-reverse
-reverse 3D animations [false].
-.TP
-.B \-rgb
-Convert cmyk colors to rgb [false].
-.TP
-.B \-safe
-Disable system call [true].
-.TP
-.B \-scroll n
-Scroll standard output n lines at a time [0].
-.TP
-.B \-spinstep deg/s
-Spin speed [60].
-.TP
-.B \-svgemulation
-Emulate unimplemented SVG shading [false].
-.TP
-.B \-tabcompletion
-Interactive prompt auto-completion [true].
-.TP
-.B \-tex engine
-latex|pdflatex|xelatex|tex|pdftex|context|none [latex].
-.TP
-.B \-thick
-Render thick 3D lines [true].
-.TP
-.B \-thin
-Render thin 3D lines [true].
-.TP
-.B \-threads
-Use POSIX threads for 3D rendering [true].
-.TP
-.B \-toolbar
-Show 3D toolbar in PDF output [true].
-.TP
-.B \-s,\-translate
-Show translated virtual machine code [false].
-.TP
-.B \-twice
-Run LaTeX twice (to resolve references) [false].
-.TP
-.B \-twosided
-Use two-sided 3D lighting model for rendering [true].
-.TP
-.B \-u,\-user string
-General purpose user string.
-.TP
-.B \-v,\-verbose
-Increase verbosity level (can specify multiple times) [0].
-.TP
-.B \-version
-Show version; command-line only.
-.TP
-.B \-wait
-Wait for child processes to finish before exiting [false].
-.TP
-.B \-warn string
-Enable warning; command-line only.
-.TP
-.B \-where
-Show where listed variables are declared [false].
-.TP
-.B \-zoomfactor factor
-Zoom step factor [1.05].
-.TP
-.B \-zoomstep step
-Mouse motion zoom step [0.1].
-
-.SH SEE ALSO
-Asymptote is documented fully in the asymptote Info page.
-The manual can also be accessed in interactive mode with the "help" command.
-
-.SH AUTHOR
-Asymptote was written by Andy Hammerlindl, John Bowman, and Tom Prince.
-.PP
-This manual page was written by Hubert Chan for the Debian project (but may
-be used by others).
diff --git a/Build/source/utils/asymptote/doc/asyRefCard.pdf b/Build/source/utils/asymptote/doc/asyRefCard.pdf
deleted file mode 100644
index 549deab1579..00000000000
--- a/Build/source/utils/asymptote/doc/asyRefCard.pdf
+++ /dev/null
Binary files differ
diff --git a/Build/source/utils/asymptote/doc/asymptote.pdf b/Build/source/utils/asymptote/doc/asymptote.pdf
deleted file mode 100644
index fc83a4c44a6..00000000000
--- a/Build/source/utils/asymptote/doc/asymptote.pdf
+++ /dev/null
Binary files differ
diff --git a/Build/source/utils/asymptote/doc/asymptote.texi b/Build/source/utils/asymptote/doc/asymptote.texi
index ff038453b10..9fabe5d813d 100644
--- a/Build/source/utils/asymptote/doc/asymptote.texi
+++ b/Build/source/utils/asymptote/doc/asymptote.texi
@@ -9,7 +9,7 @@ This file documents @code{Asymptote}, version @value{VERSION}.
@url{http://asymptote.sourceforge.net}
-Copyright @copyright{} 2004-13 Andy Hammerlindl, John Bowman, and Tom Prince.
+Copyright @copyright{} 2004-14 Andy Hammerlindl, John Bowman, and Tom Prince.
@quotation
Permission is granted to copy, distribute and/or modify this document
@@ -89,7 +89,7 @@ Drawing commands
Programming
* Data types:: void, bool, int, real, pair, triple, string
-* Paths and guides::
+* Paths and guides:: Bezier curves
* Pens:: Colors, line types, line widths, font sizes
* Transforms:: Affine transforms
* Frames and pictures:: Canvases for immediate and deferred drawing
@@ -289,7 +289,7 @@ We recommend subscribing to new release announcements at
@noindent
Users may also wish to monitor the @code{Asymptote} forum:
@quotation
-@url{http://sourceforge.net/projects/asymptote/forums/forum/409349}
+@url{http://sourceforge.net/p/asymptote/discussion/409349}
@end quotation
@noindent
@@ -491,6 +491,7 @@ configuration variables @code{paperwidth} and @code{paperheight}.
@cindex @code{texcommand}
@cindex @code{dvips}
@cindex @code{dvisvgm}
+@cindex @code{libgs}
@cindex @code{convert}
@cindex @code{display}
@cindex @code{animate}
@@ -501,6 +502,7 @@ texpath
texcommand
dvips
dvisvgm
+libgs
convert
display
animate
@@ -584,7 +586,8 @@ cd asymptote-x.xx
@end verbatim
By default the system version of the Boehm garbage collector will be
used; if it is old we recommend first putting
-@url{http://www.hpl.hp.com/personal/Hans_Boehm/gc/gc_source/gc-7.2d.tar.gz}
+@url{http://hboehm.info/gc/gc_source/gc-7.4.0.tar.gz}
+@url{http://hboehm.info/gc/gc_source/libatomic_ops-7.4.0.tar.gz}
in the @code{Asymptote} source directory.
On @code{UNIX} platforms (other than @code{MacOS X}), we recommend
@@ -739,7 +742,7 @@ can be enabled by running @code{asy-kate.sh} in the
The following commands are needed to install the latest development version of
@code{Asymptote} using @code{Subversion}:
@verbatim
-svn co http://asymptote.svn.sourceforge.net/svnroot/asymptote/trunk/asymptote
+svn co http://svn.code.sf.net/p/asymptote/code/trunk/asymptote
cd asymptote
./autogen.sh
./configure
@@ -974,10 +977,11 @@ external links posted at @url{http://asymptote.sourceforge.net}) for
further examples, including two-dimensional and interactive
three-dimensional scientific graphs. Additional examples have been
posted by Philippe Ivaldi at @url{http://www.piprime.fr/asymptote}.
-A user-written @code{Asymptote} tutorial is available at
-@verbatim
-http://www.artofproblemsolving.com/Wiki/index.php/Asymptote:_Basics
-@end verbatim
+Excellent user-written @code{Asymptote} tutorials are also available:
+
+@url{http://www.artofproblemsolving.com/Wiki/index.php/Asymptote:_Basics}
+
+@url{http://math.uchicago.edu/~cstaats/Charles_Staats_III/Notes_and_papers_files/asymptote_tutorial.pdf}
@node Drawing commands
@chapter Drawing commands
@@ -1329,7 +1333,7 @@ using the vertex colors specified in the @math{n \times 4} pen array
@code{p} and internal control points in the @math{n \times 4}
array @code{z}, is implemented with
@verbatim
-void tensorshade(picture pic=currentpicture, path g, bool stroke=false,
+void tensorshade(picture pic=currentpicture, path[] g, bool stroke=false,
pen fillrule=currentpen, pen[][] p, path[] b=g,
pair[][] z=new pair[][]);
@end verbatim
@@ -1737,7 +1741,7 @@ In addition, it supports many features beyond the ones found in those languages.
@menu
* Data types:: void, bool, int, real, pair, triple, string
-* Paths and guides::
+* Paths and guides:: Bezier curves
* Pens:: Colors, line types, line widths, font sizes
* Transforms:: Affine transforms
* Frames and pictures:: Canvases for immediate and deferred drawing
@@ -2283,6 +2287,12 @@ path ellipse(pair c, real a, real b)
}
@end verbatim
+A brace can be constructed between pairs @code{a} and @code{b} with
+@cindex @code{brace}
+@verbatim
+path brace(pair a, pair b, real amplitude=bracedefaultratio*length(b-a));
+@end verbatim
+
This example illustrates the use of all five guide connectors discussed
in @ref{Tutorial} and @ref{Bezier curves}:
@verbatiminclude join.asy
@@ -2565,6 +2575,16 @@ otherwise.
returns an arbitrary point strictly inside a cyclic path @code{p}
according to the fill rule @code{fillrule} (@pxref{fillrule}).
+@cindex @code{side}
+@item real side(pair a, pair b, pair c);
+determines the side of @code{a--b} that c lies on (negative=left,
+zero=on @code{a--b}, positive=right).
+
+@cindex @code{incircle}
+@item real incircle(pair a, pair b, pair c, pair d);
+determines the side of the counterclockwise circle through @code{a,b,c} that
+@code{d} lies on (negative=inside, 0=on circle, positive=right).
+
@cindex @code{strokepath}
@item path[] strokepath(path g, pen p=currentpen);
returns the path array that @code{PostScript} would fill in drawing path
@@ -4023,7 +4043,7 @@ struct T {
int x;
}
-T foo=new T;
+T foo;
T bar=foo;
bar.x=5;
@end verbatim
@@ -4044,7 +4064,7 @@ struct T {
++Tcount;
}
-T foo=new T;
+T foo;
@end verbatim
Here, the expression @code{new T} will produce a new instance of the class, but
@@ -4111,7 +4131,7 @@ struct Person {
string lastname;
}
-Person joe=new Person;
+Person joe;
joe.firstname="Joe";
joe.lastname="Jones";
@end verbatim
@@ -4128,7 +4148,7 @@ struct Person {
string lastname;
static Person Person(string firstname, string lastname) {
- Person p=new Person;
+ Person p;
p.firstname=firstname;
p.lastname=lastname;
return p;
@@ -4164,7 +4184,7 @@ structure is called @code{Foo}):
@example
static Foo Foo(@var{args}) @{
- Foo instance=new Foo;
+ Foo instance;
instance.operator init(@var{args});
return instance;
@}
@@ -5441,7 +5461,7 @@ The virtual members @code{dimension}, @code{line}, @code{csv},
@code{word}, and @code{read} of a file are useful for reading arrays.
@cindex @code{line}
For example, if line mode is set with @code{file line(bool b=true)}, then
-reading will stop once the end of the line is reached instead
+reading will stop once the end of the line is reached instead:
@verbatim
file fin=input("test.txt");
real[] A=fin.line();
@@ -6468,7 +6488,6 @@ This module provides an interface to the @code{LaTeX} package
@end quotation
@noindent
for embedding movies, sounds, and 3D objects into a @acronym{PDF} document.
-Version 0.13 (2012/09/12) of @code{media9} or later is required.
@cindex @code{external}
A more portable method for embedding movie files, which should work on any
@@ -7861,7 +7880,7 @@ In addition to the default @code{settings.prc=true}, this requires
@code{settings.outformat="pdf"}, which can be specified by the command
line option @code{-f pdf}, put in the @code{Asymptote} configuration
file (@pxref{configuration file}), or specified in the script before
-@code{three.asy} (or @code{graph3.asy}) is imported.
+@code{three.asy} (or @code{graph3.asy}) is imported.
The @code{media9} LaTeX package is also required (@pxref{embed}).
The example @code{pdb.asy} illustrates
how one can generate a list of predefined views (see @code{100d.views}).
@@ -7872,6 +7891,8 @@ file @code{externalprc.tex} illustrates how the resulting @acronym{PRC} and
rendered image files can be extracted and processed in a separate
@code{LaTeX} file. However, see @ref{LaTeX usage} for an easier way
to embed three-dimensional @code{Asymptote} pictures within @code{LaTeX}.
+For specialized applications where only the raw @acronym{PRC} file is
+required, specify @code{settings.outformat="prc"}.
The open-source @acronym{PRC} specification is available from
@url{http://livedocs.adobe.com/acrobat_sdk/9/Acrobat9_HTMLHelp/API_References/PRCReference/PRC_Format_Specification/}.
@@ -8288,7 +8309,7 @@ real[][] intersections(path3 p, surface s, real fuzz=-1);
@end verbatim
@noindent
returns the intersection times of a path @code{p} with a surface
-@code{s} as a sorted array of real arrays of length 2, and
+@code{s} as a sorted array of real arrays of length 3, and
@cindex @code{intersectionpoints}
@verbatim
triple[] intersectionpoints(path3 p, surface s, real fuzz=-1);
@@ -9008,13 +9029,13 @@ variables may also be changed at runtime.
@cindex @code{gsOptions}
@cindex @code{psviewerOptions}
@cindex @code{pdfviewerOptions}
+@cindex @code{pdfreloadOptions}
@cindex @code{glOptions}
+@cindex @code{dvisvgmOptions}
The advanced configuration variables @code{dvipsOptions},
@code{hyperrefOptions}, @code{convertOptions}, @code{gsOptions},
-@code{psviewerOptions}, @code{pdfviewerOptions}, and @code{glOptions}
-allow specialized options to be passed as a string to the respective
-applications or libraries. The default value of @code{hyperrefOptions}
-is @code{setpagesize=false,unicode,pdfborder=0 0 0}.
+@code{psviewerOptions}, @code{pdfviewerOptions}, @code{pdfreloadOptions},
+@code{glOptions}, and @code{dvisvgmOptions} allow specialized options to be passed as a string to the respective applications or libraries. The default value of @code{hyperrefOptions} is @code{setpagesize=false,unicode,pdfborder=0 0 0}.
If you insert
@verbatim
@@ -9039,16 +9060,17 @@ at the beginning of the configuration file, it can contain arbitrary
@cindex @code{context}
@cindex @code{EPS}
@cindex @code{PDF}
-@cindex @code{SVG}
@anchor{convert}
The default output format is @acronym{EPS} for the (default)
@code{latex} and @code{tex} tex engine and @acronym{PDF} for the
@code{pdflatex}, @code{xelatex}, and @code{context} tex engines.
Alternative output formats may be produced using the @code{-f} option
-(or @code{outformat} setting). To produce @acronym{SVG} output,
-first install @code{dvisvgm} (version 0.8.7 or later) from
-@url{http://dvisvgm.sourceforge.net/down.html} and be sure to use the
-@code{latex} or @code{tex} tex engine.
+(or @code{outformat} setting).
+
+@cindex @code{SVG}
+@cindex @code{dvisvgm}
+@cindex @code{libgs}
+To produce @acronym{SVG} output, you will need @code{dvisvgm} (version 0.8.7 or later) from @url{http://dvisvgm.sourceforge.net} and must use the @code{latex} or @code{tex} tex engine. You might need to adjust the configuration variable @code{libgs} to point to the location of your ghostscript library @code{libgs.so} (or to an empty string, depending on how @code{dvisvgm} was configured).
@code{Asymptote} can also produce any output format supported
by the @code{ImageMagick} @code{convert} program (version 6.3.5 or
@@ -9358,7 +9380,7 @@ Questions on installing and using @code{Asymptote} that are not
addressed in the @acronym{FAQ} should be sent to the
@code{Asymptote} forum:
@quotation
-@url{http://sourceforge.net/projects/asymptote/forums/forum/409349}
+@url{http://sourceforge.net/p/asymptote/discussion/409349}
@end quotation
@noindent
Including an example that illustrates what you are trying to do will help
@@ -9700,16 +9722,20 @@ Mark Henning, Steve Melenchuk, Martin Wiebusch, and Stefan Knorr.
@c LocalWords: lineargraph0 scalings log2 log2graph 5cm BWRainbow2
@c LocalWords: guide3 path3 unitcircle3 2E 2n noV 100d PostScript3D
@c LocalWords: size3 fit3 theta1 phi1 theta2 phi2 v1 v2 unitsquare3
-@c LocalWords: t1 t2 5z 5y transform3 identity4 xscale3 yscale3
-@c LocalWords: zscale3 scale3 join3 BeginBar3 EndBar3 Bar3 Bars3
+@c LocalWords: t1 t2 5z 5y transform3 identity4 xscale3 yscale3 0pt
+@c LocalWords: zscale3 scale3 join3 BeginBar3 EndBar3 Bar3 Bars3 's
@c LocalWords: BeginArrow3 MidArrow3 EndArrow3 Arrow3 Arrows3 axes3
-@c LocalWords: BeginArcArrow3 MidArcArrow3 EndArcArrow3 ArcArrow3
+@c LocalWords: BeginArcArrow3 MidArcArrow3 EndArcArrow3 ArcArrow3 '
@c LocalWords: ArcArrows3 DefaultHead3 HookHead3 TeXHead3 HookHead2
@c LocalWords: DefaultHead2 TeXHead2 arrows3 NoMargin3 BeginMargin3
@c LocalWords: EndMargin3 Margin3 Margins3 BeginPenMargin2 xaxis3
@c LocalWords: EndPenMargin2 PenMargin2 PenMargins2 BeginPenMargin3
@c LocalWords: EndPenMargin3 PenMargin3 PenMargins3 BeginDotMargin3
-@c LocalWords: EndDotMargin3 DotMargin3 DotMargins3 TrueMargin3
+@c LocalWords: EndDotMargin3 DotMargin3 DotMargins3 TrueMargin3 3D
@c LocalWords: yaxis3 zaxis3 ticks3 NoTicks3 arrowbar3 type2 axis3
-@c LocalWords: generalaxis3 vectorfield3 margin3 grid3xyz 5unit
-@c LocalWords: slopefield1 144x144
+@c LocalWords: generalaxis3 vectorfield3 margin3 grid3xyz 5unit 2D
+@c LocalWords: slopefield1 144x144 1filll 'load 'asy 'lasy 'auto 4g
+@c LocalWords: 5bp 1cm 2S 100pt 3t bracedefaultratio incircle 12pt
+@c LocalWords: 5mm 25cm 3x 5x 3y 602e 2x 2y 3sin 10cm 204e 10x Ai
+@c LocalWords: Ai Ai Ai Ai Ai Ai Ai 5E 5cm 2N 2E 2n 100d 5z 5y
+@c LocalWords: 5unit 144x144
diff --git a/Build/source/utils/asymptote/doc/externalprc.tex b/Build/source/utils/asymptote/doc/externalprc.tex
index e6d4ade1dcf..d131eebd426 100644
--- a/Build/source/utils/asymptote/doc/externalprc.tex
+++ b/Build/source/utils/asymptote/doc/externalprc.tex
@@ -1,12 +1,13 @@
% Generate inline PRC images for latex with
-% asy -inlineimage teapot -render=4
+% asy -inlineimage cube -render=4
%
% Generate inline PRC images for pdflatex with
-% asy -inlineimage teapot -render=4 -tex pdflatex
+% asy -inlineimage cube -render=4 -tex pdflatex
%
\documentclass[12pt]{article}
-\input teapot.pre
+\input cube.pre
+\usepackage[bigfiles,noplaybutton]{media9}
\RequirePackage{color,graphicx}
\begin{document}
-\input teapot.tex
+\input cube.tex
\end{document}
diff --git a/Build/source/utils/asymptote/doc/install-sh b/Build/source/utils/asymptote/doc/install-sh
index 04367377519..6781b987bdb 100755
--- a/Build/source/utils/asymptote/doc/install-sh
+++ b/Build/source/utils/asymptote/doc/install-sh
@@ -1,7 +1,7 @@
#!/bin/sh
# install - install a program, script, or datafile
-scriptversion=2013-10-30.23; # UTC
+scriptversion=2009-04-28.21; # UTC
# This originates from X11R5 (mit/util/scripts/install.sh), which was
# later released in X11R6 (xc/config/util/install.sh) with the
@@ -35,21 +35,25 @@ scriptversion=2013-10-30.23; # UTC
# FSF changes to this file are in the public domain.
#
# Calling this script install-sh is preferred over install.sh, to prevent
-# 'make' implicit rules from creating a file called install from it
+# `make' implicit rules from creating a file called install from it
# when there is no Makefile.
#
# This script is compatible with the BSD install script, but was written
# from scratch.
-tab=' '
nl='
'
-IFS=" $tab$nl"
+IFS=" "" $nl"
-# Set DOITPROG to "echo" to test this script.
+# set DOITPROG to echo to test this script
+# Don't use :- since 4.3BSD and earlier shells don't like it.
doit=${DOITPROG-}
-doit_exec=${doit:-exec}
+if test -z "$doit"; then
+ doit_exec=exec
+else
+ doit_exec=$doit
+fi
# Put in absolute file names if you don't have them in your path;
# or use environment vars.
@@ -64,6 +68,17 @@ mvprog=${MVPROG-mv}
rmprog=${RMPROG-rm}
stripprog=${STRIPPROG-strip}
+posix_glob='?'
+initialize_posix_glob='
+ test "$posix_glob" != "?" || {
+ if (set -f) 2>/dev/null; then
+ posix_glob=
+ else
+ posix_glob=:
+ fi
+ }
+'
+
posix_mkdir=
# Desired mode of installed file.
@@ -122,39 +137,36 @@ while test $# -ne 0; do
-d) dir_arg=true;;
-g) chgrpcmd="$chgrpprog $2"
- shift;;
+ shift;;
--help) echo "$usage"; exit $?;;
-m) mode=$2
- case $mode in
- *' '* | *"$tab"* | *"$nl"* | *'*'* | *'?'* | *'['*)
- echo "$0: invalid mode: $mode" >&2
- exit 1;;
- esac
- shift;;
+ case $mode in
+ *' '* | *' '* | *'
+'* | *'*'* | *'?'* | *'['*)
+ echo "$0: invalid mode: $mode" >&2
+ exit 1;;
+ esac
+ shift;;
-o) chowncmd="$chownprog $2"
- shift;;
+ shift;;
-s) stripcmd=$stripprog;;
-t) dst_arg=$2
- # Protect names problematic for 'test' and other utilities.
- case $dst_arg in
- -* | [=\(\)!]) dst_arg=./$dst_arg;;
- esac
- shift;;
+ shift;;
-T) no_target_directory=true;;
--version) echo "$0 $scriptversion"; exit $?;;
- --) shift
- break;;
+ --) shift
+ break;;
- -*) echo "$0: invalid option: $1" >&2
- exit 1;;
+ -*) echo "$0: invalid option: $1" >&2
+ exit 1;;
*) break;;
esac
@@ -174,10 +186,6 @@ if test $# -ne 0 && test -z "$dir_arg$dst_arg"; then
fi
shift # arg
dst_arg=$arg
- # Protect names problematic for 'test' and other utilities.
- case $dst_arg in
- -* | [=\(\)!]) dst_arg=./$dst_arg;;
- esac
done
fi
@@ -186,17 +194,13 @@ if test $# -eq 0; then
echo "$0: no input file specified." >&2
exit 1
fi
- # It's OK to call 'install-sh -d' without argument.
+ # It's OK to call `install-sh -d' without argument.
# This can happen when creating conditional directories.
exit 0
fi
if test -z "$dir_arg"; then
- do_exit='(exit $ret); exit $ret'
- trap "ret=129; $do_exit" 1
- trap "ret=130; $do_exit" 2
- trap "ret=141; $do_exit" 13
- trap "ret=143; $do_exit" 15
+ trap '(exit $?); exit' 1 2 13 15
# Set umask so as not to create temps with too-generous modes.
# However, 'strip' requires both read and write access to temps.
@@ -207,16 +211,16 @@ if test -z "$dir_arg"; then
*[0-7])
if test -z "$stripcmd"; then
- u_plus_rw=
+ u_plus_rw=
else
- u_plus_rw='% 200'
+ u_plus_rw='% 200'
fi
cp_umask=`expr '(' 777 - $mode % 1000 ')' $u_plus_rw`;;
*)
if test -z "$stripcmd"; then
- u_plus_rw=
+ u_plus_rw=
else
- u_plus_rw=,u+rw
+ u_plus_rw=,u+rw
fi
cp_umask=$mode$u_plus_rw;;
esac
@@ -224,9 +228,9 @@ fi
for src
do
- # Protect names problematic for 'test' and other utilities.
+ # Protect names starting with `-'.
case $src in
- -* | [=\(\)!]) src=./$src;;
+ -*) src=./$src;;
esac
if test -n "$dir_arg"; then
@@ -248,20 +252,51 @@ do
echo "$0: no destination specified." >&2
exit 1
fi
+
dst=$dst_arg
+ # Protect names starting with `-'.
+ case $dst in
+ -*) dst=./$dst;;
+ esac
# If destination is a directory, append the input filename; won't work
# if double slashes aren't ignored.
if test -d "$dst"; then
if test -n "$no_target_directory"; then
- echo "$0: $dst_arg: Is a directory" >&2
- exit 1
+ echo "$0: $dst_arg: Is a directory" >&2
+ exit 1
fi
dstdir=$dst
dst=$dstdir/`basename "$src"`
dstdir_status=0
else
- dstdir=`dirname "$dst"`
+ # Prefer dirname, but fall back on a substitute if dirname fails.
+ dstdir=`
+ (dirname "$dst") 2>/dev/null ||
+ expr X"$dst" : 'X\(.*[^/]\)//*[^/][^/]*/*$' \| \
+ X"$dst" : 'X\(//\)[^/]' \| \
+ X"$dst" : 'X\(//\)$' \| \
+ X"$dst" : 'X\(/\)' \| . 2>/dev/null ||
+ echo X"$dst" |
+ sed '/^X\(.*[^/]\)\/\/*[^/][^/]*\/*$/{
+ s//\1/
+ q
+ }
+ /^X\(\/\/\)[^/].*/{
+ s//\1/
+ q
+ }
+ /^X\(\/\/\)$/{
+ s//\1/
+ q
+ }
+ /^X\(\/\).*/{
+ s//\1/
+ q
+ }
+ s/.*/./; q'
+ `
+
test -d "$dstdir"
dstdir_status=$?
fi
@@ -272,74 +307,74 @@ do
if test $dstdir_status != 0; then
case $posix_mkdir in
'')
- # Create intermediate dirs using mode 755 as modified by the umask.
- # This is like FreeBSD 'install' as of 1997-10-28.
- umask=`umask`
- case $stripcmd.$umask in
- # Optimize common cases.
- *[2367][2367]) mkdir_umask=$umask;;
- .*0[02][02] | .[02][02] | .[02]) mkdir_umask=22;;
-
- *[0-7])
- mkdir_umask=`expr $umask + 22 \
- - $umask % 100 % 40 + $umask % 20 \
- - $umask % 10 % 4 + $umask % 2
- `;;
- *) mkdir_umask=$umask,go-w;;
- esac
-
- # With -d, create the new directory with the user-specified mode.
- # Otherwise, rely on $mkdir_umask.
- if test -n "$dir_arg"; then
- mkdir_mode=-m$mode
- else
- mkdir_mode=
- fi
-
- posix_mkdir=false
- case $umask in
- *[123567][0-7][0-7])
- # POSIX mkdir -p sets u+wx bits regardless of umask, which
- # is incompatible with FreeBSD 'install' when (umask & 300) != 0.
- ;;
- *)
- tmpdir=${TMPDIR-/tmp}/ins$RANDOM-$$
- trap 'ret=$?; rmdir "$tmpdir/d" "$tmpdir" 2>/dev/null; exit $ret' 0
-
- if (umask $mkdir_umask &&
- exec $mkdirprog $mkdir_mode -p -- "$tmpdir/d") >/dev/null 2>&1
- then
- if test -z "$dir_arg" || {
- # Check for POSIX incompatibilities with -m.
- # HP-UX 11.23 and IRIX 6.5 mkdir -m -p sets group- or
- # other-writable bit of parent directory when it shouldn't.
- # FreeBSD 6.1 mkdir -m -p sets mode of existing directory.
- ls_ld_tmpdir=`ls -ld "$tmpdir"`
- case $ls_ld_tmpdir in
- d????-?r-*) different_mode=700;;
- d????-?--*) different_mode=755;;
- *) false;;
- esac &&
- $mkdirprog -m$different_mode -p -- "$tmpdir" && {
- ls_ld_tmpdir_1=`ls -ld "$tmpdir"`
- test "$ls_ld_tmpdir" = "$ls_ld_tmpdir_1"
- }
- }
- then posix_mkdir=:
- fi
- rmdir "$tmpdir/d" "$tmpdir"
- else
- # Remove any dirs left behind by ancient mkdir implementations.
- rmdir ./$mkdir_mode ./-p ./-- 2>/dev/null
- fi
- trap '' 0;;
- esac;;
+ # Create intermediate dirs using mode 755 as modified by the umask.
+ # This is like FreeBSD 'install' as of 1997-10-28.
+ umask=`umask`
+ case $stripcmd.$umask in
+ # Optimize common cases.
+ *[2367][2367]) mkdir_umask=$umask;;
+ .*0[02][02] | .[02][02] | .[02]) mkdir_umask=22;;
+
+ *[0-7])
+ mkdir_umask=`expr $umask + 22 \
+ - $umask % 100 % 40 + $umask % 20 \
+ - $umask % 10 % 4 + $umask % 2
+ `;;
+ *) mkdir_umask=$umask,go-w;;
+ esac
+
+ # With -d, create the new directory with the user-specified mode.
+ # Otherwise, rely on $mkdir_umask.
+ if test -n "$dir_arg"; then
+ mkdir_mode=-m$mode
+ else
+ mkdir_mode=
+ fi
+
+ posix_mkdir=false
+ case $umask in
+ *[123567][0-7][0-7])
+ # POSIX mkdir -p sets u+wx bits regardless of umask, which
+ # is incompatible with FreeBSD 'install' when (umask & 300) != 0.
+ ;;
+ *)
+ tmpdir=${TMPDIR-/tmp}/ins$RANDOM-$$
+ trap 'ret=$?; rmdir "$tmpdir/d" "$tmpdir" 2>/dev/null; exit $ret' 0
+
+ if (umask $mkdir_umask &&
+ exec $mkdirprog $mkdir_mode -p -- "$tmpdir/d") >/dev/null 2>&1
+ then
+ if test -z "$dir_arg" || {
+ # Check for POSIX incompatibilities with -m.
+ # HP-UX 11.23 and IRIX 6.5 mkdir -m -p sets group- or
+ # other-writeable bit of parent directory when it shouldn't.
+ # FreeBSD 6.1 mkdir -m -p sets mode of existing directory.
+ ls_ld_tmpdir=`ls -ld "$tmpdir"`
+ case $ls_ld_tmpdir in
+ d????-?r-*) different_mode=700;;
+ d????-?--*) different_mode=755;;
+ *) false;;
+ esac &&
+ $mkdirprog -m$different_mode -p -- "$tmpdir" && {
+ ls_ld_tmpdir_1=`ls -ld "$tmpdir"`
+ test "$ls_ld_tmpdir" = "$ls_ld_tmpdir_1"
+ }
+ }
+ then posix_mkdir=:
+ fi
+ rmdir "$tmpdir/d" "$tmpdir"
+ else
+ # Remove any dirs left behind by ancient mkdir implementations.
+ rmdir ./$mkdir_mode ./-p ./-- 2>/dev/null
+ fi
+ trap '' 0;;
+ esac;;
esac
if
$posix_mkdir && (
- umask $mkdir_umask &&
- $doit_exec $mkdirprog $mkdir_mode -p -- "$dstdir"
+ umask $mkdir_umask &&
+ $doit_exec $mkdirprog $mkdir_mode -p -- "$dstdir"
)
then :
else
@@ -349,51 +384,53 @@ do
# directory the slow way, step by step, checking for races as we go.
case $dstdir in
- /*) prefix='/';;
- [-=\(\)!]*) prefix='./';;
- *) prefix='';;
+ /*) prefix='/';;
+ -*) prefix='./';;
+ *) prefix='';;
esac
+ eval "$initialize_posix_glob"
+
oIFS=$IFS
IFS=/
- set -f
+ $posix_glob set -f
set fnord $dstdir
shift
- set +f
+ $posix_glob set +f
IFS=$oIFS
prefixes=
for d
do
- test X"$d" = X && continue
-
- prefix=$prefix$d
- if test -d "$prefix"; then
- prefixes=
- else
- if $posix_mkdir; then
- (umask=$mkdir_umask &&
- $doit_exec $mkdirprog $mkdir_mode -p -- "$dstdir") && break
- # Don't fail if two instances are running concurrently.
- test -d "$prefix" || exit 1
- else
- case $prefix in
- *\'*) qprefix=`echo "$prefix" | sed "s/'/'\\\\\\\\''/g"`;;
- *) qprefix=$prefix;;
- esac
- prefixes="$prefixes '$qprefix'"
- fi
- fi
- prefix=$prefix/
+ test -z "$d" && continue
+
+ prefix=$prefix$d
+ if test -d "$prefix"; then
+ prefixes=
+ else
+ if $posix_mkdir; then
+ (umask=$mkdir_umask &&
+ $doit_exec $mkdirprog $mkdir_mode -p -- "$dstdir") && break
+ # Don't fail if two instances are running concurrently.
+ test -d "$prefix" || exit 1
+ else
+ case $prefix in
+ *\'*) qprefix=`echo "$prefix" | sed "s/'/'\\\\\\\\''/g"`;;
+ *) qprefix=$prefix;;
+ esac
+ prefixes="$prefixes '$qprefix'"
+ fi
+ fi
+ prefix=$prefix/
done
if test -n "$prefixes"; then
- # Don't fail if two instances are running concurrently.
- (umask $mkdir_umask &&
- eval "\$doit_exec \$mkdirprog $prefixes") ||
- test -d "$dstdir" || exit 1
- obsolete_mkdir_used=true
+ # Don't fail if two instances are running concurrently.
+ (umask $mkdir_umask &&
+ eval "\$doit_exec \$mkdirprog $prefixes") ||
+ test -d "$dstdir" || exit 1
+ obsolete_mkdir_used=true
fi
fi
fi
@@ -428,12 +465,15 @@ do
# If -C, don't bother to copy if it wouldn't change the file.
if $copy_on_change &&
- old=`LC_ALL=C ls -dlL "$dst" 2>/dev/null` &&
- new=`LC_ALL=C ls -dlL "$dsttmp" 2>/dev/null` &&
- set -f &&
+ old=`LC_ALL=C ls -dlL "$dst" 2>/dev/null` &&
+ new=`LC_ALL=C ls -dlL "$dsttmp" 2>/dev/null` &&
+
+ eval "$initialize_posix_glob" &&
+ $posix_glob set -f &&
set X $old && old=:$2:$4:$5:$6 &&
set X $new && new=:$2:$4:$5:$6 &&
- set +f &&
+ $posix_glob set +f &&
+
test "$old" = "$new" &&
$cmpprog "$dst" "$dsttmp" >/dev/null 2>&1
then
@@ -446,24 +486,24 @@ do
# to itself, or perhaps because mv is so ancient that it does not
# support -f.
{
- # Now remove or move aside any old file at destination location.
- # We try this two ways since rm can't unlink itself on some
- # systems and the destination file might be busy for other
- # reasons. In this case, the final cleanup might fail but the new
- # file should still install successfully.
- {
- test ! -f "$dst" ||
- $doit $rmcmd -f "$dst" 2>/dev/null ||
- { $doit $mvcmd -f "$dst" "$rmtmp" 2>/dev/null &&
- { $doit $rmcmd -f "$rmtmp" 2>/dev/null; :; }
- } ||
- { echo "$0: cannot unlink or rename $dst" >&2
- (exit 1); exit 1
- }
- } &&
-
- # Now rename the file to the real destination.
- $doit $mvcmd "$dsttmp" "$dst"
+ # Now remove or move aside any old file at destination location.
+ # We try this two ways since rm can't unlink itself on some
+ # systems and the destination file might be busy for other
+ # reasons. In this case, the final cleanup might fail but the new
+ # file should still install successfully.
+ {
+ test ! -f "$dst" ||
+ $doit $rmcmd -f "$dst" 2>/dev/null ||
+ { $doit $mvcmd -f "$dst" "$rmtmp" 2>/dev/null &&
+ { $doit $rmcmd -f "$rmtmp" 2>/dev/null; :; }
+ } ||
+ { echo "$0: cannot unlink or rename $dst" >&2
+ (exit 1); exit 1
+ }
+ } &&
+
+ # Now rename the file to the real destination.
+ $doit $mvcmd "$dsttmp" "$dst"
}
fi || exit 1
diff --git a/Build/source/utils/asymptote/doc/latexmkrc_asydir b/Build/source/utils/asymptote/doc/latexmkrc_asydir
new file mode 100644
index 00000000000..043084e8e6d
--- /dev/null
+++ b/Build/source/utils/asymptote/doc/latexmkrc_asydir
@@ -0,0 +1,4 @@
+sub asy {return system("asy -o asy/ '$_[0]'");}
+add_cus_dep("asy","eps",0,"asy");
+add_cus_dep("asy","pdf",0,"asy");
+add_cus_dep("asy","tex",0,"asy");
diff --git a/Build/source/utils/asymptote/doc/png/Makefile.in b/Build/source/utils/asymptote/doc/png/Makefile.in
index 38b92bc03d1..6ca327d1fe9 100644
--- a/Build/source/utils/asymptote/doc/png/Makefile.in
+++ b/Build/source/utils/asymptote/doc/png/Makefile.in
@@ -26,6 +26,9 @@ asymptote.info: $(SOURCE)
info: $(SOURCE) $(ASYFILES:.asy=.png) latexusage.png
makeinfo --no-split ../asymptote
+../options:
+ cd .. && $(MAKE) options
+
html: index.html
clean: FORCE
diff --git a/Build/source/utils/asymptote/doc/png/asymptote.info b/Build/source/utils/asymptote/doc/png/asymptote.info
deleted file mode 100644
index 8cf9caabdac..00000000000
--- a/Build/source/utils/asymptote/doc/png/asymptote.info
+++ /dev/null
@@ -1,9959 +0,0 @@
-This is asymptote.info, produced by makeinfo version 4.13 from
-../asymptote.texi.
-
-This file documents `Asymptote', version 2.23.
-
- `http://asymptote.sourceforge.net'
-
- Copyright (C) 2004-13 Andy Hammerlindl, John Bowman, and Tom Prince.
-
- Permission is granted to copy, distribute and/or modify this
- document under the terms of the GNU Lesser General Public License
- (see the file LICENSE in the top-level source directory).
-
-
-INFO-DIR-SECTION Languages
-START-INFO-DIR-ENTRY
-* asymptote: (asymptote/asymptote). Vector graphics language.
-END-INFO-DIR-ENTRY
-
-
-File: asymptote.info, Node: Top, Next: Description, Up: (dir)
-
-Asymptote
-*********
-
-This file documents `Asymptote', version 2.23.
-
- `http://asymptote.sourceforge.net'
-
- Copyright (C) 2004-13 Andy Hammerlindl, John Bowman, and Tom Prince.
-
- Permission is granted to copy, distribute and/or modify this
- document under the terms of the GNU Lesser General Public License
- (see the file LICENSE in the top-level source directory).
-
-
-* Menu:
-
-* Description:: What is `Asymptote'?
-* Installation:: Downloading and installing
-* Tutorial:: Getting started
-* Drawing commands:: Four primitive graphics commands
-* Bezier curves:: Path connectors and direction specifiers
-* Programming:: The `Asymptote' vector graphics language
-* LaTeX usage:: Embedding `Asymptote' commands within `LaTeX'
-* Base modules:: Base modules shipped with `Asymptote'
-* Options:: Command-line options
-* Interactive mode:: Typing `Asymptote' commands interactively
-* GUI:: Graphical user interface
-* PostScript to Asymptote:: `Asymptote' backend to `pstoedit'
-* Help:: Where to get help and submit bug reports
-* Debugger:: Squish those bugs!
-* Credits:: Contributions and acknowledgments
-* Index:: General index
-
- --- The Detailed Node Listing ---
-
-Installation
-
-* UNIX binary distributions:: Prebuilt `UNIX' binaries
-* MacOS X binary distributions:: Prebuilt `MacOS X' binaries
-* Microsoft Windows:: Prebuilt `Microsoft Windows' binary
-* Configuring:: Configuring `Asymptote' for your system
-* Search paths:: Where `Asymptote' looks for your files
-* Compiling from UNIX source:: Building `Asymptote' from scratch
-* Editing modes:: Convenient `emacs' and `vim' modes
-* Subversion:: Getting the latest development source
-* Uninstall:: Goodbye, `Asymptote'!
-
-Drawing commands
-
-* draw:: Draw a path on a picture or frame
-* fill:: Fill a cyclic path on a picture or frame
-* clip:: Clip a picture or frame to a cyclic path
-* label:: Label a point on a picture
-
-Programming
-
-* Data types:: void, bool, int, real, pair, triple, string
-* Paths and guides::
-* Pens:: Colors, line types, line widths, font sizes
-* Transforms:: Affine transforms
-* Frames and pictures:: Canvases for immediate and deferred drawing
-* Files:: Reading and writing your data
-* Variable initializers:: Initialize your variables
-* Structures:: Organize your data
-* Operators:: Arithmetic and logical operators
-* Implicit scaling:: Avoiding those ugly *s
-* Functions:: Traditional and high-order functions
-* Arrays:: Dynamic vectors
-* Casts:: Implicit and explicit casts
-* Import:: Importing external `Asymptote' modules
-* Static:: Where to allocate your variable?
-
-Operators
-
-* Arithmetic & logical:: Basic mathematical operators
-* Self & prefix operators:: Increment and decrement
-* User-defined operators:: Overloading operators
-
-Functions
-
-* Default arguments:: Default values can appear anywhere
-* Named arguments:: Assigning function arguments by keyword
-* Rest arguments:: Functions with a variable number of arguments
-* Mathematical functions:: Standard libm functions
-
-
-Arrays
-
-* Slices:: Python-style array slices
-
-Base modules
-
-* plain:: Default `Asymptote' base file
-* simplex:: Linear programming: simplex method
-* math:: Extend `Asymptote''s math capabilities
-* interpolate:: Interpolation routines
-* geometry:: Geometry routines
-* trembling:: Wavy lines
-* stats:: Statistics routines and histograms
-* patterns:: Custom fill and draw patterns
-* markers:: Custom path marker routines
-* tree:: Dynamic binary search tree
-* binarytree:: Binary tree drawing module
-* drawtree:: Tree drawing module
-* syzygy:: Syzygy and braid drawing module
-* feynman:: Feynman diagrams
-* roundedpath:: Round the sharp corners of paths
-* animation:: Embedded PDF and MPEG movies
-* embed:: Embedding movies, sounds, and 3D objects
-* slide:: Making presentations with `Asymptote'
-* MetaPost:: `MetaPost' compatibility routines
-* unicode:: Accept `unicode' (UTF-8) characters
-* latin1:: Accept `ISO 8859-1' characters
-* babel:: Interface to `LaTeX' `babel' package
-* labelpath:: Drawing curved labels
-* labelpath3:: Drawing curved labels in 3D
-* annotate:: Annotate your PDF files
-* CAD:: 2D CAD pen and measurement functions (DIN 15)
-* graph:: 2D linear & logarithmic graphs
-* palette:: Color density images and palettes
-* three:: 3D vector graphics
-* obj:: 3D obj files
-* graph3:: 3D linear & logarithmic graphs
-* grid3:: 3D grids
-* solids:: 3D solid geometry
-* tube:: 3D rotation minimizing tubes
-* flowchart:: Flowchart drawing routines
-* contour:: Contour lines
-* contour3:: Contour surfaces
-* slopefield:: Slope fields
-* ode:: Ordinary differential equations
-
-Graphical User Interface
-
-* GUI installation:: Installing `xasy'
-* GUI usage::
-
-
-File: asymptote.info, Node: Description, Next: Installation, Prev: Top, Up: Top
-
-1 Description
-*************
-
-`Asymptote' is a powerful descriptive vector graphics language that
-provides a mathematical coordinate-based framework for technical
-drawings. Labels and equations are typeset with `LaTeX', for overall
-document consistency, yielding the same high-quality level of
-typesetting that `LaTeX' provides for scientific text. By default it
-produces `PostScript' output, but it can also generate any format that
-the `ImageMagick' package can produce.
-
- A major advantage of `Asymptote' over other graphics packages is
-that it is a high-level programming language, as opposed to just a
-graphics program: it can therefore exploit the best features of the
-script (command-driven) and graphical-user-interface (GUI) methods for
-producing figures. The rudimentary GUI `xasy' included with the package
-allows one to move script-generated objects around. To make `Asymptote'
-accessible to the average user, this GUI is currently being developed
-into a full-fledged interface that can generate objects directly.
-However, the script portion of the language is now ready for general
-use by users who are willing to learn a few simple `Asymptote' graphics
-commands (*note Drawing commands::).
-
- `Asymptote' is mathematically oriented (e.g. one can use complex
-multiplication to rotate a vector) and uses `LaTeX' to do the
-typesetting of labels. This is an important feature for scientific
-applications. It was inspired by an earlier drawing program (with a
-weaker syntax and capabilities) called `MetaPost'.
-
- The `Asymptote' vector graphics language provides:
-
- * a standard for typesetting mathematical figures, just as
- TeX/`LaTeX' is the de-facto standard for typesetting equations.
-
- * `LaTeX' typesetting of labels, for overall document consistency;
-
- * the ability to generate and embed 3D vector PRC graphics within
- PDF files;
-
- * a natural coordinate-based framework for technical drawings,
- inspired by `MetaPost', with a much cleaner, powerful C++-like
- programming syntax;
-
- * compilation of figures into virtual machine code for speed, without
- sacrificing portability;
-
- * the power of a script-based language coupled to the convenience of
- a GUI;
-
- * customization using its own C++-like graphics programming language;
-
- * sensible defaults for graphical features, with the ability to
- override;
-
- * a high-level mathematically oriented interface to the `PostScript'
- language for vector graphics, including affine transforms and
- complex variables;
-
- * functions that can create new (anonymous) functions;
-
- * deferred drawing that uses the simplex method to solve overall size
- constraint issues between fixed-sized objects (labels and
- arrowheads) and objects that should scale with figure size;
-
-
- Many of the features of `Asymptote' are written in the `Asymptote'
-language itself. While the stock version of `Asymptote' is designed for
-mathematics typesetting needs, one can write `Asymptote' modules that
-tailor it to specific applications. A scientific graphing module has
-already been written (*note graph::). Examples of `Asymptote' code and
-output, including animations, are available at
-
- `http://asymptote.sourceforge.net/gallery/'.
- Links to many external resources, including an excellent user-written
-`Asymptote' tutorial can be found at
-
- `http://asymptote.sourceforge.net/links.html'.
- A quick reference card for `Asymptote' is available at
-
- `http://asymptote.sourceforge.net/asyRefCard.pdf'.
-
-
-File: asymptote.info, Node: Installation, Next: Tutorial, Prev: Description, Up: Top
-
-2 Installation
-**************
-
-* Menu:
-
-* UNIX binary distributions:: Prebuilt `UNIX' binaries
-* MacOS X binary distributions:: Prebuilt `MacOS X' binaries
-* Microsoft Windows:: Prebuilt `Microsoft Windows' binary
-* Configuring:: Configuring `Asymptote' for your system
-* Search paths:: Where `Asymptote' looks for your files
-* Compiling from UNIX source:: Building `Asymptote' from scratch
-* Editing modes:: Convenient `emacs' and `vim' modes
-* Subversion:: Getting the latest development source
-* Uninstall:: Goodbye, `Asymptote'!
-
- After following the instructions for your specific distribution,
-please see also *note Configuring::.
-
-We recommend subscribing to new release announcements at
-
- `http://freshmeat.net/projects/asy'
- Users may also wish to monitor the `Asymptote' forum:
-
- `http://sourceforge.net/projects/asymptote/forums/forum/409349'
-
-
-File: asymptote.info, Node: UNIX binary distributions, Next: MacOS X binary distributions, Up: Installation
-
-2.1 UNIX binary distributions
-=============================
-
-We release both `tgz' and RPM binary distributions of `Asymptote'. The
-root user can install the `Linux i386' `tgz' distribution of version
-`x.xx' of `Asymptote' with the commands:
-tar -C / -zxf asymptote-x.xx.i386.tgz
-texhash
- The `texhash' command, which installs LaTeX style files, is optional.
-The executable file will be `/usr/local/bin/asy') and example code will
-be installed by default in `/usr/local/share/doc/asymptote/examples'.
-
-Fedora users can easily install the most recent version of `Asymptote'
-with the command
-yum --enablerepo=rawhide install asymptote
-
-To install the latest version of `Asymptote' on a Debian-based
-distribution (e.g. Ubuntu, Mepis, Linspire) follow the instructions for
-compiling from `UNIX' source (*note Compiling from UNIX source::).
-Alternatively, Debian users can install one of Hubert Chan's prebuilt
-`Asymptote' binaries from
-
- `http://ftp.debian.org/debian/pool/main/a/asymptote'
-
-
-File: asymptote.info, Node: MacOS X binary distributions, Next: Microsoft Windows, Prev: UNIX binary distributions, Up: Installation
-
-2.2 MacOS X binary distributions
-================================
-
-`MacOS X' users can either compile the `UNIX' source code (*note
-Compiling from UNIX source::) or install the contributed `Asymptote'
-binary available at
-
-`http://www.hmug.org/pub/MacOS_X/X/Applications/Publishing/asymptote/'
-
-Because these preconfigured binary distributions have strict
-architecture and library dependencies that many installations do not
-satisfy, we recommend installing `Asymptote' directly from the official
-source:
-
- `http://sourceforge.net/project/showfiles.php?group_id=120000'
-
-Note that many `MacOS X' (and FreeBSD) systems lack the GNU `readline'
-library. For full interactive functionality, GNU `readline' version 4.3
-or later must be installed.
-
-
-File: asymptote.info, Node: Microsoft Windows, Next: Configuring, Prev: MacOS X binary distributions, Up: Installation
-
-2.3 Microsoft Windows
-=====================
-
-Users of the `Microsoft Windows' operating system can install the
-self-extracting `Asymptote' executable `asymptote-x.xx-setup.exe',
-where `x.xx' denotes the latest version.
-
- A working TeX implementation (such as the one available at
-`http://www.miktex.org') will be required to typeset labels. You will
-also need to install `GPL Ghostscript' from
-`http://sourceforge.net/projects/ghostscript/'.
-
- To view the default `PostScript' output, you can install the program
-`gsview' available from `http://www.cs.wisc.edu/~ghost/gsview/'. A
-better (and free) `PostScript' viewer available at
-`http://psview.sourceforge.net/' (which in particular works properly in
-interactive mode) unfortunately currently requires some manual
-configuration. Specifically, if version `x.xx' of `psview' is extracted
-to the directory `c:\Program Files' one needs to put
-import settings;
-psviewer="c:\Program Files\psview-x.xx\psv.exe";
- in the optional `Asymptote' configuration file; *note configuration
-file::).
-
- The `ImageMagick' package from
-
- `http://www.imagemagick.org/script/binary-releases.php'
-
-is required to support output formats other than EPS, PDF, SVG, and PNG
-(*note convert::). The `Python 2' interpreter from
-`http://www.python.org' is only required if you wish to try out the
-graphical user interface (*note GUI::).
-
-Example code will be installed by default in the `examples'
-subdirectory of the installation directory (by default, `C:\Program
-Files\Asymptote').
-
-
-File: asymptote.info, Node: Configuring, Next: Search paths, Prev: Microsoft Windows, Up: Installation
-
-2.4 Configuring
-===============
-
-In interactive mode, or when given the `-V' option (the default when
-running `Asymptote' on a single file under `MSDOS'), `Asymptote' will
-automatically invoke the `PostScript' viewer `gv' (under `UNIX') or
-`gsview' (under `MSDOS' to display graphical output. These defaults may
-be overridden with the configuration variable `psviewer'. The
-`PostScript' viewer should be capable of automatically redrawing
-whenever the output file is updated. The default `UNIX' `PostScript'
-viewer `gv' supports this (via a `SIGHUP' signal). Version `gv-3.6.3'
-or later (from `http://ftp.gnu.org/gnu/gv/') is required for
-interactive mode to work properly. Users of `ggv' will need to enable
-`Watch file' under `Edit/Postscript Viewer Preferences'. Users of
-`gsview' will need to enable `Options/Auto Redisplay' (however, under
-`MSDOS' it is still necessary to click on the `gsview' window; under
-`UNIX' one must manually redisplay by pressing the `r' key). A better
-(and free) multiplatform alternative to `gsview' is `psview' (*note
-psview::).
-
- Configuration variables are most easily set as `Asymptote' variables
-in an optional configuration file `config.asy' *note configuration
-file::). Here are the default values of several important configuration
-variables under `UNIX':
-
-
-import settings;
-psviewer="gv";
-pdfviewer="acroread";
-gs="gs";
-
-Under `MSDOS', the (installation-dependent) default values of these
-configuration variables are determined automatically from the
-`Microsoft Windows' registry. Viewer settings (such as `psviewer' and
-`pdfviewer') can be set to the string `cmd' to request the application
-normally associated with the corresponding file type.
-
- For PDF format output, the `gs' setting specifies the location of
-the `PostScript'-to-PDF processor `Ghostscript', available from
-`http://sourceforge.net/projects/ghostscript/'.
-
- The setting `pdfviewer' specifies the location of the PDF viewer. On
-`UNIX' systems, to support automatic document reloading in `Adobe
-Reader', we recommend copying the file `reload.js' from the `Asymptote'
-system directory (by default, `/usr/local/share/asymptote' under `UNIX'
-to `~/.adobe/Acrobat/x.x/JavaScripts/', where `x.x' represents the
-appropriate `Adobe Reader' version number. The automatic document
-reload feature must then be explicitly enabled by putting
-import settings;
-pdfreload=true;
-pdfreloadOptions="-tempFile";
- in the `Asymptote' configuration file. This reload feature is not
-useful under `MSDOS' since the document cannot be updated anyway on
-that operating system until it is first closed by `Adobe Reader'.
-
- The configuration variable `dir' can be used to adjust the search
-path (*note Search paths::).
-
- By default, `Asymptote' attempts to center the figure on the page,
-assuming that the paper type is `letter'. The default paper type may be
-changed to `a4' with the configuration variable `papertype'. Alignment
-to other paper sizes can be obtained by setting the configuration
-variables `paperwidth' and `paperheight'.
-
- The following configuration variables normally do not require
-adjustment:
-texpath
-texcommand
-dvips
-dvisvgm
-convert
-display
-animate
- Warnings (such as "writeoverloaded") may be enabled or disabled with
-the functions
-warn(string s);
-nowarn(string s);
- or by directly modifying the string array `settings.suppress', which
-lists all disabled warnings.
-
- Configuration variables may also be set or overwritten with a
-command-line option:
-asy -psviewer=gsview -V venn
-
- Alternatively, system environment versions of the above configuration
-variables may be set in the conventional way. The corresponding
-environment variable name is obtained by converting the configuration
-variable name to upper case and prepending `ASYMPTOTE_': for example,
-to set the environment variable
-ASYMPTOTE_PSVIEWER="C:\Program Files\Ghostgum\gsview\gsview32.exe";
- under `Microsoft Windows XP':
- 1. Click on the `Start' button;
-
- 2. Right-click on `My Computer';
-
- 3. Choose `View system information';
-
- 4. Click the `Advanced' tab;
-
- 5. Click the `Environment Variables' button.
-
-
-File: asymptote.info, Node: Search paths, Next: Compiling from UNIX source, Prev: Configuring, Up: Installation
-
-2.5 Search paths
-================
-
-In looking for `Asymptote' system files, `asy' will search the
-following paths, in the order listed:
- 1. The current directory;
-
- 2. A list of one or more directories specified by the configuration
- variable `dir' or environment variable `ASYMPTOTE_DIR' (separated
- by `:' under UNIX and `;' under `MSDOS');
-
- 3. The directory specified by the environment variable
- `ASYMPTOTE_HOME'; if this variable is not set, the directory
- `.asy' in the user's home directory (`%USERPROFILE%\.asy' under
- `MSDOS') is used;
-
- 4. The `Asymptote' system directory (by default,
- `/usr/local/share/asymptote' under `UNIX' and `C:\Program
- Files\Asymptote' under `MSDOS').
-
-
-File: asymptote.info, Node: Compiling from UNIX source, Next: Editing modes, Prev: Search paths, Up: Installation
-
-2.6 Compiling from UNIX source
-==============================
-
-To compile and install a `UNIX' executable from a source release
-`x.xx', first execute the commands:
-gunzip asymptote-x.xx.src.tgz
-tar -xf asymptote-x.xx.src.tar
-cd asymptote-x.xx
- By default the system version of the Boehm garbage collector will be
-used; if it is old we recommend first putting
-`http://www.hpl.hp.com/personal/Hans_Boehm/gc/gc_source/gc-7.2d.tar.gz'
-in the `Asymptote' source directory.
-
- On `UNIX' platforms (other than `MacOS X'), we recommend using
-version `2.8.1' of the `freeglut' library. To compile `freeglut',
-download
-
- `http://prdownloads.sourceforge.net/freeglut/freeglut-2.8.1.tar.gz'
- and type (as the root user):
-gunzip freeglut-2.8.1.tar.gz
-tar -xf freeglut-2.8.1.tar
-cd freeglut-2.8.1
-./configure --prefix=/usr
-make install
-cd ..
- Then compile `Asymptote' with the commands
-./configure
-make all
-make install
- Be sure to use GNU `make' (on non-GNU systems this command may be
-called `gmake'). To build the documentation, you may need to install
-the `texinfo-tex' package. If you get errors from a broken `texinfo' or
-`pdftex' installation, simply put
-
- `http://asymptote.sourceforge.net/asymptote.pdf'
- in the directory `doc' and repeat the command `make all'.
-
-For a (default) system-wide installation, the last command should be
-done as the root user. To install without root privileges, change the
-`./configure' command to
-./configure --prefix=$HOME/asymptote
- One can disable use of the Boehm garbage collector by configuring with
-`./configure --disable-gc'. For a list of other configuration options,
-say `./configure --help'. For example, one can tell configure to look
-for header files and libraries in nonstandard locations:
-./configure CFLAGS=-I/opt/usr/include LDFLAGS=-L/opt/usr/lib
-
- If you are compiling `Asymptote' with `gcc', you will need a
-relatively recent version (e.g. 3.4.4 or later). For full interactive
-functionality, you will need version 4.3 or later of the GNU `readline'
-library. The file `gcc3.3.2curses.patch' in the `patches' directory can
-be used to patch the broken curses.h header file (or a local copy
-thereof in the current directory) on some `AIX' and `IRIX' systems.
-
- The `FFTW' library is only required if you want `Asymptote' to be
-able to take Fourier transforms of data (say, to compute an audio power
-spectrum). The `GSL' library is only required if you require the
-special functions that it supports.
-
- If you don't want to install `Asymptote' system wide, just make sure
-the compiled binary `asy' and GUI script `xasy' are in your path and
-set the configuration variable `dir' to point to the directory `base'
-(in the top level directory of the `Asymptote' source code).
-
-
-File: asymptote.info, Node: Editing modes, Next: Subversion, Prev: Compiling from UNIX source, Up: Installation
-
-2.7 Editing modes
-=================
-
-Users of `emacs' can edit `Asymptote' code with the mode `asy-mode',
-after enabling it by putting the following lines in their `.emacs'
-initialization file, replacing `ASYDIR' with the location of the
-`Asymptote' system directory (by default, `/usr/local/share/asymptote'
-or `C:\Program Files\Asymptote' under `MSDOS'):
-(add-to-list 'load-path "ASYDIR")
-(autoload 'asy-mode "asy-mode.el" "Asymptote major mode." t)
-(autoload 'lasy-mode "asy-mode.el" "hybrid Asymptote/Latex major mode." t)
-(autoload 'asy-insinuate-latex "asy-mode.el" "Asymptote insinuate LaTeX." t)
-(add-to-list 'auto-mode-alist '("\\.asy$" . asy-mode))
-
- Particularly useful key bindings in this mode are `C-c C-c', which
-compiles and displays the current buffer, and the key binding `C-c ?',
-which shows the available function prototypes for the command at the
-cursor. For full functionality you should also install the Apache
-Software Foundation package `two-mode-mode':
-
- `http://www.dedasys.com/freesoftware/files/two-mode-mode.el'
- Once installed, you can use the hybrid mode `lasy-mode' to edit a
-LaTeX file containing embedded `Asymptote' code (*note LaTeX usage::).
-This mode can be enabled within `latex-mode' with the key sequence `M-x
-lasy-mode <RET>'. On `UNIX' systems, additional keywords will be
-generated from all `asy' files in the space-separated list of
-directories specified by the environment variable `ASYMPTOTE_SITEDIR'.
-Further documentation of `asy-mode' is available within `emacs' by
-pressing the sequence keys `C-h f asy-mode <RET>'.
-
- Fans of `vim' can customize `vim' for `Asymptote' with
-
-`cp /usr/local/share/asymptote/asy.vim ~/.vim/syntax/asy.vim'
-
-and add the following to their `~/.vimrc' file:
-augroup filetypedetect
-au BufNewFile,BufRead *.asy setf asy
-augroup END
-filetype plugin on
-
- If any of these directories or files don't exist, just create them.
-To set `vim' up to run the current asymptote script using `:make' just
-add to `~/.vim/ftplugin/asy.vim':
-setlocal makeprg=asy\ %
-setlocal errorformat=%f:\ %l.%c:\ %m
-
- Syntax highlighting support for the KDE editor `Kate' can be enabled
-by running `asy-kate.sh' in the `/usr/local/share/asymptote' directory
-and putting the generated `asymptote.xml' file in
-`~/.kde/share/apps/katepart/syntax/'.
-
-
-File: asymptote.info, Node: Subversion, Next: Uninstall, Prev: Editing modes, Up: Installation
-
-2.8 Subversion (SVN)
-====================
-
-The following commands are needed to install the latest development
-version of `Asymptote' using `Subversion':
-svn co http://asymptote.svn.sourceforge.net/svnroot/asymptote/trunk/asymptote
-cd asymptote
-./autogen.sh
-./configure
-make all
-make install
-
-To compile without optimization, use the command `make CFLAGS=-g'.
-
-
-File: asymptote.info, Node: Uninstall, Prev: Subversion, Up: Installation
-
-2.9 Uninstall
-=============
-
-To uninstall an `Linux i386' binary distribution, use the commands
-tar -zxvf asymptote-x.xx.i386.tgz | xargs --replace=% rm /%
-texhash
-
-To uninstall all `Asymptote' files installed from a source
-distribution, use the command
-make uninstall
-
-
-File: asymptote.info, Node: Tutorial, Next: Drawing commands, Prev: Installation, Up: Top
-
-3 Tutorial
-**********
-
-3.1 Drawing in batch mode
-=========================
-
-To draw a line from coordinate (0,0) to coordinate (100,100), create a
-text file `test.asy' containing
-
-draw((0,0)--(100,100));
- Then execute the command
-asy -V test
- Alternatively, `MSDOS' users can drag and drop `test.asy' onto the
-Desktop `asy' icon (or make `Asymptote' the default application for the
-extension `asy').
-
-This method, known as _batch mode_, outputs a `PostScript' file
-`test.eps'. If you prefer PDF output, use the command line
-asy -V -f pdf test
- In either case, the `-V' option opens up a viewer window so you can
-immediately view the result:
-
-
-Here, the `--' connector joins the two points `(0,0)' and `(100,100)'
-with a line segment.
-
-3.2 Drawing in interactive mode
-===============================
-
-Another method is _interactive mode_, where `Asymptote' reads
-individual commands as they are entered by the user. To try this out,
-enter `Asymptote''s interactive mode by clicking on the `Asymptote'
-icon or typing the command `asy'. Then type
-draw((0,0)--(100,100));
- followed by `Enter', to obtain the above image. At this point you can
-type further `draw' commands, which will be added to the displayed
-figure, `erase' to clear the canvas,
-input test;
- to execute all of the commands contained in the file `test.asy', or
-`quit' to exit interactive mode. You can use the arrow keys in
-interactive mode to edit previous lines. The tab key will
-automatically complete unambiguous words; otherwise, hitting tab again
-will show the possible choices. Further commands specific to
-interactive mode are described in *note Interactive mode::.
-
-3.3 Figure size
-===============
-
-In `Asymptote', coordinates like `(0,0)' and `(100,100)', called
-_pairs_, are expressed in `PostScript' "big points" (1 `bp' = 1/72
-`inch') and the default line width is `0.5bp'. However, it is often
-inconvenient to work directly in `PostScript' coordinates. The next
-example produces identical output to the previous example, by scaling
-the line `(0,0)--(1,1)' to fit a rectangle of width `100.5 bp' and
-height `100.5 bp' (the extra `0.5bp' accounts for the line width):
-size(100.5,100.5);
-draw((0,0)--(1,1));
-
-
-
-One can also specify the size in `pt' (1 `pt' = 1/72.27 `inch'), `cm',
-`mm', or `inches'. Two nonzero size arguments (or a single size
-argument) restrict the size in both directions, preserving the aspect
-ratio. If 0 is given as a size argument, no restriction is made in
-that direction; the overall scaling will be determined by the other
-direction (*note size::):
-
-size(0,100.5);
-draw((0,0)--(2,1),Arrow);
-
-
-
-To connect several points and create a cyclic path, use the `cycle'
-keyword:
-
-size(3cm);
-draw((0,0)--(1,0)--(1,1)--(0,1)--cycle);
-
-
-For convenience, the path `(0,0)--(1,0)--(1,1)--(0,1)--cycle' may be
-replaced with the predefined variable `unitsquare', or equivalently,
-`box((0,0),(1,1))'.
-
- To make the user coordinates represent multiples of exactly `1cm':
-unitsize(1cm);
-draw(unitsquare);
-
-3.4 Labels
-==========
-
-Adding labels is easy in `Asymptote'; one specifies the label as a
-double-quoted `LaTeX' string, a coordinate, and an optional alignment
-direction:
-
-size(3cm);
-draw(unitsquare);
-label("$A$",(0,0),SW);
-label("$B$",(1,0),SE);
-label("$C$",(1,1),NE);
-label("$D$",(0,1),NW);
-
-
-
-`Asymptote' uses the standard compass directions `E=(1,0)', `N=(0,1)',
-`NE=unit(N+E)', and `ENE=unit(E+NE)', etc., which along with the
-directions `up', `down', `right', and `left' are defined as pairs in
-the `Asymptote' base module `plain' (a user who has a local variable
-named `E' may access the compass direction `E' by prefixing it with the
-name of the module where it is defined: `plain.E').
-
-3.5 Paths
-=========
-
-This example draws a path that approximates a quarter circle,
-terminated with an arrowhead:
-
-size(100,0);
-draw((1,0){up}..{left}(0,1),Arrow);
-
-
-Here the directions `up' and `left' in braces specify the incoming and
-outgoing directions at the points `(1,0)' and `(0,1)', respectively.
-
- In general, a path is specified as a list of points (or other paths)
-interconnected with `--', which denotes a straight line segment, or
-`..', which denotes a cubic spline (*note Bezier curves::). Specifying
-a final `..cycle' creates a cyclic path that connects smoothly back to
-the initial node, as in this approximation (accurate to within 0.06%)
-of a unit circle:
-path unitcircle=E..N..W..S..cycle;
-
-An `Asymptote' path, being connected, is equivalent to a `Postscript
-subpath'. The `^^' binary operator, which requests that the pen be
-moved (without drawing or affecting endpoint curvatures) from the final
-point of the left-hand path to the initial point of the right-hand
-path, may be used to group several `Asymptote' paths into a `path[]'
-array (equivalent to a `PostScript' path):
-
-size(0,100);
-path unitcircle=E..N..W..S..cycle;
-path g=scale(2)*unitcircle;
-filldraw(unitcircle^^g,evenodd+yellow,black);
-
-
-
-The `PostScript' even-odd fill rule here specifies that only the region
-bounded between the two unit circles is filled (*note fillrule::). In
-this example, the same effect can be achieved by using the default zero
-winding number fill rule, if one is careful to alternate the
-orientation of the paths:
-filldraw(unitcircle^^reverse(g),yellow,black);
-
- The `^^' operator is used by the `box(triple, triple)' function in
-the module `three.asy' to construct the edges of a cube `unitbox'
-without retracing steps (*note three::):
-
-import three;
-
-currentprojection=orthographic(5,4,2,center=true);
-
-size(5cm);
-size3(3cm,5cm,8cm);
-
-draw(unitbox);
-
-dot(unitbox,red);
-
-label("$O$",(0,0,0),NW);
-label("(1,0,0)",(1,0,0),S);
-label("(0,1,0)",(0,1,0),E);
-label("(0,0,1)",(0,0,1),Z);
-
-
-
-See section *note graph:: (or the online `Asymptote' gallery and
-external links posted at `http://asymptote.sourceforge.net') for
-further examples, including two-dimensional and interactive
-three-dimensional scientific graphs. Additional examples have been
-posted by Philippe Ivaldi at `http://www.piprime.fr/asymptote'. A
-user-written `Asymptote' tutorial is available at
-http://www.artofproblemsolving.com/Wiki/index.php/Asymptote:_Basics
-
-
-File: asymptote.info, Node: Drawing commands, Next: Bezier curves, Prev: Tutorial, Up: Top
-
-4 Drawing commands
-******************
-
-All of `Asymptote''s graphical capabilities are based on four primitive
-commands. The three `PostScript' drawing commands `draw', `fill', and
-`clip' add objects to a picture in the order in which they are
-executed, with the most recently drawn object appearing on top. The
-labeling command `label' can be used to add text labels and external
-EPS images, which will appear on top of the `PostScript' objects (since
-this is normally what one wants), but again in the relative order in
-which they were executed. After drawing objects on a picture, the
-picture can be output with the `shipout' function (*note shipout::).
-
- If you wish to draw `PostScript' objects on top of labels (or
-verbatim `tex' commands; *note tex::), the `layer' command may be used
-to start a new `PostScript/LaTeX' layer:
-void layer(picture pic=currentpicture);
-
- The `layer' function gives one full control over the order in which
-objects are drawn. Layers are drawn sequentially, with the most recent
-layer appearing on top. Within each layer, labels, images, and verbatim
-`tex' commands are always drawn after the `PostScript' objects in that
-layer.
-
- While some of these drawing commands take many options, they all
-have sensible default values (for example, the picture argument
-defaults to currentpicture).
-
-* Menu:
-
-* draw:: Draw a path on a picture or frame
-* fill:: Fill a cyclic path on a picture or frame
-* clip:: Clip a picture or frame to a cyclic path
-* label:: Label a point on a picture
-
-
-File: asymptote.info, Node: draw, Next: fill, Up: Drawing commands
-
-4.1 draw
-========
-
-void draw(picture pic=currentpicture, Label L="", path g,
- align align=NoAlign, pen p=currentpen,
- arrowbar arrow=None, arrowbar bar=None, margin margin=NoMargin,
- Label legend="", marker marker=nomarker);
-
-Draw the path `g' on the picture `pic' using pen `p' for drawing, with
-optional drawing attributes (Label `L', explicit label alignment
-`align', arrows and bars `arrow' and `bar', margins `margin', legend,
-and markers `marker'). Only one parameter, the path, is required. For
-convenience, the arguments `arrow' and `bar' may be specified in either
-order. The argument `legend' is a Label to use in constructing an
-optional legend entry.
-
- Bars are useful for indicating dimensions. The possible values of
-`bar' are `None', `BeginBar', `EndBar' (or equivalently `Bar'), and
-`Bars' (which draws a bar at both ends of the path). Each of these bar
-specifiers (except for `None') will accept an optional real argument
-that denotes the length of the bar in `PostScript' coordinates. The
-default bar length is `barsize(pen)'.
-
- The possible values of `arrow' are `None', `Blank' (which draws no
-arrows or path), `BeginArrow', `MidArrow', `EndArrow' (or equivalently
-`Arrow'), and `Arrows' (which draws an arrow at both ends of the path).
-All of the arrow specifiers except for `None' and `Blank' may be given
-the optional arguments arrowhead `arrowhead' (one of the predefined
-arrowhead styles `DefaultHead', `SimpleHead', `HookHead', `TeXHead'),
-real `size' (arrowhead size in `PostScript' coordinates), real `angle'
-(arrowhead angle in degrees), filltype `filltype' (one of `FillDraw',
-`Fill', `NoFill', `UnFill', `Draw') and (except for `MidArrow' and
-`Arrows') a real `position' (in the sense of `point(path p, real t)')
-along the path where the tip of the arrow should be placed. The default
-arrowhead size when drawn with a pen `p' is `arrowsize(p)'. There are
-also arrow versions with slightly modified default values of `size' and
-`angle' suitable for curved arrows: `BeginArcArrow', `EndArcArrow' (or
-equivalently `ArcArrow'), `MidArcArrow', and `ArcArrows'.
-
- Margins can be used to shrink the visible portion of a path by
-`labelmargin(p)' to avoid overlap with other drawn objects. Typical
-values of `margin' are `NoMargin', `BeginMargin', `EndMargin' (or
-equivalently `Margin'), and `Margins' (which leaves a margin at both
-ends of the path). One may use `Margin(real begin, real end)' to
-specify the size of the beginning and ending margin, respectively, in
-multiples of the units `labelmargin(p)' used for aligning labels.
-Alternatively, `BeginPenMargin', `EndPenMargin' (or equivalently
-`PenMargin'), `PenMargins', `PenMargin(real begin, real end)' specify a
-margin in units of the pen line width, taking account of the pen line
-width when drawing the path or arrow. For example, use `DotMargin', an
-abbreviation for `PenMargin(-0.5*dotfactor,0.5*dotfactor)', to draw
-from the usual beginning point just up to the boundary of an end dot of
-width `dotfactor*linewidth(p)'. The qualifiers `BeginDotMargin',
-`EndDotMargin', and `DotMargins' work similarly. The qualifier
-`TrueMargin(real begin, real end)' allows one to specify a margin
-directly in `PostScript' units, independent of the pen line width.
-
- The use of arrows, bars, and margins is illustrated by the examples
-`Pythagoras.asy', `sqrtx01.asy', and `triads.asy'.
-
- The legend for a picture `pic' can be fit and aligned to a frame
-with the routine:
-frame legend(picture pic=currentpicture, int perline=1,
- real xmargin=legendmargin, real ymargin=xmargin,
- real linelength=legendlinelength,
- real hskip=legendhskip, real vskip=legendvskip,
- real maxwidth=0, real maxheight=0,
- bool hstretch=false, bool vstretch=false, pen p=currentpen);
- Here `xmargin' and `ymargin' specify the surrounding x and y margins,
-`perline' specifies the number of entries per line (default 1; 0 means
-choose this number automatically), `linelength' specifies the length of
-the path lines, `hskip' and `vskip' specify the line skip (as a
-multiple of the legend entry size), `maxwidth' and `maxheight' specify
-optional upper limits on the width and height of the resulting legend
-(0 means unlimited), `hstretch' and `vstretch' allow the legend to
-stretch horizontally or vertically, and `p' specifies the pen used to
-draw the bounding box. The legend frame can then be added and aligned
-about a point on a picture `dest' using `add' or `attach' (*note add
-about::).
-
- To draw a dot, simply draw a path containing a single point. The
-`dot' command defined in the module `plain' draws a dot having a
-diameter equal to an explicit pen line width or the default line width
-magnified by `dotfactor' (6 by default), using the specified filltype
-(*note filltype::):
-void dot(picture pic=currentpicture, pair z, pen p=currentpen,
- filltype filltype=Fill);
-void dot(picture pic=currentpicture, Label L, pair z, align align=NoAlign,
- string format=defaultformat, pen p=currentpen, filltype filltype=Fill);
-void dot(picture pic=currentpicture, Label[] L=new Label[], pair[] z,
- align align=NoAlign, string format=defaultformat, pen p=currentpen,
- filltype filltype=Fill)
-void dot(picture pic=currentpicture, Label L, pen p=currentpen,
- filltype filltype=Fill);
-
- If the variable `Label' is given as the `Label' argument to the
-second routine, the `format' argument will be used to format a string
-based on the dot location (here `defaultformat' is `"$%.4g$"'). The
-third routine draws a dot at every point of a pair array `z'. One can
-also draw a dot at every node of a path:
-void dot(picture pic=currentpicture, Label[] L=new Label[],
- path g, align align=RightSide, string format=defaultformat,
- pen p=currentpen, filltype filltype=Fill);
- See *note pathmarkers:: and *note markers:: for more general methods
-for marking path nodes.
-
- To draw a fixed-sized object (in `PostScript' coordinates) about the
-user coordinate `origin', use the routine
-void draw(pair origin, picture pic=currentpicture, Label L="", path g,
- align align=NoAlign, pen p=currentpen, arrowbar arrow=None,
- arrowbar bar=None, margin margin=NoMargin, Label legend="",
- marker marker=nomarker);
-
-
-File: asymptote.info, Node: fill, Next: clip, Prev: draw, Up: Drawing commands
-
-4.2 fill
-========
-
-void fill(picture pic=currentpicture, path g, pen p=currentpen);
-
-Fill the interior region bounded by the cyclic path `g' on the picture
-`pic', using the pen `p'.
-
- There is also a convenient `filldraw' command, which fills the path
-and then draws in the boundary. One can specify separate pens for each
-operation:
-void filldraw(picture pic=currentpicture, path g, pen fillpen=currentpen,
- pen drawpen=currentpen);
-
- This fixed-size version of `fill' allows one to fill an object
-described in `PostScript' coordinates about the user coordinate
-`origin':
-void fill(pair origin, picture pic=currentpicture, path g, pen p=currentpen);
-
-This is just a convenient abbreviation for the commands:
-picture opic;
-fill(opic,g,p);
-add(pic,opic,origin);
-
- The routine
-void filloutside(picture pic=currentpicture, path g, pen p=currentpen);
- fills the region exterior to the path `g', out to the current boundary
-of picture `pic'.
-
- Lattice gradient shading varying smoothly over a two-dimensional
-array of pens `p', using fill rule `fillrule', can be produced with
-void latticeshade(picture pic=currentpicture, path g, bool stroke=false,
- pen fillrule=currentpen, pen[][] p)
- If `stroke=true', the region filled is the same as the region that
-would be drawn by `draw(pic,g,fillrule+zerowinding)'; in this case the
-path `g' need not be cyclic. The pens in `p' must belong to the same
-color space. One can use the functions `rgb(pen)' or `cmyk(pen)' to
-promote pens to a higher color space, as illustrated in the example file
-`latticeshading.asy'.
-
- Axial gradient shading varying smoothly from `pena' to `penb' in the
-direction of the line segment `a--b' can be achieved with
-void axialshade(picture pic=currentpicture, path g, bool stroke=false,
- pen pena, pair a, bool extenda=true,
- pen penb, pair b, bool extendb=true);
- The boolean parameters `extenda' and `extendb' indicate whether the
-shading should extend beyond the axis endpoints `a' and `b'.
-
- Radial gradient shading varying smoothly from `pena' on the circle
-with center `a' and radius `ra' to `penb' on the circle with center `b'
-and radius `rb' is similar:
-void radialshade(picture pic=currentpicture, path g, bool stroke=false,
- pen pena, pair a, real ra, bool extenda=true,
- pen penb, pair b, real rb, bool extendb=true);
- The boolean parameters `extenda' and `extendb' indicate whether the
-shading should extend beyond the radii `a' and `b'. Illustrations of
-radial shading are provided in the example files `shade.asy',
-`ring.asy', and `shadestroke.asy'.
-
- Gouraud shading using fill rule `fillrule' and the vertex colors in
-the pen array `p' on a triangular lattice defined by the vertices `z'
-and edge flags `edges' is implemented with
-void gouraudshade(picture pic=currentpicture, path g, bool stroke=false,
- pen fillrule=currentpen, pen[] p, pair[] z,
- int[] edges);
-void gouraudshade(picture pic=currentpicture, path g, bool stroke=false,
- pen fillrule=currentpen, pen[] p, int[] edges);
- In the second form, the elements of `z' are taken to be successive
-nodes of path `g'. The pens in `p' must belong to the same color space.
-Illustrations of Gouraud shading are provided in the example file
-`Gouraud.asy' and in the solid geometry module `solids.asy'. The edge
-flags used in Gouraud shading are documented here:
-
- `http://partners.adobe.com/public/developer/en/ps/sdk/TN5600.SmoothShading.pdf'.
-
- Tensor product shading using fill rule `fillrule' on patches bounded
-by the n cyclic paths of length 4 in path array `b', using the vertex
-colors specified in the n \times 4 pen array `p' and internal control
-points in the n \times 4 array `z', is implemented with
-void tensorshade(picture pic=currentpicture, path g, bool stroke=false,
- pen fillrule=currentpen, pen[][] p, path[] b=g,
- pair[][] z=new pair[][]);
- If the array `z' is empty, Coons shading, in which the color control
-points are calculated automatically, is used. The pens in `p' must
-belong to the same color space. A simpler interface for the case of a
-single patch (n=1) is also available:
-void tensorshade(picture pic=currentpicture, path g, bool stroke=false,
- pen fillrule=currentpen, pen[] p, path b=g,
- pair[] z=new pair[]);
- One can also smoothly shade the regions between consecutive paths of a
-sequence using a given array of pens:
-void draw(picture pic=currentpicture, pen fillrule=currentpen, path[] g,
- pen[] p);
- Illustrations of tensor product and Coons shading are provided in the
-example files `tensor.asy', `Coons.asy', `BezierSurface.asy', and
-`rainbow.asy'.
-
- More general shading possibilities are available with the `pdflatex',
-`context', and `pdftex' TeX engines: the routine
-void functionshade(picture pic=currentpicture, path[] g, bool stroke=false,
- pen fillrule=currentpen, string shader);
- shades on picture `pic' the interior of path `g' according to fill
-rule `fillrule' using the `PostScript' calculator routine specified by
-the string `shader'; this routine takes 2 arguments, each in [0,1], and
-returns `colors(fillrule).length' color components. Function shading
-is illustrated in the example `functionshading.asy'.
-
- The following routine uses `evenodd' clipping together with the `^^'
-operator to unfill a region:
-
-void unfill(picture pic=currentpicture, path g);
-
-
-File: asymptote.info, Node: clip, Next: label, Prev: fill, Up: Drawing commands
-
-4.3 clip
-========
-
-void clip(picture pic=currentpicture, path g, stroke=false,
- pen fillrule=currentpen);
-
-Clip the current contents of picture `pic' to the region bounded by the
-path `g', using fill rule `fillrule' (*note fillrule::). If
-`stroke=true', the clipped portion is the same as the region that would
-be drawn with `draw(pic,g,fillrule+zerowinding)'; in this case the path
-`g' need not be cyclic. For an illustration of picture clipping, see
-the first example in *note LaTeX usage::.
-
-
-File: asymptote.info, Node: label, Prev: clip, Up: Drawing commands
-
-4.4 label
-=========
-
-void label(picture pic=currentpicture, Label L, pair position,
- align align=NoAlign, pen p=currentpen, filltype filltype=NoFill)
-
-Draw Label `L' on picture `pic' using pen `p'. If `align' is `NoAlign',
-the label will be centered at user coordinate `position'; otherwise it
-will be aligned in the direction of `align' and displaced from
-`position' by the `PostScript' offset `align*labelmargin(p)'. The
-constant `Align' can be used to align the bottom-left corner of the
-label at `position'. The Label `L' can either be a string or the
-structure obtained by calling one of the functions
-Label Label(string s="", pair position, align align=NoAlign,
- pen p=nullpen, embed embed=Rotate, filltype filltype=NoFill);
-Label Label(string s="", align align=NoAlign,
- pen p=nullpen, embed embed=Rotate, filltype filltype=NoFill);
-Label Label(Label L, pair position, align align=NoAlign,
- pen p=nullpen, embed embed=L.embed, filltype filltype=NoFill);
-Label Label(Label L, align align=NoAlign,
- pen p=nullpen, embed embed=L.embed, filltype filltype=NoFill);
- The text of a Label can be scaled, slanted, rotated, or shifted by
-multiplying it on the left by an affine transform (*note Transforms::).
-For example, `rotate(45)*xscale(2)*L' first scales `L' in the x
-direction and then rotates it counterclockwise by 45 degrees. The final
-position of a Label can also be shifted by a `PostScript' coordinate
-translation: `shift(10,0)*L'. An explicit pen specified within the
-Label overrides other pen arguments. The `embed' argument determines
-how the Label should transform with the embedding picture:
-`Shift'
- only shift with embedding picture;
-
-`Rotate'
- only shift and rotate with embedding picture (default);
-
-`Rotate(pair z)'
- rotate with (picture-transformed) vector `z'.
-
-`Slant'
- only shift, rotate, slant, and reflect with embedding picture;
-
-`Scale'
- shift, rotate, slant, reflect, and scale with embedding picture.
-
-
- To add a label to a path, use
-void label(picture pic=currentpicture, Label L, path g, align align=NoAlign,
- pen p=currentpen, filltype filltype=NoFill);
- By default the label will be positioned at the midpoint of the path.
-An alternative label position (in the sense of `point(path p, real t)')
-may be specified as a real value for `position' in constructing the
-Label. The position `Relative(real)' specifies a location relative to
-the total arclength of the path. These convenient abbreviations are
-predefined:
-position BeginPoint=Relative(0);
-position MidPoint=Relative(0.5);
-position EndPoint=Relative(1);
-
- Path labels are aligned in the direction `align', which may be
-specified as an absolute compass direction (pair) or a direction
-`Relative(pair)' measured relative to a north axis in the local
-direction of the path. For convenience `LeftSide', `Center', and
-`RightSide' are defined as `Relative(W)', `Relative((0,0))', and
-`Relative(E)', respectively. Multiplying `LeftSide', `Center',
-`RightSide' on the left by a real scaling factor will move the label
-further away from or closer to the path.
-
- A label with a fixed-size arrow of length `arrowlength' pointing to
-`b' from direction `dir' can be produced with the routine
-void arrow(picture pic=currentpicture, Label L="", pair b, pair dir,
- real length=arrowlength, align align=NoAlign,
- pen p=currentpen, arrowbar arrow=Arrow, margin margin=EndMargin);
- If no alignment is specified (either in the Label or as an explicit
-argument), the optional Label will be aligned in the direction `dir',
-using margin `margin'.
-
- The function `string graphic(string name, string options="")'
-returns a string that can be used to include an encapsulated
-`PostScript' (EPS) file. Here, `name' is the name of the file to
-include and `options' is a string containing a comma-separated list of
-optional bounding box (`bb=llx lly urx ury'), width (`width=value'),
-height (`height=value'), rotation (`angle=value'), scaling
-(`scale=factor'), clipping (`clip=bool'), and draft mode (`draft=bool')
-parameters. The `layer()' function can be used to force future objects
-to be drawn on top of the included image:
-label(graphic("file.eps","width=1cm"),(0,0),NE);
-layer();
-
- The `string baseline(string s, string template="\strut")' function
-can be used to enlarge the bounding box of labels to match a given
-template, so that their baselines will be typeset on a horizontal line.
-See `Pythagoras.asy' for an example.
-
- One can prevent labels from overwriting one another with the
-`overwrite' pen attribute (*note overwrite::).
-
- The structure `object' defined in `plain_Label.asy' allows Labels
-and frames to be treated in a uniform manner. A group of objects may
-be packed together into single frame with the routine
-frame pack(pair align=2S ... object inset[]);
- To draw or fill a box (or ellipse or other path) around a Label and
-return the bounding object, use one of the routines
-object draw(picture pic=currentpicture, Label L, envelope e,
- real xmargin=0, real ymargin=xmargin, pen p=currentpen,
- filltype filltype=NoFill, bool above=true);
-object draw(picture pic=currentpicture, Label L, envelope e, pair position,
- real xmargin=0, real ymargin=xmargin, pen p=currentpen,
- filltype filltype=NoFill, bool above=true);
- Here `envelope' is a boundary-drawing routine such as `box',
-`roundbox', or `ellipse' defined in `plain_boxes.asy' (*note
-envelope::).
-
- The function `path[] texpath(Label L)' returns the path array that
-TeX would fill to draw the Label `L'.
-
- The `string minipage(string s, width=100pt)' function can be used to
-format string `s' into a paragraph of width `width'. This example uses
-`minipage', `clip', and `graphic' to produce a CD label:
-
-
-size(11.7cm,11.7cm);
-asy(nativeformat(),"logo");
-fill(unitcircle^^(scale(2/11.7)*unitcircle),
- evenodd+rgb(124/255,205/255,124/255));
-label(scale(1.1)*minipage(
-"\centering\scriptsize \textbf{\LARGE {\tt Asymptote}\\
-\smallskip
-\small The Vector Graphics Language}\\
-\smallskip
-\textsc{Andy Hammerlindl, John Bowman, and Tom Prince}
-http://asymptote.sourceforge.net\\
-",8cm),(0,0.6));
-label(graphic("logo."+nativeformat(),"height=7cm"),(0,-0.22));
-clip(unitcircle^^(scale(2/11.7)*unitcircle),evenodd);
-
-
-File: asymptote.info, Node: Bezier curves, Next: Programming, Prev: Drawing commands, Up: Top
-
-5 Bezier curves
-***************
-
-Each interior node of a cubic spline may be given a direction prefix or
-suffix `{dir}': the direction of the pair `dir' specifies the direction
-of the incoming or outgoing tangent, respectively, to the curve at that
-node. Exterior nodes may be given direction specifiers only on their
-interior side.
-
- A cubic spline between the node z_0, with postcontrol point c_0, and
-the node z_1, with precontrol point c_1, is computed as the Bezier curve
-
-
-
-As illustrated in the diagram below, the third-order midpoint (m_5)
-constructed from two endpoints z_0 and z_1 and two control points c_0
-and c_1, is the point corresponding to t=1/2 on the Bezier curve formed
-by the quadruple (z_0, c_0, c_1, z_1). This allows one to recursively
-construct the desired curve, by using the newly extracted third-order
-midpoint as an endpoint and the respective second- and first-order
-midpoints as control points:
-
-
-
-Here m_0, m_1 and m_2 are the first-order midpoints, m_3 and m_4 are
-the second-order midpoints, and m_5 is the third-order midpoint. The
-curve is then constructed by recursively applying the algorithm to
-(z_0, m_0, m_3, m_5) and (m_5, m_4, m_2, z_1).
-
- In fact, an analogous property holds for points located at any
-fraction t in [0,1] of each segment, not just for midpoints (t=1/2).
-
- The Bezier curve constructed in this manner has the following
-properties:
- * It is entirely contained in the convex hull of the given four
- points.
-
- * It starts heading from the first endpoint to the first control
- point and finishes heading from the second control point to the
- second endpoint.
-
-
- The user can specify explicit control points between two nodes like
-this:
-draw((0,0)..controls (0,100) and (100,100)..(100,0));
-
- However, it is usually more convenient to just use the `..'
-operator, which tells `Asymptote' to choose its own control points
-using the algorithms described in Donald Knuth's monograph, The
-MetaFontbook, Chapter 14. The user can still customize the guide (or
-path) by specifying direction, tension, and curl values.
-
- The higher the tension, the straighter the curve is, and the more it
-approximates a straight line. One can change the spline tension from
-its default value of 1 to any real value greater than or equal to 0.75
-(cf. John D. Hobby, Discrete and Computational Geometry 1, 1986):
-draw((100,0)..tension 2 ..(100,100)..(0,100));
-draw((100,0)..tension 3 and 2 ..(100,100)..(0,100));
-draw((100,0)..tension atleast 2 ..(100,100)..(0,100));
-
- In these examples there is a space between `2' and `..'. This is
-needed as `2.' is interpreted as a numerical constant.
-
- The curl parameter specifies the curvature at the endpoints of a path
-(0 means straight; the default value of 1 means approximately circular):
-draw((100,0){curl 0}..(100,100)..{curl 0}(0,100));
-
- The `MetaPost ...' path connector, which requests, when possible, an
-inflection-free curve confined to a triangle defined by the endpoints
-and directions, is implemented in `Asymptote' as the convenient
-abbreviation `::' for `..tension atleast 1 ..' (the ellipsis `...' is
-used in `Asymptote' to indicate a variable number of arguments; *note
-Rest arguments::). For example, compare
-
-draw((0,0){up}..(100,25){right}..(200,0){down});
-
-
-with
-
-draw((0,0){up}::(100,25){right}::(200,0){down});
-
-
-
-The `---' connector is an abbreviation for `..tension atleast
-infinity..' and the `&' connector concatenates two paths, after first
-stripping off the last node of the first path (which normally should
-coincide with the first node of the second path).
-
-
-File: asymptote.info, Node: Programming, Next: LaTeX usage, Prev: Bezier curves, Up: Top
-
-6 Programming
-*************
-
-Here is a short introductory example to the `Asymptote' programming
-language that highlights the similarity of its control structures with
-those of C, C++, and Java:
-// This is a comment.
-
-// Declaration: Declare x to be a real variable;
-real x;
-
-// Assignment: Assign the real variable x the value 1.
-x=1.0;
-
-// Conditional: Test if x equals 1 or not.
-if(x == 1.0) {
- write("x equals 1.0");
-} else {
- write("x is not equal to 1.0");
-}
-
-// Loop: iterate 10 times
-for(int i=0; i < 10; ++i) {
- write(i);
-}
-
- `Asymptote' supports `while', `do', `break', and `continue'
-statements just as in C/C++. It also supports the Java-style shorthand
-for iterating over all elements of an array:
-
-// Iterate over an array
-int[] array={1,1,2,3,5};
-for(int k : array) {
- write(k);
-}
- In addition, it supports many features beyond the ones found in those
-languages.
-
-* Menu:
-
-* Data types:: void, bool, int, real, pair, triple, string
-* Paths and guides::
-* Pens:: Colors, line types, line widths, font sizes
-* Transforms:: Affine transforms
-* Frames and pictures:: Canvases for immediate and deferred drawing
-* Files:: Reading and writing your data
-* Variable initializers:: Initialize your variables
-* Structures:: Organize your data
-* Operators:: Arithmetic and logical operators
-* Implicit scaling:: Avoiding those ugly *s
-* Functions:: Traditional and high-order functions
-* Arrays:: Dynamic vectors
-* Casts:: Implicit and explicit casts
-* Import:: Importing external `Asymptote' modules
-* Static:: Where to allocate your variable?
-
-
-File: asymptote.info, Node: Data types, Next: Paths and guides, Up: Programming
-
-6.1 Data types
-==============
-
-`Asymptote' supports the following data types (in addition to
-user-defined types):
-
-`void'
- The void type is used only by functions that take or return no
- arguments.
-
-`bool'
- a boolean type that can only take on the values `true' or `false'.
- For example: bool b=true;
-
- defines a boolean variable `b' and initializes it to the value
- `true'. If no initializer is given: bool b;
-
- the value `false' is assumed.
-
-`bool3'
- an extended boolean type that can take on the values `true',
- `default', or `false'. A bool3 type can be cast to or from a bool.
- The default initializer for bool3 is `default'.
-
-`int'
- an integer type; if no initializer is given, the implicit value `0'
- is assumed. The minimum allowed value of an integer is `intMin'
- and the maximum value is `intMax'.
-
-`real'
- a real number; this should be set to the highest-precision native
- floating-point type on the architecture. The implicit initializer
- for reals is `0.0'. Real numbers have precision `realEpsilon',
- with `realDigits' significant digits. The smallest positive real
- number is `realMin' and the largest positive real number is
- `realMax'. The variable `inf' and function `bool isnan(real x)'
- are useful when floating-point exceptions are masked with the
- `-mask' command-line option (the default in interactive mode).
-
-`pair'
- complex number, that is, an ordered pair of real components
- `(x,y)'. The real and imaginary parts of a pair `z' can read as
- `z.x' and `z.y'. We say that `x' and `y' are virtual members of
- the data element pair; they cannot be directly modified, however.
- The implicit initializer for pairs is `(0.0,0.0)'.
-
- There are a number of ways to take the complex conjugate of a pair:
- pair z=(3,4);
- z=(z.x,-z.y);
- z=z.x-I*z.y;
- z=conj(z);
-
- Here `I' is the pair `(0,1)'. A number of built-in functions are
- defined for pairs:
-
- `pair conj(pair z)'
- returns the conjugate of `z';
-
- `real length(pair z)'
- returns the complex modulus `|z|' of its argument `z'. For
- example,
- pair z=(3,4);
- length(z);
- returns the result 5. A synonym for `length(pair)' is
- `abs(pair)';
-
- `real angle(pair z, bool warn=true)'
- returns the angle of `z' in radians in the interval
- [-`pi',`pi'] or `0' if `warn' is `false' and `z=(0,0)'
- (rather than producing an error);
-
- `real degrees(pair z, bool warn=true)'
- returns the angle of `z' in degrees in the interval [0,360)
- or `0' if `warn' is `false' and `z=(0,0)' (rather than
- producing an error);
-
- `pair unit(pair z)'
- returns a unit vector in the direction of the pair `z';
-
- `pair expi(real angle)'
- returns a unit vector in the direction `angle' measured in
- radians;
-
- `pair dir(real degrees)'
- returns a unit vector in the direction `degrees' measured in
- degrees;
-
- `real xpart(pair z)'
- returns `z.x';
-
- `real ypart(pair z)'
- returns `z.y';
-
- `pair realmult(pair z, pair w)'
- returns the element-by-element product `(z.x*w.x,z.y*w.y)';
-
- `real dot(explicit pair z, explicit pair w)'
- returns the dot product `z.x*w.x+z.y*w.y';
-
- `pair minbound(pair z, pair w)'
- returns `(min(z.x,w.x),min(z.y,w.y))';
-
- `pair maxbound(pair z, pair w)'
- returns `(max(z.x,w.x),max(z.y,w.y))'.
-
-
-`triple'
- an ordered triple of real components `(x,y,z)' used for
- three-dimensional drawings. The respective components of a triple
- `v' can read as `v.x', `v.y', and `v.z'. The implicit initializer
- for triples is `(0.0,0.0,0.0)'.
-
- Here are the built-in functions for triples:
- `real length(triple v)'
- returns the length `|v|' of the vector `v'. A synonym for
- `length(triple)' is `abs(triple)';
-
- `real polar(triple v, bool warn=true)'
- returns the colatitude of `v' measured from the z axis in
- radians or `0' if `warn' is `false' and `v=O' (rather than
- producing an error);
-
- `real azimuth(triple v, bool warn=true)'
- returns the longitude of `v' measured from the x axis in
- radians or `0' if `warn' is `false' and `v.x=v.y=0' (rather
- than producing an error);
-
- `real colatitude(triple v, bool warn=true)'
- returns the colatitude of `v' measured from the z axis in
- degrees or `0' if `warn' is `false' and `v=O' (rather than
- producing an error);
-
- `real latitude(triple v, bool warn=true)'
- returns the latitude of `v' measured from the xy plane in
- degrees or `0' if `warn' is `false' and `v=O' (rather than
- producing an error);
-
- `real longitude(triple v, bool warn=true)'
- returns the longitude of `v' measured from the x axis in
- degrees or `0' if `warn' is `false' and `v.x=v.y=0' (rather
- than producing an error);
-
- `triple unit(triple v)'
- returns a unit triple in the direction of the triple `v';
-
- `triple expi(real polar, real azimuth)'
- returns a unit triple in the direction `(polar,azimuth)'
- measured in radians;
-
- `triple dir(real colatitude, real longitude)'
- returns a unit triple in the direction
- `(colatitude,longitude)' measured in degrees;
-
- `real xpart(triple v)'
- returns `v.x';
-
- `real ypart(triple v)'
- returns `v.y';
-
- `real zpart(triple v)'
- returns `v.z';
-
- `real dot(triple u, triple v)'
- returns the dot product `u.x*v.x+u.y*v.y+u.z*v.z';
-
- `triple cross(triple u, triple v)'
- returns the cross product
-
- `(u.y*v.z-u.z*v.y,u.z*v.x-u.x*v.z,u.x*v.y-v.x*u.y)';
-
- `triple minbound(triple u, triple v)'
- returns `(min(u.x,v.x),min(u.y,v.y),min(u.z,v.z))';
-
- `triple maxbound(triple u, triple v)'
- returns `(max(u.x,v.x),max(u.y,v.y),max(u.z,v.z)').
-
-
-`string'
- a character string, implemented using the STL `string' class.
-
- Strings delimited by double quotes (`"') are subject to the
- following mappings to allow the use of double quotes in TeX (e.g.
- for using the `babel' package, *note babel::):
-
- * \" maps to "
-
- * \\ maps to \\
-
- Strings delimited by single quotes (`'') have the same mappings as
- character strings in ANSI `C':
-
- * \' maps to '
-
- * \" maps to "
-
- * \? maps to ?
-
- * \\ maps to backslash
-
- * \a maps to alert
-
- * \b maps to backspace
-
- * \f maps to form feed
-
- * \n maps to newline
-
- * \r maps to carriage return
-
- * \t maps to tab
-
- * \v maps to vertical tab
-
- * \0-\377 map to corresponding octal byte
-
- * \x0-\xFF map to corresponding hexadecimal byte
-
- The implicit initializer for strings is the empty string `""'.
- Strings may be concatenated with the `+' operator. In the following
- string functions, position `0' denotes the start of the string:
- `int length(string s)'
- returns the length of the string `s';
-
- `int find(string s, string t, int pos=0)'
- returns the position of the first occurrence of string `t' in
- string `s' at or after position `pos', or -1 if `t' is not a
- substring of `s';
-
- `int rfind(string s, string t, int pos=-1)'
- returns the position of the last occurrence of string `t' in
- string `s' at or before position `pos' (if `pos'=-1, at the
- end of the string `s'), or -1 if `t' is not a substring of
- `s';
-
- `string insert(string s, int pos, string t)'
- returns the string formed by inserting string `t' at position
- `pos' in `s';
-
- `string erase(string s, int pos, int n)'
- returns the string formed by erasing the string of length `n'
- (if `n'=-1, to the end of the string `s') at position `pos'
- in `s';
-
- `string substr(string s, int pos, int n=-1)'
- returns the substring of `s' starting at position `pos' and
- of length `n' (if `n'=-1, until the end of the string `s');
-
- `string reverse(string s)'
- returns the string formed by reversing string `s';
-
- `string replace(string s, string before, string after)'
- returns a string with all occurrences of the string `before'
- in the string `s' changed to the string `after';
-
- `string replace(string s, string[][] table)'
- returns a string constructed by translating in string `s' all
- occurrences of the string `before' in an array `table' of
- string pairs {`before',`after'} to the corresponding string
- `after';
-
- `string[] split(string s, string delimiter="")'
- returns an array of strings obtained by splitting `s' into
- substrings delimited by `delimiter' (an empty delimiter
- signifies a space, but with duplicate delimiters discarded);
-
- `string format(string s, int n, string locale="")'
- returns a string containing `n' formatted according to the
- C-style format string `s' using locale `locale' (or the
- current locale if an empty string is specified);
-
- `string format(string s=defaultformat, string s=defaultseparator, real x, string locale="")'
- returns a string containing `x' formatted according to the
- C-style format string `s' using locale `locale' (or the
- current locale if an empty string is specified), following
- the behaviour of the C function `fprintf'), except that only
- one data field is allowed, trailing zeros are removed by
- default (unless `#' is specified), and (if the format string
- specifies math mode) TeX is used to typeset scientific
- notation using the `defaultseparator="\!\times\!";';
-
- `int hex(string s);'
- casts a hexidecimal string `s' to an integer;
-
- `int ascii(string s);'
- returns the ASCII code for the first character of string `s';
-
- `string string(real x, int digits=realDigits)'
- casts `x' to a string using precision `digits' and the C
- locale;
-
- `string locale(string s="")'
- sets the locale to the given string, if nonempty, and returns
- the current locale;
-
- `string time(string format="%a %b %d %T %Z %Y")'
- returns the current time formatted by the ANSI C routine
- `strftime' according to the string `format' using the current
- locale. Thus time();
- time("%a %b %d %H:%M:%S %Z %Y");
-
- are equivalent ways of returning the current time in the
- default format used by the `UNIX' `date' command;
-
- `int seconds(string t="", string format="")'
- returns the time measured in seconds after the Epoch (Thu Jan
- 01 00:00:00 UTC 1970) as determined by the ANSI C routine
- `strptime' according to the string `format' using the current
- locale, or the current time if `t' is the empty string. Note
- that the `"%Z"' extension to the POSIX `strptime'
- specification is ignored by the current GNU C Library. If an
- error occurs, the value -1 is returned. Here are some
- examples: seconds("Mar 02 11:12:36 AM PST 2007","%b %d %r PST %Y");
- seconds(time("%b %d %r %z %Y"),"%b %d %r %z %Y");
- seconds(time("%b %d %r %Z %Y"),"%b %d %r "+time("%Z")+" %Y");
- 1+(seconds()-seconds("Jan 1","%b %d"))/(24*60*60);
- The last example returns today's ordinal date, measured from
- the beginning of the year.
-
- `string time(int seconds, string format="%a %b %d %T %Z %Y")'
- returns the time corresponding to `seconds' seconds after the
- Epoch (Thu Jan 01 00:00:00 UTC 1970) formatted by the ANSI C
- routine `strftime' according to the string `format' using the
- current locale. For example, to return the date corresponding
- to 24 hours ago: time(seconds()-24*60*60);
-
- `int system(string s)'
-
- `int system(string[] s)'
- if the setting `safe' is false, call the arbitrary system
- command `s';
-
- `void asy(string format, bool overwrite=false ... string[] s)'
- conditionally process each file name in array `s' in a new
- environment, using format `format', overwriting the output
- file only if `overwrite' is true;
-
- `void abort(string s="")'
- aborts execution (with a non-zero return code in batch mode);
- if string `s' is nonempty, a diagnostic message constructed
- from the source file, line number, and `s' is printed;
-
- `void assert(bool b, string s="")'
- aborts execution with an error message constructed from `s' if
- `b=false';
-
- `void exit()'
- exits (with a zero error return code in batch mode);
-
- `void sleep(int seconds)'
- pauses for the given number of seconds;
-
- `void usleep(int microseconds)'
- pauses for the given number of microseconds;
-
- `void beep()'
- produces a beep on the console;
-
-
-
- As in C/C++, complicated types may be abbreviated with `typedef'
-(see the example in *note Functions::).
-
-
-File: asymptote.info, Node: Paths and guides, Next: Pens, Prev: Data types, Up: Programming
-
-6.2 Paths and guides
-====================
-
-`path'
- a cubic spline resolved into a fixed path. The implicit
- initializer for paths is `nullpath'.
-
- For example, the routine `circle(pair c, real r)', which returns a
- Bezier curve approximating a circle of radius `r' centered on `c',
- is based on `unitcircle' (*note unitcircle::): path circle(pair c, real r)
- {
- return shift(c)*scale(r)*unitcircle;
- }
- If high accuracy is needed, a true circle may be produced with the
- routine `Circle' defined in the module `graph.asy': import graph;
- path Circle(pair c, real r, int n=nCircle);
-
- A circular arc consistent with `circle' centered on `c' with
- radius `r' from `angle1' to `angle2' degrees, drawing
- counterclockwise if `angle2 >= angle1', can be constructed with path arc(pair c, real r, real angle1, real angle2);
- One may also specify the direction explicitly: path arc(pair c, real r, real angle1, real angle2, bool direction);
- Here the direction can be specified as CCW (counter-clockwise) or
- CW (clockwise). For convenience, an arc centered at `c' from pair
- `z1' to `z2' (assuming `|z2-c|=|z1-c|') in the may also be
- constructed with path arc(pair c, explicit pair z1, explicit pair z2,
- bool direction=CCW)
-
- If high accuracy is needed, true arcs may be produced with routines
- in the module `graph.asy' that produce Bezier curves with `n'
- control points: import graph;
- path Arc(pair c, real r, real angle1, real angle2, bool direction,
- int n=nCircle);
- path Arc(pair c, real r, real angle1, real angle2, int n=nCircle);
- path Arc(pair c, explicit pair z1, explicit pair z2,
- bool direction=CCW, int n=nCircle);
-
- An ellipse can be drawn with the routine path ellipse(pair c, real a, real b)
- {
- return shift(c)*scale(a,b)*unitcircle;
- }
-
- This example illustrates the use of all five guide connectors
- discussed in *note Tutorial:: and *note Bezier curves::: size(300,0);
- pair[] z=new pair[10];
-
- z[0]=(0,100); z[1]=(50,0); z[2]=(180,0);
-
- for(int n=3; n <= 9; ++n)
- z[n]=z[n-3]+(200,0);
-
- path p=z[0]..z[1]---z[2]::{up}z[3]
- &z[3]..z[4]--z[5]::{up}z[6]
- &z[6]::z[7]---z[8]..{up}z[9];
-
- draw(p,grey+linewidth(4mm));
-
- dot(z);
-
-
-
- Here are some useful functions for paths:
-
- `int length(path p);'
- This is the number of (linear or cubic) segments in path `p'.
- If `p' is cyclic, this is the same as the number of nodes in
- `p'.
-
- `int size(path p);'
- This is the number of nodes in the path `p'. If `p' is
- cyclic, this is the same as `length(p)'.
-
- `bool cyclic(path p);'
- returns `true' iff path `p' is cyclic.
-
- `bool straight(path p, int i);'
- returns `true' iff the segment of path `p' between node `i'
- and node `i+1' is straight.
-
- `bool piecewisestraight(path p)'
- returns `true' iff the path `p' is piecewise straight.
-
- `pair point(path p, int t);'
- If `p' is cyclic, return the coordinates of node `t' mod
- `length(p)'. Otherwise, return the coordinates of node `t',
- unless `t' < 0 (in which case `point(0)' is returned) or `t'
- > `length(p)' (in which case `point(length(p))' is returned).
-
- `pair point(path p, real t);'
- This returns the coordinates of the point between node
- `floor(t)' and `floor(t)+1' corresponding to the cubic spline
- parameter `t-floor(t)' (*note Bezier curves::). If `t' lies
- outside the range [0,`length(p)'], it is first reduced modulo
- `length(p)' in the case where `p' is cyclic or else converted
- to the corresponding endpoint of `p'.
-
- `pair dir(path p, int t, int sign=0, bool normalize=true);'
- If `sign < 0', return the direction (as a pair) of the
- incoming tangent to path `p' at node `t'; if `sign > 0',
- return the direction of the outgoing tangent. If `sign=0',
- the mean of these two directions is returned.
-
- `pair dir(path p, real t, bool normalize=true);'
- returns the direction of the tangent to path `p' at the point
- between node `floor(t)' and `floor(t)+1' corresponding to the
- cubic spline parameter `t-floor(t)' (*note Bezier curves::).
-
- `pair dir(path p)'
- returns dir(p,length(p)).
-
- `pair dir(path p, path q)'
- returns unit(dir(p)+dir(q)).
-
- `pair accel(path p, int t, int sign=0);'
- If `sign < 0', return the acceleration of the incoming path
- `p' at node `t'; if `sign > 0', return the acceleration of
- the outgoing path. If `sign=0', the mean of these two
- accelerations is returned.
-
- `pair accel(path p, real t);'
- returns the acceleration of the path `p' at the point `t'.
-
- `real radius(path p, real t);'
- returns the radius of curvature of the path `p' at the point
- `t'.
-
- `pair precontrol(path p, int t);'
- returns the precontrol point of `p' at node `t'.
-
- `pair precontrol(path p, real t);'
- returns the effective precontrol point of `p' at parameter
- `t'.
-
- `pair postcontrol(path p, int t);'
- returns the postcontrol point of `p' at node `t'.
-
- `pair postcontrol(path p, real t);'
- returns the effective postcontrol point of `p' at parameter
- `t'.
-
- `real arclength(path p);'
- returns the length (in user coordinates) of the piecewise
- linear or cubic curve that path `p' represents.
-
- `real arctime(path p, real L);'
- returns the path "time", a real number between 0 and the
- length of the path in the sense of `point(path p, real t)',
- at which the cumulative arclength (measured from the
- beginning of the path) equals `L'.
-
- `real arcpoint(path p, real L);'
- returns `point(p,arctime(p,L))'.
-
- `real dirtime(path p, pair z);'
- returns the first "time", a real number between 0 and the
- length of the path in the sense of `point(path, real)', at
- which the tangent to the path has the direction of pair `z',
- or -1 if this never happens.
-
- `real reltime(path p, real l);'
- returns the time on path `p' at the relative fraction `l' of
- its arclength.
-
- `pair relpoint(path p, real l);'
- returns the point on path `p' at the relative fraction `l' of
- its arclength.
-
- `pair midpoint(path p);'
- returns the point on path `p' at half of its arclength.
-
- `path reverse(path p);'
- returns a path running backwards along `p'.
-
- `path subpath(path p, int a, int b);'
- returns the subpath of `p' running from node `a' to node `b'.
- If `a' < `b', the direction of the subpath is reversed.
-
- `path subpath(path p, real a, real b);'
- returns the subpath of `p' running from path time `a' to path
- time `b', in the sense of `point(path, real)'. If `a' < `b',
- the direction of the subpath is reversed.
-
- `real[] intersect(path p, path q, real fuzz=-1);'
- If `p' and `q' have at least one intersection point, return a
- real array of length 2 containing the times representing the
- respective path times along `p' and `q', in the sense of
- `point(path, real)', for one such intersection point (as
- chosen by the algorithm described on page 137 of `The
- MetaFontbook'). The computations are performed to the
- absolute error specified by `fuzz', or if `fuzz < 0', to
- machine precision. If the paths do not intersect, return a
- real array of length 0.
-
- `real[][] intersections(path p, path q, real fuzz=-1);'
- Return all (unless there are infinitely many) intersection
- times of paths `p' and `q' as a sorted array of real arrays
- of length 2 (*note sort::). The computations are performed to
- the absolute error specified by `fuzz', or if `fuzz < 0', to
- machine precision.
-
- `real[] intersections(path p, explicit pair a, explicit pair b, real fuzz=-1);'
- Return all (unless there are infinitely many) intersection
- times of path `p' with the (infinite) line through points `a'
- and `b' as a sorted array. The intersections returned are
- guaranteed to be correct to within the absolute error
- specified by `fuzz', or if `fuzz < 0', to machine precision.
-
- `real[] times(path p, real x)'
- returns all intersection times of path `p' with the vertical
- line through `(x,0)'.
-
- `real[] times(path p, explicit pair z)'
- returns all intersection times of path `p' with the
- horizontal line through `(0,z.y)'.
-
- `real[] mintimes(path p)'
- returns an array of length 2 containing times at which path
- `p' reaches its minimal horizontal and vertical extents,
- respectively.
-
- `real[] maxtimes(path p)'
- returns an array of length 2 containing times at which path
- `p' reaches its maximal horizontal and vertical extents,
- respectively.
-
- `pair intersectionpoint(path p, path q, real fuzz=-1);'
- returns the intersection point
- `point(p,intersect(p,q,fuzz)[0])'.
-
- `pair[] intersectionpoints(path p, path q, real fuzz=-1);'
- returns an array containing all intersection points of the
- paths `p' and `q'.
-
- `pair extension(pair P, pair Q, pair p, pair q);'
- returns the intersection point of the extensions of the line
- segments `P--Q' and `p--q', or if the lines are parallel,
- `(infinity,infinity)'.
-
- `slice cut(path p, path knife, int n);'
- returns the portions of path `p' before and after the `n'th
- intersection of `p' with path `knife' as a structure `slice'
- (if no intersection exist is found, the entire path is
- considered to be `before' the intersection): struct slice {
- path before,after;
- }
- The argument `n' is treated as modulo the number of
- intersections.
-
- `slice firstcut(path p, path knife);'
- equivalent to `cut(p,knife,0);' Note that `firstcut.after'
- plays the role of the `MetaPost cutbefore' command.
-
- `slice lastcut(path p, path knife);'
- equivalent to `cut(p,knife,-1);' Note that `lastcut.before'
- plays the role of the `MetaPost cutafter' command.
-
- `path buildcycle(... path[] p);'
- This returns the path surrounding a region bounded by a list
- of two or more consecutively intersecting paths, following
- the behaviour of the `MetaPost buildcycle' command.
-
- `pair min(path p);'
- returns the pair (left,bottom) for the path bounding box of
- path `p'.
-
- `pair max(path p);'
- returns the pair (right,top) for the path bounding box of
- path `p'.
-
- `int windingnumber(path p, pair z);'
- returns the winding number of the cyclic path `p' relative to
- the point `z'. The winding number is positive if the path
- encircles `z' in the counterclockwise direction. If `z' lies
- on `p' the constant `undefined' (defined to be the largest
- odd integer) is returned.
-
- `bool interior(int windingnumber, pen fillrule)'
- returns true if `windingnumber' corresponds to an interior
- point according to `fillrule'.
-
- `bool inside(path p, pair z, pen fillrule=currentpen);'
- returns `true' iff the point `z' lies inside or on the edge of
- the region bounded by the cyclic path `p' according to the
- fill rule `fillrule' (*note fillrule::).
-
- `int inside(path p, path q, pen fillrule=currentpen);'
- returns `1' if the cyclic path `p' strictly contains `q'
- according to the fill rule `fillrule' (*note fillrule::), `-1'
- if the cyclic path `q' strictly contains `p', and `0'
- otherwise.
-
- `pair inside(path p, pen fillrule=currentpen);'
- returns an arbitrary point strictly inside a cyclic path `p'
- according to the fill rule `fillrule' (*note fillrule::).
-
- `path[] strokepath(path g, pen p=currentpen);'
- returns the path array that `PostScript' would fill in
- drawing path `g' with pen `p'.
-
-
-`guide'
- an unresolved cubic spline (list of cubic-spline nodes and control
- points). The implicit initializer for a guide is `nullpath'; this
- is useful for building up a guide within a loop.
-
- A guide is similar to a path except that the computation of the
- cubic spline is deferred until drawing time (when it is resolved
- into a path); this allows two guides with free endpoint conditions
- to be joined together smoothly. The solid curve in the following
- example is built up incrementally as a guide, but only resolved at
- drawing time; the dashed curve is incrementally resolved at each
- iteration, before the entire set of nodes (shown in red) is known:
-
- size(200);
-
- real mexican(real x) {return (1-8x^2)*exp(-(4x^2));}
-
- int n=30;
- real a=1.5;
- real width=2a/n;
-
- guide hat;
- path solved;
-
- for(int i=0; i < n; ++i) {
- real t=-a+i*width;
- pair z=(t,mexican(t));
- hat=hat..z;
- solved=solved..z;
- }
-
- draw(hat);
- dot(hat,red);
- draw(solved,dashed);
-
-
-
- We point out an efficiency distinction in the use of guides and
- paths: guide g;
- for(int i=0; i < 10; ++i)
- g=g--(i,i);
- path p=g;
-
- runs in linear time, whereas path p;
- for(int i=0; i < 10; ++i)
- p=p--(i,i);
-
- runs in quadratic time, as the entire path up to that point is
- copied at each step of the iteration.
-
- The following routines can be used to examine the individual
- elements of a guide without actually resolving the guide to a
- fixed path (except for internal cycles, which are resolved):
-
- `int size(guide g);'
- Analogous to `size(path p)'.
-
- `int length(guide g);'
- Analogous to `length(path p)'.
-
- `bool cyclic(path p);'
- Analogous to `cyclic(path p)'.
-
- `pair point(guide g, int t);'
- Analogous to `point(path p, int t)'.
-
- `guide reverse(guide g);'
- Analogous to `reverse(path p)'. If `g' is cyclic and also
- contains a secondary cycle, it is first solved to a path,
- then reversed. If `g' is not cyclic but contains an internal
- cycle, only the internal cycle is solved before reversal. If
- there are no internal cycles, the guide is reversed but not
- solved to a path.
-
- `pair[] dirSpecifier(guide g, int i);'
- This returns a pair array of length 2 containing the outgoing
- (in element 0) and incoming (in element 1) direction
- specifiers (or `(0,0)' if none specified) for the segment of
- guide `g' between nodes `i' and `i+1'.
-
- `pair[] controlSpecifier(guide g, int i);'
- If the segment of guide `g' between nodes `i' and `i+1' has
- explicit outgoing and incoming control points, they are
- returned as elements 0 and 1, respectively, of a two-element
- array. Otherwise, an empty array is returned.
-
- `tensionSpecifier tensionSpecifier(guide g, int i);'
- This returns the tension specifier for the segment of guide
- `g' between nodes `i' and `i+1'. The individual components of
- the `tensionSpecifier' type can be accessed as the virtual
- members `in', `out', and `atLeast'.
-
- `real[] curlSpecifier(guide g);'
- This returns an array containing the initial curl specifier
- (in element 0) and final curl specifier (in element 1) for
- guide `g'.
-
-
- As a technical detail we note that a direction specifier given to
- `nullpath' modifies the node on the other side: the guides a..{up}nullpath..b;
- c..nullpath{up}..d;
- e..{up}nullpath{down}..f;
- are respectively equivalent to a..nullpath..{up}b;
- c{up}..nullpath..d;
- e{down}..nullpath..{up}f;
-
-
-
-File: asymptote.info, Node: Pens, Next: Transforms, Prev: Paths and guides, Up: Programming
-
-6.3 Pens
-========
-
-In `Asymptote', pens provide a context for the four basic drawing
-commands (*note Drawing commands::). They are used to specify the
-following drawing attributes: color, line type, line width, line cap,
-line join, fill rule, text alignment, font, font size, pattern,
-overwrite mode, and calligraphic transforms on the pen nib. The default
-pen used by the drawing routines is called `currentpen'. This provides
-the same functionality as the `MetaPost' command `pickup'. The
-implicit initializer for pens is `defaultpen'.
-
- Pens may be added together with the nonassociative binary operator
-`+'. This will add the colors of the two pens. All other non-default
-attributes of the rightmost pen will override those of the leftmost
-pen. Thus, one can obtain a yellow dashed pen by saying
-`dashed+red+green' or `red+green+dashed' or `red+dashed+green'. The
-binary operator `*' can be used to scale the color of a pen by a real
-number, until it saturates with one or more color components equal to 1.
-
- * Colors are specified using one of the following colorspaces:
- `pen gray(real g);'
- This produces a grayscale color, where the intensity `g' lies
- in the interval [0,1], with 0.0 denoting black and 1.0
- denoting white.
-
- `pen rgb(real r, real g, real b);'
- This produces an RGB color, where each of the red, green, and
- blue intensities `r', `g', `b', lies in the interval [0,1].
-
- `pen cmyk(real c, real m, real y, real k);'
- This produces a CMYK color, where each of the cyan, magenta,
- yellow, and black intensities `c', `m', `y', `k', lies in the
- interval [0,1].
-
- `pen invisible;'
- This special pen writes in invisible ink, but adjusts the
- bounding box as if something had been drawn (like the
- `\phantom' command in TeX). The function `bool
- invisible(pen)' can be used to test whether a pen is
- invisible.
-
-
- The default color is `black'; this may be changed with the routine
- `defaultpen(pen)'. The function `colorspace(pen p)' returns the
- colorspace of pen `p' as a string (`"gray"', `"rgb"', `"cmyk"', or
- `""').
-
- The function `real[] colors(pen)' returns the color components of
- a pen. The functions `pen gray(pen)', `pen rgb(pen)', and `pen
- cmyk(pen)' return new pens obtained by converting their arguments
- to the respective color spaces. The function
- `colorless(pen=currentpen)' returns a copy of its argument with
- the color attributes stripped (to avoid color mixing).
-
- A 6-character RGB hexidecimal string can be converted to a pen with
- the routine pen rgb(string s);
- A pen can be converted to a hexidecimal string with
-
- * string hex(pen p);
-
- Various shades and mixtures of the grayscale primary colors
- `black' and `white', RGB primary colors `red', `green', and
- `blue', and RGB secondary colors `cyan', `magenta', and `yellow'
- are defined as named colors, along with the CMYK primary colors
- `Cyan', `Magenta', `Yellow', and `Black', in the module `plain':
-
-
-
- The standard 140 RGB `X11' colors can be imported with the command import x11colors;
- and the standard 68 CMYK TeX colors can be imported with the
- command import texcolors;
- Note that there is some overlap between these two standards and
- the definitions of some colors (e.g. `Green') actually disagree.
-
- `Asymptote' also comes with a `asycolors.sty' `LaTeX' package that
- defines to `LaTeX' CMYK versions of `Asymptote''s predefined
- colors, so that they can be used directly within `LaTeX' strings.
- Normally, such colors are passed to `LaTeX' via a pen argument;
- however, to change the color of only a portion of a string, say
- for a slide presentation, (*note slide::) it may be desirable to
- specify the color directly to `LaTeX'. This file can be passed to
- `LaTeX' with the `Asymptote' command usepackage("asycolors");
-
- The structure `hsv' defined in `plain_pens.asy' may be used to
- convert between HSV and RGB spaces, where the hue `h' is an angle
- in [0,360) and the saturation `s' and value `v' lie in `[0,1]': pen p=hsv(180,0.5,0.75);
- write(p); // ([default], red=0.375, green=0.75, blue=0.75)
- hsv q=p;
- write(q.h,q.s,q.v); // 180 0.5 0.75
-
- * Line types are specified with the function `pen linetype(real[] a,
- real offset=0, bool scale=true, bool adjust=true)', where `a' is
- an array of real array numbers. The optional parameter `offset'
- specifies where in the pattern to begin. The first number
- specifies how far (if `scale' is `true', in units of the pen line
- width; otherwise in `PostScript' units) to draw with the pen on,
- the second number specifies how far to draw with the pen off, and
- so on. If `adjust' is `true', these spacings are automatically
- adjusted by `Asymptote' to fit the arclength of the path. Here are
- the predefined line types: pen solid=linetype(new real[]);
- pen dotted=linetype(new real[] {0,4});
- pen dashed=linetype(new real[] {8,8});
- pen longdashed=linetype(new real[] {24,8});
- pen dashdotted=linetype(new real[] {8,8,0,8});
- pen longdashdotted=linetype(new real[] {24,8,0,8});
- pen Dotted(pen p=currentpen) {return linetype(new real[] {0,3})+2*linewidth(p);}
- pen Dotted=Dotted();
-
-
-
- The default line type is `solid'; this may be changed with
- `defaultpen(pen)'. The line type of a pen can be determined with
- the functions `real[] linetype(pen p=currentpen)', `real
- offset(pen p)', `bool scale(pen p)', and `bool adjust(pen p)'.
-
- * The pen line width is specified in `PostScript' units with `pen
- linewidth(real)'. The default line width is 0.5 bp; this value may
- be changed with `defaultpen(pen)'. The line width of a pen is
- returned by `real linewidth(pen p=currentpen)'. For convenience,
- in the module `plain_pens' we define void defaultpen(real w) {defaultpen(linewidth(w));}
- pen operator +(pen p, real w) {return p+linewidth(w);}
- pen operator +(real w, pen p) {return linewidth(w)+p;}
- so that one may set the line width like this: defaultpen(2);
- pen p=red+0.5;
-
- * A pen with a specific `PostScript' line cap is returned on calling
- `linecap' with an integer argument: pen squarecap=linecap(0);
- pen roundcap=linecap(1);
- pen extendcap=linecap(2);
-
- The default line cap, `roundcap', may be changed with
- `defaultpen(pen)'. The line cap of a pen is returned by `int
- linecap(pen p=currentpen)'.
-
- * A pen with a specific `PostScript' join style is returned on
- calling `linejoin' with an integer argument: pen miterjoin=linejoin(0);
- pen roundjoin=linejoin(1);
- pen beveljoin=linejoin(2);
-
- The default join style, `roundjoin', may be changed with
- `defaultpen(pen)'.The join style of a pen is returned by `int
- linejoin(pen p=currentpen)'.
-
- * A pen with a specific `PostScript' miter limit is returned by
- calling `miterlimit(real)'. The default miterlimit, `10.0', may
- be changed with `defaultpen(pen)'. The miter limit of a pen is
- returned by `real miterlimit(pen p=currentpen)'.
-
- * A pen with a specific `PostScript' fill rule is returned on
- calling `fillrule' with an integer argument: pen zerowinding=fillrule(0);
- pen evenodd=fillrule(1);
-
- The fill rule, which identifies the algorithm used to determine the
- insideness of a path or array of paths, only affects the `clip',
- `fill', and `inside' functions. For the `zerowinding' fill rule, a
- point `z' is outside the region bounded by a path if the number of
- upward intersections of the path with the horizontal line
- `z--z+infinity' minus the number of downward intersections is
- zero. For the `evenodd' fill rule, `z' is considered to be outside
- the region if the total number of such intersections is even. The
- default fill rule, `zerowinding', may be changed with
- `defaultpen(pen)'. The fill rule of a pen is returned by `int
- fillrule(pen p=currentpen)'.
-
- * A pen with a specific text alignment setting is returned on
- calling `basealign' with an integer argument: pen nobasealign=basealign(0);
- pen basealign=basealign(1);
-
- The default setting, `nobasealign',which may be changed with
- `defaultpen(pen)', causes the label alignment routines to use the
- full label bounding box for alignment. In contrast, `basealign'
- requests that the TeX baseline be respected. The base align
- setting of a pen is returned by `int basealigin(pen p=currentpen)'.
-
- * The font size is specified in TeX points (1 pt = 1/72.27 inches)
- with the function `pen fontsize(real size, real
- lineskip=1.2*size)'. The default font size, 12pt, may be changed
- with `defaultpen(pen)'. Nonstandard font sizes may require
- inserting import fontsize;
- at the beginning of the file (this requires the `type1cm' package
- available from
-
- `http://www.ctan.org/tex-archive/macros/latex/contrib/type1cm/'
- and included in recent `LaTeX' distributions). The font size and
- line skip of a pen can be examined with the routines `real
- fontsize(pen p=currentpen)' and `real lineskip(pen p=currentpen)',
- respectively.
-
- * A pen using a specific `LaTeX' `NFSS' font is returned by calling
- the function `pen font(string encoding, string family, string
- series, string shape)'. The default setting,
- `font("OT1","cmr","m","n")', corresponds to 12pt Computer Modern
- Roman; this may be changed with `defaultpen(pen)'. The font
- setting of a pen is returned by `string font(pen p=currentpen)'.
- Support for standardized international characters is provided by
- the `unicode' package (*note unicode::).
-
- Alternatively, one may select a fixed-size TeX font (on which
- `fontsize' has no effect) like `"cmr12"' (12pt Computer Modern
- Roman) or `"pcrr"' (Courier) using the function `pen font(string
- name)'. An optional size argument can also be given to scale the
- font to the requested size: `pen font(string name, real size)'.
-
- A nonstandard font command can be generated with `pen
- fontcommand(string)'.
-
- A convenient interface to the following standard `PostScript'
- fonts is also provided: pen AvantGarde(string series="m", string shape="n");
- pen Bookman(string series="m", string shape="n");
- pen Courier(string series="m", string shape="n");
- pen Helvetica(string series="m", string shape="n");
- pen NewCenturySchoolBook(string series="m", string shape="n");
- pen Palatino(string series="m", string shape="n");
- pen TimesRoman(string series="m", string shape="n");
- pen ZapfChancery(string series="m", string shape="n");
- pen Symbol(string series="m", string shape="n");
- pen ZapfDingbats(string series="m", string shape="n");
-
- * The transparency of a pen can be changed with the command: pen opacity(real opacity=1, string blend="Compatible");
- The opacity can be varied from `0' (fully transparent) to the
- default value of `1' (opaque), and `blend' specifies one of the
- following foreground-background blending operations: "Compatible","Normal","Multiply","Screen","Overlay","SoftLight",
- "HardLight","ColorDodge","ColorBurn","Darken","Lighten","Difference",
- "Exclusion","Hue","Saturation","Color","Luminosity",
- as described in
-
- `http://partners.adobe.com/public/developer/en/pdf/PDFReference16.pdf'.
- Since `PostScript' does not support transparency, this feature is
- only effective with the `-f pdf' output format option; other
- formats can be produced from the resulting PDF file with the
- `ImageMagick' `convert' program. Labels are always drawn with an
- `opacity' of 1. A simple example of transparent filling is
- provided in the example file `transparency.asy'.
-
- * `PostScript' commands within a `picture' may be used to create a
- tiling pattern, identified by the string `name', for `fill' and
- `draw' operations by adding it to the global `PostScript' frame
- `currentpatterns', with optional left-bottom margin `lb' and
- right-top margin `rt'. import patterns;
- void add(string name, picture pic, pair lb=0, pair rt=0);
-
- To `fill' or `draw' using pattern `name', use the pen
- `pattern("name")'. For example, rectangular tilings can be
- constructed using the routines `picture tile(real Hx=5mm, real
- Hy=0, pen p=currentpen, filltype filltype=NoFill)', `picture
- checker(real Hx=5mm, real Hy=0, pen p=currentpen)', and `picture
- brick(real Hx=5mm, real Hy=0, pen p=currentpen)' defined in
- `patterns.asy': size(0,90);
- import patterns;
-
- add("tile",tile());
- add("filledtilewithmargin",tile(6mm,4mm,red,Fill),(1mm,1mm),(1mm,1mm));
- add("checker",checker());
- add("brick",brick());
-
- real s=2.5;
- filldraw(unitcircle,pattern("tile"));
- filldraw(shift(s,0)*unitcircle,pattern("filledtilewithmargin"));
- filldraw(shift(2s,0)*unitcircle,pattern("checker"));
- filldraw(shift(3s,0)*unitcircle,pattern("brick"));
-
-
-
- Hatch patterns can be generated with the routines `picture
- hatch(real H=5mm, pair dir=NE, pen p=currentpen)', `picture
- crosshatch(real H=5mm, pen p=currentpen)': size(0,100);
- import patterns;
-
- add("hatch",hatch());
- add("hatchback",hatch(NW));
- add("crosshatch",crosshatch(3mm));
-
- real s=1.25;
- filldraw(unitsquare,pattern("hatch"));
- filldraw(shift(s,0)*unitsquare,pattern("hatchback"));
- filldraw(shift(2s,0)*unitsquare,pattern("crosshatch"));
-
-
-
- You may need to turn off aliasing in your `PostScript' viewer for
- patterns to appear correctly. Custom patterns can easily be
- constructed, following the examples in `patterns.asy'. The tiled
- pattern can even incorporate shading (*note gradient shading::),
- as illustrated in this example (not included in the manual because
- not all printers support `PostScript' 3): size(0,100);
- import patterns;
-
- real d=4mm;
- picture tiling;
- path square=scale(d)*unitsquare;
- axialshade(tiling,square,white,(0,0),black,(d,d));
- fill(tiling,shift(d,d)*square,blue);
- add("shadedtiling",tiling);
-
- filldraw(unitcircle,pattern("shadedtiling"));
-
-
-
- * One can specify a custom pen nib as an arbitrary polygonal path
- with `pen makepen(path)'; this path represents the mark to be
- drawn for paths containing a single point. This pen nib path can be
- recovered from a pen with `path nib(pen)'. Unlike in `MetaPost',
- the path need not be convex:
-
- size(200);
- pen convex=makepen(scale(10)*polygon(8))+grey;
- draw((1,0.4),convex);
- draw((0,0)---(1,1)..(2,0)--cycle,convex);
-
- pen nonconvex=scale(10)*
- makepen((0,0)--(0.25,-1)--(0.5,0.25)--(1,0)--(0.5,1.25)--cycle)+red;
- draw((0.5,-1.5),nonconvex);
- draw((0,-1.5)..(1,-0.5)..(2,-1.5),nonconvex);
-
-
-
- The value `nullpath' represents a circular pen nib (the default);
- an elliptical pen can be achieved simply by multiplying the pen by
- a transform: `yscale(2)*currentpen'.
-
- * One can prevent labels from overwriting one another by using the
- pen attribute `overwrite', which takes a single argument:
-
- `Allow'
- Allow labels to overwrite one another. This is the default
- behaviour (unless overridden with `defaultpen(pen)'.
-
- `Suppress'
- Suppress, with a warning, each label that would overwrite
- another label.
-
- `SuppressQuiet'
- Suppress, without warning, each label that would overwrite
- another label.
-
- `Move'
- Move a label that would overwrite another out of the way and
- issue a warning. As this adjustment is during the final
- output phase (in `PostScript' coordinates) it could result in
- a larger figure than requested.
-
- `MoveQuiet'
- Move a label that would overwrite another out of the way,
- without warning. As this adjustment is during the final
- output phase (in `PostScript' coordinates) it could result in
- a larger figure than requested.
-
-
-
- The routine `defaultpen()' returns the current default pen
-attributes. Calling the routine `resetdefaultpen()' resets all pen
-default attributes to their initial values.
-
-
-File: asymptote.info, Node: Transforms, Next: Frames and pictures, Prev: Pens, Up: Programming
-
-6.4 Transforms
-==============
-
-`Asymptote' makes extensive use of affine transforms. A pair `(x,y)' is
-transformed by the transform `t=(t.x,t.y,t.xx,t.xy,t.yx,t.yy)' to
-`(x',y')', where
-x' = t.x + t.xx * x + t.xy * y
-y' = t.y + t.yx * x + t.yy * y
- This is equivalent to the `PostScript' transformation `[t.xx t.yx t.xy
-t.yy t.x t.y]'.
-
- Transforms can be applied to pairs, guides, paths, pens, strings,
-transforms, frames, and pictures by multiplication (via the binary
-operator `*') on the left (*note circle:: for an example). Transforms
-can be composed with one another and inverted with the function
-`transform inverse(transform t)'; they can also be raised to any
-integer power with the `^' operator.
-
- The built-in transforms are:
-
-`transform identity();'
- the identity transform;
-
-`transform shift(pair z);'
- translates by the pair `z';
-
-`transform shift(real x, real y);'
- translates by the pair `(x,y)';
-
-`transform xscale(real x);'
- scales by `x' in the x direction;
-
-`transform yscale(real y);'
- scales by `y' in the y direction;
-
-`transform scale(real s);'
- scale by `s' in both x and y directions;
-
-`transform scale(real x, real y);'
- scale by `x' in the x direction and by `y' in the y direction;
-
-`transform slant(real s);'
- maps `(x,y)' -> `(x+s*y,y)';
-
-`transform rotate(real angle, pair z=(0,0));'
- rotates by `angle' in degrees about `z';
-
-`transform reflect(pair a, pair b);'
- reflects about the line `a--b'.
-
- The implicit initializer for transforms is `identity()'. The
-routines `shift(transform t)' and `shiftless(transform t)' return the
-transforms `(t.x,t.y,0,0,0,0)' and `(0,0,t.xx,t.xy,t.yx,t.yy)'
-respectively.
-
-
-File: asymptote.info, Node: Frames and pictures, Next: Files, Prev: Transforms, Up: Programming
-
-6.5 Frames and pictures
-=======================
-
-`frame'
- Frames are canvases for drawing in `PostScript' coordinates. While
- working with frames directly is occasionally necessary for
- constructing deferred drawing routines, pictures are usually more
- convenient to work with. The implicit initializer for frames is
- `newframe'. The function `bool empty(frame f)' returns `true' only
- if the frame `f' is empty. A frame may be erased with the
- `erase(frame)' routine. The functions `pair min(frame)' and `pair
- max(frame)' return the (left,bottom) and (right,top) coordinates
- of the frame bounding box, respectively. The contents of frame
- `src' may be appended to frame `dest' with the command void add(frame dest, frame src);
- or prepended with void prepend(frame dest, frame src);
- A frame obtained by aligning frame `f' in the direction `align',
- in a manner analogous to the `align' argument of `label' (*note
- label::), is returned by frame align(frame f, pair align);
-
- To draw or fill a box or ellipse around a label or frame and
- return the boundary as a path, use one of the predefined
- `envelope' routines path box(frame f, Label L="", real xmargin=0,
- real ymargin=xmargin, pen p=currentpen,
- filltype filltype=NoFill, bool above=true);
- path roundbox(frame f, Label L="", real xmargin=0,
- real ymargin=xmargin, pen p=currentpen,
- filltype filltype=NoFill, bool above=true);
- path ellipse(frame f, Label L="", real xmargin=0,
- real ymargin=xmargin, pen p=currentpen,
- filltype filltype=NoFill, bool above=true);
-
-`picture'
- Pictures are high-level structures (*note Structures::) defined in
- the module `plain' that provide canvases for drawing in user
- coordinates. The default picture is called `currentpicture'. A
- new picture can be created like this: picture pic;
- Anonymous pictures can be made by the expression `new picture'.
-
- The `size' routine specifies the dimensions of the desired picture:
-
- void size(picture pic=currentpicture, real x, real y=x,
- bool keepAspect=Aspect);
-
- If the `x' and `y' sizes are both 0, user coordinates will be
- interpreted as `PostScript' coordinates. In this case, the
- transform mapping `pic' to the final output frame is `identity()'.
-
- If exactly one of `x' or `y' is 0, no size restriction is imposed
- in that direction; it will be scaled the same as the other
- direction.
-
- If `keepAspect' is set to `Aspect' or `true', the picture will be
- scaled with its aspect ratio preserved such that the final width
- is no more than `x' and the final height is no more than `y'.
-
- If `keepAspect' is set to `IgnoreAspect' or `false', the picture
- will be scaled in both directions so that the final width is `x'
- and the height is `y'.
-
- To make the user coordinates of picture `pic' represent multiples
- of `x' units in the x direction and `y' units in the y direction,
- use void unitsize(picture pic=currentpicture, real x, real y=x);
- When nonzero, these `x' and `y' values override the corresponding
- size parameters of picture `pic'.
-
- The routine void size(picture pic=currentpicture, real xsize, real ysize,
- pair min, pair max);
- forces the final picture scaling to map the user coordinates
- `box(min,max)' to a region of width `xsize' and height `ysize'
- (when these parameters are nonzero).
-
- Alternatively, calling the routine transform fixedscaling(picture pic=currentpicture, pair min,
- pair max, pen p=nullpen, bool warn=false);
- will cause picture `pic' to use a fixed scaling to map user
- coordinates in `box(min,max)' to the (already specified) picture
- size, taking account of the width of pen `p'. A warning will be
- issued if the final picture exceeds the specified size.
-
- A picture `pic' can be fit to a frame and output to a file
- `prefix'.`format' using image format `format' by calling the
- `shipout' function: void shipout(string prefix=defaultfilename, picture pic=currentpicture,
- orientation orientation=orientation,
- string format="", bool wait=false, bool view=true,
- string options="", string script="",
- light light=currentlight, projection P=currentprojection)
- The default output format, `PostScript', may be changed with the
- `-f' or `-tex' command-line options. The `options', `script', and
- `projection' parameters are only relevant for 3D pictures. If
- `defaultfilename' is an empty string, the prefix `outprefix()'
- will be used.
-
- A `shipout()' command is added implicitly at file exit if no
- previous `shipout' commands have been executed. The default page
- orientation is `Portrait'; this may be modified by changing the
- variable `orientation'. To output in landscape mode, simply set
- the variable `orientation=Landscape' or issue the command shipout(Landscape);
-
- To rotate the page by -90 degrees, use the orientation `Seascape'. The
- orientation `UpsideDown' rotates the page by 180 degrees.
-
- A picture `pic' can be explicitly fit to a frame by calling frame pic.fit(real xsize=pic.xsize, real ysize=pic.ysize,
- bool keepAspect=pic.keepAspect);
- The default size and aspect ratio settings are those given to the
- `size' command (which default to `0', `0', and `true',
- respectively). The transformation that would currently be used to
- fit a picture `pic' to a frame is returned by the member function
- `pic.calculateTransform()'.
-
- In certain cases (e.g. 2D graphs) where only an approximate size
- estimate for `pic' is available, the picture fitting routine frame pic.scale(real xsize=this.xsize, real ysize=this.ysize,
- bool keepAspect=this.keepAspect);
- (which scales the resulting frame, including labels and fixed-size
- objects) will enforce perfect compliance with the requested size
- specification, but should not normally be required.
-
- To draw a bounding box with margins around a picture, fit the
- picture to a frame using the function frame bbox(picture pic=currentpicture, real xmargin=0,
- real ymargin=xmargin, pen p=currentpen,
- filltype filltype=NoFill);
- Here `filltype' specifies one of the following fill types:
- `FillDraw'
- Fill the interior and draw the boundary.
-
- `FillDraw(real xmargin=0, real ymargin=xmargin, pen fillpen=nullpen,'
- `pen drawpen=nullpen)' If `fillpen' is `nullpen', fill with
- the drawing pen; otherwise fill with pen `fillpen'. If
- `drawpen' is `nullpen', draw the boundary with `fillpen';
- otherwise with `drawpen'. An optional margin of `xmargin' and
- `ymargin' can be specified.
-
- `Fill'
- Fill the interior.
-
- `Fill(real xmargin=0, real ymargin=xmargin, pen p=nullpen)'
- If `p' is `nullpen', fill with the drawing pen; otherwise
- fill with pen `p'. An optional margin of `xmargin' and
- `ymargin' can be specified.
-
- `NoFill'
- Do not fill.
-
- `Draw'
- Draw only the boundary.
-
- `Draw(real xmargin=0, real ymargin=xmargin, pen p=nullpen)'
- If `p' is `nullpen', draw the boundary with the drawing pen;
- otherwise draw with pen `p'. An optional margin of `xmargin'
- and `ymargin' can be specified.
-
- `UnFill'
- Clip the region.
-
- `UnFill(real xmargin=0, real ymargin=xmargin)'
- Clip the region and surrounding margins `xmargin' and
- `ymargin'.
-
- `RadialShade(pen penc, pen penr)'
- Fill varying radially from `penc' at the center of the
- bounding box to `penr' at the edge.
-
- `RadialShadeDraw(real xmargin=0, real ymargin=xmargin, pen penc,'
- `pen penr, pen drawpen=nullpen)' Fill with RadialShade and
- draw the boundary.
-
-
- For example, to draw a bounding box around a picture with a 0.25 cm
- margin and output the resulting frame, use the command: shipout(bbox(0.25cm));
- A `picture' may be fit to a frame with the background color pen
- `p', using the function `bbox(p,Fill)'.
-
- The functions pair min(picture pic, user=false);
- pair max(picture pic, user=false);
- pair size(picture pic, user=false);
- calculate the bounds that picture `pic' would have if it were
- currently fit to a frame using its default size specification. If
- `user' is `false' the returned value is in `PostScript'
- coordinates, otherwise it is in user coordinates.
-
- The function pair point(picture pic=currentpicture, pair dir, bool user=true);
- is a convenient way of determining the point on the bounding box
- of `pic' in the direction `dir' relative to its center, ignoring
- the contributions from fixed-size objects (such as labels and
- arrowheads). If `user' is `true' the returned value is in user
- coordinates, otherwise it is in `PostScript' coordinates.
-
- The function pair truepoint(picture pic=currentpicture, pair dir, bool user=true);
- is identical to `point', except that it also accounts for
- fixed-size objects, using the scaling transform that picture `pic'
- would have if currently fit to a frame using its default size
- specification. If `user' is `true' the returned value is in user
- coordinates, otherwise it is in `PostScript' coordinates.
-
- Sometimes it is useful to draw objects on separate pictures and
- add one picture to another using the `add' function: void add(picture src, bool group=true,
- filltype filltype=NoFill, bool above=true);
- void add(picture dest, picture src, bool group=true,
- filltype filltype=NoFill, bool above=true);
- The first example adds `src' to `currentpicture'; the second one
- adds `src' to `dest'. The `group' option specifies whether or not
- the graphical user interface `xasy' should treat all of the
- elements of `src' as a single entity (*note GUI::), `filltype'
- requests optional background filling or clipping, and `above'
- specifies whether to add `src' above or below existing objects.
-
- There are also routines to add a picture or frame `src' specified
- in postscript coordinates to another picture `dest' (or
- `currentpicture') about the user coordinate `position': void add(picture src, pair position, bool group=true,
- filltype filltype=NoFill, bool above=true);
- void add(picture dest, picture src, pair position,
- bool group=true, filltype filltype=NoFill, bool above=true);
- void add(picture dest=currentpicture, frame src, pair position=0,
- bool group=true, filltype filltype=NoFill, bool above=true);
- void add(picture dest=currentpicture, frame src, pair position,
- pair align, bool group=true, filltype filltype=NoFill,
- bool above=true);
-
- The optional `align' argument in the last form specifies a
- direction to use for aligning the frame, in a manner analogous to
- the `align' argument of `label' (*note label::). However, one key
- difference is that when `align' is not specified, labels are
- centered, whereas frames and pictures are aligned so that their
- origin is at `position'. Illustrations of frame alignment can be
- found in the examples *note errorbars:: and *note image::. If you
- want to align three or more subpictures, group them two at a time:
-
- picture pic1;
- real size=50;
- size(pic1,size);
- fill(pic1,(0,0)--(50,100)--(100,0)--cycle,red);
-
- picture pic2;
- size(pic2,size);
- fill(pic2,unitcircle,green);
-
- picture pic3;
- size(pic3,size);
- fill(pic3,unitsquare,blue);
-
- picture pic;
- add(pic,pic1.fit(),(0,0),N);
- add(pic,pic2.fit(),(0,0),10S);
-
- add(pic.fit(),(0,0),N);
- add(pic3.fit(),(0,0),10S);
-
-
-
- Alternatively, one can use `attach' to automatically increase the
- size of picture `dest' to accommodate adding a frame `src' about
- the user coordinate `position': void attach(picture dest=currentpicture, frame src,
- pair position=0, bool group=true,
- filltype filltype=NoFill, bool above=true);
- void attach(picture dest=currentpicture, frame src,
- pair position, pair align, bool group=true,
- filltype filltype=NoFill, bool above=true);
-
- To erase the contents of a picture (but not the size
- specification), use the function void erase(picture pic=currentpicture);
-
- To save a snapshot of `currentpicture', `currentpen', and
- `currentprojection', use the function `save()'.
-
- To restore a snapshot of `currentpicture', `currentpen', and
- `currentprojection', use the function `restore()'.
-
- Many further examples of picture and frame operations are provided
- in the base module `plain'.
-
- It is possible to insert verbatim `PostScript' commands in a
- picture with one of the routines void postscript(picture pic=currentpicture, string s);
- void postscript(picture pic=currentpicture, string s, pair min,
- pair max)
- Here `min' and `max' can be used to specify explicit bounds
- associated with the resulting `PostScript' code.
-
- Verbatim TeX commands can be inserted in the intermediate `LaTeX'
- output file with one of the functions void tex(picture pic=currentpicture, string s);
- void tex(picture pic=currentpicture, string s, pair min, pair max)
- Here `min' and `max' can be used to specify explicit bounds
- associated with the resulting TeX code.
-
- To issue a global TeX command (such as a TeX macro definition) in
- the TeX preamble (valid for the remainder of the top-level module)
- use: void texpreamble(string s);
-
- The TeX environment can be reset to its initial state, clearing all
- macro definitions, with the function void texreset();
-
- The routine void usepackage(string s, string options="");
- provides a convenient abbreviation for texpreamble("\usepackage["+options+"]{"+s+"}");
- that can be used for importing `LaTeX' packages.
-
-
-
-File: asymptote.info, Node: Files, Next: Variable initializers, Prev: Frames and pictures, Up: Programming
-
-6.6 Files
-=========
-
-`Asymptote' can read and write text files (including comma-separated
-value) files and portable XDR (External Data Representation) binary
-files.
-
- An input file must first be opened with
-input(string name="", bool check=true, string comment="#", string mode="");
- reading is then done by assignment:
-file fin=input("test.txt");
-real a=fin;
-
- If the optional boolean argument `check' is `false', no check will
-be made that the file exists. If the file does not exist or is not
-readable, the function `bool error(file)' will return `true'. The
-first character of the string `comment' specifies a comment character.
-If this character is encountered in a data file, the remainder of the
-line is ignored. When reading strings, a comment character followed
-immediately by another comment character is treated as a single literal
-comment character.
-
- One can change the current working directory for read operations to
-the contents of the string `s' with the function `string cd(string s)',
-which returns the new working directory. If `string s' is empty, the
-path is reset to the value it had at program startup.
-
- When reading pairs, the enclosing parenthesis are optional. Strings
-are also read by assignment, by reading characters up to but not
-including a newline. In addition, `Asymptote' provides the function
-`string getc(file)' to read the next character (treating the comment
-character as an ordinary character) and return it as a string.
-
- A file named `name' can be open for output with
-file output(string name="", bool update=false, string comment="#", string mode="");
- If `update=false', any existing data in the file will be erased and
-only write operations can be used on the file. If `update=true', any
-existing data will be preserved, the position will be set to the
-end-of-file, and both reading and writing operations will be enabled.
-For security reasons, writing to files in directories other than the
-current directory is allowed only if the `-globalwrite' (or `-nosafe')
-command-line option is specified. The function `string mktemp(string
-s)' may be used to create and return the name of a unique temporary
-file in the current directory based on the string `s'.
-
- There are two special files: `stdin', which reads from the keyboard,
-and `stdout', which writes to the terminal. The implicit initializer
-for files is `null'.
-
- Data of a built-in type `T' can be written to an output file by
-calling one of the functions
-write(string s="", T x, suffix suffix=endl ... T[]);
-write(file file, string s="", T x, suffix suffix=none ... T[]);
-write(file file=stdout, string s="", explicit T[] x ... T[][]);
-write(file file=stdout, T[][]);
-write(file file=stdout, T[][][]);
-write(suffix suffix=endl);
-write(file file, suffix suffix=none);
- If `file' is not specified, `stdout' is used and terminated by default
-with a newline. If specified, the optional identifying string `s' is
-written before the data `x'. An arbitrary number of data values may be
-listed when writing scalars or one-dimensional arrays. The `suffix' may
-be one of the following: `none' (do nothing), `flush' (output buffered
-data), `endl' (terminate with a newline and flush), `newl' (terminate
-with a newline), `DOSendl' (terminate with a DOS newline and flush),
-`DOSnewl' (terminate with a DOS newline), `tab' (terminate with a tab),
-or `comma' (terminate with a comma). Here are some simple examples of
-data output:
-file fout=output("test.txt");
-write(fout,1); // Writes "1"
-write(fout); // Writes a new line
-write(fout,"List: ",1,2,3); // Writes "List: 1 2 3"
- A file may be opened with `mode="xdr"', to read or write double
-precision (64-bit) reals and single precision (32-bit) integers in Sun
-Microsystem's XDR (External Data Representation) portable binary format
-(available on all `UNIX' platforms). Alternatively, a file may also be
-opened with `mode="binary"' to read or write double precision reals and
-single precision integers in the native (nonportable) machine binary
-format. The virtual member functions `file singlereal(bool b=true)'
-and `file singleint(bool b=true)' be used to change the precision of
-real and integer I/O operations, respectively, for an XDR or binary
-file `f'. Similarly, the function `file signedint(bool b=true)' can be
-used to modify the signedness of integer reads and writes for an XDR or
-binary file `f'.
-
- The virtual members `name', `mode', `singlereal', `singleint', and
-`signedint' may be used to query the respective parameters for a given
-file.
-
- One can test a file for end-of-file with the boolean function
-`eof(file)', end-of-line with `eol(file)', and for I/O errors with
-`error(file)'. One can flush the output buffers with `flush(file)',
-clear a previous I/O error with `clear(file)', and close the file with
-`close(file)'. The function `int precision(file file=stdout, int
-digits=0)' sets the number of digits of output precision for `file' to
-`digits', provided `digits' is nonzero, and returns the previous
-precision setting. The function `int tell(file)' returns the current
-position in a file relative to the beginning. The routine `seek(file
-file, int pos)' can be used to change this position, where a negative
-value for the position `pos' is interpreted as relative to the
-end-of-file. For example, one can rewind a file `file' with the command
-`seek(file,0)' and position to the final character in the file with
-`seek(file,-1)'. The command `seekeof(file)' sets the position to the
-end of the file.
-
- Assigning `settings.scroll=n' for a positive integer `n' requests a
-pause after every `n' output lines to `stdout'. One may then press
-`Enter' to continue to the next `n' output lines, `s' followed by
-`Enter' to scroll without further interruption, or `q' followed by
-`Enter' to quit the current output operation. If `n' is negative, the
-output scrolls a page at a time (i.e. by one less than the current
-number of display lines). The default value, `settings.scroll=0',
-specifies continuous scrolling.
-
- The routines
-string getstring(string name="", string default="", string prompt="",
- bool store=true);
-int getint(string name="", int default=0, string prompt="",
- bool store=true);
-real getreal(string name="", real default=0, string prompt="",
- bool store=true);
-pair getpair(string name="", pair default=0, string prompt="",
- bool store=true);
-triple gettriple(string name="", triple default=(0,0,0), string prompt="",
- bool store=true);
- defined in the module `plain' may be used to prompt for a value from
-`stdin' using the GNU `readline' library. If `store=true', the history
-of values for `name' is stored in the file `".asy_history_"+name'
-(*note history::). The most recent value in the history will be used to
-provide a default value for subsequent runs. The default value
-(initially `default') is displayed after `prompt'. These functions are
-based on the internal routines
-string readline(string prompt="", string name="", bool tabcompletion=false);
-void saveline(string name, string value, bool store=true);
- Here, `readline' prompts the user with the default value formatted
-according to `prompt', while `saveline' is used to save the string
-`value' in a local history named `name', optionally storing the local
-history in a file `".asy_history_"+name'.
-
- The routine `history(string name, int n=1)' can be used to look up
-the `n' most recent values (or all values up to `historylines' if
-`n=0') entered for string `name'. The routine `history(int n=0)'
-returns the interactive history. For example,
-write(output("transcript.asy"),history());
- outputs the interactive history to the file `transcript.asy'.
-
- The function `int delete(string s)' deletes the file named by the
-string `s'. Unless the `-globalwrite' (or `-nosafe') option is enabled,
-the file must reside in the current directory. The function `int
-rename(string from, string to)' may be used to rename file `from' to
-file `to'. Unless the `-globalwrite' (or `-nosafe') option is enabled,
-this operation is restricted to the current directory. The functions
-int convert(string args="", string file="", string format="");
-int animate(string args="", string file="", string format="");
- call the `ImageMagick' commands `convert' and `animate', respectively,
-with the arguments `args' and the file name constructed from the
-strings `file' and `format'.
-
-
-File: asymptote.info, Node: Variable initializers, Next: Structures, Prev: Files, Up: Programming
-
-6.7 Variable initializers
-=========================
-
-A variable can be assigned a value when it is declared, as in `int
-x=3;' where the variable `x' is assigned the value `3'. As well as
-literal constants such as `3', arbitary expressions can be used as
-initializers, as in `real x=2*sin(pi/2);'.
-
- A variable is not added to the namespace until after the initializer
-is evaluated, so for example, in
-int x=2;
-int x=5*x;
- the `x' in the initializer on the second line refers to the variable
-`x' declared on the first line. The second line, then, declares a
-variable `x' shadowing the original `x' and initializes it to the value
-`10'.
-
- Variables of most types can be declared without an explicit
-initializer and they will be initialized by the default initializer of
-that type:
-
- * Variables of the numeric types `int', `real', and `pair' are all
- initialized to zero; variables of type `triple' are initialized to
- `O=(0,0,0)'.
-
- * `boolean' variables are initialized to `false'.
-
- * `string' variables are initialized to the empty string.
-
- * `transform' variables are initialized to the identity
- transformation.
-
- * `path' and `guide' variables are initialized to `nullpath'.
-
- * `pen' variables are initialized to the default pen.
-
- * `frame' and `picture' variables are initialized to empty frames
- and pictures, respectively.
-
- * `file' variables are initialized to `null'.
-
- The default initializers for user-defined array, structure, and
-function types are explained in their respective sections. Some types,
-such as `code', do not have default initializers. When a variable of
-such a type is introduced, the user must initialize it by explicitly
-giving it a value.
-
- The default initializer for any type `T' can be redeclared by
-defining the function `T operator init()'. For instance, `int'
-variables are usually initialized to zero, but in
-int operator init() {
- return 3;
-}
-int y;
-
-the variable `y' is initialized to `3'. This example was given for
-illustrative purposes; redeclaring the initializers of built-in types
-is not recommended. Typically, `operator init' is used to define
-sensible defaults for user-defined types.
-
- The special type `var' may be used to infer the type of a variable
-from its initializer. If the initializer is an expression of a unique
-type, then the variable will be defined with that type. For instance,
-var x=5;
-var y=4.3;
-var reddash=red+dashed;
- is equivalent to
-int x=5;
-real y=4.3;
-pen reddash=red+dashed;
-
- `var' may also be used with the extended `for' loop syntax.
-
-int[] a = {1,2,3};
-for (var x : a)
- write(x);
-
-
-File: asymptote.info, Node: Structures, Next: Operators, Prev: Variable initializers, Up: Programming
-
-6.8 Structures
-==============
-
-Users may also define their own data types as structures, along with
-user-defined operators, much as in C++. By default, structure members
-are `public' (may be read and modified anywhere in the code), but may be
-optionally declared `restricted' (readable anywhere but writeable only
-inside the structure where they are defined) or `private' (readable and
-writable only inside the structure). In a structure definition, the
-keyword `this' can be used as an expression to refer to the enclosing
-structure. Any code at the top-level scope within the structure is
-executed on initialization.
-
- Variables hold references to structures. That is, in the example:
-struct T {
- int x;
-}
-
-T foo=new T;
-T bar=foo;
-bar.x=5;
-
- The variable `foo' holds a reference to an instance of the structure
-`T'. When `bar' is assigned the value of `foo', it too now holds a
-reference to the same instance as `foo' does. The assignment `bar.x=5'
-changes the value of the field `x' in that instance, so that `foo.x'
-will also be equal to `5'.
-
- The expression `new T' creates a new instance of the structure `T'
-and returns a reference to that instance. In creating the new
-instance, any code in the body of the record definition is executed.
-For example:
-int Tcount=0;
-struct T {
- int x;
- ++Tcount;
-}
-
-T foo=new T;
-
- Here, the expression `new T' will produce a new instance of the
-class, but will also cause `Tcount' to be incremented, so that it keeps
-track of the number of instances produced.
-
- The expression `null' can be cast to any structure type to yield a
-null reference, a reference that does not actually refer to any
-instance of the structure. Trying to use a field of a null reference
-will cause an error.
-
- The function `bool alias(T,T)' checks to see if two structure
-references refer to the same instance of the structure (or both to
-`null'). For example, in the example code at the start of the section,
-`alias(foo,bar)' would return true, but `alias(foo,new T)' would return
-false, as `new T' creates a new instance of the structure `T'. The
-boolean operators `==' and `!=' are by default equivalent to `alias' and
-`!alias' respectively, but may be overwritten for a particular type
-(for example, to do a deep comparison).
-
- After the definition of a structure `T', a variable of type `T' is
-initialized to a new instance (`new T') by default. During the
-definition of the structure, however, variables of type `T' are
-initialized to `null' by default. This special behaviour is to avoid
-infinite recursion of creating new instances in code such as
-struct tree {
- int value;
- tree left;
- tree right;
-}
-
- Here is a simple example that illustrates the use of structures:
-struct S {
- real a=1;
- real f(real a) {return a+this.a;}
-}
-
-S s; // Initializes s with new S;
-
-write(s.f(2)); // Outputs 3
-
-S operator + (S s1, S s2)
-{
- S result;
- result.a=s1.a+s2.a;
- return result;
-}
-
-write((s+s).f(0)); // Outputs 2
-
- It is often convenient to have functions that construct new
-instances of a structure. Say we have a `Person' structure:
-struct Person {
- string firstname;
- string lastname;
-}
-
-Person joe=new Person;
-joe.firstname="Joe";
-joe.lastname="Jones";
- Creating a new Person is a chore; it takes three lines to create a new
-instance and to initialize its fields (that's still considerably less
-effort than creating a new person in real life, though).
-
- We can reduce the work by defining a constructor function
-`Person(string,string)':
-struct Person {
- string firstname;
- string lastname;
-
- static Person Person(string firstname, string lastname) {
- Person p=new Person;
- p.firstname=firstname;
- p.lastname=lastname;
- return p;
- }
-}
-
-Person joe=Person.Person("Joe", "Jones");
-
- While it is now easier than before to create a new instance, we still
-have to refer to the constructor by the qualified name `Person.Person'.
-If we add the line
-from Person unravel Person;
- immediately after the structure definition, then the constructor can
-be used without qualification: `Person joe=Person("Joe", "Jones");'.
-
- The constructor is now easy to use, but it is quite a hassle to
-define. If you write a lot of constructors, you will find that you are
-repeating a lot of code in each of them. Fortunately, your friendly
-neighbourhood Asymptote developers have devised a way to automate much
-of the process.
-
- If, in the body of a structure, Asymptote encounters the definition
-of a function of the form `void operator init(ARGS)', it implicitly
-defines a constructor function of the arguments `ARGS' that uses the
-`void operator init' function to initialize a new instance of the
-structure. That is, it essentially defines the following constructor
-(assuming the structure is called `Foo'):
-
- static Foo Foo(ARGS) {
- Foo instance=new Foo;
- instance.operator init(ARGS);
- return instance;
- }
-
- This constructor is also implicitly copied to the enclosing scope
-after the end of the structure definition, so that it can used
-subsequently without qualifying it by the structure name. Our `Person'
-example can thus be implemented as:
-struct Person {
- string firstname;
- string lastname;
-
- void operator init(string firstname, string lastname) {
- this.firstname=firstname;
- this.lastname=lastname;
- }
-}
-
-Person joe=Person("Joe", "Jones");
-
- The use of `operator init' to implicitly define constructors should
-not be confused with its use to define default values for variables
-(*note Variable initializers::). Indeed, in the first case, the return
-type of the `operator init' must be `void' while in the second, it must
-be the (non-`void') type of the variable.
-
- The function `cputime()' returns a structure `cputime' with
-cumulative CPU times broken down into the fields `parent.user',
-`parent.system', `child.user', and `child.system'. For convenience, the
-incremental fields `change.user' and `change.system' indicate the
-change in the corresponding total parent and child CPU times since the
-last call to `cputime()'. The function
-void write(file file=stdout, string s="", cputime c,
- string format=cputimeformat, suffix suffix=none);
- displays the incremental user cputime followed by "u", the incremental
-system cputime followed by "s", the total user cputime followed by "U",
-and the total system cputime followed by "S".
-
- Much like in C++, casting (*note Casts::) provides for an elegant
-implementation of structure inheritance, including virtual functions:
-struct parent {
- real x;
- void operator init(int x) {this.x=x;}
- void virtual(int) {write(0);}
- void f() {virtual(1);}
-}
-
-void write(parent p) {write(p.x);}
-
-struct child {
- parent parent;
- real y=3;
- void operator init(int x) {parent.operator init(x);}
- void virtual(int x) {write(x);}
- parent.virtual=virtual;
- void f()=parent.f;
-}
-
-parent operator cast(child child) {return child.parent;}
-
-parent p=parent(1);
-child c=child(2);
-
-write(c); // Outputs 2;
-
-p.f(); // Outputs 0;
-c.f(); // Outputs 1;
-
-write(c.parent.x); // Outputs 2;
-write(c.y); // Outputs 3;
-
- For further examples of structures, see `Legend' and `picture' in
-the `Asymptote' base module `plain'.
-
-
-File: asymptote.info, Node: Operators, Next: Implicit scaling, Prev: Structures, Up: Programming
-
-6.9 Operators
-=============
-
-* Menu:
-
-* Arithmetic & logical:: Basic mathematical operators
-* Self & prefix operators:: Increment and decrement
-* User-defined operators:: Overloading operators
-
-
-File: asymptote.info, Node: Arithmetic & logical, Next: Self & prefix operators, Up: Operators
-
-6.9.1 Arithmetic & logical operators
-------------------------------------
-
-`Asymptote' uses the standard binary arithmetic operators. However,
-when one integer is divided by another, both arguments are converted to
-real values before dividing and a real quotient is returned (since this
-is usually what is intended). The function `int quotient(int x, int y)'
-returns the greatest integer less than or equal to `x/y'. In all other
-cases both operands are promoted to the same type, which will also be
-the type of the result:
-`+'
- addition
-
-`-'
- subtraction
-
-`*'
- multiplication
-
-`/'
- division
-
-`%'
- modulo; the result always has the same sign as the divisor. In
- particular, this makes `q*quotient(p,q)+p%q == p' for all integers
- `p' and nonzero integers `q'.
-
-`^'
- power; if the exponent (second argument) is an int, recursive
- multiplication is used; otherwise, logarithms and exponentials are
- used (`**' is a synonym for `^').
-
-
- The usual boolean operators are also defined:
-`=='
- equals
-
-`!='
- not equals
-
-`<'
- less than
-
-`<='
- less than or equals
-
-`>='
- greater than or equals
-
-`>'
- greater than
-
-`&&'
- and (with conditional evaluation of right-hand argument)
-
-`&'
- and
-
-`||'
- or (with conditional evaluation of right-hand argument)
-
-`|'
- or
-
-`^'
- xor
-
-`!'
- not
-
- `Asymptote' also supports the C-like conditional syntax:
-bool positive=(pi > 0) ? true : false;
-
- The function `T interp(T a, T b, real t)' returns `(1-t)*a+t*b' for
-nonintegral built-in arithmetic types `T'. If `a' and `b' are pens,
-they are first promoted to the same color space.
-
- `Asymptote' also defines bitwise functions `int AND(int,int)', `int
-OR(int,int)', `int XOR(int,int)', `int NOT(int)', `int CLZ(int)' (count
-leading zeros), and `int CTZ(int)' (count trailing zeros).
-
-
-File: asymptote.info, Node: Self & prefix operators, Next: User-defined operators, Prev: Arithmetic & logical, Up: Operators
-
-6.9.2 Self & prefix operators
------------------------------
-
-As in C, each of the arithmetic operators `+', `-', `*', `/', `%', and
-`^' can be used as a self operator. The prefix operators `++'
-(increment by one) and `--' (decrement by one) are also defined. For
-example,
-int i=1;
-i += 2;
-int j=++i;
-
-is equivalent to the code
-int i=1;
-i=i+2;
-int j=i=i+1;
-
- However, postfix operators like `i++' and `i--' are not defined
-(because of the inherent ambiguities that would arise with the `--'
-path-joining operator). In the rare instances where `i++' and `i--' are
-really needed, one can substitute the expressions `(++i-1)' and
-`(--i+1)', respectively.
-
-
-File: asymptote.info, Node: User-defined operators, Prev: Self & prefix operators, Up: Operators
-
-6.9.3 User-defined operators
-----------------------------
-
-The following symbols may be used with `operator' to define or redefine
-operators on structures and built-in types:
-- + * / % ^ ! < > == != <= >= & | ^^ .. :: -- --- ++
-<< >> $ $$ @ @@
- The operators on the second line have precedence one higher than the
-boolean operators `<', `>', `<=', and `>='.
-
- Guide operators like `..' may be overloaded, say, to write a user
-function that produces a new guide from a given guide:
-guide dots(... guide[] g)=operator ..;
-
-guide operator ..(... guide[] g) {
- guide G;
- if(g.length > 0) {
- write(g[0]);
- G=g[0];
- }
- for(int i=1; i < g.length; ++i) {
- write(g[i]);
- write();
- G=dots(G,g[i]);
- }
- return G;
-}
-
-guide g=(0,0){up}..{SW}(100,100){NE}..{curl 3}(50,50)..(10,10);
-write("g=",g);
-
-
-File: asymptote.info, Node: Implicit scaling, Next: Functions, Prev: Operators, Up: Programming
-
-6.10 Implicit scaling
-=====================
-
-If a numeric literal is in front of certain types of expressions, then
-the two are multiplied:
-int x=2;
-real y=2.0;
-real cm=72/2.540005;
-
-write(3x);
-write(2.5x);
-write(3y);
-write(-1.602e-19 y);
-write(0.5(x,y));
-write(2x^2);
-write(3x+2y);
-write(3(x+2y));
-write(3sin(x));
-write(3(sin(x))^2);
-write(10cm);
-
- This produces the output
-6
-5
-6
--3.204e-19
-(1,1)
-8
-10
-18
-2.72789228047704
-2.48046543129542
-283.464008929116
-
-
-File: asymptote.info, Node: Functions, Next: Arrays, Prev: Implicit scaling, Up: Programming
-
-6.11 Functions
-==============
-
-`Asymptote' functions are treated as variables with a signature
-(non-function variables have null signatures). Variables with the same
-name are allowed, so long as they have distinct signatures.
-
- Functions arguments are passed by value. To pass an argument by
-reference, simply enclose it in a structure (*note Structures::).
-
- Here are some significant features of `Asymptote' functions:
-
- 1. Variables with signatures (functions) and without signatures
- (nonfunction variables) are distinct: int x, x();
- x=5;
- x=new int() {return 17;};
- x=x(); // calls x() and puts the result, 17, in the scalar x
-
- 2. Traditional function definitions are allowed: int sqr(int x)
- {
- return x*x;
- }
- sqr=null; // but the function is still just a variable.
-
- 3. Casting can be used to resolve ambiguities: int a, a(), b, b(); // Valid: creates four variables.
- a=b; // Invalid: assignment is ambiguous.
- a=(int) b; // Valid: resolves ambiguity.
- (int) (a=b); // Valid: resolves ambiguity.
- (int) a=b; // Invalid: cast expressions cannot be L-values.
-
- int c();
- c=a; // Valid: only one possible assignment.
-
- 4. Anonymous (so-called "high-order") functions are also allowed: typedef int intop(int);
- intop adder(int m)
- {
- return new int(int n) {return m+n;};
- }
- intop addby7=adder(7);
- write(addby7(1)); // Writes 8.
-
- 5. One may redefine a function `f', even for calls to `f' in
- previously declared functions, by assigning another (anonymous or
- named) function to it. However, if `f' is overloaded by a new
- function definition, previous calls will still access the original
- version of `f', as illustrated in this example: void f() {
- write("hi");
- }
-
- void g() {
- f();
- }
-
- g(); // writes "hi"
-
- f=new void() {write("bye");};
-
- g(); // writes "bye"
-
- void f() {write("overloaded");};
-
- f(); // writes "overloaded"
- g(); // writes "bye"
-
- 6. Anonymous functions can be used to redefine a function variable
- that has been declared (and implicitly initialized to the null
- function) but not yet explicitly defined: void f(bool b);
-
- void g(bool b) {
- if(b) f(b);
- else write(b);
- }
-
- f=new void(bool b) {
- write(b);
- g(false);
- };
-
- g(true); // Writes true, then writes false.
-
-
- `Asymptote' is the only language we know of that treats functions as
-variables, but allows overloading by distinguishing variables based on
-their signatures.
-
- Functions are allowed to call themselves recursively. As in C++,
-infinite nested recursion will generate a stack overflow (reported as a
-segmentation fault, unless a fully working version of the GNU library
-`libsigsegv' (e.g. 2.4 or later) is installed at configuration time).
-
-* Menu:
-
-* Default arguments:: Default values can appear anywhere
-* Named arguments:: Assigning function arguments by keyword
-* Rest arguments:: Functions with a variable number of arguments
-* Mathematical functions:: Standard libm functions
-
-
-File: asymptote.info, Node: Default arguments, Next: Named arguments, Up: Functions
-
-6.11.1 Default arguments
-------------------------
-
-`Asymptote' supports a more flexible mechanism for default function
-arguments than C++: they may appear anywhere in the function prototype.
-Because certain data types are implicitly cast to more sophisticated
-types (*note Casts::) one can often avoid ambiguities by ordering
-function arguments from the simplest to the most complicated. For
-example, given
-real f(int a=1, real b=0) {return a+b;}
- then `f(1)' returns 1.0, but `f(1.0)' returns 2.0.
-
- The value of a default argument is determined by evaluating the
-given `Asymptote' expression in the scope where the called function is
-defined.
-
-
-File: asymptote.info, Node: Named arguments, Next: Rest arguments, Prev: Default arguments, Up: Functions
-
-6.11.2 Named arguments
-----------------------
-
-It is sometimes difficult to remember the order in which arguments
-appear in a function declaration. Named (keyword) arguments make calling
-functions with multiple arguments easier. Unlike in the C and C++
-languages, an assignment in a function argument is interpreted as an
-assignment to a parameter of the same name in the function signature,
-_not within the local scope_. The command-line option `-d' may be used
-to check `Asymptote' code for cases where a named argument may be
-mistaken for a local assignment.
-
- When matching arguments to signatures, first all of the keywords are
-matched, then the arguments without names are matched against the
-unmatched formals as usual. For example,
-int f(int x, int y) {
- return 10x+y;
-}
-write(f(4,x=3));
- outputs 34, as `x' is already matched when we try to match the unnamed
-argument `4', so it gets matched to the next item, `y'.
-
- For the rare occasions where it is desirable to assign a value to
-local variable within a function argument (generally _not_ a good
-programming practice), simply enclose the assignment in parentheses.
-For example, given the definition of `f' in the previous example,
-int x;
-write(f(4,(x=3)));
- is equivalent to the statements
-int x;
-x=3;
-write(f(4,3));
- and outputs 43.
-
- Parameters can be specified as "keyword-only" by putting `keyword'
-immediately before the parameter name, as in `int f(int keyword x)' or
-`int f(int keyword x=77)'. This forces the caller of the function to
-use a named argument to give a value for this parameter. That is,
-`f(x=42)' is legal, but `f(25)' is not. Keyword-only parameters must
-be listed after normal parameters in a function definition.
-
- As a technical detail, we point out that, since variables of the same
-name but different signatures are allowed in the same scope, the code
-int f(int x, int x()) {
- return x+x();
-}
-int seven() {return 7;}
- is legal in `Asymptote', with `f(2,seven)' returning 9. A named
-argument matches the first unmatched formal of the same name, so
-`f(x=2,x=seven)' is an equivalent call, but `f(x=seven,2)' is not, as
-the first argument is matched to the first formal, and `int ()' cannot
-be implicitly cast to `int'. Default arguments do not affect which
-formal a named argument is matched to, so if `f' were defined as
-int f(int x=3, int x()) {
- return x+x();
-}
- then `f(x=seven)' would be illegal, even though `f(seven)' obviously
-would be allowed.
-
-
-File: asymptote.info, Node: Rest arguments, Next: Mathematical functions, Prev: Named arguments, Up: Functions
-
-6.11.3 Rest arguments
----------------------
-
-Rest arguments allow one to write functions that take a variable number
-of arguments:
-// This function sums its arguments.
-int sum(... int[] nums) {
- int total=0;
- for(int i=0; i < nums.length; ++i)
- total += nums[i];
- return total;
-}
-
-sum(1,2,3,4); // returns 10
-sum(); // returns 0
-
-// This function subtracts subsequent arguments from the first.
-int subtract(int start ... int[] subs) {
- for(int i=0; i < subs.length; ++i)
- start -= subs[i];
- return start;
-}
-
-subtract(10,1,2); // returns 7
-subtract(10); // returns 10
-subtract(); // illegal
-
- Putting an argument into a rest array is called _packing_. One can
-give an explicit list of arguments for the rest argument, so `subtract'
-could alternatively be implemented as
-int subtract(int start ... int[] subs) {
- return start - sum(... subs);
-}
-
- One can even combine normal arguments with rest arguments:
-sum(1,2,3 ... new int[] {4,5,6}); // returns 21
- This builds a new six-element array that is passed to `sum' as `nums'.
-The opposite operation, _unpacking_, is not allowed:
-subtract(... new int[] {10, 1, 2});
- is illegal, as the start formal is not matched.
-
- If no arguments are packed, then a zero-length array (as opposed to
-`null') is bound to the rest parameter. Note that default arguments are
-ignored for rest formals and the rest argument is not bound to a
-keyword.
-
- In some cases, keyword-only parameters are helpful to avoid
-arguments intended for the rest parameter to be assigned to other
-parameters. For example, here the use of `keyword' is to avoid
-`pnorm(1.0,2.0,0.3)' matching `1.0' to `p'.
-real pnorm(real keyword p=2.0 ... real[] v)
-{
- return sum(v^p)^(1/p);
-}
-
- The overloading resolution in `Asymptote' is similar to the function
-matching rules used in C++. Every argument match is given a score.
-Exact matches score better than matches with casting, and matches with
-formals (regardless of casting) score better than packing an argument
-into the rest array. A candidate is maximal if all of the arguments
-score as well in it as with any other candidate. If there is one
-unique maximal candidate, it is chosen; otherwise, there is an
-ambiguity error.
-
-int f(path g);
-int f(guide g);
-f((0,0)--(100,100)); // matches the second; the argument is a guide
-
-int g(int x, real y);
-int g(real x, int x);
-
-g(3,4); // ambiguous; the first candidate is better for the first argument,
- // but the second candidate is better for the second argument
-
-int h(... int[] rest);
-int h(real x ... int[] rest);
-
-h(1,2); // the second definition matches, even though there is a cast,
- // because casting is preferred over packing
-
-int i(int x ... int[] rest);
-int i(real x, real y ... int[] rest);
-
-i(3,4); // ambiguous; the first candidate is better for the first argument,
- // but the second candidate is better for the second one
-
-
-File: asymptote.info, Node: Mathematical functions, Prev: Rest arguments, Up: Functions
-
-6.11.4 Mathematical functions
------------------------------
-
-`Asymptote' has built-in versions of the standard `libm' mathematical
-real(real) functions `sin', `cos', `tan', `asin', `acos', `atan',
-`exp', `log', `pow10', `log10', `sinh', `cosh', `tanh', `asinh',
-`acosh', `atanh', `sqrt', `cbrt', `fabs', `expm1', `log1p', as well as
-the identity function `identity'. `Asymptote' also defines the order
-`n' Bessel functions of the first kind `Jn(int n, real)' and second kind
-`Yn(int n, real)', as well as the gamma function `gamma', the error
-function `erf', and the complementary error function `erfc'. The
-standard real(real, real) functions `atan2', `hypot', `fmod',
-`remainder' are also included.
-
- The functions `degrees(real radians)' and `radians(real degrees)'
-can be used to convert between radians and degrees. The function
-`Degrees(real radians)' returns the angle in degrees in the interval
-[0,360). For convenience, `Asymptote' defines variants `Sin', `Cos',
-`Tan', `aSin', `aCos', and `aTan' of the standard trigonometric
-functions that use degrees rather than radians. We also define complex
-versions of the `sqrt', `sin', `cos', `exp', `log', and `gamma'
-functions.
-
- The functions `floor', `ceil', and `round' differ from their usual
-definitions in that they all return an int value rather than a real
-(since that is normally what one wants). The functions `Floor',
-`Ceil', and `Round' are respectively similar, except that if the result
-cannot be converted to a valid int, they return `intMax' for positive
-arguments and `intMin' for negative arguments, rather than generating
-an integer overflow. We also define a function `sgn', which returns
-the sign of its real argument as an integer (-1, 0, or 1).
-
- There is an `abs(int)' function, as well as an `abs(real)' function
-(equivalent to `fabs(real)'), an `abs(pair)' function (equivalent to
-`length(pair)').
-
- Random numbers can be seeded with `srand(int)' and generated with
-the `int rand()' function, which returns a random integer between 0 and
-the integer `randMax'. The `unitrand()' function returns a random
-number uniformly distributed in the interval [0,1]. A Gaussian random
-number generator `Gaussrand' and a collection of statistics routines,
-including `histogram', are provided in the base file `stats.asy'. The
-functions `factorial(int n)', which returns n!, and `choose(int n, int
-k)', which returns n!/(k!(n-k)!), are also defined.
-
- When configured with the GNU Scientific Library (GSL), available from
-`http://www.gnu.org/software/gsl/', `Asymptote' contains an internal
-module `gsl' that defines the airy functions `Ai(real)', `Bi(real)',
-`Ai_deriv(real)', `Bi_deriv(real)', `zero_Ai(int)', `zero_Bi(int)',
-`zero_Ai_deriv(int)', `zero_Bi_deriv(int)', the Bessel functions
-`I(int, real)', `K(int, real)', `j(int, real)', `y(int, real)',
-`i_scaled(int, real)', `k_scaled(int, real)', `J(real, real)', `Y(real,
-real)', `I(real, real)', `K(real, real)', `zero_J(real, int)', the
-elliptic functions `F(real, real)', `E(real, real)', and `P(real,
-real)', the Jacobi elliptic functions `real[] sncndn(real,real)', the
-exponential/trigonometric integrals `Ei', `Si', and `Ci', the Legendre
-polynomials `Pl(int, real)', and the Riemann zeta function
-`zeta(real)'. For example, to compute the sine integral `Si' of 1.0:
-import gsl;
-write(Si(1.0));
-
- `Asymptote' also provides a few general purpose numerical routines:
-
-``real newton(int iterations=100, real f(real), real fprime(real), real x, bool verbose=false);''
- Use Newton-Raphson iteration to solve for a root of a real-valued
- differentiable function `f', given its derivative `fprime' and an
- initial guess `x'. Diagnostics for each iteration are printed if
- `verbose=true'. If the iteration fails after the maximum allowed
- number of loops (`iterations'), `realMax' is returned.
-
-``real newton(int iterations=100, real f(real), real fprime(real), real x1, real x2, bool verbose=false);''
- Use bracketed Newton-Raphson bisection to solve for a root of a
- real-valued differentiable function `f' within an interval
- [`x1',`x2'] (on which the endpoint values of `f' have opposite
- signs), given its derivative `fprime'. Diagnostics for each
- iteration are printed if `verbose=true'. If the iteration fails
- after the maximum allowed number of loops (`iterations'),
- `realMax' is returned.
-
-``real simpson(real f(real), real a, real b, real acc=realEpsilon, real dxmax=b-a)''
- returns the integral of `f' from `a' to `b' using adaptive Simpson
- integration.
-
-
-
-File: asymptote.info, Node: Arrays, Next: Casts, Prev: Functions, Up: Programming
-
-6.12 Arrays
-===========
-
-* Menu:
-
-* Slices:: Python-style array slices
-
- Appending `[]' to a built-in or user-defined type yields an array.
-The array element `i' of an array `A' can be accessed as `A[i]'. By
-default, attempts to access or assign to an array element using a
-negative index generates an error. Reading an array element with an
-index beyond the length of the array also generates an error; however,
-assignment to an element beyond the length of the array causes the
-array to be resized to accommodate the new element. One can also index
-an array `A' with an integer array `B': the array `A[B]' is formed by
-indexing array `A' with successive elements of array `B'. A convenient
-Java-style shorthand exists for iterating over all elements of an
-array; see *note array iteration::.
-
- The declaration
-real[] A;
-
-initializes `A' to be an empty (zero-length) array. Empty arrays should
-be distinguished from null arrays. If we say
-real[] A=null;
-
-then `A' cannot be dereferenced at all (null arrays have no length and
-cannot be read from or assigned to).
-
- Arrays can be explicitly initialized like this:
-real[] A={0,1,2};
-
- Array assignment in `Asymptote' does a shallow copy: only the
-pointer is copied (if one copy if modified, the other will be too).
-The `copy' function listed below provides a deep copy of an array.
-
- Every array `A' of type `T[]' has the virtual members
- * `int length',
-
- * `int cyclic',
-
- * `int[] keys',
-
- * `T push(T x)',
-
- * `void append(T[] a)',
-
- * `T pop()',
-
- * `void insert(int i ... T[] x)',
-
- * `void delete(int i, int j=i)',
-
- * `void delete()', and
-
- * `bool initialized(int n)'.
-
- The member `A.length' evaluates to the length of the array. Setting
-`A.cyclic=true' signifies that array indices should be reduced modulo
-the current array length. Reading from or writing to a nonempty cyclic
-array never leads to out-of-bounds errors or array resizing.
-
- The member `A.keys' evaluates to an array of integers containing the
-indices of initialized entries in the array in ascending order. Hence,
-for an array of length `n' with all entries initialized, `A.keys'
-evaluates to `{0,1,...,n-1}'. A new keys array is produced each time
-`A.keys' is evaluated.
-
- The functions `A.push' and `A.append' append their arguments onto
-the end of the array, while `A.insert(int i ... T[] x)' inserts `x'
-into the array at index `i'. For convenience `A.push' returns the
-pushed item. The function `A.pop()' pops and returns the last element,
-while `A.delete(int i, int j=i)' deletes elements with indices in the
-range [`i',`j'], shifting the position of all higher-indexed elements
-down. If no arguments are given, `A.delete()' provides a convenient way
-of deleting all elements of `A'. The routine `A.initialized(int n)' can
-be used to examine whether the element at index `n' is initialized.
-Like all `Asymptote' functions, `push', `append', `pop', `insert',
-`delete', and `initialized' can be "pulled off" of the array and used
-on their own. For example,
-int[] A={1};
-A.push(2); // A now contains {1,2}.
-A.append(A); // A now contains {1,2,1,2}.
-int f(int)=A.push;
-f(3); // A now contains {1,2,1,2,3}.
-int g()=A.pop;
-write(g()); // Outputs 3.
-A.delete(0); // A now contains {2,1,2}.
-A.delete(0,1); // A now contains {2}.
-A.insert(1,3); // A now contains {2,3}.
-A.insert(1 ... A); // A now contains {2,2,3,3}
-A.insert(2,4,5); // A now contains {2,2,4,5,3,3}.
-
- The `[]' suffix can also appear after the variable name; this is
-sometimes convenient for declaring a list of variables and arrays of
-the same type:
-real a,A[];
- This declares `a' to be `real' and implicitly declares `A' to be of
-type `real[]'.
-
- In the following list of built-in array functions, `T' represents a
-generic type. Note that the internal functions `alias', `array',
-`copy', `concat', `sequence', `map', and `transpose', which depend on
-type `T[]', are defined only after the first declaration of a variable
-of type `T[]'.
-
-`new T[]'
- returns a new empty array of type `T[]';
-
-`new T[] {list}'
- returns a new array of type `T[]' initialized with `list' (a comma
- delimited list of elements).
-
-`new T[n]'
- returns a new array of `n' elements of type `T[]'. These `n'
- array elements are not initialized unless they are arrays
- themselves (in which case they are each initialized to empty
- arrays).
-
-`T[] array(int n, T value, int depth=intMax)'
- returns an array consisting of `n' copies of `value'. If `value'
- is itself an array, a deep copy of `value' is made for each entry.
- If `depth' is specified, this deep copying only recurses to the
- specified number of levels.
-
-`int[] sequence(int n)'
- if `n >= 1' returns the array `{0,1,...,n-1}' (otherwise returns a
- null array);
-
-`int[] sequence(int n, int m)'
- if `m >= n' returns an array `{n,n+1,...,m}' (otherwise returns a
- null array);
-
-`T[] sequence(T f(int), int n)'
- if `n >= 1' returns the sequence `{f_i :i=0,1,...n-1}' given a
- function `T f(int)' and integer `int n' (otherwise returns a null
- array);
-
-`T[] map(T f(T), T[] a)'
- returns the array obtained by applying the function `f' to each
- element of the array `a'. This is equivalent to `sequence(new
- T(int i) {return f(a[i]);},a.length)'.
-
-`int[] reverse(int n)'
- if `n >= 1' returns the array `{n-1,n-2,...,0}' (otherwise returns
- a null array);
-
-`int[] complement(int[] a, int n)'
- returns the complement of the integer array `a' in
- `{0,1,2,...,n-1}', so that `b[complement(a,b.length)]' yields the
- complement of `b[a]'.
-
-`real[] uniform(real a, real b, int n)'
- if `n >= 1' returns a uniform partition of `[a,b]' into `n'
- subintervals (otherwise returns a null array);
-
-`int find(bool[], int n=1)'
- returns the index of the `n'th `true' value or -1 if not found.
- If `n' is negative, search backwards from the end of the array for
- the `-n'th value;
-
-`int search(T[] a, T key)'
- For built-in ordered types `T', searches a sorted array `a' of `n'
- elements for k, returning the index `i' if `a[i] <= key < a[i+1]',
- `-1' if `key' is less than all elements of `a', or `n-1' if `key'
- is greater than or equal to the last element of `a'.
-
-`int search(T[] a, T key, bool less(T i, T j))'
- searches an array `a' sorted in ascending order such that element
- `i' precedes element `j' if `less(i,j)' is true;
-
-`T[] copy(T[] a)'
- returns a deep copy of the array `a';
-
-`T[] concat(... T[][] a)'
- returns a new array formed by concatenating the given
- one-dimensional arrays given as arguments;
-
-`bool alias(T[] a, T[] b)'
- returns `true' if the arrays `a' and `b' are identical;
-
-`T[] sort(T[] a)'
- For built-in ordered types `T', returns a copy of `a' sorted in
- ascending order;
-
-`T[][] sort(T[][] a)'
- For built-in ordered types `T', returns a copy of `a' with the rows
- sorted by the first column, breaking ties with successively higher
- columns. For example: string[][] a={{"bob","9"},{"alice","5"},{"pete","7"},
- {"alice","4"}};
- // Row sort (by column 0, using column 1 to break ties):
- write(sort(a));
-
- produces alice 4
- alice 5
- bob 9
- pete 7
-
-`T[] sort(T[] a, bool less(T i, T j))'
- returns a copy of `a' stably sorted in ascending order such that
- element `i' precedes element `j' if `less(i,j)' is true.
-
-`T[][] transpose(T[][] a)'
- returns the transpose of `a'.
-
-`T[][][] transpose(T[][][] a, int[] perm)'
- returns the 3D transpose of `a' obtained by applying the
- permutation `perm' of `new int[]{0,1,2}' to the indices of each
- entry.
-
-`T sum(T[] a)'
- For arithmetic types `T', returns the sum of `a'. In the case
- where `T' is `bool', the number of true elements in `a' is
- returned.
-
-`T min(T[] a)'
-
-`T min(T[][] a)'
-
-`T min(T[][][] a)'
- For built-in ordered types `T', returns the minimum element of `a'.
-
-`T max(T[] a)'
-
-`T max(T[][] a)'
-
-`T max(T[][][] a)'
- For built-in ordered types `T', returns the maximum element of `a'.
-
-`T[] min(T[] a, T[] b)'
- For built-in ordered types `T', and arrays `a' and `b' of the same
- length, returns an array composed of the minimum of the
- corresponding elements of `a' and `b'.
-
-`T[] max(T[] a, T[] b)'
- For built-in ordered types `T', and arrays `a' and `b' of the same
- length, returns an array composed of the maximum of the
- corresponding elements of `a' and `b'.
-
-`pair[] pairs(real[] x, real[] y);'
- For arrays `x' and `y' of the same length, returns the pair array
- `sequence(new pair(int i) {return (x[i],y[i]);},x.length)'.
-
-`pair[] fft(pair[] a, int sign=1)'
- returns the Fast Fourier Transform of `a' (if the optional `FFTW'
- package is installed), using the given `sign'. Here is a simple
- example: int n=4;
- pair[] f=sequence(n);
- write(f);
- pair[] g=fft(f,-1);
- write();
- write(g);
- f=fft(g,1);
- write();
- write(f/n);
-
-`real dot(real[] a, real[] b)'
- returns the dot product of the vectors `a' and `b'.
-
-`pair dot(pair[] a, pair[] b)'
- returns the complex dot product `sum(a*conj(b))' of the vectors
- `a' and `b'.
-
-`real[] tridiagonal(real[] a, real[] b, real[] c, real[] f);'
- Solve the periodic tridiagonal problem L`x'=`f' and return the
- solution `x', where `f' is an n vector and L is the n \times n
- matrix [ b[0] c[0] a[0] ]
- [ a[1] b[1] c[1] ]
- [ a[2] b[2] c[2] ]
- [ ... ]
- [ c[n-1] a[n-1] b[n-1] ]
- For Dirichlet boundary conditions (denoted here by `u[-1]' and
- `u[n]'), replace `f[0]' by `f[0]-a[0]u[-1]' and
- `f[n-1]-c[n-1]u[n]'; then set `a[0]=c[n-1]=0'.
-
-`real[] solve(real[][] a, real[] b, bool warn=true)'
- Solve the linear equation `a'x=`b' by LU decomposition and return
- the solution x, where `a' is an n \times n matrix and `b' is an
- array of length n. For example: import math;
- real[][] a={{1,-2,3,0},{4,-5,6,2},{-7,-8,10,5},{1,50,1,-2}};
- real[] b={7,19,33,3};
- real[] x=solve(a,b);
- write(a); write();
- write(b); write();
- write(x); write();
- write(a*x);
- If `a' is a singular matrix and `warn' is `false', return an
- empty array. If the matrix `a' is tridiagonal, the routine
- `tridiagonal' provides a more efficient algorithm (*note
- tridiagonal::).
-
-`real[][] solve(real[][] a, real[][] b, bool warn=true)'
- Solve the linear equation `a'x=`b' and return the solution x,
- where `a' is an n \times n matrix and `b' is an n \times m matrix.
- If `a' is a singular matrix and `warn' is `false', return an empty
- matrix.
-
-`real[][] identity(int n);'
- returns the n \times n identity matrix.
-
-`real[][] diagonal(... real[] a)'
- returns the diagonal matrix with diagonal entries given by a.
-
-`real[][] inverse(real[][] a)'
- returns the inverse of a square matrix `a'.
-
-``real[] quadraticroots(real a, real b, real c);''
- This numerically robust solver returns the real roots of the
- quadratic equation ax^2+bx+c=0, in ascending order. Multiple roots
- are listed separately.
-
-``pair[] quadraticroots(explicit pair a, explicit pair b, explicit pair c);''
- This numerically robust solver returns the complex roots of the
- quadratic equation ax^2+bx+c=0.
-
-``real[] cubicroots(real a, real b, real c, real d);''
- This numerically robust solver returns the real roots of the cubic
- equation ax^3+bx^2+cx+d=0. Multiple roots are listed separately.
-
-
- `Asymptote' includes a full set of vectorized array instructions for
-arithmetic (including self) and logical operations. These
-element-by-element instructions are implemented in C++ code for speed.
-Given
-real[] a={1,2};
-real[] b={3,2};
- then `a == b' and `a >= 2' both evaluate to the vector `{false, true}'. To
-test whether all components of `a' and `b' agree, use the boolean
-function `all(a == b)'. One can also use conditionals like `(a >= 2) ?
-a : b', which returns the array `{3,2}', or `write((a >= 2) ? a :
-null', which returns the array `{2}'.
-
- All of the standard built-in `libm' functions of signature
-`real(real)' also take a real array as an argument, effectively like an
-implicit call to `map'.
-
- As with other built-in types, arrays of the basic data types can be
-read in by assignment. In this example, the code
-file fin=input("test.txt");
-real[] A=fin;
-
-reads real values into `A' until the end-of-file is reached (or an I/O
-error occurs).
-
- The virtual members `dimension', `line', `csv', `word', and `read'
-of a file are useful for reading arrays. For example, if line mode is
-set with `file line(bool b=true)', then reading will stop once the end
-of the line is reached instead
-file fin=input("test.txt");
-real[] A=fin.line();
-
- Since string reads by default read up to the end of line anyway,
-line mode normally has no effect on string array reads. However, there
-is a white-space delimiter mode for reading strings, `file word(bool
-b=true)', which causes string reads to respect white-space delimiters,
-instead of the default end-of-line delimiter:
-file fin=input("test.txt").line().word();
-real[] A=fin;
-
- Another useful mode is comma-separated-value mode, `file csv(bool
-b=true)', which causes reads to respect comma delimiters:
-file fin=csv(input("test.txt"));
-real[] A=fin;
-
- To restrict the number of values read, use the `file dimension(int)'
-function:
-file fin=input("test.txt");
-real[] A=dimension(fin,10);
-
- This reads 10 values into A, unless end-of-file (or end-of-line in
-line mode) occurs first. Attempting to read beyond the end of the file
-will produce a runtime error message. Specifying a value of 0 for the
-integer limit is equivalent to the previous example of reading until
-end-of-file (or end-of-line in line mode) is encountered.
-
- Two- and three-dimensional arrays of the basic data types can be read
-in like this:
-file fin=input("test.txt");
-real[][] A=fin.dimension(2,3);
-real[][][] B=fin.dimension(2,3,4);
- Again, an integer limit of zero means no restriction.
-
- Sometimes the array dimensions are stored with the data as integer
-fields at the beginning of an array. Such 1, 2, or 3 dimensional arrays
-can be read in with the virtual member functions `read(1)', `read(2)',
-or `read(3)', respectively:
-file fin=input("test.txt");
-real[] A=fin.read(1);
-real[][] B=fin.read(2);
-real[][][] C=fin.read(3);
-
- One, two, and three-dimensional arrays of the basic data types can be
-output with the functions `write(file,T[])', `write(file,T[][])',
-`write(file,T[][][])', respectively.
-
-
-File: asymptote.info, Node: Slices, Up: Arrays
-
-6.12.1 Slices
--------------
-
-Asymptote allows a section of an array to be addressed as a slice using
-a Python-like syntax. If `A' is an array, the expression `A[m:n]'
-returns a new array consisting of the elements of `A' with indices from
-`m' up to but not including `n'. For example,
-int[] x={0,1,2,3,4,5,6,7,8,9};
-int[] y=x[2:6]; // y={2,3,4,5};
-int[] z=x[5:10]; // z={5,6,7,8,9};
-
- If the left index is omitted, it is taken be `0'. If the right
-index is omitted it is taken to be the length of the array. If both
-are omitted, the slice then goes from the start of the array to the
-end, producing a non-cyclic deep copy of the array. For example:
-int[] x={0,1,2,3,4,5,6,7,8,9};
-int[] y=x[:4]; // y={0,1,2,3}
-int[] z=x[5:]; // z={5,6,7,8,9}
-int[] w=x[:]; // w={0,1,2,3,4,5,6,7,8,9}, distinct from array x.
-
- If A is a non-cyclic array, it is illegal to use negative values for
-either of the indices. If the indices exceed the length of the array,
-however, they are politely truncated to that length.
-
- For cyclic arrays, the slice `A[m:n]' still consists of the cells
-with indices in the set [`m',`n'), but now negative values and values
-beyond the length of the array are allowed. The indices simply wrap
-around. For example:
-
-int[] x={0,1,2,3,4,5,6,7,8,9};
-x.cyclic=true;
-int[] y=x[8:15]; // y={8,9,0,1,2,3,4}.
-int[] z=x[-5:5]; // z={5,6,7,8,9,0,1,2,3,4}
-int[] w=x[-3:17]; // w={7,8,9,0,1,2,3,4,5,6,7,8,9,0,1,2,3,4,5,6}
-
- Notice that with cyclic arrays, it is possible to include the same
-element of the original array multiple times within a slice.
-Regardless of the original array, arrays produced by slices are always
-non-cyclic.
-
- If the left and right indices of a slice are the same, the result is
-an empty array. If the array being sliced is empty, the result is an
-empty array. Any slice with a left index greater than its right index
-will yield an error.
-
- Slices can also be assigned to, changing the value of the original
-array. If the array being assigned to the slice has a different length
-than the slice itself, elements will be inserted or removed from the
-array to accommodate it. For instance:
-string[] toppings={"mayo", "salt", "ham", "lettuce"};
-toppings[0:2]=new string[] {"mustard", "pepper"};
- // Now toppings={"mustard", "pepper", "ham", "lettuce"}
-toppings[2:3]=new string[] {"turkey", "bacon" };
- // Now toppings={"mustard", "pepper", "turkey", "bacon", "lettuce"}
-toppings[0:3]=new string[] {"tomato"};
- // Now toppings={"tomato", "bacon", "lettuce"}
-
- If an array is assigned to a slice of itself, a copy of the original
-array is assigned to the slice. That is, code such as `x[m:n]=x' is
-equivalent to `x[m:n]=copy(x)'. One can use the shorthand `x[m:m]=y'
-to insert the contents of the array `y' into the array `x' starting at
-the location just before `x[m]'.
-
- For a cyclic array, a slice is bridging if it addresses cells up to
-the end of the array and then continues on to address cells at the
-start of the array. For instance, if `A' is a cyclic array of length
-10, `A[8:12]', `A[-3:1]', and `A[5:25]' are bridging slices whereas
-`A[3:7]', `A[7:10]', `A[-3:0]' and `A[103:107]' are not. Bridging
-slices can only be assigned to if the number of elements in the slice
-is exactly equal to the number of elements we are assigning to it.
-Otherwise, there is no clear way to decide which of the new entries
-should be `A[0]' and an error is reported. Non-bridging slices may be
-assigned an array of any length.
-
- For a cyclic array `A' an expression of the form
-`A[A.length:A.length]' is equivalent to the expression `A[0:0]' and so
-assigning to this slice will insert values at the start of the array.
-`A.append()' can be used to insert values at the end of the array.
-
- It is illegal to assign to a slice of a cyclic array that repeats
-any of the cells.
-
-
-File: asymptote.info, Node: Casts, Next: Import, Prev: Arrays, Up: Programming
-
-6.13 Casts
-==========
-
-`Asymptote' implicitly casts `int' to `real', `int' to `pair', `real'
-to `pair', `pair' to `path', `pair' to `guide', `path' to `guide',
-`guide' to `path', `real' to `pen', `pair[]' to `guide[]', `pair[]' to
-`path[]', `path' to `path[]', and `guide' to `path[]', along with
-various three-dimensional casts defined in `three.asy'. Implicit casts
-are automatically attempted on assignment and when trying to match
-function calls with possible function signatures. Implicit casting can
-be inhibited by declaring individual arguments `explicit' in the
-function signature, say to avoid an ambiguous function call in the
-following example, which outputs 0:
-int f(pair a) {return 0;}
-int f(explicit real x) {return 1;}
-
-write(f(0));
-
- Other conversions, say `real' to `int' or `real' to `string',
-require an explicit cast:
-int i=(int) 2.5;
-string s=(string) 2.5;
-
-real[] a={2.5,-3.5};
-int[] b=(int []) a;
-write(stdout,b); // Outputs 2,-3
-
- Casting to user-defined types is also possible using `operator cast':
-struct rpair {
- real radius;
- real angle;
-}
-
-pair operator cast(rpair x) {
- return (x.radius*cos(x.angle),x.radius*sin(x.angle));
-}
-
-rpair x;
-x.radius=1;
-x.angle=pi/6;
-
-write(x); // Outputs (0.866025403784439,0.5)
-
- One must use care when defining new cast operators. Suppose that in
-some code one wants all integers to represent multiples of 100. To
-convert them to reals, one would first want to multiply them by 100.
-However, the straightforward implementation
-real operator cast(int x) {return x*100;}
- is equivalent to an infinite recursion, since the result `x*100' needs
-itself to be cast from an integer to a real. Instead, we want to use
-the standard conversion of int to real:
-real convert(int x) {return x*100;}
-real operator cast(int x)=convert;
-
- Explicit casts are implemented similarly, with `operator ecast'.
-
-
-File: asymptote.info, Node: Import, Next: Static, Prev: Casts, Up: Programming
-
-6.14 Import
-===========
-
-While `Asymptote' provides many features by default, some applications
-require specialized features contained in external `Asymptote' modules.
-For instance, the lines
-access graph;
-graph.axes();
- draw x and y axes on a two-dimensional graph. Here, the command looks
-up the module under the name `graph' in a global dictionary of modules
-and puts it in a new variable named `graph'. The module is a
-structure, and we can refer to its fields as we usually would with a
-structure.
-
- Often, one wants to use module functions without having to specify
-the module name. The code
-from graph access axes;
- adds the `axes' field of `graph' into the local name space, so that
-subsequently, one can just write `axes()'. If the given name is
-overloaded, all types and variables of that name are added. To add
-more than one name, just use a comma-separated list:
-from graph access axes, xaxis, yaxis;
- Wild card notation can be used to add all non-private fields and types
-of a module to the local name space:
-
-from graph access *;
-
- Similarly, one can add the non-private fields and types of a
-structure to the local environment with the `unravel' keyword:
-struct matrix {
- real a,b,c,d;
-}
-
-real det(matrix m) {
- unravel m;
- return a*d-b*c;
-}
- Alternatively, one can unravel selective fields:
-real det(matrix m) {
- from m unravel a,b,c as C,d;
- return a*d-b*C;
-}
-
- The command
-import graph;
- is a convenient abbreviation for the commands
-access graph;
-unravel graph;
- That is, `import graph' first loads a module into a structure called
-`graph' and then adds its non-private fields and types to the local
-environment. This way, if a member variable (or function) is
-overwritten with a local variable (or function of the same signature),
-the original one can still be accessed by qualifying it with the module
-name.
-
- Wild card importing will work fine in most cases, but one does not
-usually know all of the internal types and variables of a module, which
-can also change as the module writer adds or changes features of the
-module. As such, it is prudent to add `import' commands at the start
-of an `Asymptote' file, so that imported names won't shadow locally
-defined functions. Still, imported names may shadow other imported
-names, depending on the order in which they were imported, and imported
-functions may cause overloading resolution problems if they have the
-same name as local functions defined later.
-
- To rename modules or fields when adding them to the local
-environment, use `as':
-access graph as graph2d;
-from graph access xaxis as xline, yaxis as yline;
-
- The command
-import graph as graph2d;
- is a convenient abbreviation for the commands
-access graph as graph2d;
-unravel graph2d;
-
- Except for a few built-in modules, such as `settings', all modules
-are implemented as `Asymptote' files. When looking up a module that
-has not yet been loaded, `Asymptote' searches the standard search paths
-(*note Search paths::) for the matching file. The file corresponding
-to that name is read and the code within it is interpreted as the body
-of a structure defining the module.
-
- If the file name contains nonalphanumeric characters, enclose it
-with quotation marks:
-
-`access "/usr/local/share/asymptote/graph.asy" as graph;'
-
-`from "/usr/local/share/asymptote/graph.asy" access axes;'
-
-`import "/usr/local/share/asymptote/graph.asy" as graph;'
-
- It is an error if modules import themselves (or each other in a
-cycle). The module name to be imported must be known at compile time.
-
- However, you can import an `Asymptote' module determined by the
-string `s' at runtime like this:
-eval("import "+s,true);
-
- To conditionally execute an array of asy files, use
-void asy(string format, bool overwrite ... string[] s);
- The file will only be processed, using output format `format', if
-overwrite is `true' or the output file is missing.
-
- One can evaluate an `Asymptote' expression (without any return
-value, however) contained in the string `s' with:
-void eval(string s, bool embedded=false);
- It is not necessary to terminate the string `s' with a semicolon. If
-`embedded' is `true', the string will be evaluated at the top level of
-the current environment. If `embedded' is `false' (the default), the
-string will be evaluated in an independent environment, sharing the same
-`settings' module (*note settings::).
-
- One can evaluate arbitrary `Asymptote' code (which may contain
-unescaped quotation marks) with the command
-void eval(code s, bool embedded=false);
- Here `code' is a special type used with `quote {}' to enclose
-`Asymptote code' like this:
-real a=1;
-code s=quote {
- write(a);
-};
-eval(s,true); // Outputs 1
-
- To include the contents of an existing file `graph' verbatim (as if
-the contents of the file were inserted at that point), use one of the
-forms:
-include graph;
-
-`include "/usr/local/share/asymptote/graph.asy";'
-
- To list all global functions and variables defined in a module named
-by the contents of the string `s', use the function
-void list(string s, bool imports=false);
- Imported global functions and variables are also listed if `imports'
-is `true'.
-
-
-File: asymptote.info, Node: Static, Prev: Import, Up: Programming
-
-6.15 Static
-===========
-
-Static qualifiers allocate the memory address of a variable in a higher
-enclosing level.
-
- For a function body, the variable is allocated in the block where the
-function is defined; so in the code
-struct s {
- int count() {
- static int c=0;
- ++c;
- return c;
- }
-}
-
-there is one instance of the variable `c' for each object `s' (as
-opposed to each call of `count').
-
- Similarly, in
-int factorial(int n) {
- int helper(int k) {
- static int x=1;
- x *= k;
- return k == 1 ? x : helper(k-1);
- }
- return helper(n);
-}
-
-there is one instance of `x' for every call to `factorial' (and not for
-every call to `helper'), so this is a correct, but ugly, implementation
-of factorial.
-
- Similarly, a static variable declared within a structure is
-allocated in the block where the structure is defined. Thus,
-struct A {
- struct B {
- static pair z;
- }
-}
-
-creates one object `z' for each object of type `A' created.
-
- In this example,
-int pow(int n, int k) {
- struct A {
- static int x=1;
- void helper() {
- x *= n;
- }
- }
- for(int i=0; i < k; ++i) {
- A a;
- a.helper();
- }
- return A.x;
-}
-
-there is one instance of `x' for each call to `pow', so this is an ugly
-implementation of exponentiation.
-
- Loop constructs allocate a new frame in every iteration. This is so
-that higher-order functions can refer to variables of a specific
-iteration of a loop:
-void f();
-for(int i=0; i < 10; ++i) {
- int x=i;
- if(x==5) {
- f=new void () { write(x); }
- }
-}
-f();
-
- Here, every iteration of the loop has its own variable `x', so `f()'
-will write `5'. If a variable in a loop is declared static, it will be
-allocated where the enclosing function or structure was defined (just
-as if it were declared static outside of the loop). For instance, in:
-void f() {
- static int x;
- for(int i=0; i < 10; ++i) {
- static int y;
- }
-}
- both `x' and `y' will be allocated in the same place, which is also
-where `f' is also allocated.
-
- Statements may also be declared static, in which case they are run
-at the place where the enclosing function or structure is defined.
-Declarations or statements not enclosed in a function or structure
-definition are already at the top level, so static modifiers are
-meaningless. A warning is given in such a case.
-
- Since structures can have static fields, it is not always clear for
-a qualified name whether the qualifier is a variable or a type. For
-instance, in:
-
-struct A {
- static int x;
-}
-pair A;
-
-int y=A.x;
- does the `A' in `A.x' refer to the structure or to the pair variable.
-It is the convention in Asymptote that, if there is a non-function
-variable with the same name as the qualifier, the qualifier refers to
-that variable, and not to the type. This is regardless of what fields
-the variable actually possesses.
-
-
-File: asymptote.info, Node: LaTeX usage, Next: Base modules, Prev: Programming, Up: Top
-
-7 `LaTeX' usage
-***************
-
-`Asymptote' comes with a convenient `LaTeX' style file `asymptote.sty'
-that makes `LaTeX' `Asymptote'-aware. Entering `Asymptote' code
-directly into the `LaTeX' source file, at the point where it is needed,
-keeps figures organized and avoids the need to invent new file names
-for each figure. Simply add the line `\usepackage{asymptote}' at the
-beginning of your file and enclose your `Asymptote' code within a
-`\begin{asy}...\end{asy}' environment. As with the `LaTeX' `comment'
-environment, the `\end{asy}' command must appear on a line by itself,
-with no trailing commands/comments. A blank line is not allowed after
-`\begin{asy}'.
-
- The sample `LaTeX' file below, named `latexusage.tex', can be run as
-follows:
-latex latexusage
-asy latexusage-*.asy
-latex latexusage
-
-or
-pdflatex latexusage
-asy latexusage-*.asy
-pdflatex latexusage
- To switch between using inline Asymptote code with `latex' and
-`pdflatex' you may first need to remove the files `latexusage-*.tex'.
-
- An even better method for processing a `LaTeX' file with embedded
-`Asymptote' code is to use the `latexmk' utility from
-
- `http://www.ctan.org/tex-archive/support/latexmk/'
- after putting the contents of
-`http://asymptote.svn.sourceforge.net/viewvc/asymptote/trunk/asymptote/doc/latexmkrc'
-in a file `latexmkrc' in the same directory. The command
-latexmk -pdf latexusage
- will then call `Asymptote' automatically, recompiling only the figures
-that have changed. Since each figure is compiled in a separate system
-process, this method also tends to use less memory. To store the
-figures in a separate directory named `asy', one can define
-\def\asydir{asy}
- in `latexusage.tex' and put the contents of
-`http://asymptote.svn.sourceforge.net/viewvc/asymptote/trunk/asymptote/doc/latexmkrc_asydir'
-in a file `latexmkrc' in the same directory. External `Asymptote' code
-in `filename.asy' should be included with
-\asyinclude[<options>]{<filename.asy>}
- so that `latexmk' will recognize when the code is changed. Note that
-`latemk' requires `perl', available from `http://www.perl.org/'.
-
- One can specify `width', `height', `keepAspect', `viewportwidth',
-`viewportheight', `attach', and `inline'. `keyval'-style options to
-the `asy' and `asyinclude' environments. Three-dimensional PRC files
-may either be embedded within the page (the default) or attached as
-annotated (but printable) attachments, using the `attach' option and
-the `attachfile2' (or older `attachfile') `LaTeX' package. The
-`inline' option generates inline `LaTeX' code instead of EPS or PDF
-files. This makes 2D LaTeX symbols visible to the
-`\begin{asy}...\end{asy}' environment. In this mode, Asymptote
-correctly aligns 2D LaTeX symbols defined outside of
-`\begin{asy}...\end{asy}', but treats their size as zero; an optional
-second string can be given to `Label' to provide an estimate of the
-unknown label size.
-
- Note that if the `latex' TeX engine is used with the `inline'
-option, labels might not show up in DVI viewers that cannot handle raw
-`PostScript' code. One can use `dvips'/`dvipdf' to produce
-`PostScript'/PDF output (we recommend using the modified version of
-`dvipdf' in the `Asymptote' patches directory, which accepts the `dvips
--z' hyperdvi option).
-
- Here now is `latexusage.tex':
-
-\documentclass[12pt]{article}
-
-% Use this form to include EPS (latex) or PDF (pdflatex) files:
-\usepackage{asymptote}
-
-% Use this form with latex or pdflatex to include inline LaTeX code by default:
-%\usepackage[inline]{asymptote}
-
-% Use this form with latex or pdflatex to create PDF attachments by default:
-%\usepackage[attach]{asymptote}
-
-% Enable this line to support the attach option:
-%\usepackage[dvips]{attachfile2}
-
-\begin{document}
-
-% Optional subdirectory for asy files (no spaces):
-\def\asydir{}
-
-\begin{asydef}
-// Global Asymptote definitions can be put here.
-import three;
-usepackage("bm");
-texpreamble("\def\V#1{\bm{#1}}");
-// One can globally override the default toolbar settings here:
-// settings.toolbar=true;
-\end{asydef}
-
-Here is a venn diagram produced with Asymptote, drawn to width 4cm:
-
-\def\A{A}
-\def\B{\V{B}}
-
-%\begin{figure}
-\begin{center}
-\begin{asy}
-size(4cm,0);
-pen colour1=red;
-pen colour2=green;
-
-pair z0=(0,0);
-pair z1=(-1,0);
-pair z2=(1,0);
-real r=1.5;
-path c1=circle(z1,r);
-path c2=circle(z2,r);
-fill(c1,colour1);
-fill(c2,colour2);
-
-picture intersection=new picture;
-fill(intersection,c1,colour1+colour2);
-clip(intersection,c2);
-
-add(intersection);
-
-draw(c1);
-draw(c2);
-
-//draw("$\A$",box,z1); // Requires [inline] package option.
-//draw(Label("$\B$","$B$"),box,z2); // Requires [inline] package option.
-draw("$A$",box,z1);
-draw("$\V{B}$",box,z2);
-
-pair z=(0,-2);
-real m=3;
-margin BigMargin=Margin(0,m*dot(unit(z1-z),unit(z0-z)));
-
-draw(Label("$A\cap B$",0),conj(z)--z0,Arrow,BigMargin);
-draw(Label("$A\cup B$",0),z--z0,Arrow,BigMargin);
-draw(z--z1,Arrow,Margin(0,m));
-draw(z--z2,Arrow,Margin(0,m));
-
-shipout(bbox(0.25cm));
-\end{asy}
-%\caption{Venn diagram}\label{venn}
-\end{center}
-%\end{figure}
-
-Each graph is drawn in its own environment. One can specify the width
-and height to \LaTeX\ explicitly. This 3D example can be viewed
-interactively either with Adobe Reader or Asymptote's fast OpenGL-based
-renderer. To support {\tt latexmk}, 3D figures should specify
-\verb+inline=true+. It is sometimes desirable to embed 3D files as annotated
-attachments; this requires the \verb+attach=true+ option as well as the
-\verb+attachfile2+ \LaTeX\ package.
-\begin{center}
-\begin{asy}[height=4cm,inline=true,attach=false,viewportwidth=\linewidth]
-currentprojection=orthographic(5,4,2);
-draw(unitcube,blue);
-label("$V-E+F=2$",(0,1,0.5),3Y,blue+fontsize(17pt));
-\end{asy}
-\end{center}
-
-One can also scale the figure to the full line width:
-\begin{center}
-\begin{asy}[width=\the\linewidth,inline=true]
-pair z0=(0,0);
-pair z1=(2,0);
-pair z2=(5,0);
-pair zf=z1+0.75*(z2-z1);
-
-draw(z1--z2);
-dot(z1,red+0.15cm);
-dot(z2,darkgreen+0.3cm);
-label("$m$",z1,1.2N,red);
-label("$M$",z2,1.5N,darkgreen);
-label("$\hat{\ }$",zf,0.2*S,fontsize(24pt)+blue);
-
-pair s=-0.2*I;
-draw("$x$",z0+s--z1+s,N,red,Arrows,Bars,PenMargins);
-s=-0.5*I;
-draw("$\bar{x}$",z0+s--zf+s,blue,Arrows,Bars,PenMargins);
-s=-0.95*I;
-draw("$X$",z0+s--z2+s,darkgreen,Arrows,Bars,PenMargins);
-\end{asy}
-\end{center}
-\end{document}
-
-
-File: asymptote.info, Node: Base modules, Next: Options, Prev: LaTeX usage, Up: Top
-
-8 Base modules
-**************
-
-`Asymptote' currently ships with the following base modules:
-
-* Menu:
-
-* plain:: Default `Asymptote' base file
-* simplex:: Linear programming: simplex method
-* math:: Extend `Asymptote''s math capabilities
-* interpolate:: Interpolation routines
-* geometry:: Geometry routines
-* trembling:: Wavy lines
-* stats:: Statistics routines and histograms
-* patterns:: Custom fill and draw patterns
-* markers:: Custom path marker routines
-* tree:: Dynamic binary search tree
-* binarytree:: Binary tree drawing module
-* drawtree:: Tree drawing module
-* syzygy:: Syzygy and braid drawing module
-* feynman:: Feynman diagrams
-* roundedpath:: Round the sharp corners of paths
-* animation:: Embedded PDF and MPEG movies
-* embed:: Embedding movies, sounds, and 3D objects
-* slide:: Making presentations with `Asymptote'
-* MetaPost:: `MetaPost' compatibility routines
-* unicode:: Accept `unicode' (UTF-8) characters
-* latin1:: Accept `ISO 8859-1' characters
-* babel:: Interface to `LaTeX' `babel' package
-* labelpath:: Drawing curved labels
-* labelpath3:: Drawing curved labels in 3D
-* annotate:: Annotate your PDF files
-* CAD:: 2D CAD pen and measurement functions (DIN 15)
-* graph:: 2D linear & logarithmic graphs
-* palette:: Color density images and palettes
-* three:: 3D vector graphics
-* obj:: 3D obj files
-* graph3:: 3D linear & logarithmic graphs
-* grid3:: 3D grids
-* solids:: 3D solid geometry
-* tube:: 3D rotation minimizing tubes
-* flowchart:: Flowchart drawing routines
-* contour:: Contour lines
-* contour3:: Contour surfaces
-* slopefield:: Slope fields
-* ode:: Ordinary differential equations
-
-
-File: asymptote.info, Node: plain, Next: simplex, Up: Base modules
-
-8.1 `plain'
-===========
-
-This is the default `Asymptote' base file, which defines key parts of
-the drawing language (such as the `picture' structure).
-
- By default, an implicit `private import plain;' occurs before
-translating a file and before the first command given in interactive
-mode. This also applies when translating files for module definitions
-(except when translating `plain', of course). This means that the
-types and functions defined in `plain' are accessible in almost all
-`Asymptote' code. Use the `-noautoplain' command-line option to disable
-this feature.
-
-
-File: asymptote.info, Node: simplex, Next: math, Prev: plain, Up: Base modules
-
-8.2 `simplex'
-=============
-
-This package solves the two-variable linear programming problem using
-the simplex method. It is used by the module `plain' for automatic
-sizing of pictures.
-
-
-File: asymptote.info, Node: math, Next: interpolate, Prev: simplex, Up: Base modules
-
-8.3 `math'
-==========
-
-This package extends `Asymptote''s mathematical capabilities with
-useful functions such as
-
-`void drawline(picture pic=currentpicture, pair P, pair Q, pen p=currentpen);'
- draw the visible portion of the (infinite) line going through `P'
- and `Q', without altering the size of picture `pic', using pen `p'.
-
-`real intersect(triple P, triple Q, triple n, triple Z);'
- returns the intersection time of the extension of the line segment
- `PQ' with the plane perpendicular to `n' and passing through `Z'.
-
-`triple intersectionpoint(triple n0, triple P0, triple n1, triple P1);'
- Return any point on the intersection of the two planes with normals
- `n0' and `n1' passing through points `P0' and `P1', respectively.
- If the planes are parallel, return `(infinity,infinity,infinity)'.
-
-`pair[] quarticroots(real a, real b, real c, real d, real e);'
- returns the four complex roots of the quartic equation
- ax^4+bx^3+cx^2+dx+e=0.
-
-`pair[][] fft(pair[][] a, int sign=1)'
- returns the two-dimensional Fourier transform of a using the given
- `sign'.
-
-`real time(path g, real x, int n=0)'
- returns the `n'th intersection time of path `g' with the vertical
- line through x.
-
-`real time(path g, explicit pair z, int n=0)'
- returns the `n'th intersection time of path `g' with the horizontal
- line through `(0,z.y)'.
-
-`real value(path g, real x, int n=0)'
- returns the `n'th `y' value of `g' at `x'.
-
-`real value(path g, real x, int n=0)'
- returns the `n'th `x' value of `g' at `y=z.y'.
-
-`real slope(path g, real x, int n=0)'
- returns the `n'th slope of `g' at `x'.
-
-`real slope(path g, explicit pair z, int n=0)'
- returns the `n'th slope of `g' at `y=z.y'.
-
- int[][] segment(bool[] b) returns the indices of consecutive
- true-element segments of bool[] `b'.
-
-`real[] partialsum(real[] a)'
- returns the partial sums of a real array `a'.
-
-`real[] partialsum(real[] a, real[] dx)'
- returns the partial `dx'-weighted sums of a real array `a'.
-
-`bool increasing(real[] a, bool strict=false)'
- returns, if `strict=false', whether `i > j' implies `a[i] >=
- a[j]', or if `strict=true', whether `i > j' implies implies `a[i]
- > a[j]'.
-
-`int unique(real[] a, real x)'
- if the sorted array `a' does not contain `x', insert it
- sequentially, returning the index of `x' in the resulting array.
-
-`bool lexorder(pair a, pair b)'
- returns the strict lexicographical partial order of `a' and `b'.
-
-`bool lexorder(triple a, triple b)'
- returns the strict lexicographical partial order of `a' and `b'.
-
-
-File: asymptote.info, Node: interpolate, Next: geometry, Prev: math, Up: Base modules
-
-8.4 `interpolate'
-=================
-
-This module implements Lagrange, Hermite, and standard cubic spline
-interpolation in `Asymptote', as illustrated in the example
-`interpolate1.asy'.
-
-
-File: asymptote.info, Node: geometry, Next: trembling, Prev: interpolate, Up: Base modules
-
-8.5 `geometry'
-==============
-
-This module, written by Philippe Ivaldi, provides an extensive set of
-geometry routines, including `perpendicular' symbols and a `triangle'
-structure. Link to the documentation for the `geometry' module are
-posted here: `http://asymptote.sourceforge.net/links.html', including
-an extensive set of examples,
-`http://www.piprime.fr/files/asymptote/geometry/', and an index:
-
- `http://www.piprime.fr/files/asymptote/geometry/modules/geometry.asy.index.type.html'
-
-
-File: asymptote.info, Node: trembling, Next: stats, Prev: geometry, Up: Base modules
-
-8.6 `trembling'
-===============
-
-This module, written by Philippe Ivaldi and illustrated in the example
-`floatingdisk.asy', allows one to draw wavy lines, as if drawn by hand.
-
-
-File: asymptote.info, Node: stats, Next: patterns, Prev: trembling, Up: Base modules
-
-8.7 `stats'
-===========
-
-This package implements a Gaussian random number generator and a
-collection of statistics routines, including `histogram' and
-`leastsquares'.
-
-
-File: asymptote.info, Node: patterns, Next: markers, Prev: stats, Up: Base modules
-
-8.8 `patterns'
-==============
-
-This package implements `Postscript' tiling patterns and includes
-several convenient pattern generation routines.
-
-
-File: asymptote.info, Node: markers, Next: tree, Prev: patterns, Up: Base modules
-
-8.9 `markers'
-=============
-
-This package implements specialized routines for marking paths and
-angles. The principal mark routine provided by this package is
-markroutine markinterval(int n=1, frame f, bool rotated=false);
- which centers `n' copies of frame `f' within uniformly space intervals
-in arclength along the path, optionally rotated by the angle of the
-local tangent.
-
- The `marker' (*note marker::) routine can be used to construct new
-markers from these predefined frames:
-
-frame stickframe(int n=1, real size=0, pair space=0, real angle=0,
- pair offset=0, pen p=currentpen);
-
-frame circlebarframe(int n=1, real barsize=0,
- real radius=0,real angle=0,
- pair offset=0, pen p=currentpen,
- filltype filltype=NoFill, bool above=false);
-
-frame crossframe(int n=3, real size=0, pair space=0,
- real angle=0, pair offset=0, pen p=currentpen);
-
-frame tildeframe(int n=1, real size=0, pair space=0,
- real angle=0, pair offset=0, pen p=currentpen);
-
- For convenience, this module also constructs the markers
-`StickIntervalMarker', `CrossIntervalMarker',
-`CircleBarIntervalMarker', and `TildeIntervalMarker' from the above
-frames. The example `markers1.asy' illustrates the use of these markers:
-
-
-
-
-This package also provides a routine for marking an angle AOB:
-void markangle(picture pic=currentpicture, Label L="",
- int n=1, real radius=0, real space=0,
- pair A, pair O, pair B, arrowbar arrow=None,
- pen p=currentpen, margin margin=NoMargin,
- marker marker=nomarker);
- as illustrated in the example `markers2.asy'.
-
-
-
-
-
-File: asymptote.info, Node: tree, Next: binarytree, Prev: markers, Up: Base modules
-
-8.10 `tree'
-===========
-
-This package implements an example of a dynamic binary search tree.
-
-
-File: asymptote.info, Node: binarytree, Next: drawtree, Prev: tree, Up: Base modules
-
-8.11 `binarytree'
-=================
-
-This module can be used to draw an arbitrary binary tree and includes an
-input routine for the special case of a binary search tree, as
-illustrated in the example `binarytreetest.asy':
-
-import binarytree;
-
-picture pic,pic2;
-
-binarytree bt=binarytree(1,2,4,nil,5,nil,nil,0,nil,nil,3,6,nil,nil,7);
-draw(pic,bt,condensed=false);
-
-binarytree st=searchtree(10,5,2,1,3,4,7,6,8,9,15,13,12,11,14,17,16,18,19);
-draw(pic2,st,blue,condensed=true);
-
-add(pic.fit(),(0,0),10N);
-add(pic2.fit(),(0,0),10S);
-
-
-
-
-File: asymptote.info, Node: drawtree, Next: syzygy, Prev: binarytree, Up: Base modules
-
-8.12 `drawtree'
-===============
-
-This is a simple tree drawing module used by the example `treetest.asy'.
-
-
-File: asymptote.info, Node: syzygy, Next: feynman, Prev: drawtree, Up: Base modules
-
-8.13 `syzygy'
-=============
-
-This module automates the drawing of braids, relations, and syzygies,
-along with the corresponding equations, as illustrated in the example
-`knots.asy'.
-
-
-File: asymptote.info, Node: feynman, Next: roundedpath, Prev: syzygy, Up: Base modules
-
-8.14 `feynman'
-==============
-
-This package, contributed by Martin Wiebusch, is useful for drawing
-Feynman diagrams, as illustrated by the examples `eetomumu.asy' and
-`fermi.asy'.
-
-
-File: asymptote.info, Node: roundedpath, Next: animation, Prev: feynman, Up: Base modules
-
-8.15 `roundedpath'
-==================
-
-This package, contributed by Stefan Knorr, is useful for rounding the
-sharp corners of paths, as illustrated in the example file
-`roundpath.asy'.
-
-
-File: asymptote.info, Node: animation, Next: embed, Prev: roundedpath, Up: Base modules
-
-8.16 `animation'
-================
-
-This module allows one to generate animations, as illustrated by the
-files `wheel.asy', `wavepacket.asy', and `cube.asy' in the `animations'
-subdirectory of the examples directory. These animations use the
-`ImageMagick' `convert' program to merge multiple images into a GIF or
-MPEG movie.
-
- The related `animate' module, derived from the `animation' module,
-generates higher-quality portable clickable PDF movies, with optional
-controls. This requires installing the package
-
- `http://www.ctan.org/tex-archive/macros/latex/contrib/animate/animate.sty'
- (version 2007/11/30 or later) in a new directory `animate' in the
-local `LaTeX' directory (for example, in
-`/usr/local/share/texmf/tex/latex/animate'). On `UNIX' systems, one
-must then execute the command `texhash'.
-
- The example `pdfmovie.asy' in the `animations' directory, along with
-the slide presentations `slidemovies.asy' and `intro.asy', illustrate
-the use of embedded PDF movies. The examples `inlinemovie.tex' and
-`inlinemovie3.tex' show how to generate and embed PDF movies directly
-within a `LaTeX' file (*note LaTeX usage::). The member function
-string pdf(fit fit=NoBox, real delay=animationdelay, string options="",
- bool keep=settings.keep, bool multipage=true);
- of the `animate' structure accepts any of the `animate.sty' options,
-as described here:
-
- `http://www.ctan.org/tex-archive/macros/latex/contrib/animate/doc/animate.pdf'
-
-
-File: asymptote.info, Node: embed, Next: slide, Prev: animation, Up: Base modules
-
-8.17 `embed'
-============
-
-This module provides an interface to the `LaTeX' package (included with
-`MikTeX')
-
- `http://www.ctan.org/tex-archive/macros/latex/contrib/media9'
- for embedding movies, sounds, and 3D objects into a PDF document.
-Version 0.13 (2012/09/12) of `media9' or later is required.
-
- A more portable method for embedding movie files, which should work
-on any platform and does not require the `media9' package, is provided
-by using the `external' module instead of `embed'.
-
- Examples of the above two interfaces is provided in the file
-`embeddedmovie.asy' and `externalmovie.asy' in the `animations'
-subdirectory of the examples directory. For a higher quality embedded
-movie generated directly by `Asymptote', use the `animate' module along
-with the `animate.sty' package to embed a portable PDF animation (*note
-animate::).
-
- An example of embedding `U3D' code is provided in the file
-`embeddedu3d.asy'.
-
-
-File: asymptote.info, Node: slide, Next: MetaPost, Prev: embed, Up: Base modules
-
-8.18 `slide'
-============
-
-This package provides a simple yet high-quality facility for making
-presentation slides, including portable embedded PDF animations (see
-the file `slidemovies.asy'). A simple example is provided in the file
-`slidedemo.asy'.
-
-
-File: asymptote.info, Node: MetaPost, Next: unicode, Prev: slide, Up: Base modules
-
-8.19 `MetaPost'
-===============
-
-This package provides some useful routines to help `MetaPost' users
-migrate old `MetaPost' code to `Asymptote'. Further contributions here
-are welcome.
-
- Unlike `MetaPost', `Asymptote' does not implicitly solve linear
-equations and therefore does not have the notion of a `whatever'
-unknown. The routine `extension' (*note extension::) provides a useful
-replacement for a common use of `whatever': finding the intersection
-point of the lines through `P', `Q' and `p', `q'. For less common
-occurrences of `whatever', one can use the built-in explicit linear
-equation solver `solve' instead.
-
-
-File: asymptote.info, Node: unicode, Next: latin1, Prev: MetaPost, Up: Base modules
-
-8.20 `unicode'
-==============
-
-Import this package at the beginning of the file to instruct `LaTeX' to
-accept `unicode' (UTF-8) standardized international characters. To use
-Cyrillic fonts, you will need to change the font encoding:
-import unicode;
-texpreamble("\usepackage{mathtext}\usepackage[russian]{babel}");
-defaultpen(font("T2A","cmr","m","n"));
- Support for Chinese, Japanese, and Korean fonts is provided by the CJK
-package:
-
- `http://www.ctan.org/tex-archive/languages/chinese/CJK/'
- The following commands enable the CJK song family (within a label,
-you can also temporarily switch to another family, say kai, by
-prepending `"\CJKfamily{kai}"' to the label string):
-texpreamble("\usepackage{CJK}
-\AtBeginDocument{\begin{CJK*}{GBK}{song}}
-\AtEndDocument{\clearpage\end{CJK*}}");
-
-
-File: asymptote.info, Node: latin1, Next: babel, Prev: unicode, Up: Base modules
-
-8.21 `latin1'
-=============
-
-If you don't have `LaTeX' support for `unicode' installed, you can
-enable support for Western European languages (ISO 8859-1) by importing
-the module `latin1'. This module can be used as a template for
-providing support for other ISO 8859 alphabets.
-
-
-File: asymptote.info, Node: babel, Next: labelpath, Prev: latin1, Up: Base modules
-
-8.22 `babel'
-============
-
-This module implements the `LaTeX' `babel' package in `Asymptote'. For
-example:
-import babel;
-babel("german");
-
-
-File: asymptote.info, Node: labelpath, Next: labelpath3, Prev: babel, Up: Base modules
-
-8.23 `labelpath'
-================
-
-This module uses the `PSTricks' `pstextpath' macro to fit labels along
-a path (properly kerned, as illustrated in the example file
-`curvedlabel.asy'), using the command
-void labelpath(picture pic=currentpicture, Label L, path g,
- string justify=Centered, pen p=currentpen);
- Here `justify' is one of `LeftJustified', `Centered', or
-`RightJustified'. The x component of a shift transform applied to the
-Label is interpreted as a shift along the curve, whereas the y
-component is interpreted as a shift away from the curve. All other
-Label transforms are ignored. This package requires the `latex' tex
-engine and inherits the limitations of the `PSTricks' `\pstextpath'
-macro.
-
-
-File: asymptote.info, Node: labelpath3, Next: annotate, Prev: labelpath, Up: Base modules
-
-8.24 `labelpath3'
-=================
-
-This module, contributed by Jens Schwaiger, implements a 3D version of
-`labelpath' that does not require the `PSTricks' package. An example
-is provided in `curvedlabel3.asy'.
-
-
-File: asymptote.info, Node: annotate, Next: CAD, Prev: labelpath3, Up: Base modules
-
-8.25 `annotate'
-===============
-
-This module supports PDF annotations for viewing with `Adobe Reader',
-via the function
-void annotate(picture pic=currentpicture, string title, string text,
- pair position);
- Annotations are illustrated in the example file `annotation.asy'.
-Currently, annotations are only implemented for the `latex' (default)
-and `tex' TeX engines.
-
-
-File: asymptote.info, Node: CAD, Next: graph, Prev: annotate, Up: Base modules
-
-8.26 `CAD'
-==========
-
-This package, contributed by Mark Henning, provides basic pen
-definitions and measurement functions for simple 2D CAD drawings
-according to DIN 15. It is documented separately, in the file `CAD.pdf'.
-
-
-File: asymptote.info, Node: graph, Next: palette, Prev: CAD, Up: Base modules
-
-8.27 `graph'
-============
-
-This package implements two-dimensional linear and logarithmic graphs,
-including automatic scale and tick selection (with the ability to
-override manually). A graph is a `guide' (that can be drawn with the
-draw command, with an optional legend) constructed with one of the
-following routines:
-
- * guide graph(picture pic=currentpicture, real f(real), real a, real b,
- int n=ngraph, real T(real)=identity,
- interpolate join=operator --);
- guide[] graph(picture pic=currentpicture, real f(real), real a, real b,
- int n=ngraph, real T(real)=identity, bool3 cond(real),
- interpolate join=operator --);
-
- Returns a graph using the scaling information for picture `pic'
- (*note automatic scaling::) of the function `f' on the interval
- [`T'(`a'),`T'(`b')], sampling at `n' points evenly spaced in
- [`a',`b'], optionally restricted by the bool3 function `cond' on
- [`a',`b']. If `cond' is:
- * `true', the point is added to the existing guide;
-
- * `default', the point is added to a new guide;
-
- * `false', the point is omitted and a new guide is begun.
- The points are connected using the interpolation specified by
- `join':
- * `operator --' (linear interpolation; the abbreviation
- `Straight' is also accepted);
-
- * `operator ..' (piecewise Bezier cubic spline interpolation;
- the abbreviation `Spline' is also accepted);
-
- * `Hermite' (standard cubic spline interpolation using boundary
- condition `notaknot', `natural', `periodic', `clamped(real
- slopea, real slopeb)'), or `monotonic'. The abbreviation
- `Hermite' is equivalent to `Hermite(notaknot)' for
- nonperiodic data and `Hermite(periodic)' for periodic data).
-
-
- * guide graph(picture pic=currentpicture, real x(real), real y(real),
- real a, real b, int n=ngraph, real T(real)=identity,
- interpolate join=operator --);
- guide[] graph(picture pic=currentpicture, real x(real), real y(real),
- real a, real b, int n=ngraph, real T(real)=identity,
- bool3 cond(real), interpolate join=operator --);
-
- Returns a graph using the scaling information for picture `pic' of
- the parametrized function (`x'(t),`y'(t)) for t in the interval
- [`T'(`a'),`T'(`b')], sampling at `n' points evenly spaced in
- [`a',`b'], optionally restricted by the bool3 function `cond' on
- [`a',`b'], using the given interpolation type.
-
- * guide graph(picture pic=currentpicture, pair z(real), real a, real b,
- int n=ngraph, real T(real)=identity,
- interpolate join=operator --);
- guide[] graph(picture pic=currentpicture, pair z(real), real a, real b,
- int n=ngraph, real T(real)=identity, bool3 cond(real),
- interpolate join=operator --);
-
- Returns a graph using the scaling information for picture `pic' of
- the parametrized function `z'(t) for t in the interval
- [`T'(`a'),`T'(`b')], sampling at `n' points evenly spaced in
- [`a',`b'], optionally restricted by the bool3 function `cond' on
- [`a',`b'], using the given interpolation type.
-
- * guide graph(picture pic=currentpicture, pair[] z,
- interpolate join=operator --);
- guide[] graph(picture pic=currentpicture, pair[] z, bool3[] cond,
- interpolate join=operator --);
-
- Returns a graph using the scaling information for picture `pic' of
- the elements of the array `z', optionally restricted to those
- indices for which the elements of the boolean array `cond' are
- `true', using the given interpolation type.
-
- * guide graph(picture pic=currentpicture, real[] x, real[] y,
- interpolate join=operator --);
- guide[] graph(picture pic=currentpicture, real[] x, real[] y,
- bool3[] cond, interpolate join=operator --);
-
- Returns a graph using the scaling information for picture `pic' of
- the elements of the arrays (`x',`y'), optionally restricted to
- those indices for which the elements of the boolean array `cond'
- are `true', using the given interpolation type.
-
- * guide polargraph(picture pic=currentpicture, real f(real), real a,
- real b, int n=ngraph, interpolate join=operator --);
-
- Returns a polar-coordinate graph using the scaling information for
- picture `pic' of the function `f' on the interval [`a',`b'],
- sampling at `n' evenly spaced points, with the given interpolation
- type.
-
- * guide polargraph(picture pic=currentpicture, real[] r, real[] theta,
- interpolate join=operator--);
- Returns a polar-coordinate graph using the scaling information for
- picture `pic' of the elements of the arrays (`r',`theta'), using
- the given interpolation type.
-
-
-
-
- An axis can be drawn on a picture with one of the following commands:
-
- * void xaxis(picture pic=currentpicture, Label L="", axis axis=YZero,
- real xmin=-infinity, real xmax=infinity, pen p=currentpen,
- ticks ticks=NoTicks, arrowbar arrow=None, bool above=false);
-
- Draw an x axis on picture `pic' from x=`xmin' to x=`xmax' using
- pen `p', optionally labelling it with Label `L'. The relative
- label location along the axis (a real number from [0,1]) defaults
- to 1 (*note Label::), so that the label is drawn at the end of the
- axis. An infinite value of `xmin' or `xmax' specifies that the
- corresponding axis limit will be automatically determined from the
- picture limits. The optional `arrow' argument takes the same
- values as in the `draw' command (*note arrows::). The axis is
- drawn before any existing objects in `pic' unless `above=true'.
- The axis placement is determined by one of the following `axis'
- types:
-
- `YZero(bool extend=true)'
- Request an x axis at y=0 (or y=1 on a logarithmic axis)
- extending to the full dimensions of the picture, unless
- `extend'=false.
-
- `YEquals(real Y, bool extend=true)'
- Request an x axis at y=`Y' extending to the full dimensions
- of the picture, unless `extend'=false.
-
- `Bottom(bool extend=false)'
- Request a bottom axis.
-
- `Top(bool extend=false)'
- Request a top axis.
-
- `BottomTop(bool extend=false)'
- Request a bottom and top axis.
-
-
- Custom axis types can be created by following the examples in
- `graph.asy'. One can easily override the default values for the
- standard axis types: import graph;
-
- YZero=new axis(bool extend=true) {
- return new void(picture pic, axisT axis) {
- real y=pic.scale.x.scale.logarithmic ? 1 : 0;
- axis.value=I*pic.scale.y.T(y);
- axis.position=1;
- axis.side=right;
- axis.align=2.5E;
- axis.value2=Infinity;
- axis.extend=extend;
- };
- };
- YZero=YZero();
-
- The default tick option is `NoTicks'. The options `LeftTicks',
- `RightTicks', or `Ticks' can be used to draw ticks on the left,
- right, or both sides of the path, relative to the direction in
- which the path is drawn. These tick routines accept a number of
- optional arguments: ticks LeftTicks(Label format="", ticklabel ticklabel=null,
- bool beginlabel=true, bool endlabel=true,
- int N=0, int n=0, real Step=0, real step=0,
- bool begin=true, bool end=true, tickmodifier modify=None,
- real Size=0, real size=0, bool extend=false,
- pen pTick=nullpen, pen ptick=nullpen);
-
- If any of these parameters are omitted, reasonable defaults will
- be chosen:
- `Label format'
- override the default tick label format (`defaultformat',
- initially "$%.4g$"), rotation, pen, and alignment (for
- example, `LeftSide', `Center', or `RightSide') relative to
- the axis. To enable `LaTeX' math mode fonts, the format
- string should begin and end with `$' *note format::. If the
- format string is `trailingzero', trailing zeros will be added
- to the tick labels; if the format string is `"%"', the tick
- label will be suppressed;
-
- `ticklabel'
- is a function `string(real x)' returning the label (by
- default, format(format.s,x)) for each major tick value `x';
-
- `bool beginlabel'
- include the first label;
-
- `bool endlabel'
- include the last label;
-
- `int N'
- when automatic scaling is enabled (the default; *note
- automatic scaling::), divide a linear axis evenly into this
- many intervals, separated by major ticks; for a logarithmic
- axis, this is the number of decades between labelled ticks;
-
- `int n'
- divide each interval into this many subintervals, separated
- by minor ticks;
-
- `real Step'
- the tick value spacing between major ticks (if `N'=`0');
-
- `real step'
- the tick value spacing between minor ticks (if `n'=`0');
-
- `bool begin'
- include the first major tick;
-
- `bool end'
- include the last major tick;
-
- `tickmodifier modify;'
- an optional function that takes and returns a `tickvalue'
- structure having real[] members `major' and `minor'
- consisting of the tick values (to allow modification of the
- automatically generated tick values);
-
- `real Size'
- the size of the major ticks (in `PostScript' coordinates);
-
- `real size'
- the size of the minor ticks (in `PostScript' coordinates);
-
- `bool extend;'
- extend the ticks between two axes (useful for drawing a grid
- on the graph);
-
- `pen pTick'
- an optional pen used to draw the major ticks;
-
- `pen ptick'
- an optional pen used to draw the minor ticks.
-
-
- For convenience, the predefined tickmodifiers `OmitTick(... real[]
- x)', `OmitTickInterval(real a, real b)', and
- `OmitTickIntervals(real[] a, real[] b)' can be used to remove
- specific auto-generated ticks and their labels. The
- `OmitFormat(string s=defaultformat ... real[] x)' ticklabel can be
- used to remove specific tick labels but not the corresponding
- ticks. The tickmodifier `NoZero' is an abbreviation for
- `OmitTick(0)' and the ticklabel `NoZeroFormat' is an abbrevation
- for `OmitFormat(0)'.
-
- It is also possible to specify custom tick locations with
- `LeftTicks', `RightTicks', and `Ticks' by passing explicit real
- arrays `Ticks' and (optionally) `ticks' containing the locations
- of the major and minor ticks, respectively: ticks LeftTicks(Label format="", ticklabel ticklabel=null,
- bool beginlabel=true, bool endlabel=true,
- real[] Ticks, real[] ticks=new real[],
- real Size=0, real size=0, bool extend=false,
- pen pTick=nullpen, pen ptick=nullpen)
-
- * void yaxis(picture pic=currentpicture, Label L="", axis axis=XZero,
- real ymin=-infinity, real ymax=infinity, pen p=currentpen,
- ticks ticks=NoTicks, arrowbar arrow=None, bool above=false,
- bool autorotate=true);
-
- Draw a y axis on picture `pic' from y=`ymin' to y=`ymax' using pen
- `p', optionally labelling it with a Label `L' that is autorotated
- unless `autorotate=false'. The relative location of the label (a
- real number from [0,1]) defaults to 1 (*note Label::). An infinite
- value of `ymin' or `ymax' specifies that the corresponding axis
- limit will be automatically determined from the picture limits.
- The optional `arrow' argument takes the same values as in the
- `draw' command (*note arrows::). The axis is drawn before any
- existing objects in `pic' unless `above=true'. The tick type is
- specified by `ticks' and the axis placement is determined by one
- of the following `axis' types:
-
- `XZero(bool extend=true)'
- Request a y axis at x=0 (or x=1 on a logarithmic axis)
- extending to the full dimensions of the picture, unless
- `extend'=false.
-
- `XEquals(real X, bool extend=true)'
- Request a y axis at x=`X' extending to the full dimensions of
- the picture, unless `extend'=false.
-
- `Left(bool extend=false)'
- Request a left axis.
-
- `Right(bool extend=false)'
- Request a right axis.
-
- `LeftRight(bool extend=false)'
- Request a left and right axis.
-
-
- * For convenience, the functions void xequals(picture pic=currentpicture, Label L="", real x,
- bool extend=false, real ymin=-infinity, real ymax=infinity,
- pen p=currentpen, ticks ticks=NoTicks, bool above=true,
- arrowbar arrow=None);
- and void yequals(picture pic=currentpicture, Label L="", real y,
- bool extend=false, real xmin=-infinity, real xmax=infinity,
- pen p=currentpen, ticks ticks=NoTicks, bool above=true,
- arrowbar arrow=None);
- can be respectively used to call `yaxis' and `xaxis' with the
- appropriate axis types `XEquals(x,extend)' and
- `YEquals(y,extend)'. This is the recommended way of drawing
- vertical or horizontal lines and axes at arbitrary locations.
-
- * void axes(picture pic=currentpicture, Label xlabel="", Label ylabel="",
- bool extend=true,
- pair min=(-infinity,-infinity), pair max=(infinity,infinity),
- pen p=currentpen, arrowbar arrow=None, bool above=false);
- This convenience routine draws both x and y axes on picture `pic'
- from `min' to `max', with optional labels `xlabel' and `ylabel'
- and any arrows specified by `arrow'. The axes are drawn on top of
- existing objects in `pic' only if `above=true'.
-
- * void axis(picture pic=currentpicture, Label L="", path g,
- pen p=currentpen, ticks ticks, ticklocate locate,
- arrowbar arrow=None, int[] divisor=new int[],
- bool above=false, bool opposite=false);
-
- This routine can be used to draw on picture `pic' a general axis
- based on an arbitrary path `g', using pen `p'. One can optionally
- label the axis with Label `L' and add an arrow `arrow'. The tick
- type is given by `ticks'. The optional integer array `divisor'
- specifies what tick divisors to try in the attempt to produce
- uncrowded tick labels. A `true' value for the flag `opposite'
- identifies an unlabelled secondary axis (typically drawn opposite
- a primary axis). The axis is drawn before any existing objects in
- `pic' unless `above=true'. The tick locator `ticklocate' is
- constructed by the routine ticklocate ticklocate(real a, real b, autoscaleT S=defaultS,
- real tickmin=-infinity, real tickmax=infinity,
- real time(real)=null, pair dir(real)=zero);
- where `a' and `b' specify the respective tick values at
- `point(g,0)' and `point(g,length(g))', `S' specifies the
- autoscaling transformation, the function `real time(real v)'
- returns the time corresponding to the value `v', and `pair
- dir(real t)' returns the absolute tick direction as a function of
- `t' (zero means draw the tick perpendicular to the axis).
-
- * These routines are useful for manually putting ticks and labels on
- axes (if the variable `Label' is given as the `Label' argument,
- the `format' argument will be used to format a string based on the
- tick location): void xtick(picture pic=currentpicture, Label L="", explicit pair z,
- pair dir=N, string format="",
- real size=Ticksize, pen p=currentpen);
- void xtick(picture pic=currentpicture, Label L="", real x,
- pair dir=N, string format="",
- real size=Ticksize, pen p=currentpen);
- void ytick(picture pic=currentpicture, Label L="", explicit pair z,
- pair dir=E, string format="",
- real size=Ticksize, pen p=currentpen);
- void ytick(picture pic=currentpicture, Label L="", real y,
- pair dir=E, string format="",
- real size=Ticksize, pen p=currentpen);
- void tick(picture pic=currentpicture, pair z,
- pair dir, real size=Ticksize, pen p=currentpen);
- void labelx(picture pic=currentpicture, Label L="", explicit pair z,
- align align=S, string format="", pen p=currentpen);
- void labelx(picture pic=currentpicture, Label L="", real x,
- align align=S, string format="", pen p=currentpen);
- void labelx(picture pic=currentpicture, Label L,
- string format="", explicit pen p=currentpen);
- void labely(picture pic=currentpicture, Label L="", explicit pair z,
- align align=W, string format="", pen p=currentpen);
- void labely(picture pic=currentpicture, Label L="", real y,
- align align=W, string format="", pen p=currentpen);
- void labely(picture pic=currentpicture, Label L,
- string format="", explicit pen p=currentpen);
-
- Here are some simple examples of two-dimensional graphs:
-
- 1. This example draws a textbook-style graph of y= exp(x), with the y
- axis starting at y=0: import graph;
- size(150,0);
-
- real f(real x) {return exp(x);}
- pair F(real x) {return (x,f(x));}
-
- xaxis("$x$");
- yaxis("$y$",0);
-
- draw(graph(f,-4,2,operator ..),red);
-
- labely(1,E);
- label("$e^x$",F(1),SE);
-
-
-
- 2. The next example draws a scientific-style graph with a legend.
- The position of the legend can be adjusted either explicitly or by
- using the graphical user interface `xasy' (*note GUI::). If an
- `UnFill(real xmargin=0, real ymargin=xmargin)' or `Fill(pen)'
- option is specified to `add', the legend will obscure any
- underlying objects. Here we illustrate how to clip the portion of
- the picture covered by a label:
-
- import graph;
-
- size(400,200,IgnoreAspect);
-
- real Sin(real t) {return sin(2pi*t);}
- real Cos(real t) {return cos(2pi*t);}
-
- draw(graph(Sin,0,1),red,"$\sin(2\pi x)$");
- draw(graph(Cos,0,1),blue,"$\cos(2\pi x)$");
-
- xaxis("$x$",BottomTop,LeftTicks);
- yaxis("$y$",LeftRight,RightTicks(trailingzero));
-
- label("LABEL",point(0),UnFill(1mm));
-
- add(legend(),point(E),20E,UnFill);
-
-
-
- To specify a fixed size for the graph proper, use `attach': import graph;
-
- size(250,200,IgnoreAspect);
-
- real Sin(real t) {return sin(2pi*t);}
- real Cos(real t) {return cos(2pi*t);}
-
- draw(graph(Sin,0,1),red,"$\sin(2\pi x)$");
- draw(graph(Cos,0,1),blue,"$\cos(2\pi x)$");
-
- xaxis("$x$",BottomTop,LeftTicks);
- yaxis("$y$",LeftRight,RightTicks(trailingzero));
-
- label("LABEL",point(0),UnFill(1mm));
-
- attach(legend(),truepoint(E),20E,UnFill);
- A legend can have multiple entries per line: import graph;
- size(8cm,6cm,IgnoreAspect);
-
- typedef real realfcn(real);
- realfcn F(real p) {
- return new real(real x) {return sin(p*x);};
- };
-
- for(int i=1; i < 5; ++i)
- draw(graph(F(i*pi),0,1),Pen(i),
- "$\sin("+(i == 1 ? "" : (string) i)+"\pi x)$");
- xaxis("$x$",BottomTop,LeftTicks);
- yaxis("$y$",LeftRight,RightTicks(trailingzero));
-
- attach(legend(2),(point(S).x,truepoint(S).y),10S,UnFill);
-
-
-
- 3. This example draws a graph of one array versus another (both of
- the same size) using custom tick locations and a smaller font size
- for the tick labels on the y axis. import graph;
-
- size(200,150,IgnoreAspect);
-
- real[] x={0,1,2,3};
- real[] y=x^2;
-
- draw(graph(x,y),red);
-
- xaxis("$x$",BottomTop,LeftTicks);
- yaxis("$y$",LeftRight,
- RightTicks(Label(fontsize(8pt)),new real[]{0,4,9}));
-
-
-
- 4. This example shows how to graph columns of data read from a file. import graph;
-
- size(200,150,IgnoreAspect);
-
- file in=input("filegraph.dat").line();
- real[][] a=in.dimension(0,0);
- a=transpose(a);
-
- real[] x=a[0];
- real[] y=a[1];
-
- draw(graph(x,y),red);
-
- xaxis("$x$",BottomTop,LeftTicks);
- yaxis("$y$",LeftRight,RightTicks);
-
-
-
- 5. The next example draws two graphs of an array of coordinate pairs,
- using frame alignment and data markers. In the left-hand graph, the
- markers, constructed with marker marker(path g, markroutine markroutine=marknodes,
- pen p=currentpen, filltype filltype=NoFill,
- bool above=true);
- using the path `unitcircle' (*note filltype::), are drawn below
- each node. Any frame can be converted to a marker, using marker marker(frame f, markroutine markroutine=marknodes,
- bool above=true);
- In the right-hand graph, the unit n-sided regular polygon
- `polygon(int n)' and the unit n-point cyclic cross `cross(int n,
- bool round=true, real r=0)' (where `r' is an optional "inner"
- radius) are used to build a custom marker frame. Here
- `markuniform(bool centered=false, int n, bool rotated=false)' adds
- this frame at `n' uniformly spaced points along the arclength of
- the path, optionally rotated by the angle of the local tangent to
- the path (if centered is true, the frames will be centered within
- `n' evenly spaced arclength intervals). Alternatively, one can use
- markroutine `marknodes' to request that the marks be placed at each
- Bezier node of the path, or markroutine `markuniform(pair z(real
- t), real a, real b, int n)' to place marks at points `z(t)' for n
- evenly spaced values of `t' in `[a,b]'.
-
- These markers are predefined: marker[] Mark={
- marker(scale(circlescale)*unitcircle),
- marker(polygon(3)),marker(polygon(4)),
- marker(polygon(5)),marker(invert*polygon(3)),
- marker(cross(4)),marker(cross(6))
- };
-
- marker[] MarkFill={
- marker(scale(circlescale)*unitcircle,Fill),marker(polygon(3),Fill),
- marker(polygon(4),Fill),marker(polygon(5),Fill),
- marker(invert*polygon(3),Fill)
- };
-
- The example also illustrates the `errorbar' routines:
-
- void errorbars(picture pic=currentpicture, pair[] z, pair[] dp,
- pair[] dm={}, bool[] cond={}, pen p=currentpen,
- real size=0);
-
- void errorbars(picture pic=currentpicture, real[] x, real[] y,
- real[] dpx, real[] dpy, real[] dmx={}, real[] dmy={},
- bool[] cond={}, pen p=currentpen, real size=0);
-
- Here, the positive and negative extents of the error are given by
- the absolute values of the elements of the pair array `dp' and the
- optional pair array `dm'. If `dm' is not specified, the positive
- and negative extents of the error are assumed to be equal. import graph;
-
- picture pic;
- real xsize=200, ysize=140;
- size(pic,xsize,ysize,IgnoreAspect);
-
- pair[] f={(5,5),(50,20),(90,90)};
- pair[] df={(0,0),(5,7),(0,5)};
-
- errorbars(pic,f,df,red);
- draw(pic,graph(pic,f),"legend",
- marker(scale(0.8mm)*unitcircle,red,FillDraw(blue),above=false));
-
- scale(pic,true);
-
- xaxis(pic,"$x$",BottomTop,LeftTicks);
- yaxis(pic,"$y$",LeftRight,RightTicks);
- add(pic,legend(pic),point(pic,NW),20SE,UnFill);
-
- picture pic2;
- size(pic2,xsize,ysize,IgnoreAspect);
-
- frame mark;
- filldraw(mark,scale(0.8mm)*polygon(6),green,green);
- draw(mark,scale(0.8mm)*cross(6),blue);
-
- draw(pic2,graph(pic2,f),marker(mark,markuniform(5)));
-
- scale(pic2,true);
-
- xaxis(pic2,"$x$",BottomTop,LeftTicks);
- yaxis(pic2,"$y$",LeftRight,RightTicks);
-
- yequals(pic2,55.0,red+Dotted);
- xequals(pic2,70.0,red+Dotted);
-
- // Fit pic to W of origin:
- add(pic.fit(),(0,0),W);
-
- // Fit pic2 to E of (5mm,0):
- add(pic2.fit(),(5mm,0),E);
-
-
-
- 6. A custom mark routine can be also be specified: import graph;
-
- size(200,100,IgnoreAspect);
-
- markroutine marks() {
- return new void(picture pic=currentpicture, frame f, path g) {
- path p=scale(1mm)*unitcircle;
- for(int i=0; i <= length(g); ++i) {
- pair z=point(g,i);
- frame f;
- if(i % 4 == 0) {
- fill(f,p);
- add(pic,f,z);
- } else {
- if(z.y > 50) {
- pic.add(new void(frame F, transform t) {
- path q=shift(t*z)*p;
- unfill(F,q);
- draw(F,q);
- });
- } else {
- draw(f,p);
- add(pic,f,z);
- }
- }
- }
- };
- }
-
- pair[] f={(5,5),(40,20),(55,51),(90,30)};
-
- draw(graph(f),marker(marks()));
-
- scale(true);
-
- xaxis("$x$",BottomTop,LeftTicks);
- yaxis("$y$",LeftRight,RightTicks);
-
-
-
- 7. This example shows how to label an axis with arbitrary strings. import graph;
-
- size(400,150,IgnoreAspect);
-
- real[] x=sequence(12);
- real[] y=sin(2pi*x/12);
-
- scale(false);
-
- string[] month={"Jan","Feb","Mar","Apr","May","Jun",
- "Jul","Aug","Sep","Oct","Nov","Dec"};
-
- draw(graph(x,y),red,MarkFill[0]);
-
- xaxis(BottomTop,LeftTicks(new string(real x) {
- return month[round(x % 12)];}));
- yaxis("$y$",LeftRight,RightTicks(4));
-
-
-
- 8. The next example draws a graph of a parametrized curve. The calls
- to xlimits(picture pic=currentpicture, real min=-infinity,
- real max=infinity, bool crop=NoCrop);
- and the analogous function `ylimits' can be uncommented to set
- the respective axes limits for picture `pic' to the specified
- `min' and `max' values. Alternatively, the function void limits(picture pic=currentpicture, pair min, pair max, bool crop=NoCrop);
- can be used to limit the axes to the box having opposite vertices
- at the given pairs). Existing objects in picture `pic' will be
- cropped to lie within the given limits if `crop'=`Crop'. The
- function `crop(picture pic)' can be used to crop a graph to the
- current graph limits. import graph;
-
- size(0,200);
-
- real x(real t) {return cos(2pi*t);}
- real y(real t) {return sin(2pi*t);}
-
- draw(graph(x,y,0,1));
-
- //limits((0,-1),(1,0),Crop);
-
- xaxis("$x$",BottomTop,LeftTicks);
- yaxis("$y$",LeftRight,RightTicks(trailingzero));
-
-
-
- The next example illustrates how one can extract a common axis
- scaling factor. import graph;
-
- axiscoverage=0.9;
- size(200,IgnoreAspect);
-
- real[] x={-1e-11,1e-11};
- real[] y={0,1e6};
-
- real xscale=round(log10(max(x)));
- real yscale=round(log10(max(y)))-1;
-
- draw(graph(x*10^(-xscale),y*10^(-yscale)),red);
-
- xaxis("$x/10^{"+(string) xscale+"}$",BottomTop,LeftTicks);
- yaxis("$y/10^{"+(string) yscale+"}$",LeftRight,RightTicks(trailingzero));
-
-
-
- Axis scaling can be requested and/or automatic selection of the
- axis limits can be inhibited with one of these `scale' routines: void scale(picture pic=currentpicture, scaleT x, scaleT y);
-
- void scale(picture pic=currentpicture, bool xautoscale=true,
- bool yautoscale=xautoscale, bool zautoscale=yautoscale);
-
- This sets the scalings for picture `pic'. The `graph' routines
- accept an optional `picture' argument for determining the
- appropriate scalings to use; if none is given, it uses those set
- for `currentpicture'.
-
- Two frequently used scaling routines `Linear' and `Log' are
- predefined in `graph'.
-
- All picture coordinates (including those in paths and those given
- to the `label' and `limits' functions) are always treated as linear
- (post-scaled) coordinates. Use pair Scale(picture pic=currentpicture, pair z);
- to convert a graph coordinate into a scaled picture coordinate.
-
- The x and y components can be individually scaled using the
- analogous routines real ScaleX(picture pic=currentpicture, real x);
- real ScaleY(picture pic=currentpicture, real y);
-
- The predefined scaling routines can be given two optional boolean
- arguments: `automin=false' and `automax=automin'. These default to
- `false' but can be respectively set to `true' to enable automatic
- selection of "nice" axis minimum and maximum values. The `Linear'
- scaling can also take as optional final arguments a multiplicative
- scaling factor and intercept (e.g. for a depth axis, `Linear(-1)'
- requests axis reversal).
-
- For example, to draw a log/log graph of a function, use
- `scale(Log,Log)': import graph;
-
- size(200,200,IgnoreAspect);
-
- real f(real t) {return 1/t;}
-
- scale(Log,Log);
-
- draw(graph(f,0.1,10));
-
- //limits((1,0.1),(10,0.5),Crop);
-
- dot(Label("(3,5)",align=S),Scale((3,5)));
-
- xaxis("$x$",BottomTop,LeftTicks);
- yaxis("$y$",LeftRight,RightTicks);
-
-
-
- By extending the ticks, one can easily produce a logarithmic grid: import graph;
- size(200,200,IgnoreAspect);
-
- real f(real t) {return 1/t;}
-
- scale(Log,Log);
- draw(graph(f,0.1,10),red);
- pen thin=linewidth(0.5*linewidth());
- xaxis("$x$",BottomTop,LeftTicks(begin=false,end=false,extend=true,
- ptick=thin));
- yaxis("$y$",LeftRight,RightTicks(begin=false,end=false,extend=true,
- ptick=thin));
-
-
-
- One can also specify custom tick locations and formats for
- logarithmic axes: import graph;
-
- size(300,175,IgnoreAspect);
- scale(Log,Log);
- draw(graph(identity,5,20));
- xlimits(5,20);
- ylimits(1,100);
- xaxis("$M/M_\odot$",BottomTop,LeftTicks(DefaultFormat,
- new real[] {6,10,12,14,16,18}));
- yaxis("$\nu_{\rm upp}$ [Hz]",LeftRight,RightTicks(DefaultFormat));
-
-
-
- It is easy to draw logarithmic graphs with respect to other bases: import graph;
- size(200,IgnoreAspect);
-
- // Base-2 logarithmic scale on y-axis:
-
- real log2(real x) {static real log2=log(2); return log(x)/log2;}
- real pow2(real x) {return 2^x;}
-
- scaleT yscale=scaleT(log2,pow2,logarithmic=true);
- scale(Linear,yscale);
-
- real f(real x) {return 1+x^2;}
-
- draw(graph(f,-4,4));
-
- yaxis("$y$",ymin=1,ymax=f(5),RightTicks(Label(Fill(white))),EndArrow);
- xaxis("$x$",xmin=-5,xmax=5,LeftTicks,EndArrow);
-
-
-
- Here is an example of "broken" linear x and logarithmic y axes
- that omit the segments [3,8] and [100,1000], respectively. In the
- case of a logarithmic axis, the break endpoints are automatically
- rounded to the nearest integral power of the base. import graph;
-
- size(200,150,IgnoreAspect);
-
- // Break the x axis at 3; restart at 8:
- real a=3, b=8;
-
- // Break the y axis at 100; restart at 1000:
- real c=100, d=1000;
-
- scale(Broken(a,b),BrokenLog(c,d));
-
- real[] x={1,2,4,6,10};
- real[] y=x^4;
-
- draw(graph(x,y),red,MarkFill[0]);
-
- xaxis("$x$",BottomTop,LeftTicks(Break(a,b)));
- yaxis("$y$",LeftRight,RightTicks(Break(c,d)));
-
- label(rotate(90)*Break,(a,point(S).y));
- label(rotate(90)*Break,(a,point(N).y));
- label(Break,(point(W).x,ScaleY(c)));
- label(Break,(point(E).x,ScaleY(c)));
-
-
-
- 9. `Asymptote' can draw secondary axes with the routines picture secondaryX(picture primary=currentpicture, void f(picture));
- picture secondaryY(picture primary=currentpicture, void f(picture));
-
- In this example, `secondaryY' is used to draw a secondary linear y
- axis against a primary logarithmic y axis: import graph;
- texpreamble("\def\Arg{\mathop {\rm Arg}\nolimits}");
-
- size(10cm,5cm,IgnoreAspect);
-
- real ampl(real x) {return 2.5/(1+x^2);}
- real phas(real x) {return -atan(x)/pi;}
-
- scale(Log,Log);
- draw(graph(ampl,0.01,10));
- ylimits(0.001,100);
-
- xaxis("$\omega\tau_0$",BottomTop,LeftTicks);
- yaxis("$|G(\omega\tau_0)|$",Left,RightTicks);
-
- picture q=secondaryY(new void(picture pic) {
- scale(pic,Log,Linear);
- draw(pic,graph(pic,phas,0.01,10),red);
- ylimits(pic,-1.0,1.5);
- yaxis(pic,"$\Arg G/\pi$",Right,red,
- LeftTicks("$% #.1f$",
- begin=false,end=false));
- yequals(pic,1,Dotted);
- });
- label(q,"(1,0)",Scale(q,(1,0)),red);
- add(q);
-
-
-
- A secondary logarithmic y axis can be drawn like this: import graph;
-
- size(9cm,6cm,IgnoreAspect);
- string data="secondaryaxis.csv";
-
- file in=input(data).line().csv();
-
- string[] titlelabel=in;
- string[] columnlabel=in;
-
- real[][] a=in.dimension(0,0);
- a=transpose(a);
- real[] t=a[0], susceptible=a[1], infectious=a[2], dead=a[3], larvae=a[4];
- real[] susceptibleM=a[5], exposed=a[6],infectiousM=a[7];
-
- scale(true);
-
- draw(graph(t,susceptible,t >= 10 & t <= 15));
- draw(graph(t,dead,t >= 10 & t <= 15),dashed);
-
- xaxis("Time ($\tau$)",BottomTop,LeftTicks);
- yaxis(Left,RightTicks);
-
- picture secondary=secondaryY(new void(picture pic) {
- scale(pic,Linear(true),Log(true));
- draw(pic,graph(pic,t,infectious,t >= 10 & t <= 15),red);
- yaxis(pic,Right,red,LeftTicks(begin=false,end=false));
- });
-
- add(secondary);
- label(shift(5mm*N)*"Proportion of crows",point(NW),E);
-
-
-
- 10. Here is a histogram example, which uses the `stats' module. import graph;
- import stats;
-
- size(400,200,IgnoreAspect);
-
- int n=10000;
- real[] a=new real[n];
- for(int i=0; i < n; ++i) a[i]=Gaussrand();
-
- draw(graph(Gaussian,min(a),max(a)),blue);
-
- // Optionally calculate "optimal" number of bins a la Shimazaki and Shinomoto.
- int N=bins(a);
-
- histogram(a,min(a),max(a),N,normalize=true,low=0,lightred,black,bars=false);
-
- xaxis("$x$",BottomTop,LeftTicks);
- yaxis("$dP/dx$",LeftRight,RightTicks(trailingzero));
-
-
-
- 11. Here is an example of reading column data in from a file and a
- least-squares fit, using the `stats' module. size(400,200,IgnoreAspect);
-
- import graph;
- import stats;
-
- file fin=input("leastsquares.dat").line();
-
- real[][] a=fin.dimension(0,0);
- a=transpose(a);
-
- real[] t=a[0], rho=a[1];
-
- // Read in parameters from the keyboard:
- //real first=getreal("first");
- //real step=getreal("step");
- //real last=getreal("last");
-
- real first=100;
- real step=50;
- real last=700;
-
- // Remove negative or zero values of rho:
- t=rho > 0 ? t : null;
- rho=rho > 0 ? rho : null;
-
- scale(Log(true),Linear(true));
-
- int n=step > 0 ? ceil((last-first)/step) : 0;
-
- real[] T,xi,dxi;
-
- for(int i=0; i <= n; ++i) {
- real first=first+i*step;
- real[] logrho=(t >= first & t <= last) ? log(rho) : null;
- real[] logt=(t >= first & t <= last) ? -log(t) : null;
-
- if(logt.length < 2) break;
-
- // Fit to the line logt=L.m*logrho+L.b:
- linefit L=leastsquares(logt,logrho);
-
- T.push(first);
- xi.push(L.m);
- dxi.push(L.dm);
- }
-
- draw(graph(T,xi),blue);
- errorbars(T,xi,dxi,red);
-
- crop();
-
- ylimits(0);
-
- xaxis("$T$",BottomTop,LeftTicks);
- yaxis("$\xi$",LeftRight,RightTicks);
-
-
-
- 12. Here is an example that illustrates the general `axis' routine. import graph;
- size(0,100);
-
- path g=ellipse((0,0),1,2);
-
- scale(true);
-
- axis(Label("C",align=10W),g,LeftTicks(endlabel=false,8,end=false),
- ticklocate(0,360,new real(real v) {
- path h=(0,0)--max(abs(max(g)),abs(min(g)))*dir(v);
- return intersect(g,h)[0];}));
-
-
-
- 13. To draw a vector field of `n' arrows evenly spaced along the
- arclength of a path, use the routine picture vectorfield(path vector(real), path g, int n, bool truesize=false,
- pen p=currentpen, arrowbar arrow=Arrow);
- as illustrated in this simple example of a flow field: import graph;
- defaultpen(1.0);
-
- size(0,150,IgnoreAspect);
-
- real arrowsize=4mm;
- real arrowlength=2arrowsize;
-
- typedef path vector(real);
-
- // Return a vector interpolated linearly between a and b.
- vector vector(pair a, pair b) {
- return new path(real x) {
- return (0,0)--arrowlength*interp(a,b,x);
- };
- }
-
- real f(real x) {return 1/x;}
-
- real epsilon=0.5;
- path g=graph(f,epsilon,1/epsilon);
-
- int n=3;
- draw(g);
- xaxis("$x$");
- yaxis("$y$");
-
- add(vectorfield(vector(W,W),g,n,true));
- add(vectorfield(vector(NE,NW),(0,0)--(point(E).x,0),n,true));
- add(vectorfield(vector(NE,NE),(0,0)--(0,point(N).y),n,true));
-
-
-
- 14. To draw a vector field of `nx'\times`ny' arrows in `box(a,b)', use
- the routine picture vectorfield(path vector(pair), pair a, pair b,
- int nx=nmesh, int ny=nx, bool truesize=false,
- real maxlength=truesize ? 0 : maxlength(a,b,nx,ny),
- bool cond(pair z)=null, pen p=currentpen,
- arrowbar arrow=Arrow, margin margin=PenMargin)
- as illustrated in this example: import graph;
- size(100);
-
- pair a=(0,0);
- pair b=(2pi,2pi);
-
- path vector(pair z) {return (0,0)--(sin(z.x),cos(z.y));}
-
- add(vectorfield(vector,a,b));
-
-
-
- 15. The following scientific graphs, which illustrate many features of
- `Asymptote''s graphics routines, were generated from the examples
- `diatom.asy' and `westnile.asy', using the comma-separated data in
- `diatom.csv' and `westnile.csv'.
-
-
-
-File: asymptote.info, Node: palette, Next: three, Prev: graph, Up: Base modules
-
-8.28 `palette'
-==============
-
-`Asymptote' can also generate color density images and palettes. The
-following palettes are predefined in `palette.asy':
-
-`pen[] Grayscale(int NColors=256)'
- a grayscale palette;
-
-`pen[] Rainbow(int NColors=32766)'
- a rainbow spectrum;
-
-`pen[] BWRainbow(int NColors=32761)'
- a rainbow spectrum tapering off to black/white at the ends;
-
-`pen[] BWRainbow2(int NColors=32761)'
- a double rainbow palette tapering off to black/white at the ends,
- with a linearly scaled intensity.
-
-`pen[] Wheel(int NColors=32766)'
- a full color wheel palette;
-
-`pen[] Gradient(int NColors=256 ... pen[] p)'
- a palette varying linearly over the specified array of pens, using
- NColors in each interpolation interval;
-
-
- The function `cmyk(pen[] Palette)' may be used to convert any of
-these palettes to the CMYK colorspace.
-
- A color density plot using palette `palette' can be generated from a
-function `f'(x,y) and added to a picture `pic':
-bounds image(picture pic=currentpicture, real f(real, real),
- range range=Full, pair initial, pair final,
- int nx=ngraph, int ny=nx, pen[] palette, bool antialias=false)
- The function `f' will be sampled at `nx' and `ny' evenly spaced points
-over a rectangle defined by the points `initial' and `final',
-respecting the current graphical scaling of `pic'. The color space is
-scaled according to the z axis scaling (*note automatic scaling::). A
-bounds structure for the function values is returned:
-struct bounds {
- real min;
- real max;
- // Possible tick intervals:
- int[] divisor;
-}
- This information can be used for generating an optional palette bar.
-The palette color space corresponds to a range of values specified by
-the argument `range', which can be `Full', `Automatic', or an explicit
-range `Range(real min, real max)'. Here `Full' specifies a range
-varying from the minimum to maximum values of the function over the
-sampling interval, while `Automatic' selects "nice" limits. The
-example `imagecontour.asy' illustrates how level sets (contour lines)
-can be drawn on a color density plot (*note contour::).
-
- A color density plot can also be generated from an explicit real[][]
-array `data':
-bounds image(picture pic=currentpicture, real[][] f, range range=Full,
- pair initial, pair final, pen[] palette,
- bool transpose=(initial.x < final.x && initial.y < final.y),
- bool copy=true, bool antialias=false);
- If the initial point is to the left and below the final point, by
-default the array indices are interpreted according to the Cartesian
-convention (first index: x, second index: y) rather than the usual
-matrix convention (first index: -y, second index: x).
-
- To construct an image from an array of irregularly spaced points and
-an array of values `f' at these points, use one of the routines
-bounds image(picture pic=currentpicture, pair[] z, real[] f,
- range range=Full, pen[] palette)
-bounds image(picture pic=currentpicture, real[] x, real[] y, real[] f,
- range range=Full, pen[] palette)
-
- An optionally labelled palette bar may be generated with the routine
-void palette(picture pic=currentpicture, Label L="", bounds bounds,
- pair initial, pair final, axis axis=Right, pen[] palette,
- pen p=currentpen, paletteticks ticks=PaletteTicks,
- bool copy=true, bool antialias=false);
- The color space of `palette' is taken to be over bounds `bounds' with
-scaling given by the z scaling of `pic'. The palette orientation is
-specified by `axis', which may be one of `Right', `Left', `Top', or
-`Bottom'. The bar is drawn over the rectangle from `initial' to
-`final'. The argument `paletteticks' is a special tick type (*note
-ticks::) that takes the following arguments:
-paletteticks PaletteTicks(Label format="", ticklabel ticklabel=null,
- bool beginlabel=true, bool endlabel=true,
- int N=0, int n=0, real Step=0, real step=0,
- pen pTick=nullpen, pen ptick=nullpen);
-
- The image and palette bar can be fit to a frame and added and
-optionally aligned to a picture at the desired location:
-
-size(12cm,12cm);
-
-import graph;
-import palette;
-
-int n=256;
-real ninv=2pi/n;
-real[][] v=new real[n][n];
-
-for(int i=0; i < n; ++i)
- for(int j=0; j < n; ++j)
- v[i][j]=sin(i*ninv)*cos(j*ninv);
-
-pen[] Palette=BWRainbow();
-
-picture bar;
-
-bounds range=image(v,(0,0),(1,1),Palette);
-palette(bar,"$A$",range,(0,0),(0.5cm,8cm),Right,Palette,
- PaletteTicks("$%+#.1f$"));
-add(bar.fit(),point(E),30E);
-
-
-
-Here is an example that uses logarithmic scaling of the function values:
-
-import graph;
-import palette;
-
-size(10cm,10cm,IgnoreAspect);
-
-real f(real x, real y) {
- return 0.9*pow10(2*sin(x/5+2*y^0.25)) + 0.1*(1+cos(10*log(y)));
-}
-
-scale(Linear,Log,Log);
-
-pen[] Palette=BWRainbow();
-
-bounds range=image(f,Automatic,(0,1),(100,100),nx=200,Palette);
-
-xaxis("$x$",BottomTop,LeftTicks,above=true);
-yaxis("$y$",LeftRight,RightTicks,above=true);
-
-palette("$f(x,y)$",range,(0,200),(100,250),Top,Palette,
- PaletteTicks(ptick=linewidth(0.5*linewidth())));
-
-
-
-One can also draw an image directly from a two-dimensional pen array or
-a function `pen f(int, int)':
-void image(picture pic=currentpicture, pen[][] data,
- pair initial, pair final,
- bool transpose=(initial.x < final.x && initial.y < final.y),
- bool copy=true, bool antialias=false);
-void image(picture pic=currentpicture, pen f(int, int), int width, int height,
- pair initial, pair final,
- bool transpose=(initial.x < final.x && initial.y < final.y),
- bool antialias=false);
- as illustrated in the following examples:
-
-size(200);
-
-import palette;
-
-int n=256;
-real ninv=2pi/n;
-pen[][] v=new pen[n][n];
-
-for(int i=0; i < n; ++i)
- for(int j=0; j < n; ++j)
- v[i][j]=rgb(0.5*(1+sin(i*ninv)),0.5*(1+cos(j*ninv)),0);
-
-image(v,(0,0),(1,1));
-
-
-
-import palette;
-
-size(200);
-
-real fracpart(real x) {return (x-floor(x));}
-
-pair pws(pair z) {
- pair w=(z+exp(pi*I/5)/0.9)/(1+z/0.9*exp(-pi*I/5));
- return exp(w)*(w^3-0.5*I);
-}
-
-int N=512;
-
-pair a=(-1,-1);
-pair b=(0.5,0.5);
-real dx=(b-a).x/N;
-real dy=(b-a).y/N;
-
-pen f(int u, int v) {
- pair z=a+(u*dx,v*dy);
- pair w=pws(z);
- real phase=degrees(w,warn=false);
- real modulus=w == 0 ? 0: fracpart(log(abs(w)));
- return hsv(phase,1,sqrt(modulus));
-}
-
-image(f,N,N,(0,0),(300,300),antialias=true);
-
-
-
-For convenience, the module `palette' also defines functions that may
-be used to construct a pen array from a given function and palette:
-pen[] palette(real[] f, pen[] palette);
-pen[][] palette(real[][] f, pen[] palette);
-
-
-File: asymptote.info, Node: three, Next: obj, Prev: palette, Up: Base modules
-
-8.29 `three'
-============
-
-This module fully extends the notion of guides and paths in `Asymptote'
-to three dimensions. It introduces the new types guide3, path3, and
-surface. Guides in three dimensions are specified with the same syntax
-as in two dimensions except that triples `(x,y,z)' are used in place of
-pairs `(x,y)' for the nodes and direction specifiers. This
-generalization of John Hobby's spline algorithm is shape-invariant under
-three-dimensional rotation, scaling, and shifting, and reduces in the
-planar case to the two-dimensional algorithm used in `Asymptote',
-`MetaPost', and `MetaFont' [cf. J. C. Bowman, Proceedings in Applied
-Mathematics and Mechanics, 7:1, 2010021-2010022 (2007)].
-
- For example, a unit circle in the XY plane may be filled and drawn
-like this:
-
-import three;
-
-size(100);
-
-path3 g=(1,0,0)..(0,1,0)..(-1,0,0)..(0,-1,0)..cycle;
-draw(g);
-draw(O--Z,red+dashed,Arrow3);
-draw(((-1,-1,0)--(1,-1,0)--(1,1,0)--(-1,1,0)--cycle));
-dot(g,red);
-
-
-and then distorted into a saddle:
-
-import three;
-
-size(100,0);
-path3 g=(1,0,0)..(0,1,1)..(-1,0,0)..(0,-1,1)..cycle;
-draw(g);
-draw(((-1,-1,0)--(1,-1,0)--(1,1,0)--(-1,1,0)--cycle));
-dot(g,red);
-
-
-Module `three' provides constructors for converting two-dimensional
-paths to three-dimensional ones, and vice-versa:
-path3 path3(path p, triple plane(pair)=XYplane);
-path path(path3 p, pair P(triple)=xypart);
-
- A Bezier surface, the natural two-dimensional generalization of
-Bezier curves, is defined in `three_surface.asy' as a structure
-containing an array of Bezier patches. Surfaces may drawn with one of
-the routines
-void draw(picture pic=currentpicture, surface s, int nu=1, int nv=1,
- material surfacepen=currentpen, pen meshpen=nullpen,
- light light=currentlight, light meshlight=light, string name="",
- render render=defaultrender);
-void draw(picture pic=currentpicture, surface s, int nu=1, int nv=1,
- material[] surfacepen, pen meshpen,
- light light=currentlight, light meshlight=light, string name="",
- render render=defaultrender);
-void draw(picture pic=currentpicture, surface s, int nu=1, int nv=1,
- material[] surfacepen, pen[] meshpen=nullpens,
- light light=currentlight, light meshlight=light, string name="",
- render render=defaultrender);
-
- The parameters `nu' and `nv' specify the number of subdivisions for
-drawing optional mesh lines for each Bezier patch. The optional `name'
-parameter is used as a prefix for naming the surface patches in the PRC
-model tree. Here material is a structure defined in `three_light.asy':
-struct material {
- pen[] p; // diffusepen,ambientpen,emissivepen,specularpen
- real opacity;
- real shininess;
-...
-}
- These material properties are used to implement `OpenGL'-style
-lighting, based on the Phong-Blinn specular model. Sample Bezier
-surfaces are contained in the example files `BezierSurface.asy',
-`teapot.asy', and `parametricsurface.asy'. The structure `render'
-contains specialized rendering options documented at the beginning of
-module `three.asy'.
-
- The examples `elevation.asy' and `sphericalharmonic.asy' illustrate
-how to draw a surface with patch-dependent colors. The examples
-`vertexshading' and `smoothelevation' illustrate vertex-dependent
-colors, which is supported for both `Asymptote''s native `OpenGL'
-renderer and two-dimensional projections. Since the PRC output format
-does not currently support vertex shading of Bezier surfaces, PRC
-patches are shaded with the mean of the four vertex colors.
-
- A surface can be constructed from a cyclic `path3' with the
-constructor
-surface surface(path3 external, triple[] internal=new triple[],
- triple[] normals=new triple[], pen[] colors=new pen[],
- bool3 planar=default);
- and then filled:
-draw(surface(path3(polygon(5))),red,nolight);
-draw(surface(unitcircle3),red,nolight);
-draw(surface(unitcircle3,new pen[] {red,green,blue,black}),nolight);
- The last example constructs a patch with vertex-specific colors. A
-three-dimensional planar surface in the plane `plane' can be
-constructed from a two-dimensional cyclic path `g' with the constructor
-surface surface(path p, triple plane(pair)=XYplane);
- and then filled:
-draw(surface((0,0)--E+2N--2E--E+N..0.2E..cycle),red);
- Planar Bezier surfaces patches are constructed using Orest Shardt's
-`bezulate' routine, which decomposes (possibly nonsimply connected)
-regions bounded (according to the `zerowinding' fill rule) by simple
-cyclic paths (intersecting only at the endpoints) into subregions
-bounded by cyclic paths of length `4' or less.
-
- A more efficient routine also exists for drawing tessellations
-composed of many 3D triangles, with specified vertices, and optional
-normals or vertex colors:
-void draw(picture pic=currentpicture, triple[] v, int[][] vi,
- triple[] n={}, int[][] ni={}, material m=currentpen, pen[] p={},
- int[][] pi={}, light light=currentlight);
- Here, the triple array `v' lists the distinct vertices, while the
-array `vi' lists integer arrays of length 3 containing the indices of
-`v' corresponding to the vertices of each triangle. Similarly, the
-arguments `n' and `ni' contain optional normal data and `p' and `pi'
-contain optional pen vertex data. An example of this tessellation
-facility is given in `triangles.asy'.
-
- Arbitrary thick three-dimensional curves and line caps (which the
-`OpenGL' standard does not require implementations to provide) are
-constructed with
-tube tube(path3 p, real width, render render=defaultrender);
- this returns a tube structure representing a tube of diameter `width'
-centered approximately on `g'. The tube structure consists of a surface
-`s' and the actual tube center, path3 `center'. Drawing thick lines as
-tubes can be slow to render, especially with the `Adobe Reader'
-renderer. The setting `thick=false' can be used to disable this feature
-and force all lines to be drawn with `linewidth(0)' (one pixel wide,
-regardless of the resolution). By default, mesh and contour lines in
-three-dimensions are always drawn thin, unless an explicit line width
-is given in the pen parameter or the setting `thin' is set to `false'.
-The pens `thin()' and `thick()' defined in plain_pens.asy can also be
-used to override these defaults for specific draw commands.
-
-There are four choices for viewing 3D `Asymptote' output:
- 1. Use the native `Asymptote' adaptive `OpenGL'-based renderer (with
- the command-line option `-V' and the default settings
- `outformat=""' and `render=-1'). If you encounter warnings from
- your graphics card driver, try specifying `-glOptions=-indirect'
- on the command line. On `UNIX' systems with graphics support for
- multisampling, the sample width can be controlled with the setting
- `multisample'. An initial screen position can be specified with
- the pair setting `position', where negative values are interpreted
- as relative to the corresponding maximum screen dimension. The
- default settings import settings;
- leftbutton=new string[] {"rotate","zoom","shift","pan"};
- middlebutton=new string[] {"menu"};
- rightbutton=new string[] {"zoom/menu","rotateX","rotateY","rotateZ"};
- wheelup=new string[] {"zoomin"};
- wheeldown=new string[] {"zoomout"};
- bind the mouse buttons as follows:
- * Left: rotate
-
- * Shift Left: zoom
-
- * Ctrl Left: shift viewport
-
- * Alt Left: pan
-
- * Middle: menu (must be unmodified; ignores Shift, Ctrl, and
- Alt)
-
- * Wheel Up: zoom in
-
- * Wheel Down: zoom out
-
- * Right: zoom/menu (must be unmodified)
-
- * Right double click: menu
-
- * Shift Right: rotate about the X axis
-
- * Ctrl Right: rotate about the Y axis
-
- * Alt Right: rotate about the Z axis
-
- The keyboard shortcuts are:
- * h: home
-
- * f: toggle fitscreen
-
- * x: spin about the X axis
-
- * y: spin about the Y axis
-
- * z: spin about the Z axis
-
- * s: stop spinning
-
- * m: rendering mode (solid/mesh/patch)
-
- * e: export
-
- * c: show camera parameters
-
- * p: play animation
-
- * r: reverse animation
-
- * : step animation
-
- * +: expand
-
- * =: expand
-
- * >: expand
-
- * -: shrink
-
- * _: shrink
-
- * <: shrink
-
- * q: exit
-
- * Ctrl-q: exit
-
- 2. Render the scene to a specified rasterized format `outformat' at
- the resolution of `n' pixels per `bp', as specified by the setting
- `render=n'. A negative value of `n' is interpreted as `|2n|' for
- EPS and PDF formats and `|n|' for other formats. The default value
- of `render' is -1. By default, the scene is internally rendered
- at twice the specified resolution; this can be disabled by setting
- `antialias=1'. High resolution rendering is done by tiling the
- image. If your graphics card allows it, the rendering can be made
- more efficient by increasing the maximum tile size `maxtile' to
- your screen dimensions (indicated by `maxtile=(0,0)'. If your
- video card generates unwanted black stripes in the output, try
- setting the horizontal and vertical components of `maxtiles' to
- something less than your screen dimensions. The tile size is also
- limited by the setting `maxviewport', which restricts the maximum
- width and height of the viewport. On `UNIX' systems some graphics
- drivers support batch mode (`-noV') rendering in an iconified
- window; this can be enabled with the setting `iconify=true'. Some
- (broken) `UNIX' graphics drivers may require the command line
- setting `-glOptions=-indirect', which requests (slower) indirect
- rendering.
-
- 3. Embed the 3D PRC format in a PDF file and view the resulting PDF
- file with version `9.0' or later of `Adobe Reader'. In addition
- to the default `settings.prc=true', this requires
- `settings.outformat="pdf"', which can be specified by the command
- line option `-f pdf', put in the `Asymptote' configuration file
- (*note configuration file::), or specified in the script before
- `three.asy' (or `graph3.asy') is imported. The `media9' LaTeX
- package is also required (*note embed::). The example `pdb.asy'
- illustrates how one can generate a list of predefined views (see
- `100d.views'). A stationary preview image with a resolution of
- `n' pixels per `bp' can be embedded with the setting `render=n';
- this allows the file to be viewed with other `PDF' viewers.
- Alternatively, the file `externalprc.tex' illustrates how the
- resulting PRC and rendered image files can be extracted and
- processed in a separate `LaTeX' file. However, see *note LaTeX
- usage:: for an easier way to embed three-dimensional `Asymptote'
- pictures within `LaTeX'. The open-source PRC specification is
- available from
- `http://livedocs.adobe.com/acrobat_sdk/9/Acrobat9_HTMLHelp/API_References/PRCReference/PRC_Format_Specification/'.
-
- 4. Project the scene to a two-dimensional vector (EPS or PDF) format
- with `render=0'. Only limited hidden surface removal facilities
- are currently available with this approach (*note PostScript3D::).
-
-
- Automatic picture sizing in three dimensions is accomplished with
-double deferred drawing. The maximal desired dimensions of the scene in
-each of the three dimensions can optionally be specified with the
-routine
-void size3(picture pic=currentpicture, real x, real y=x, real z=y,
- bool keepAspect=pic.keepAspect);
- The resulting simplex linear programming problem is then solved to
-produce a 3D version of a frame (actually implemented as a 3D picture).
-The result is then fit with another application of deferred drawing to
-the viewport dimensions corresponding to the usual two-dimensional
-picture `size' parameters. The global pair `viewportmargin' may be used
-to add horizontal and vertical margins to the viewport dimensions.
-Alternatively, a minimum `viewportsize' may be specified. A 3D picture
-`pic' can be explicitly fit to a 3D frame by calling
-frame pic.fit3(projection P=currentprojection);
- and then added to picture `dest' about `position' with
-void add(picture dest=currentpicture, frame src, triple position=(0,0,0));
-
- For convenience, the `three' module defines `O=(0,0,0)',
-`X=(1,0,0)', `Y=(0,1,0)', and `Z=(0,0,1)', along with a unitcircle in
-the XY plane:
-path3 unitcircle3=X..Y..-X..-Y..cycle;
-
- A general (approximate) circle can be drawn perpendicular to the
-direction `normal' with the routine
-path3 circle(triple c, real r, triple normal=Z);
-
- A circular arc centered at `c' with radius `r' from
-`c+r*dir(theta1,phi1)' to `c+r*dir(theta2,phi2)', drawing
-counterclockwise relative to the normal vector
-`cross(dir(theta1,phi1),dir(theta2,phi2))' if `theta2 > theta1' or if
-`theta2 == theta1' and `phi2 >= phi1', can be constructed with
-path3 arc(triple c, real r, real theta1, real phi1, real theta2, real phi2,
- triple normal=O);
- The normal must be explicitly specified if `c' and the endpoints are
-colinear. If `r' < 0, the complementary arc of radius `|r|' is
-constructed. For convenience, an arc centered at `c' from triple `v1'
-to `v2' (assuming `|v2-c|=|v1-c|') in the direction CCW
-(counter-clockwise) or CW (clockwise) may also be constructed with
-path3 arc(triple c, triple v1, triple v2, triple normal=O,
- bool direction=CCW);
- When high accuracy is needed, the routines `Circle' and `Arc' defined
-in `graph3' may be used instead. See *note GaussianSurface:: for an
-example of a three-dimensional circular arc.
-
- The representation `O--O+u--O+u+v--O+v--cycle' of the plane passing
-through point `O' with normal `cross(u,v)' is returned by
-path3 plane(triple u, triple v, triple O=O);
- A three-dimensional box with opposite vertices at triples `v1' and
-`v2' may be drawn with the function
-path3[] box(triple v1, triple v2);
- For example, a unit box is predefined as
-path3[] unitbox=box(O,(1,1,1));
- `Asymptote' also provides optimized definitions for the
-three-dimensional paths `unitsquare3' and `unitcircle3', along with the
-surfaces `unitdisk', `unitplane', `unitcube', `unitcylinder',
-`unitcone', `unitsolidcone', `unitfrustum(real t1, real t2)',
-`unitsphere', and `unithemisphere'.
-
-These projections to two dimensions are predefined:
-`oblique'
-
-`oblique(real angle)'
- The point `(x,y,z)' is projected to `(x-0.5z,y-0.5z)'. If an
- optional real argument is given, the negative z axis is drawn at
- this angle in degrees. The projection `obliqueZ' is a synonym for
- `oblique'.
-
-`obliqueX'
-
-`obliqueX(real angle)'
- The point `(x,y,z)' is projected to `(y-0.5x,z-0.5x)'. If an
- optional real argument is given, the negative x axis is drawn at
- this angle in degrees.
-
-`obliqueY'
-
-`obliqueY(real angle)'
- The point `(x,y,z)' is projected to `(x+0.5y,z+0.5y)'. If an
- optional real argument is given, the positive y axis is drawn at
- this angle in degrees.
-
-`orthographic(triple camera, triple up=Z, triple target=O,
- real zoom=1, pair viewportshift=0, bool showtarget=true,
- bool center=false)'
- This projects from three to two dimensions using the view as seen
- at a point infinitely far away in the direction `unit(camera)',
- orienting the camera so that, if possible, the vector `up' points
- upwards. Parallel lines are projected to parallel lines. The
- bounding volume is expanded to include `target' if
- `showtarget=true'. If `center=true', the target will be adjusted
- to the center of the bounding volume.
-
-`orthographic(real x, real y, real z, triple up=Z, triple target=O,
- real zoom=1, pair viewportshift=0, bool showtarget=true,
- bool center=false)'
- This is equivalent to orthographic((x,y,z),up,target,zoom,viewportshift,showtarget,center)
-
- The routine triple camera(real alpha, real beta);
- can be used to compute the camera position with the x axis below
- the horizontal at angle `alpha', the y axis below the horizontal
- at angle `beta', and the z axis up.
-
-`perspective(triple camera, triple up=Z, triple target=O,
- real zoom=1, real angle=0, pair viewportshift=0,
- bool showtarget=true, bool autoadjust=true,
- bool center=autoadjust)'
- This projects from three to two dimensions, taking account of
- perspective, as seen from the location `camera' looking at
- `target', orienting the camera so that, if possible, the vector
- `up' points upwards. If `render=0', projection of
- three-dimensional cubic Bezier splines is implemented by
- approximating a two-dimensional nonuniform rational B-spline
- (NURBS) with a two-dimensional Bezier curve containing additional
- nodes and control points. If `autoadjust=true', the camera will
- automatically be adjusted to lie outside the bounding volume for
- all possible interactive rotations about `target'. If
- `center=true', the target will be adjusted to the center of the
- bounding volume.
-
-`perspective(real x, real y, real z, triple up=Z, triple target=O,
- real zoom=1, real angle=0, pair viewportshift=0,
- bool showtarget=true, bool autoadjust=true,
- bool center=autoadjust)'
- This is equivalent to perspective((x,y,z),up,target,zoom,angle,viewportshift,showtarget,
- autoadjust,center)
-
-The default projection, `currentprojection', is initially set to
-`perspective(5,4,2)'.
-
- We also define standard orthographic views used in technical drawing:
-projection LeftView=orthographic(-X,showtarget=true);
-projection RightView=orthographic(X,showtarget=true);
-projection FrontView=orthographic(-Y,showtarget=true);
-projection BackView=orthographic(Y,showtarget=true);
-projection BottomView=orthographic(-Z,showtarget=true);
-projection TopView=orthographic(Z,showtarget=true);
- The function
-void addViews(picture dest=currentpicture, picture src,
- projection[][] views=SixViewsUS,
- bool group=true, filltype filltype=NoFill);
- adds to picture `dest' an array of views of picture `src' using the
-layout projection[][] `views'. The default layout `SixViewsUS' aligns
-the projection `FrontView' below `TopView' and above `BottomView', to
-the right of `LeftView' and left of `RightView' and `BackView'. The
-predefined layouts are:
-projection[][] ThreeViewsUS={{TopView},
- {FrontView,RightView}};
-
-projection[][] SixViewsUS={{null,TopView},
- {LeftView,FrontView,RightView,BackView},
- {null,BottomView}};
-
-projection[][] ThreeViewsFR={{RightView,FrontView},
- {null,TopView}};
-
-projection[][] SixViewsFR={{null,BottomView},
- {RightView,FrontView,LeftView,BackView},
- {null,TopView}};
-
-projection[][] ThreeViews={{FrontView,TopView,RightView}};
-
-projection[][] SixViews={{FrontView,TopView,RightView},
- {BackView,BottomView,LeftView}};
-
- A triple or path3 can be projected to a pair or path, with
-`project(triple, projection P=currentprojection)' or `project(path3,
-projection P=currentprojection)'.
-
- It is occasionally useful to be able to invert a projection, sending
-a pair `z' onto the plane perpendicular to `normal' and passing through
-`point':
-triple invert(pair z, triple normal, triple point,
- projection P=currentprojection);
- A pair `z' on the projection plane can be inverted to a triple with
-the routine
-triple invert(pair z, projection P=currentprojection);
- A pair direction `dir' on the projection plane can be inverted to a
-triple direction relative to a point `v' with the routine
-triple invert(pair dir, triple v, projection P=currentprojection).
-
- Three-dimensional objects may be transformed with one of the
-following built-in transform3 types (the identity transformation is
-`identity4'):
-
-`shift(triple v)'
- translates by the triple `v';
-
-`xscale3(real x)'
- scales by `x' in the x direction;
-
-`yscale3(real y)'
- scales by `y' in the y direction;
-
-`zscale3(real z)'
- scales by `z' in the z direction;
-
-`scale3(real s)'
- scales by `s' in the x, y, and z directions;
-
-`scale(real x, real y, real z)'
- scales by `x' in the x direction, by `y' in the y direction, and
- by `z' in the z direction;
-
-`rotate(real angle, triple v)'
- rotates by `angle' in degrees about an axis `v' through the origin;
-
-`rotate(real angle, triple u, triple v)'
- rotates by `angle' in degrees about the axis `u--v';
-
-`reflect(triple u, triple v, triple w)'
- reflects about the plane through `u', `v', and `w'.
-
- When not multiplied on the left by a transform3, three-dimensional
-TeX Labels are drawn as Bezier surfaces directly on the projection
-plane:
-void label(picture pic=currentpicture, Label L, triple position,
- align align=NoAlign, pen p=currentpen,
- light light=nolight, string name="",
- render render=defaultrender, interaction interaction=
- settings.autobillboard ? Billboard : Embedded)
- The optional `name' parameter is used as a prefix for naming the label
-patches in the PRC model tree. The default interaction is `Billboard',
-which means that labels are rotated interactively so that they always
-face the camera. The interaction `Embedded' means that the label
-interacts as a normal `3D' surface, as illustrated in the example
-`billboard.asy'. Alternatively, a label can be transformed from the
-`XY' plane by an explicit transform3 or mapped to a specified
-two-dimensional plane with the predefined transform3 types `XY', `YZ',
-`ZX', `YX', `ZY', `ZX'. There are also modified versions of these
-transforms that take an optional argument `projection
-P=currentprojection' that rotate and/or flip the label so that it is
-more readable from the initial viewpoint.
-
- A transform3 that projects in the direction `dir' onto the plane
-with normal `n' through point `O' is returned by
-transform3 planeproject(triple n, triple O=O, triple dir=n);
- One can use
-triple normal(path3 p);
- to find the unit normal vector to a planar three-dimensional path `p'.
-As illustrated in the example `planeproject.asy', a transform3 that
-projects in the direction `dir' onto the plane defined by a planar path
-`p' is returned by
-transform3 planeproject(path3 p, triple dir=normal(p));
-
- The functions
-surface extrude(path p, triple axis=Z);
-surface extrude(Label L, triple axis=Z);
- return the surface obtained by extruding path `p' or Label `L' along
-`axis'.
-
- Three-dimensional versions of the path functions `length', `size',
-`point', `dir', `accel', `radius', `precontrol', `postcontrol',
-`arclength', `arctime', `reverse', `subpath', `intersect',
-`intersections', `intersectionpoint', `intersectionpoints', `min',
-`max', `cyclic', and `straight' are also defined.
-
- The routine
-real[][] intersections(path3 p, surface s, real fuzz=-1);
- returns the intersection times of a path `p' with a surface `s' as a
-sorted array of real arrays of length 2, and
-triple[] intersectionpoints(path3 p, surface s, real fuzz=-1);
- returns the corresponding intersection points. Here, the computations
-are performed to the absolute error specified by `fuzz', or if `fuzz <
-0', to machine precision.
-
- Here is an example showing all five guide3 connectors:
-
-import graph3;
-
-size(200);
-
-currentprojection=orthographic(500,-500,500);
-
-triple[] z=new triple[10];
-
-z[0]=(0,100,0); z[1]=(50,0,0); z[2]=(180,0,0);
-
-for(int n=3; n <= 9; ++n)
- z[n]=z[n-3]+(200,0,0);
-
-path3 p=z[0]..z[1]---z[2]::{Y}z[3]
-&z[3]..z[4]--z[5]::{Y}z[6]
-&z[6]::z[7]---z[8]..{Y}z[9];
-
-draw(p,grey+linewidth(4mm),currentlight);
-
-xaxis3(Label(XY()*"$x$",align=-3Y),red,above=true);
-yaxis3(Label(XY()*"$y$",align=-3X),red,above=true);
-
-
-
-Three-dimensional versions of bars or arrows can be drawn with one of
-the specifiers `None', `Blank', `BeginBar3', `EndBar3' (or equivalently
-`Bar3'), `Bars3', `BeginArrow3', `MidArrow3', `EndArrow3' (or
-equivalently `Arrow3'), `Arrows3', `BeginArcArrow3', `EndArcArrow3' (or
-equivalently `ArcArrow3'), `MidArcArrow3', and `ArcArrows3'.
-Three-dimensional bars accept the optional arguments `(real size=0,
-triple dir=O)'. If `size=O', the default bar length is used; if
-`dir=O', the bar is drawn perpendicular to the path and the initial
-viewing direction. The predefined three-dimensional arrowhead styles
-are `DefaultHead3', `HookHead3', `TeXHead3'. Versions of the
-two-dimensional arrowheads lifted to three-dimensional space and
-aligned according to the initial viewpoint (or an optionally specified
-`normal' vector) are also defined: `DefaultHead2(triple normal=O)',
-`HookHead2(triple normal=O)', `TeXHead2(triple normal=O)'. These are
-illustrated in the example `arrows3.asy'.
-
- Module `three' also defines the three-dimensional margins
-`NoMargin3', `BeginMargin3', `EndMargin3', `Margin3', `Margins3',
-`BeginPenMargin2', `EndPenMargin2', `PenMargin2', `PenMargins2',
-`BeginPenMargin3', `EndPenMargin3', `PenMargin3', `PenMargins3',
-`BeginDotMargin3', `EndDotMargin3', `DotMargin3', `DotMargins3',
-`Margin3', and `TrueMargin3'.
-
- The routine
-void pixel(picture pic=currentpicture, triple v, pen p=currentpen,
- real width=1);
- can be used to draw on picture `pic' a pixel of width `width' at
-position `v' using pen `p'.
-
- Further three-dimensional examples are provided in the files
-`near_earth.asy', `conicurv.asy', and (in the `animations'
-subdirectory) `cube.asy'.
-
- Limited support for projected vector graphics (effectively
-three-dimensional nonrendered `PostScript') is available with the
-setting `render=0'. This currently only works for piecewise planar
-surfaces, such as those produced by the parametric `surface' routines
-in the `graph3' module. Surfaces produced by the `solids' package will
-also be properly rendered if the parameter `nslices' is sufficiently
-large.
-
- In the module `bsp', hidden surface removal of planar pictures is
-implemented using a binary space partition and picture clipping. A
-planar path is first converted to a structure `face' derived from
-`picture'. A `face' may be given to a two-dimensional drawing routine
-in place of any `picture' argument. An array of such faces may then be
-drawn, removing hidden surfaces:
-void add(picture pic=currentpicture, face[] faces,
- projection P=currentprojection);
- Labels may be projected to two dimensions, using projection `P', onto
-the plane passing through point `O' with normal `cross(u,v)' by
-multiplying it on the left by the transform
-transform transform(triple u, triple v, triple O=O,
- projection P=currentprojection);
-
- Here is an example that shows how a binary space partition may be
-used to draw a two-dimensional vector graphics projection of three
-orthogonal intersecting planes:
-
-size(6cm,0);
-import bsp;
-
-real u=2.5;
-real v=1;
-
-currentprojection=oblique;
-
-path3 y=plane((2u,0,0),(0,2v,0),(-u,-v,0));
-path3 l=rotate(90,Z)*rotate(90,Y)*y;
-path3 g=rotate(90,X)*rotate(90,Y)*y;
-
-face[] faces;
-filldraw(faces.push(y),project(y),yellow);
-filldraw(faces.push(l),project(l),lightgrey);
-filldraw(faces.push(g),project(g),green);
-
-add(faces);
-
-
-
-
-File: asymptote.info, Node: obj, Next: graph3, Prev: three, Up: Base modules
-
-8.30 `obj'
-==========
-
-This module allows one to construct surfaces from simple obj files, as
-illustrated in the example files `galleon.asy' and `triceratops.asy'.
-
-
-File: asymptote.info, Node: graph3, Next: grid3, Prev: obj, Up: Base modules
-
-8.31 `graph3'
-=============
-
-This module implements three-dimensional versions of the functions in
-`graph.asy'. To draw an x axis in three dimensions, use the routine
-void xaxis3(picture pic=currentpicture, Label L="", axis axis=YZZero,
- real xmin=-infinity, real xmax=infinity, pen p=currentpen,
- ticks3 ticks=NoTicks3, arrowbar3 arrow=None, bool above=false);
- Analogous routines `yaxis' and `zaxis' can be used to draw y and z
-axes in three dimensions. There is also a routine for drawing all
-three axis:
-void axes3(picture pic=currentpicture,
- Label xlabel="", Label ylabel="", Label zlabel="",
- bool extend=false,
- triple min=(-infinity,-infinity,-infinity),
- triple max=(infinity,infinity,infinity),
- pen p=currentpen, arrowbar3 arrow=None);
-
-The predefined three-dimensional axis types are
-axis YZEquals(real y, real z, triple align=O, bool extend=false);
-axis XZEquals(real x, real z, triple align=O, bool extend=false);
-axis XYEquals(real x, real y, triple align=O, bool extend=false);
-axis YZZero(triple align=O, bool extend=false);
-axis XZZero(triple align=O, bool extend=false);
-axis XYZero(triple align=O, bool extend=false);
-axis Bounds(int type=Both, int type2=Both, triple align=O, bool extend=false);
- The optional `align' parameter to these routines can be used to
-specify the default axis and tick label alignments. The `Bounds' axis
-accepts two type parameters, each of which must be one of `Min', `Max',
-or `Both'. These parameters specify which of the four possible
-three-dimensional bounding box edges should be drawn.
-
- The three-dimensional tick options are `NoTicks3', `InTicks',
-`OutTicks', and `InOutTicks'. These specify the tick directions for the
-`Bounds' axis type; other axis types inherit the direction that would
-be used for the `Bounds(Min,Min)' axis.
-
- Here is an example of a helix and bounding box axes with ticks and
-axis labels, using orthographic projection:
-
-import graph3;
-
-size(0,200);
-size3(200,IgnoreAspect);
-
-currentprojection=orthographic(4,6,3);
-
-real x(real t) {return cos(2pi*t);}
-real y(real t) {return sin(2pi*t);}
-real z(real t) {return t;}
-
-path3 p=graph(x,y,z,0,2.7,operator ..);
-
-draw(p,Arrow3);
-
-scale(true);
-
-xaxis3(XZ()*"$x$",Bounds,red,InTicks(Label,2,2));
-yaxis3(YZ()*"$y$",Bounds,red,InTicks(beginlabel=false,Label,2,2));
-zaxis3(XZ()*"$z$",Bounds,red,InTicks);
-
-
-
-The next example illustrates three-dimensional x, y, and z axes,
-without autoscaling of the axis limits:
-
-import graph3;
-
-size(0,200);
-size3(200,IgnoreAspect);
-
-currentprojection=perspective(5,2,2);
-
-scale(Linear,Linear,Log);
-
-xaxis3("$x$",0,1,red,OutTicks(2,2));
-yaxis3("$y$",0,1,red,OutTicks(2,2));
-zaxis3("$z$",1,30,red,OutTicks(beginlabel=false));
-
-
-
-One can also place ticks along a general three-dimensional axis:
-
-import graph3;
-
-size(0,100);
-
-path3 g=yscale3(2)*unitcircle3;
-currentprojection=perspective(10,10,10);
-
-axis(Label("C",position=0,align=15X),g,InTicks(endlabel=false,8,end=false),
- ticklocate(0,360,new real(real v) {
- path3 h=O--max(abs(max(g)),abs(min(g)))*dir(90,v);
- return intersect(g,h)[0];},
- new triple(real t) {return cross(dir(g,t),Z);}));
-
-
-
-Surface plots of matrices and functions over the region `box(a,b)' in
-the XY plane are also implemented:
-surface surface(real[][] f, pair a, pair b, bool[][] cond={});
-surface surface(real[][] f, pair a, pair b, splinetype xsplinetype,
- splinetype ysplinetype=xsplinetype, bool[][] cond={});
-surface surface(real[][] f, real[] x, real[] y,
- splinetype xsplinetype=null, splinetype ysplinetype=xsplinetype,
- bool[][] cond={})
-surface surface(triple[][] f, bool[][] cond={});
-surface surface(real f(pair z), pair a, pair b, int nx=nmesh, int ny=nx,
- bool cond(pair z)=null);
-surface surface(real f(pair z), pair a, pair b, int nx=nmesh, int ny=nx,
- splinetype xsplinetype, splinetype ysplinetype=xsplinetype,
- bool cond(pair z)=null);
-surface surface(triple f(pair z), real[] u, real[] v,
- splinetype[] usplinetype, splinetype[] vsplinetype=Spline,
- bool cond(pair z)=null);
-surface surface(triple f(pair z), pair a, pair b, int nu=nmesh, int nv=nu,
- bool cond(pair z)=null);
-surface surface(triple f(pair z), pair a, pair b, int nu=nmesh, int nv=nu,
- splinetype[] usplinetype, splinetype[] vsplinetype=Spline,
- bool cond(pair z)=null);
- The final two versions draw parametric surfaces for a function f(u,v)
-over the parameter space `box(a,b)', as illustrated in the example
-`parametricsurface.asy'. An optional splinetype `Spline' may be
-specified. The boolean array or function `cond' can be used to control
-which surface mesh cells are actually drawn (by default all mesh cells
-over `box(a,b)' are drawn). Surface lighting is illustrated in the
-example files `parametricsurface.asy' and `sinc.asy'. Lighting can be
-disabled by setting `light=nolight', as in this example of a Gaussian
-surface:
-
-import graph3;
-
-size(200,0);
-
-currentprojection=perspective(10,8,4);
-
-real f(pair z) {return 0.5+exp(-abs(z)^2);}
-
-draw((-1,-1,0)--(1,-1,0)--(1,1,0)--(-1,1,0)--cycle);
-
-draw(arc(0.12Z,0.2,90,60,90,25),ArcArrow3);
-
-surface s=surface(f,(-1,-1),(1,1),nx=5,Spline);
-
-xaxis3(Label("$x$"),red,Arrow3);
-yaxis3(Label("$y$"),red,Arrow3);
-zaxis3(XYZero(extend=true),red,Arrow3);
-
-draw(s,lightgray,meshpen=black+thick(),nolight,render(merge=true));
-
-label("$O$",O,-Z+Y,red);
-
-
-A mesh can be drawn without surface filling by specifying `nullpen' for
-the surfacepen.
-
- A vector field of `nu'\times`nv' arrows on a parametric surface `f'
-over `box(a,b)' can be drawn with the routine
-picture vectorfield(path3 vector(pair v), triple f(pair z), pair a, pair b,
- int nu=nmesh, int nv=nu, bool truesize=false,
- real maxlength=truesize ? 0 : maxlength(f,a,b,nu,nv),
- bool cond(pair z)=null, pen p=currentpen,
- arrowbar3 arrow=Arrow3, margin3 margin=PenMargin3)
- as illustrated in the examples `vectorfield3.asy' and
-`vectorfieldsphere.asy'.
-
-
-File: asymptote.info, Node: grid3, Next: solids, Prev: graph3, Up: Base modules
-
-8.32 `grid3'
-============
-
-This module, contributed by Philippe Ivaldi, can be used for drawing 3D
-grids. Here is an example (further examples can be found in `grid3.asy'
-and at `http://www.piprime.fr/files/asymptote/grid3/'):
-
-import grid3;
-
-size(8cm,0,IgnoreAspect);
-currentprojection=orthographic(0.5,1,0.5);
-
-scale(Linear, Linear, Log);
-
-limits((-2,-2,1),(0,2,100));
-
-grid3(XYZgrid);
-
-xaxis3(Label("$x$",position=EndPoint,align=S),Bounds(Min,Min),
- OutTicks());
-yaxis3(Label("$y$",position=EndPoint,align=S),Bounds(Min,Min),OutTicks());
-zaxis3(Label("$z$",position=EndPoint,align=(-1,0.5)),Bounds(Min,Min),
- OutTicks(beginlabel=false));
-
-
-
-
-File: asymptote.info, Node: solids, Next: tube, Prev: grid3, Up: Base modules
-
-8.33 `solids'
-=============
-
-This solid geometry package defines a structure `revolution' that can
-be used to fill and draw surfaces of revolution. The following example
-uses it to display the outline of a circular cylinder of radius 1 with
-axis `O--1.5unit(Y+Z)' with perspective projection:
-
-import solids;
-
-size(0,100);
-
-revolution r=cylinder(O,1,1.5,Y+Z);
-draw(r,heavygreen);
-
-
-
-Further illustrations are provided in the example files `cylinder.asy',
-`cones.asy', `hyperboloid.asy', and `torus.asy'.
-
- The structure `skeleton' contains the three-dimensional wireframe
-used to visualize a volume of revolution:
-struct skeleton {
- struct curve {
- path3[] front;
- path3[] back;
- }
- // transverse skeleton (perpendicular to axis of revolution)
- curve transverse;
- // longitudinal skeleton (parallel to axis of revolution)
- curve longitudinal;
-}
-
-
-File: asymptote.info, Node: tube, Next: flowchart, Prev: solids, Up: Base modules
-
-8.34 `tube'
-===========
-
-This package extends the `tube' surfaces constructed in
-`three_arrows.asy' to arbitrary cross sections, colors, and spine
-transformations. The routine
-surface tube(path3 g, coloredpath section,
- transform T(real)=new transform(real t) {return identity();},
- real corner=1, real relstep=0);
- draws a tube along `g' with cross section `section', after applying
-the transformation `T(t)' at `relpoint(g,t)'. The parameter `corner'
-controls the number of elementary tubes at the angular points of `g'. A
-nonzero value of `relstep' specifies a fixed relative time step (in the
-sense of `relpoint(g,t)') to use in constructing elementary tubes along
-`g'. The type `coloredpath' is a generalization of `path' to which a
-`path' can be cast:
-struct coloredpath
-{
- path p;
- pen[] pens(real);
- int colortype=coloredSegments;
-}
- Here `p' defines the cross section and the method `pens(real t)'
-returns an array of pens (interpreted as a cyclic array) used for
-shading the tube patches at `relpoint(g,t)'. If
-`colortype=coloredSegments', the tube patches are filled as if each
-segment of the section was colored with the pen returned by `pens(t)',
-whereas if `colortype=coloredNodes', the tube components are vertex
-shaded as if the nodes of the section were colored.
-
- A `coloredpath' can be constructed with one of the routines:
-coloredpath coloredpath(path p, pen[] pens(real),
- int colortype=coloredSegments);
-coloredpath coloredpath(path p, pen[] pens=new pen[] {currentpen},
- int colortype=coloredSegments);
-coloredpath coloredpath(path p, pen pen(real));
- In the second case, the pens are independent of the relative time. In
-the third case, the array of pens contains only one pen, which depends
-of the relative time.
-
- The casting of `path' to `coloredpath' allows the use of a `path'
-instead of a `coloredpath'; in this case the shading behaviour is the
-default shading behavior for a surface.
-
- An example of `tube' is provided in the file `trefoilknot.asy'.
-Further examples can be found at
-`http://www.piprime.fr/files/asymptote/tube/'.
-
-
-File: asymptote.info, Node: flowchart, Next: contour, Prev: tube, Up: Base modules
-
-8.35 `flowchart'
-================
-
-This package provides routines for drawing flowcharts. The primary
-structure is a `block', which represents a single block on the
-flowchart. The following eight functions return a position on the
-appropriate edge of the block, given picture transform `t':
-
-pair block.top(transform t=identity());
-pair block.left(transform t=identity());
-pair block.right(transform t=identity());
-pair block.bottom(transform t=identity());
-pair block.topleft(transform t=identity());
-pair block.topright(transform t=identity());
-pair block.bottomleft(transform t=identity());
-pair block.bottomright(transform t=identity());
-
-
-To obtain an arbitrary position along the boundary of the block in user
-coordinates, use:
-pair block.position(real x, transform t=identity());
-
-
-The center of the block in user coordinates is stored in `block.center'
-and the block size in `PostScript' coordinates is given by `block.size'.
-
-A frame containing the block is returned by
-frame block.draw(pen p=currentpen);
-
-
- The following block generation routines accept a Label, string, or
-frame for their object argument:
-
-"rectangular block with an optional header (and padding `dx' around header and body):"
- block rectangle(object header, object body, pair center=(0,0),
- pen headerpen=mediumgray, pen bodypen=invisible,
- pen drawpen=currentpen,
- real dx=3, real minheaderwidth=minblockwidth,
- real minheaderheight=minblockwidth,
- real minbodywidth=minblockheight,
- real minbodyheight=minblockheight);
- block rectangle(object body, pair center=(0,0),
- pen fillpen=invisible, pen drawpen=currentpen,
- real dx=3, real minwidth=minblockwidth,
- real minheight=minblockheight);
-
-"parallelogram block:"
- block parallelogram(object body, pair center=(0,0),
- pen fillpen=invisible, pen drawpen=currentpen,
- real dx=3, real slope=2,
- real minwidth=minblockwidth,
- real minheight=minblockheight);
-
-"diamond-shaped block:"
- block diamond(object body, pair center=(0,0),
- pen fillpen=invisible, pen drawpen=currentpen,
- real ds=5, real dw=1,
- real height=20, real minwidth=minblockwidth,
- real minheight=minblockheight);
-
-"circular block:"
- block circle(object body, pair center=(0,0), pen fillpen=invisible,
- pen drawpen=currentpen, real dr=3,
- real mindiameter=mincirclediameter);
-
-"rectangular block with rounded corners:"
- block roundrectangle(object body, pair center=(0,0),
- pen fillpen=invisible, pen drawpen=currentpen,
- real ds=5, real dw=0, real minwidth=minblockwidth,
- real minheight=minblockheight);
-
-"rectangular block with beveled edges:"
- block bevel(object body, pair center=(0,0), pen fillpen=invisible,
- pen drawpen=currentpen, real dh=5, real dw=5,
- real minwidth=minblockwidth, real minheight=minblockheight);
-
-
- To draw paths joining the pairs in `point' with right-angled lines,
-use the routine:
-path path(pair point[] ... flowdir dir[]);
- The entries in `dir' identify whether successive segments between the
-pairs specified by `point' should be drawn in the `Horizontal' or
-`Vertical' direction.
-
- Here is a simple flowchart example (see also the example
-`controlsystem.asy'):
-
-size(0,300);
-
-import flowchart;
-
-block block1=rectangle(Label("Example",magenta),
- pack(Label("Start:",heavygreen),"",Label("$A:=0$",blue),
- "$B:=1$"),(-0.5,3),palegreen,paleblue,red);
-block block2=diamond(Label("Choice?",blue),(0,2),palegreen,red);
-block block3=roundrectangle("Do something",(-1,1));
-block block4=bevel("Don't do something",(1,1));
-block block5=circle("End",(0,0));
-
-draw(block1);
-draw(block2);
-draw(block3);
-draw(block4);
-draw(block5);
-
-add(new void(picture pic, transform t) {
- blockconnector operator --=blockconnector(pic,t);
- // draw(pic,block1.right(t)--block2.top(t));
- block1--Right--Down--Arrow--block2;
- block2--Label("Yes",0.5,NW)--Left--Down--Arrow--block3;
- block2--Right--Label("No",0.5,NE)--Down--Arrow--block4;
- block4--Down--Left--Arrow--block5;
- block3--Down--Right--Arrow--block5;
- });
-
-
-
-
-File: asymptote.info, Node: contour, Next: contour3, Prev: flowchart, Up: Base modules
-
-8.36 `contour'
-==============
-
-This package draws contour lines. To construct contours corresponding
-to the values in a real array `c' for a function `f' on `box(a,b)', use
-the routine
-guide[][] contour(real f(real, real), pair a, pair b,
- real[] c, int nx=ngraph, int ny=nx,
- interpolate join=operator --, int subsample=1);
- The integers `nx' and `ny' define the resolution. The default
-resolution, `ngraph x ngraph' (here `ngraph' defaults to `100') can be
-increased for greater accuracy. The default interpolation operator is
-`operator --' (linear). Spline interpolation (`operator ..') may
-produce smoother contours but it can also lead to overshooting. The
-`subsample' parameter indicates the number of interior points that
-should be used to sample contours within each `1 x 1' box; the default
-value of `1' is usually sufficient.
-
- To construct contours for an array of data values on a uniform
-two-dimensional lattice on `box(a,b)', use
-guide[][] contour(real[][] f, pair a, pair b, real[] c,
- interpolate join=operator --, int subsample=1);
-
- To construct contours for an array of data values on a nonoverlapping
-regular mesh specified by the two-dimensional array `z',
-guide[][] contour(pair[][] z, real[][] f, real[] c,
- interpolate join=operator --, int subsample=1);
-
- To construct contours for an array of values `f' specified at
-irregularly positioned points `z', use the routine
-guide[][] contour(pair[] z, real[] f, real[] c, interpolate join=operator --);
- The contours themselves can be drawn with one of the routines
-void draw(picture pic=currentpicture, Label[] L=new Label[],
- guide[][] g, pen p=currentpen);
-
-void draw(picture pic=currentpicture, Label[] L=new Label[],
- guide[][] g, pen[] p);
-
- The following simple example draws the contour at value `1' for the
-function z=x^2+y^2, which is a unit circle:
-
-import contour;
-size(75);
-
-real f(real a, real b) {return a^2+b^2;}
-draw(contour(f,(-1,-1),(1,1),new real[] {1}));
-
-
-
-The next example draws and labels multiple contours for the function
-z=x^2-y^2 with the resolution `100 x 100', using a dashed pen for
-negative contours and a solid pen for positive (and zero) contours:
-
-import contour;
-
-size(200);
-
-real f(real x, real y) {return x^2-y^2;}
-int n=10;
-real[] c=new real[n];
-for(int i=0; i < n; ++i) c[i]=(i-n/2)/n;
-
-pen[] p=sequence(new pen(int i) {
- return (c[i] >= 0 ? solid : dashed)+fontsize(6pt);
- },c.length);
-
-Label[] Labels=sequence(new Label(int i) {
- return Label(c[i] != 0 ? (string) c[i] : "",Relative(unitrand()),(0,0),
- UnFill(1bp));
- },c.length);
-
-draw(Labels,contour(f,(-1,-1),(1,1),c),p);
-
-
-
-The next example illustrates how contour lines can be drawn on color
-density images:
-
-import graph;
-import palette;
-import contour;
-
-size(10cm,10cm,IgnoreAspect);
-
-pair a=(0,0);
-pair b=(2pi,2pi);
-
-real f(real x, real y) {return cos(x)*sin(y);}
-
-int N=200;
-int Divs=10;
-int divs=2;
-
-defaultpen(1bp);
-pen Tickpen=black;
-pen tickpen=gray+0.5*linewidth(currentpen);
-pen[] Palette=BWRainbow();
-
-bounds range=image(f,Automatic,a,b,N,Palette);
-
-// Major contours
-
-real[] Cvals=uniform(range.min,range.max,Divs);
-draw(contour(f,a,b,Cvals,N,operator --),Tickpen);
-
-// Minor contours
-real[] cvals;
-for(int i=0; i < Cvals.length-1; ++i)
- cvals.append(uniform(Cvals[i],Cvals[i+1],divs)[1:divs]);
-draw(contour(f,a,b,cvals,N,operator --),tickpen);
-
-xaxis("$x$",BottomTop,LeftTicks,above=true);
-yaxis("$y$",LeftRight,RightTicks,above=true);
-
-palette("$f(x,y)$",range,point(NW)+(0,0.5),point(NE)+(0,1),Top,Palette,
- PaletteTicks(N=Divs,n=divs,Tickpen,tickpen));
-
-
-
-Finally, here is an example that illustrates the construction of
-contours from irregularly spaced data:
-
-import contour;
-
-size(200);
-
-int n=100;
-
-real f(real a, real b) {return a^2+b^2;}
-
-srand(1);
-
-real r() {return 1.1*(rand()/randMax*2-1);}
-
-pair[] points=new pair[n];
-real[] values=new real[n];
-
-for(int i=0; i < n; ++i) {
- points[i]=(r(),r());
- values[i]=f(points[i].x,points[i].y);
-}
-
-draw(contour(points,values,new real[]{0.25,0.5,1},operator ..),blue);
-
-
-
-In the above example, the contours of irregularly spaced data are
-constructed by first creating a triangular mesh from an array `z' of
-pairs:
-
-int[][] triangulate(pair[] z);
-
-size(200);
-int np=100;
-pair[] points;
-
-real r() {return 1.2*(rand()/randMax*2-1);}
-
-for(int i=0; i < np; ++i)
- points.push((r(),r()));
-
-int[][] trn=triangulate(points);
-
-for(int i=0; i < trn.length; ++i) {
- draw(points[trn[i][0]]--points[trn[i][1]]);
- draw(points[trn[i][1]]--points[trn[i][2]]);
- draw(points[trn[i][2]]--points[trn[i][0]]);
-}
-
-for(int i=0; i < np; ++i)
- dot(points[i],red);
-
-
-
-The example `Gouraudcontour' illustrates how to produce color density
-images over such irregular triangular meshes. `Asymptote' uses a
-robust version of Paul Bourke's Delaunay triangulation algorithm based
-on the public-domain exact arithmetic predicates written by Jonathan
-Shewchuk.
-
-
-File: asymptote.info, Node: contour3, Next: slopefield, Prev: contour, Up: Base modules
-
-8.37 `contour3'
-===============
-
-This package draws surfaces described as the null space of real-valued
-functions of (x,y,z) or real[][][] matrices. Its usage is illustrated
-in the example file `magnetic.asy'.
-
-
-File: asymptote.info, Node: slopefield, Next: ode, Prev: contour3, Up: Base modules
-
-8.38 `slopefield'
-=================
-
-To draw a slope field for the differential equation dy/dx=f(x,y) (or
-dy/dx=f(x)), use:
-picture slopefield(real f(real,real), pair a, pair b,
- int nx=nmesh, int ny=nx,
- real tickfactor=0.5, pen p=currentpen,
- arrowbar arrow=None);
- Here, the points `a' and `b' are the lower left and upper right
-corners of the rectangle in which the slope field is to be drawn, `nx'
-and `ny' are the respective number of ticks in the x and y directions,
-`tickfactor' is the fraction of the minimum cell dimension to use for
-drawing ticks, and `p' is the pen to use for drawing the slope fields.
-The return value is a picture that can be added to `currentpicture' via
-the `add(picture)' command.
-
- The function
-path curve(pair c, real f(real,real), pair a, pair b);
- takes a point (`c') and a slope field-defining function `f' and
-returns, as a path, the curve passing through that point. The points
-`a' and `b' represent the rectangular boundaries over which the curve
-is interpolated.
-
- Both `slopefield' and `curve' alternatively accept a function `real
-f(real)' that depends on x only, as seen in this example:
-
-import slopefield;
-
-size(200);
-
-real func(real x) {return 2x;}
-add(slopefield(func,(-3,-3),(3,3),20,Arrow));
-draw(curve((0,0),func,(-3,-3),(3,3)),red);
-
-
-
-
-File: asymptote.info, Node: ode, Prev: slopefield, Up: Base modules
-
-8.39 `ode'
-==========
-
-The `ode' module, illustrated in the example `odetest.asy', implements
-a number of explicit numerical integration schemes for ordinary
-differential equations.
-
-
-File: asymptote.info, Node: Options, Next: Interactive mode, Prev: Base modules, Up: Top
-
-9 Command-line options
-**********************
-
-Type `asy -h' to see the full list of command-line options supported by
-`Asymptote':
-
-Usage: ../asy [options] [file ...]
-
-Options (negate by replacing - with -no):
-
--V,-View View output; command-line only
--a,-align C|B|T|Z Center, Bottom, Top, or Zero page alignment [C]
--antialias n Antialiasing width for rasterized output [2]
--arcballradius pixels Arcball radius [750]
--auto3D Automatically activate 3D scene [true]
--autobillboard 3D labels always face viewer by default [true]
--autoimport string Module to automatically import
--autoplain Enable automatic importing of plain [true]
--autoplay Autoplay 3D animations [false]
--autorotate Enable automatic PDF page rotation [false]
--axes3 Show 3D axes in PDF output [true]
--batchMask Mask fpu exceptions in batch mode [false]
--batchView View output in batch mode [false]
--bw Convert all colors to black and white [false]
--cd directory Set current directory; command-line only
--cmyk Convert rgb colors to cmyk [false]
--c,-command string Command to autoexecute
--compact Conserve memory at the expense of speed [false]
--d,-debug Enable debugging messages [false]
--divisor n Garbage collect using purge(divisor=n) [2]
--doubleclick ms Emulated double-click timeout [200]
--embed Embed rendered preview image [true]
--exitonEOF Exit interactive mode on EOF [true]
--fitscreen Fit rendered image to screen [true]
--framedelay ms Additional frame delay [0]
--framerate frames/s Animation speed [30]
--globalwrite Allow write to other directory [false]
--gray Convert all colors to grayscale [false]
--h,-help Show summary of options; command-line only
--historylines n Retain n lines of history [1000]
--iconify Iconify rendering window [false]
--inlineimage Generate inline embedded image [false]
--inlinetex Generate inline TeX code [false]
--interactiveMask Mask fpu exceptions in interactive mode [true]
--interactiveView View output in interactive mode [true]
--interactiveWrite Write expressions entered at the prompt to stdout [true]
--k,-keep Keep intermediate files [false]
--keepaux Keep intermediate LaTeX .aux files [false]
--level n Postscript level [3]
--l,-listvariables List available global functions and variables [false]
--localhistory Use a local interactive history file [false]
--loop Loop 3D animations [false]
--m,-mask Mask fpu exceptions; command-line only
--maxtile pair Maximum rendering tile size [(1024,768)]
--maxviewport pair Maximum viewport size [(2048,2048)]
--multiline Input code over multiple lines at the prompt [false]
--multipleView View output from multiple batch-mode files [false]
--multisample n Multisampling width for screen images [4]
--offscreen Use offscreen rendering [false]
--O,-offset pair PostScript offset [(0,0)]
--f,-outformat format Convert each output file to specified format
--o,-outname name Alternative output directory/filename
--p,-parseonly Parse file [false]
--pdfreload Automatically reload document in pdfviewer [false]
--pdfreloaddelay usec Delay before attempting initial pdf reload [750000]
--position pair Initial 3D rendering screen position [(0,0)]
--prc Embed 3D PRC graphics in PDF output [true]
--prompt string Prompt [> ]
--prompt2 string Continuation prompt for multiline input [..]
--q,-quiet Suppress welcome message [false]
--render n Render 3D graphics using n pixels per bp (-1=auto) [-1]
--resizestep step Resize step [1.2]
--reverse reverse 3D animations [false]
--rgb Convert cmyk colors to rgb [false]
--safe Disable system call [true]
--scroll n Scroll standard output n lines at a time [0]
--spinstep deg/s Spin speed [60]
--svgemulation Emulate unimplemented SVG shading [false]
--tabcompletion Interactive prompt auto-completion [true]
--tex engine latex|pdflatex|xelatex|tex|pdftex|context|none [latex]
--thick Render thick 3D lines [true]
--thin Render thin 3D lines [true]
--threads Use POSIX threads for 3D rendering [true]
--toolbar Show 3D toolbar in PDF output [true]
--s,-translate Show translated virtual machine code [false]
--twice Run LaTeX twice (to resolve references) [false]
--twosided Use two-sided 3D lighting model for rendering [true]
--u,-user string General purpose user string
--v,-verbose Increase verbosity level (can specify multiple times) [0]
--version Show version; command-line only
--wait Wait for child processes to finish before exiting [false]
--warn string Enable warning; command-line only
--where Show where listed variables are declared [false]
--zoomfactor factor Zoom step factor [1.05]
--zoomstep step Mouse motion zoom step [0.1]
-
- All boolean options can be negated by prepending `no' to the option
-name.
-
- If no arguments are given, `Asymptote' runs in interactive mode
-(*note Interactive mode::). In this case, the default output file is
-`out.eps'.
-
- If `-' is given as the file argument, `Asymptote' reads from
-standard input.
-
- If multiple files are specified, they are treated as separate
-`Asymptote' runs.
-
- If the string `autoimport' is nonempty, a module with this name is
-automatically imported for each run as the final step in loading module
-`plain'.
-
- Default option values may be entered as `Asymptote' code in a
-configuration file named `config.asy' (or the file specified by the
-environment variable `ASYMPTOTE_CONFIG' or `-config' option).
-`Asymptote' will look for this file in its usual search path (*note
-Search paths::). Typically the configuration file is placed in the
-`.asy' directory in the user's home directory (`%USERPROFILE%\.asy'
-under `MSDOS'). Configuration variables are accessed using the long
-form of the option names:
-import settings;
-outformat="pdf";
-batchView=false;
-interactiveView=true;
-batchMask=false;
-interactiveMask=true;
- Command-line options override these defaults. Most configuration
-variables may also be changed at runtime. The advanced configuration
-variables `dvipsOptions', `hyperrefOptions', `convertOptions',
-`gsOptions', `psviewerOptions', `pdfviewerOptions', and `glOptions'
-allow specialized options to be passed as a string to the respective
-applications or libraries. The default value of `hyperrefOptions' is
-`setpagesize=false,unicode,pdfborder=0 0 0'.
-
- If you insert
-import plain;
-settings.autoplain=true;
- at the beginning of the configuration file, it can contain arbitrary
-`Asymptote' code.
-
- The default output format is EPS for the (default) `latex' and `tex'
-tex engine and PDF for the `pdflatex', `xelatex', and `context' tex
-engines. Alternative output formats may be produced using the `-f'
-option (or `outformat' setting). To produce SVG output, first install
-`dvisvgm' (version 0.8.7 or later) from
-`http://dvisvgm.sourceforge.net/down.html' and be sure to use the
-`latex' or `tex' tex engine.
-
- `Asymptote' can also produce any output format supported by the
-`ImageMagick' `convert' program (version 6.3.5 or later recommended; an
-`Invalid Parameter' error message indicates that the `MSDOS' utility
-`convert' is being used instead of the one that comes with
-`ImageMagick'). The optional setting `-render n' requests an output
-resolution of `n' pixels per `bp'. Antialiasing is controlled by the
-parameter `antialias', which by default specifies a sampling width of 2
-pixels. To give other options to `convert', use the `convertOptions'
-setting or call convert manually. This example emulates how `Asymptote'
-produces antialiased `tiff' output at one pixel per `bp':
-asy -o - venn | convert -alpha Off -density 144x144 -geometry 50%x eps:- venn.tiff
-
- If the option `-nosafe' is given, `Asymptote' runs in unsafe mode.
-This enables the `int system(string s)' and `int system(string[] s)'
-calls, allowing one to execute arbitrary shell commands. The default
-mode, `-safe', disables this call.
-
- A `PostScript' offset may be specified as a pair (in `bp' units)
-with the `-O' option:
-asy -O 0,0 file
- The default offset is zero. The default value of the page alignment
-setting `align' is `Center'.
-
- The `-c' (`command') option may be used to execute arbitrary
-`Asymptote' code on the command line as a string. It is not necessary
-to terminate the string with a semicolon. Multiple `-c' options are
-executed in the order they are given. For example
-asy -c 2+2 -c "sin(1)" -c "size(100); draw(unitsquare)"
- produces the output
-4
-0.841470984807897
- and draws a unitsquare of size `100'.
-
- The `-u' (`user') option may be used to specify arbitrary
-`Asymptote' settings on the command line as a string. It is not
-necessary to terminate the string with a semicolon. Multiple `-u'
-options are executed in the order they are given. Command-line code like
-`-u x=sqrt(2)' can be executed within a module like this:
-real x;
-usersetting();
-write(x);
-
- When the `-l' (`listvariables') option is used with file arguments,
-only global functions and variables defined in the specified file(s)
-are listed.
-
- Additional debugging output is produced with each additional `-v'
-option:
-`-v'
- Display top-level module and final output file names.
-
-`-vv'
- Also display imported and included module names and final `LaTeX'
- and `dvips' processing information.
-
-`-vvv'
- Also output `LaTeX' bidirectional pipe diagnostics.
-
-`-vvvv'
- Also output knot guide solver diagnostics.
-
-`-vvvvv'
- Also output `Asymptote' traceback diagnostics.
-
-
-File: asymptote.info, Node: Interactive mode, Next: GUI, Prev: Options, Up: Top
-
-10 Interactive mode
-*******************
-
-Interactive mode is entered by executing the command `asy' with no file
-arguments. When the `-multiline' option is disabled (the default), each
-line must be a complete `Asymptote' statement (unless explicitly
-continued by a final backslash character `\'); it is not necessary to
-terminate input lines with a semicolon. If one assigns
-`settings.multiline=true', interactive code can be entered over
-multiple lines; in this mode, the automatic termination of interactive
-input lines by a semicolon is inhibited. Multiline mode is useful for
-cutting and pasting `Asymptote' code directly into the interactive
-input buffer.
-
- Interactive mode can be conveniently used as a calculator:
-expressions entered at the interactive prompt (for which a
-corresponding `write' function exists) are automatically evaluated and
-written to `stdout'. If the expression is non-writable, its type
-signature will be printed out instead. In either case, the expression
-can be referred to using the symbol `%' in the next line input at the
-prompt. For example:
-> 2+3
-5
-> %*4
-20
-> 1/%
-0.05
-> sin(%)
-0.0499791692706783
-> currentpicture
-<picture currentpicture>
-> %.size(200,0)
->
-
- The `%' symbol, when used as a variable, is shorthand for the
-identifier `operator answer', which is set by the prompt after each
-written expression evaluation.
-
- The following special commands are supported only in interactive mode
-and must be entered immediately after the prompt:
-
-`help'
- view the manual;
-
-`erase'
- erase `currentpicture';
-
-`reset'
- reset the `Asymptote' environment to its initial state, except for
- changes to the settings module (*note settings::), the current
- directory (*note cd::), and breakpoints (*note Debugger::);
-
-`input FILE'
- does an interactive reset, followed by the command `include FILE'.
- If the file name `FILE' contains nonalphanumeric characters,
- enclose it with quotation marks. A trailing semi-colon followed
- by optional `Asymptote' commands may be entered on the same line.
-
-`quit'
- exit interactive mode (`exit' is a synonym; the abbreviation `q'
- is also accepted unless there exists a top-level variable named
- `q'). A history of the most recent 1000 (this number can be
- changed with the `historylines' configuration variable) previous
- commands will be retained in the file `.asy/history' in the user's
- home directory (unless the command-line option `-localhistory' was
- specified, in which case the history will be stored in the file
- `.asy_history' in the current directory).
-
-
- Typing `ctrl-C' interrupts the execution of `Asymptote' code and
-returns control to the interactive prompt.
-
- Interactive mode is implemented with the GNU `readline' library,
-with command history and auto-completion. To customize the key
-bindings, see:
-`http://cnswww.cns.cwru.edu/php/chet/readline/readline.html'
-
- The file `asymptote.py' in the `Asymptote' system directory provides
-an alternative way of entering `Asymptote' commands interactively,
-coupled with the full power of `Python'. Copy this file to your `Python
-path' and then execute from within `Python' the commands
-from asymptote import *
-g=asy()
-g.size(200)
-g.draw("unitcircle")
-g.send("draw(unitsquare)")
-g.fill("unitsquare, blue")
-g.clip("unitcircle")
-g.label("\"$O$\", (0,0), SW")
-
-
-File: asymptote.info, Node: GUI, Next: PostScript to Asymptote, Prev: Interactive mode, Up: Top
-
-11 Graphical User Interface
-***************************
-
-In the event that adjustments to the final figure are required, the
-preliminary Graphical User Interface (GUI) `xasy' included with
-`Asymptote' allows you to move graphical objects and draw new ones.
-The modified figure can then be saved as a normal `Asymptote' file.
-
-* Menu:
-
-* GUI installation:: Installing `xasy'
-* GUI usage::
-
-
-File: asymptote.info, Node: GUI installation, Next: GUI usage, Up: GUI
-
-11.1 GUI installation
-=====================
-
-As `xasy' is written in the interactive scripting language `Python/TK',
-it requires `Python' (`http://www.python.org'), the `Python Imaging
-Library' (`http://www.pythonware.com/products/pil/'), and the `tkinter'
-package (included with `Python' under `Microsoft Windows') be
-installed. `Fedora Linux' users can either install `tkinter' with the
-commands
-yum install tkinter
-yum install tk-devel
- or manually install the `tkinter', `tix', `tk', and `tk-devel'
-packages.
-
- Pictures are deconstructed into the PNG image format, which supports
-full alpha channel transparency. Under `Microsoft Windows', this
-requires `Python 2.7.4' and the `Python Imaging Library':
-
- `http://www.python.org/ftp/python/2.7.4/python-2.7.4.msi'
-
- `http://effbot.org/downloads/PIL-1.1.7.win32-py2.7.exe'.
- On `UNIX' systems, place
-`http://effbot.org/downloads/Imaging-1.1.7.tar.gz' in the `Asymptote'
-source directory, and type (as the root user):
-tar -zxf Imaging-1.1.7.tar.gz
-cd Imaging-1.1.7
-python setup.py install
-
-
-File: asymptote.info, Node: GUI usage, Prev: GUI installation, Up: GUI
-
-11.2 GUI usage
-==============
-
-A wheel mouse is convenient for raising and lowering objects within
-`xasy', to expose the object to be moved. If a wheel mouse is not
-available, mouse `Button-2' can be used to repeatedly lower an object
-instead. When run from the command line, `xasy' accepts a command line
-option `-x n', which sets the initial magnification to `n'.
-
- Deconstruction of compound objects (such as arrows) can be prevented
-by enclosing them within the commands
-void begingroup(picture pic=currentpicture);
-void endgroup(picture pic=currentpicture);
- By default, the elements of a picture or frame will be grouped
-together on adding them to a picture. However, the elements of a frame
-added to another frame are not grouped together by default: their
-elements will be individually deconstructed (*note add::).
-
-
-File: asymptote.info, Node: PostScript to Asymptote, Next: Help, Prev: GUI, Up: Top
-
-12 `PostScript' to `Asymptote'
-******************************
-
-The excellent `PostScript' editor `pstoedit' (version 3.50 or later;
-available from `http://sourceforge.net/projects/pstoedit/') includes an
-`Asymptote' backend. Unlike virtually all other `pstoedit' backends,
-this driver includes native clipping, even-odd fill rule, `PostScript'
-subpath, and full image support. Here is an example: `asy -V
-/usr/local/share/doc/asymptote/examples/venn.asy'
-pstoedit -f asy venn.eps test.asy
-asy -V test
-
-If the line widths aren't quite correct, try giving `pstoedit' the
-`-dis' option. If the fonts aren't typeset correctly, try giving
-`pstoedit' the `-dt' option.
-
-
-File: asymptote.info, Node: Help, Next: Debugger, Prev: PostScript to Asymptote, Up: Top
-
-13 Help
-*******
-
-A list of frequently asked questions (FAQ) is maintained at
-
- `http://asymptote.sourceforge.net/FAQ'
- Questions on installing and using `Asymptote' that are not addressed
-in the FAQ should be sent to the `Asymptote' forum:
-
- `http://sourceforge.net/projects/asymptote/forums/forum/409349'
- Including an example that illustrates what you are trying to do will
-help you get useful feedback. `LaTeX' problems can often be diagnosed
-with the `-vv' or `-vvv' command-line options. Contributions in the
-form of patches or `Asymptote' modules can be posted here:
-
- `http://sourceforge.net/tracker/?atid=685685&group_id=120000'
- To receive announcements of upcoming releases, please subscribe to
-`Asymptote' at
-
- `http://freshmeat.net/projects/asy'
- If you find a bug in `Asymptote', please check (if possible) whether
-the bug is still present in the latest `Subversion' developmental code
-(*note Subversion::) before submitting a bug report. New bugs can be
-submitted using the Bug Tracking System at
-
- `http://sourceforge.net/projects/asymptote'
- To see if the bug has already been fixed, check bugs with Status
-`Closed' and recent lines in
-
- `http://asymptote.sourceforge.net/ChangeLog'
- `Asymptote' can be configured with the optional GNU library
-`libsigsegv', available from `http://libsigsegv.sourceforge.net', which
-allows one to distinguish user-generated `Asymptote' stack overflows
-(*note stack overflow::) from true segmentation faults (due to internal
-C++ programming errors; please submit the `Asymptote' code that
-generates such segmentation faults along with your bug report).
-
-
-File: asymptote.info, Node: Debugger, Next: Credits, Prev: Help, Up: Top
-
-14 Debugger
-***********
-
-Asymptote now includes a line-based (as opposed to code-based) debugger
-that can assist the user in following flow control. To set a break
-point in file `file' at line `line', use the command
-
-void stop(string file, int line, code s=quote{});
- The optional argument `s' may be used to conditionally set the variable
-`ignore' in `plain_debugger.asy' to `true'. For example, the first 10
-instances of this breakpoint will be ignored (the variable `int
-count=0' is defined in `plain_debugger.asy'):
-stop("test",2,quote{ignore=(++count <= 10);});
-
- To set a break point in file `file' at the first line containing the
-string `text', use
-
-void stop(string file, string text, code s=quote{});
- To list all breakpoints, use:
-void breakpoints();
- To clear a breakpoint, use:
-void clear(string file, int line);
- To clear all breakpoints, use:
-void clear();
-
- The following commands may be entered at the debugging prompt:
-
-``h''
- help;
-
-``c''
- continue execution;
-
-``i''
- step to the next instruction;
-
-``s''
- step to the next executable line;
-
-``n''
- step to the next executable line in the current file;
-
-``f''
- step to the next file;
-
-``r''
- return to the file associated with the most recent breakpoint;
-
-``t''
- toggle tracing (`-vvvvv') mode;
-
-``q''
- quit debugging and end execution;
-
-``x''
- exit the debugger and run to completion.
-
- Arbitrary `Asymptote' code may also be entered at the debugging
-prompt; however, since the debugger is implemented with `eval',
-currently only top-level (global) variables can be displayed or
-modified.
-
- The debugging prompt may be entered manually with the call
-void breakpoint(code s=quote{});
-
-
-File: asymptote.info, Node: Credits, Next: Index, Prev: Debugger, Up: Top
-
-15 Acknowledgments
-******************
-
-Financial support for the development of `Asymptote' was generously
-provided by the Natural Sciences and Engineering Research Council of
-Canada, the Pacific Institute for Mathematical Sciences, and the
-University of Alberta Faculty of Science.
-
- We also would like to acknowledge the previous work of John D. Hobby,
-author of the program `MetaPost' that inspired the development of
-`Asymptote', and Donald E. Knuth, author of TeX and `MetaFont' (on
-which `MetaPost' is based).
-
- The authors of `Asymptote' are Andy Hammerlindl, John Bowman, and
-Tom Prince. Sean Healy designed the `Asymptote' logo. Other
-contributors include Michail Vidiassov, Radoslav Marinov, Orest Shardt,
-Chris Savage, Philippe Ivaldi, Olivier Guibe', Jacques Pienaar, Mark
-Henning, Steve Melenchuk, Martin Wiebusch, and Stefan Knorr.
-
-
-File: asymptote.info, Node: Index, Prev: Credits, Up: Top
-
-Index
-*****
-
-
-* Menu:
-
-* !: Arithmetic & logical.
- (line 68)
-* != <1>: Arithmetic & logical.
- (line 38)
-* !=: Structures. (line 52)
-* % <1>: Interactive mode. (line 17)
-* %: Arithmetic & logical.
- (line 23)
-* %=: Self & prefix operators.
- (line 6)
-* & <1>: Arithmetic & logical.
- (line 56)
-* &: Bezier curves. (line 86)
-* &&: Arithmetic & logical.
- (line 53)
-* * <1>: Arithmetic & logical.
- (line 17)
-* *: Pens. (line 15)
-* **: Arithmetic & logical.
- (line 31)
-* *=: Self & prefix operators.
- (line 6)
-* + <1>: Arithmetic & logical.
- (line 13)
-* +: Pens. (line 15)
-* ++: Self & prefix operators.
- (line 6)
-* +=: Self & prefix operators.
- (line 6)
-* -: Arithmetic & logical.
- (line 14)
-* -- <1>: Self & prefix operators.
- (line 6)
-* --: Tutorial. (line 127)
-* ---: Bezier curves. (line 86)
-* -=: Self & prefix operators.
- (line 6)
-* -c: Options. (line 175)
-* -l: Options. (line 194)
-* -u: Options. (line 185)
-* -V <1>: Tutorial. (line 19)
-* -V: Configuring. (line 6)
-* ..: Tutorial. (line 127)
-* .asy: Search paths. (line 14)
-* /: Arithmetic & logical.
- (line 20)
-* /=: Self & prefix operators.
- (line 6)
-* 2D graphs: graph. (line 6)
-* 3D graphs: graph3. (line 6)
-* 3D grids: grid3. (line 6)
-* 3D PostScript: three. (line 593)
-* :: Arithmetic & logical.
- (line 73)
-* ::: Bezier curves. (line 70)
-* <: Arithmetic & logical.
- (line 41)
-* <=: Arithmetic & logical.
- (line 44)
-* == <1>: Arithmetic & logical.
- (line 37)
-* ==: Structures. (line 52)
-* >: Arithmetic & logical.
- (line 50)
-* >=: Arithmetic & logical.
- (line 47)
-* ?: Arithmetic & logical.
- (line 73)
-* ^: Arithmetic & logical.
- (line 28)
-* ^=: Self & prefix operators.
- (line 6)
-* ^^: Tutorial. (line 134)
-* a4: Configuring. (line 61)
-* abort: Data types. (line 339)
-* abs <1>: Mathematical functions.
- (line 35)
-* abs: Data types. (line 62)
-* accel <1>: three. (line 519)
-* accel: Paths and guides. (line 115)
-* access: Import. (line 6)
-* acknowledgments: Credits. (line 6)
-* aCos: Mathematical functions.
- (line 20)
-* acos: Mathematical functions.
- (line 6)
-* acosh: Mathematical functions.
- (line 6)
-* add <1>: three. (line 283)
-* add: Frames and pictures. (line 196)
-* addViews: three. (line 405)
-* adjust: Pens. (line 115)
-* Ai: Mathematical functions.
- (line 48)
-* Ai_deriv: Mathematical functions.
- (line 48)
-* Airy: Mathematical functions.
- (line 48)
-* alias <1>: Arrays. (line 181)
-* alias: Structures. (line 52)
-* align: Options. (line 169)
-* Align: label. (line 12)
-* all: Arrays. (line 329)
-* Allow: Pens. (line 327)
-* AND: Arithmetic & logical.
- (line 80)
-* and: Bezier curves. (line 56)
-* angle: Data types. (line 70)
-* animate <1>: animation. (line 12)
-* animate <2>: Files. (line 154)
-* animate: Configuring. (line 67)
-* animation: animation. (line 6)
-* annotate: annotate. (line 6)
-* antialias <1>: Options. (line 144)
-* antialias: three. (line 222)
-* append <1>: Arrays. (line 39)
-* append: Files. (line 36)
-* arc: three. (line 295)
-* Arc: Paths and guides. (line 32)
-* arc: Paths and guides. (line 22)
-* ArcArrow: draw. (line 26)
-* ArcArrow3: three. (line 560)
-* ArcArrows: draw. (line 26)
-* ArcArrows3: three. (line 560)
-* arclength <1>: three. (line 519)
-* arclength: Paths and guides. (line 142)
-* arcpoint: Paths and guides. (line 152)
-* arctime <1>: three. (line 519)
-* arctime: Paths and guides. (line 146)
-* arguments: Default arguments. (line 6)
-* arithmetic operators: Arithmetic & logical.
- (line 6)
-* array: Arrays. (line 122)
-* array iteration: Programming. (line 33)
-* arrays: Arrays. (line 6)
-* arrow: label. (line 71)
-* Arrow: draw. (line 26)
-* arrow: Drawing commands. (line 31)
-* arrow keys: Tutorial. (line 37)
-* Arrow3: three. (line 560)
-* Arrows: draw. (line 26)
-* arrows: draw. (line 26)
-* Arrows3: three. (line 560)
-* as: Import. (line 68)
-* ascii: Data types. (line 286)
-* aSin: Mathematical functions.
- (line 20)
-* asin: Mathematical functions.
- (line 6)
-* asinh: Mathematical functions.
- (line 6)
-* Aspect: Frames and pictures. (line 54)
-* assert: Data types. (line 344)
-* assignment: Programming. (line 8)
-* asy <1>: Import. (line 102)
-* asy: Data types. (line 334)
-* asy-mode: Editing modes. (line 6)
-* asy.vim: Editing modes. (line 33)
-* asyinclude: LaTeX usage. (line 46)
-* asymptote.sty: LaTeX usage. (line 6)
-* asymptote.xml: Editing modes. (line 49)
-* ASYMPTOTE_CONFIG: Options. (line 116)
-* aTan: Mathematical functions.
- (line 20)
-* atan: Mathematical functions.
- (line 6)
-* atan2: Mathematical functions.
- (line 6)
-* atanh: Mathematical functions.
- (line 6)
-* atleast: Bezier curves. (line 56)
-* attach <1>: graph. (line 416)
-* attach <2>: LaTeX usage. (line 51)
-* attach: Frames and pictures. (line 252)
-* autoadjust: three. (line 371)
-* autoimport: Options. (line 112)
-* automatic scaling: graph. (line 682)
-* axialshade: fill. (line 43)
-* axis <1>: graph3. (line 67)
-* axis: graph. (line 879)
-* azimuth: Data types. (line 126)
-* babel: babel. (line 6)
-* background color: Frames and pictures. (line 168)
-* BackView: three. (line 398)
-* Bar: draw. (line 19)
-* Bar3: three. (line 560)
-* Bars: draw. (line 19)
-* Bars3: three. (line 560)
-* barsize: draw. (line 19)
-* base modules: Base modules. (line 6)
-* basealign: Pens. (line 168)
-* baseline: label. (line 91)
-* batch mode: Tutorial. (line 6)
-* beep: Data types. (line 357)
-* BeginArcArrow: draw. (line 26)
-* BeginArcArrow3: three. (line 560)
-* BeginArrow: draw. (line 26)
-* BeginArrow3: three. (line 560)
-* BeginBar: draw. (line 19)
-* BeginBar3: three. (line 560)
-* BeginDotMargin: draw. (line 42)
-* BeginDotMargin3: three. (line 576)
-* BeginMargin: draw. (line 42)
-* BeginMargin3: three. (line 576)
-* BeginPenMargin: draw. (line 42)
-* BeginPenMargin2: three. (line 576)
-* BeginPenMargin3: three. (line 576)
-* BeginPoint: label. (line 56)
-* Bessel: Mathematical functions.
- (line 48)
-* bevel: flowchart. (line 75)
-* beveljoin: Pens. (line 138)
-* Bezier curves: Bezier curves. (line 6)
-* bezulate: three. (line 104)
-* Bi: Mathematical functions.
- (line 48)
-* Bi_deriv: Mathematical functions.
- (line 48)
-* Billboard: three. (line 489)
-* binary: Files. (line 75)
-* binary format: Files. (line 75)
-* binary operators: Arithmetic & logical.
- (line 6)
-* binarytree: binarytree. (line 6)
-* black stripes: three. (line 222)
-* Blank: draw. (line 26)
-* block.bottom: flowchart. (line 19)
-* block.bottomleft: flowchart. (line 19)
-* block.bottomright: flowchart. (line 19)
-* block.center: flowchart. (line 26)
-* block.draw: flowchart. (line 31)
-* block.left: flowchart. (line 19)
-* block.position: flowchart. (line 24)
-* block.right: flowchart. (line 19)
-* block.top: flowchart. (line 19)
-* block.topleft: flowchart. (line 19)
-* block.topright: flowchart. (line 19)
-* bool: Data types. (line 14)
-* bool3: Data types. (line 23)
-* boolean operators: Arithmetic & logical.
- (line 6)
-* Bottom: graph. (line 134)
-* BottomTop: graph. (line 140)
-* BottomView: three. (line 398)
-* bounding box: Frames and pictures. (line 168)
-* Bounds: graph3. (line 21)
-* box <1>: three. (line 317)
-* box: Frames and pictures. (line 22)
-* bp: Tutorial. (line 26)
-* break: Programming. (line 29)
-* breakpoints: Debugger. (line 21)
-* brick: Pens. (line 251)
-* broken axis: graph. (line 782)
-* bug reports: Help. (line 23)
-* buildcycle: Paths and guides. (line 258)
-* Button-1: GUI. (line 6)
-* Button-2: GUI. (line 6)
-* BWRainbow: palette. (line 15)
-* BWRainbow2: palette. (line 18)
-* C string: Data types. (line 191)
-* CAD: CAD. (line 6)
-* calculateTransform: Frames and pictures. (line 107)
-* camera: three. (line 366)
-* casts: Casts. (line 6)
-* cbrt: Mathematical functions.
- (line 6)
-* cd: Files. (line 25)
-* ceil: Mathematical functions.
- (line 26)
-* center: three. (line 350)
-* Center: label. (line 61)
-* checker: Pens. (line 251)
-* Chinese: unicode. (line 12)
-* choose: Mathematical functions.
- (line 39)
-* Ci: Mathematical functions.
- (line 48)
-* circle <1>: flowchart. (line 64)
-* circle: three. (line 291)
-* Circle: Paths and guides. (line 17)
-* circle: Paths and guides. (line 10)
-* circlebarframe: markers. (line 18)
-* CJK: unicode. (line 12)
-* clamped: graph. (line 37)
-* clear <1>: Debugger. (line 23)
-* clear: Files. (line 92)
-* clip: fill. (line 115)
-* CLZ: Arithmetic & logical.
- (line 80)
-* cm: Tutorial. (line 63)
-* cmd: Configuring. (line 34)
-* cmyk: Pens. (line 34)
-* colatitude: Data types. (line 131)
-* color: Pens. (line 23)
-* coloredNodes: tube. (line 25)
-* coloredpath: tube. (line 18)
-* coloredSegments: tube. (line 25)
-* colorless: Pens. (line 54)
-* colors: Pens. (line 51)
-* comma: Files. (line 61)
-* comma-separated-value mode: Arrays. (line 362)
-* command-line options <1>: Options. (line 6)
-* command-line options: Configuring. (line 83)
-* comment character: Files. (line 16)
-* compass directions: Tutorial. (line 106)
-* Compiling from UNIX source: Compiling from UNIX source.
- (line 6)
-* complement: Arrays. (line 150)
-* concat: Arrays. (line 177)
-* conditional <1>: Arithmetic & logical.
- (line 73)
-* conditional: Programming. (line 8)
-* config: Options. (line 116)
-* configuration file <1>: Options. (line 116)
-* configuration file: Configuring. (line 23)
-* configuring: Configuring. (line 6)
-* conj: Data types. (line 59)
-* constructors: Structures. (line 91)
-* context: Options. (line 144)
-* continue <1>: Debugger. (line 31)
-* continue: Programming. (line 29)
-* contour: contour. (line 9)
-* contour3: contour3. (line 6)
-* controls <1>: three. (line 6)
-* controls: Bezier curves. (line 45)
-* controlSpecifier: Paths and guides. (line 382)
-* convert <1>: Options. (line 144)
-* convert <2>: animation. (line 6)
-* convert <3>: Files. (line 154)
-* convert: Configuring. (line 67)
-* convertOptions: Options. (line 131)
-* Coons shading: fill. (line 78)
-* copy: Arrays. (line 174)
-* Cos: Mathematical functions.
- (line 20)
-* cos: Mathematical functions.
- (line 6)
-* cosh: Mathematical functions.
- (line 6)
-* cputime: Structures. (line 169)
-* crop: graph. (line 637)
-* cropping graphs: graph. (line 637)
-* cross <1>: graph. (line 485)
-* cross: Data types. (line 169)
-* crossframe: markers. (line 23)
-* crosshatch: Pens. (line 267)
-* csv: Arrays. (line 362)
-* CTZ: Arithmetic & logical.
- (line 80)
-* cubicroots: Arrays. (line 318)
-* curl <1>: three. (line 6)
-* curl: Bezier curves. (line 66)
-* curlSpecifier: Paths and guides. (line 394)
-* currentpen: Pens. (line 6)
-* currentprojection: three. (line 395)
-* curve: slopefield. (line 20)
-* custom axis types: graph. (line 144)
-* custom mark routine: graph. (line 577)
-* custom tick locations: graph. (line 249)
-* cut: Paths and guides. (line 240)
-* cycle <1>: three. (line 6)
-* cycle: Tutorial. (line 75)
-* cyclic <1>: three. (line 519)
-* cyclic <2>: Arrays. (line 39)
-* cyclic: Paths and guides. (line 74)
-* Cyrillic: unicode. (line 7)
-* dashdotted: Pens. (line 95)
-* dashed: Pens. (line 95)
-* data types: Data types. (line 6)
-* date: Data types. (line 298)
-* Debian: UNIX binary distributions.
- (line 19)
-* debugger: Debugger. (line 6)
-* declaration: Programming. (line 8)
-* deconstruct: GUI usage. (line 6)
-* default arguments: Default arguments. (line 6)
-* defaultformat: graph. (line 175)
-* DefaultHead: draw. (line 26)
-* DefaultHead3: three. (line 560)
-* defaultpen: Pens. (line 46)
-* defaultrender: three. (line 47)
-* deferred drawing: simplex. (line 6)
-* Degrees: Mathematical functions.
- (line 17)
-* degrees <1>: Mathematical functions.
- (line 17)
-* degrees: Data types. (line 75)
-* delete <1>: Arrays. (line 39)
-* delete: Files. (line 149)
-* description: Description. (line 6)
-* diagonal: Arrays. (line 303)
-* diamond: flowchart. (line 57)
-* dimension: Arrays. (line 367)
-* dir <1>: three. (line 519)
-* dir <2>: Paths and guides. (line 98)
-* dir <3>: Data types. (line 87)
-* dir: Search paths. (line 10)
-* direction specifier: Bezier curves. (line 6)
-* directory: Files. (line 25)
-* dirSpecifier: Paths and guides. (line 376)
-* dirtime: Paths and guides. (line 155)
-* display: Configuring. (line 67)
-* do: Programming. (line 29)
-* DOSendl: Files. (line 61)
-* DOSnewl: Files. (line 61)
-* dot <1>: Arrays. (line 259)
-* dot <2>: Data types. (line 100)
-* dot: draw. (line 83)
-* DotMargin: draw. (line 42)
-* DotMargin3: three. (line 576)
-* DotMargins: draw. (line 42)
-* DotMargins3: three. (line 576)
-* dotted: Pens. (line 95)
-* double deferred drawing: three. (line 268)
-* double precision: Files. (line 75)
-* draw: three. (line 112)
-* Draw: Frames and pictures. (line 147)
-* draw: draw. (line 110)
-* Draw: draw. (line 26)
-* draw: Drawing commands. (line 31)
-* drawing commands: Drawing commands. (line 6)
-* drawline: math. (line 9)
-* drawtree: drawtree. (line 9)
-* dvips: Configuring. (line 67)
-* dvipsOptions: Options. (line 131)
-* dvisvgm: Configuring. (line 67)
-* E <1>: Mathematical functions.
- (line 48)
-* E: Tutorial. (line 106)
-* Editing modes: Editing modes. (line 6)
-* Ei: Mathematical functions.
- (line 48)
-* ellipse <1>: Frames and pictures. (line 22)
-* ellipse: Paths and guides. (line 39)
-* elliptic functions: Mathematical functions.
- (line 48)
-* else: Programming. (line 8)
-* emacs: Editing modes. (line 6)
-* embed: embed. (line 6)
-* Embedded: three. (line 489)
-* empty: Frames and pictures. (line 7)
-* EndArcArrow: draw. (line 26)
-* EndArcArrow3: three. (line 560)
-* EndArrow: draw. (line 26)
-* EndArrow3: three. (line 560)
-* EndBar: draw. (line 19)
-* EndBar3: three. (line 560)
-* EndDotMargin: draw. (line 42)
-* EndDotMargin3: three. (line 576)
-* endl: Files. (line 61)
-* EndMargin: draw. (line 42)
-* EndMargin3: three. (line 576)
-* EndPenMargin: draw. (line 42)
-* EndPenMargin2: three. (line 576)
-* EndPenMargin3: three. (line 576)
-* EndPoint: label. (line 56)
-* envelope: Frames and pictures. (line 22)
-* environment variables: Configuring. (line 87)
-* eof <1>: Arrays. (line 344)
-* eof: Files. (line 92)
-* eol <1>: Arrays. (line 344)
-* eol: Files. (line 92)
-* EPS <1>: Options. (line 144)
-* EPS: label. (line 79)
-* erase <1>: Frames and pictures. (line 7)
-* erase <2>: Data types. (line 241)
-* erase: Tutorial. (line 37)
-* erf: Mathematical functions.
- (line 6)
-* erfc: Mathematical functions.
- (line 6)
-* error: Files. (line 16)
-* error bars: graph. (line 533)
-* errorbars: graph. (line 485)
-* eval: Import. (line 98)
-* evenodd <1>: Pens. (line 152)
-* evenodd: Tutorial. (line 148)
-* exit <1>: Debugger. (line 57)
-* exit <2>: Interactive mode. (line 59)
-* exit: Data types. (line 348)
-* exp: Mathematical functions.
- (line 6)
-* expi: Data types. (line 83)
-* explicit: Casts. (line 6)
-* explicit casts: Casts. (line 21)
-* expm1: Mathematical functions.
- (line 6)
-* exponential integral: Mathematical functions.
- (line 48)
-* extendcap: Pens. (line 129)
-* extension <1>: MetaPost. (line 10)
-* extension: Paths and guides. (line 235)
-* external: embed. (line 13)
-* extrude: three. (line 513)
-* F: Mathematical functions.
- (line 48)
-* fabs: Mathematical functions.
- (line 6)
-* face: three. (line 601)
-* factorial: Mathematical functions.
- (line 39)
-* Fedora: UNIX binary distributions.
- (line 15)
-* feynman: feynman. (line 6)
-* fft <1>: math. (line 26)
-* fft: Arrays. (line 246)
-* FFTW: Compiling from UNIX source.
- (line 57)
-* file <1>: Debugger. (line 45)
-* file: Files. (line 6)
-* Fill: Frames and pictures. (line 133)
-* fill <1>: fill. (line 17)
-* fill: draw. (line 116)
-* Fill: draw. (line 26)
-* FillDraw: Frames and pictures. (line 123)
-* filldraw: fill. (line 11)
-* FillDraw: draw. (line 26)
-* filloutside: fill. (line 27)
-* fillrule: Pens. (line 152)
-* find <1>: Arrays. (line 159)
-* find: Data types. (line 226)
-* firstcut: Paths and guides. (line 250)
-* fit: Frames and pictures. (line 103)
-* fit3: three. (line 281)
-* fixedscaling: Frames and pictures. (line 74)
-* floor: Mathematical functions.
- (line 26)
-* flowchart: flowchart. (line 6)
-* flush: Files. (line 61)
-* fmod: Mathematical functions.
- (line 6)
-* font: Pens. (line 192)
-* font command: Pens. (line 192)
-* fontcommand: Pens. (line 207)
-* fontsize: Pens. (line 178)
-* for: Programming. (line 8)
-* format <1>: Options. (line 144)
-* format: Data types. (line 269)
-* forum: Help. (line 6)
-* frame: Frames and pictures. (line 7)
-* from: Import. (line 17)
-* FrontView: three. (line 398)
-* function declarations: Functions. (line 67)
-* function shading: fill. (line 100)
-* Function shading: fill. (line 100)
-* functions <1>: Mathematical functions.
- (line 6)
-* functions: Functions. (line 6)
-* functionshade: fill. (line 100)
-* gamma: Mathematical functions.
- (line 6)
-* Gaussrand: Mathematical functions.
- (line 39)
-* geometry: geometry. (line 6)
-* getc: Files. (line 30)
-* getpair: Files. (line 117)
-* getreal: Files. (line 117)
-* getstring: Files. (line 117)
-* gettriple: Files. (line 117)
-* glOptions <1>: Options. (line 131)
-* glOptions: three. (line 222)
-* GNU Scientific Library: Mathematical functions.
- (line 48)
-* gouraudshade: fill. (line 62)
-* Gradient: palette. (line 25)
-* gradient shading: fill. (line 32)
-* graph: graph. (line 6)
-* graph3: graph3. (line 6)
-* graphic: label. (line 79)
-* graphical user interface: GUI. (line 6)
-* gray: Pens. (line 25)
-* Grayscale: palette. (line 9)
-* grayscale: Pens. (line 25)
-* grid <1>: graph. (line 733)
-* grid: Pens. (line 251)
-* grid3: grid3. (line 6)
-* gs: Configuring. (line 6)
-* gsl: Mathematical functions.
- (line 48)
-* GSL: Compiling from UNIX source.
- (line 57)
-* gsOptions: Options. (line 131)
-* GUI: GUI. (line 6)
-* GUI installation: GUI installation. (line 6)
-* GUI usage: GUI usage. (line 6)
-* guide: Paths and guides. (line 303)
-* guide3: three. (line 6)
-* hatch: Pens. (line 267)
-* height: LaTeX usage. (line 51)
-* help <1>: Debugger. (line 30)
-* help <2>: Help. (line 6)
-* help: Interactive mode. (line 44)
-* Hermite: graph. (line 37)
-* Hermite(splinetype splinetype: graph. (line 37)
-* hex <1>: Pens. (line 60)
-* hex: Data types. (line 283)
-* hexidecimal <1>: Pens. (line 59)
-* hexidecimal: Data types. (line 283)
-* hidden surface removal: three. (line 601)
-* histogram: Mathematical functions.
- (line 39)
-* history <1>: Interactive mode. (line 59)
-* history: Files. (line 142)
-* historylines: Interactive mode. (line 64)
-* HookHead: draw. (line 26)
-* HookHead3: three. (line 560)
-* Horizontal: flowchart. (line 81)
-* hyperrefOptions: Options. (line 131)
-* hypot: Mathematical functions.
- (line 6)
-* I: Mathematical functions.
- (line 48)
-* i_scaled: Mathematical functions.
- (line 48)
-* iconic: three. (line 222)
-* identity <1>: Arrays. (line 300)
-* identity <2>: Mathematical functions.
- (line 6)
-* identity: Transforms. (line 24)
-* identity4: three. (line 449)
-* if: Programming. (line 8)
-* IgnoreAspect: Frames and pictures. (line 58)
-* image: palette. (line 34)
-* ImageMagick <1>: Options. (line 144)
-* ImageMagick <2>: animation. (line 6)
-* ImageMagick: Configuring. (line 67)
-* images: palette. (line 6)
-* implicit casts: Casts. (line 6)
-* implicit linear solver: MetaPost. (line 10)
-* implicit scaling: Implicit scaling. (line 6)
-* import: Import. (line 46)
-* inches: Tutorial. (line 63)
-* include: Import. (line 127)
-* including images: label. (line 79)
-* increasing: math. (line 59)
-* inf: Data types. (line 33)
-* inheritance: Structures. (line 181)
-* initialized: Arrays. (line 39)
-* initializers: Variable initializers.
- (line 6)
-* inline: LaTeX usage. (line 51)
-* InOutTicks: graph3. (line 35)
-* input <1>: Interactive mode. (line 48)
-* input: Files. (line 10)
-* insert <1>: Arrays. (line 39)
-* insert: Data types. (line 237)
-* inside: Paths and guides. (line 282)
-* inst: Debugger. (line 36)
-* installation: Installation. (line 6)
-* int: Data types. (line 28)
-* integer division: Arithmetic & logical.
- (line 6)
-* interactive mode: Interactive mode. (line 6)
-* interior: Paths and guides. (line 278)
-* international characters: unicode. (line 6)
-* interp: Arithmetic & logical.
- (line 76)
-* interpolate: interpolate. (line 6)
-* intersect <1>: three. (line 519)
-* intersect <2>: math. (line 13)
-* intersect: Paths and guides. (line 184)
-* intersectionpoint <1>: three. (line 519)
-* intersectionpoint <2>: math. (line 17)
-* intersectionpoint: Paths and guides. (line 227)
-* intersectionpoints <1>: three. (line 519)
-* intersectionpoints: Paths and guides. (line 231)
-* intersections <1>: three. (line 519)
-* intersections: Paths and guides. (line 195)
-* InTicks: graph3. (line 35)
-* intMax: Data types. (line 28)
-* intMin: Data types. (line 28)
-* inverse <1>: Arrays. (line 306)
-* inverse: Transforms. (line 16)
-* invert: three. (line 439)
-* invisible: Pens. (line 39)
-* isnan: Data types. (line 33)
-* J: Mathematical functions.
- (line 6)
-* Japanese: unicode. (line 12)
-* K: Mathematical functions.
- (line 48)
-* k_scaled: Mathematical functions.
- (line 48)
-* Kate: Editing modes. (line 49)
-* KDE editor: Editing modes. (line 49)
-* keepAspect <1>: LaTeX usage. (line 51)
-* keepAspect: Frames and pictures. (line 54)
-* keyboard bindings:: three. (line 181)
-* keys: Arrays. (line 39)
-* keyword: Named arguments. (line 37)
-* keyword-only: Named arguments. (line 37)
-* keywords: Named arguments. (line 6)
-* Korean: unicode. (line 12)
-* label: three. (line 483)
-* Label <1>: graph. (line 343)
-* Label: label. (line 14)
-* label: clip. (line 16)
-* Label: draw. (line 98)
-* labelpath: labelpath. (line 6)
-* labelpath3: labelpath3. (line 6)
-* labelx: graph. (line 343)
-* labely: graph. (line 343)
-* Landscape: Frames and pictures. (line 95)
-* lastcut: Paths and guides. (line 254)
-* lasy-mode: Editing modes. (line 6)
-* latex: Options. (line 144)
-* LaTeX fonts: Pens. (line 192)
-* LaTeX usage: LaTeX usage. (line 6)
-* latexmk: LaTeX usage. (line 30)
-* latin1: latin1. (line 6)
-* latitude: Data types. (line 136)
-* latticeshade: fill. (line 32)
-* layer: Drawing commands. (line 16)
-* leastsquares <1>: graph. (line 901)
-* leastsquares: stats. (line 6)
-* Left: graph. (line 284)
-* LeftRight: graph. (line 290)
-* LeftSide: label. (line 61)
-* LeftTicks: graph. (line 161)
-* LeftView: three. (line 398)
-* legend <1>: graph. (line 432)
-* legend <2>: draw. (line 64)
-* legend: Drawing commands. (line 31)
-* Legendre: Mathematical functions.
- (line 48)
-* length <1>: three. (line 519)
-* length <2>: Arrays. (line 39)
-* length <3>: Paths and guides. (line 65)
-* length: Data types. (line 62)
-* letter: Configuring. (line 61)
-* lexorder: math. (line 68)
-* libm routines: Mathematical functions.
- (line 6)
-* libsigsegv <1>: Help. (line 33)
-* libsigsegv: Functions. (line 88)
-* limits: graph. (line 637)
-* line: Arrays. (line 344)
-* line mode: Arrays. (line 344)
-* Linear: graph. (line 682)
-* linecap: Pens. (line 129)
-* linejoin: Pens. (line 138)
-* lineskip: Pens. (line 178)
-* linetype: Pens. (line 115)
-* linewidth: Pens. (line 119)
-* locale: Data types. (line 293)
-* Log: graph. (line 682)
-* log: Mathematical functions.
- (line 6)
-* log-log graph: graph. (line 713)
-* log10: Mathematical functions.
- (line 6)
-* log1p: Mathematical functions.
- (line 6)
-* log2 graph: graph. (line 762)
-* logarithmic graph: graph. (line 713)
-* logical operators: Arithmetic & logical.
- (line 6)
-* longdashdotted: Pens. (line 95)
-* longdashed: Pens. (line 95)
-* longitude: Data types. (line 141)
-* loop: Programming. (line 8)
-* MacOS X binary distributions: MacOS X binary distributions.
- (line 6)
-* makepen: Pens. (line 300)
-* map: Arrays. (line 141)
-* Margin: draw. (line 42)
-* Margin3: three. (line 576)
-* margins: three. (line 274)
-* Margins: draw. (line 42)
-* Margins3: three. (line 576)
-* mark: graph. (line 485)
-* markangle: markers. (line 38)
-* marker: graph. (line 485)
-* markers: markers. (line 6)
-* marknodes: graph. (line 485)
-* markuniform: graph. (line 485)
-* mask: Data types. (line 33)
-* math: math. (line 6)
-* mathematical functions: Mathematical functions.
- (line 6)
-* max <1>: three. (line 519)
-* max <2>: Arrays. (line 225)
-* max <3>: Frames and pictures. (line 7)
-* max: Paths and guides. (line 267)
-* maxbound: Data types. (line 106)
-* maxtile: three. (line 222)
-* maxtimes: Paths and guides. (line 222)
-* maxviewport: three. (line 222)
-* MetaPost: MetaPost. (line 6)
-* MetaPost ... : Bezier curves. (line 70)
-* MetaPost cutafter: Paths and guides. (line 255)
-* MetaPost cutbefore: Paths and guides. (line 251)
-* MetaPost pickup: Pens. (line 6)
-* MetaPost whatever: MetaPost. (line 10)
-* Microsoft Windows: Microsoft Windows. (line 6)
-* MidArcArrow: draw. (line 26)
-* MidArcArrow3: three. (line 560)
-* MidArrow: draw. (line 26)
-* MidArrow3: three. (line 560)
-* midpoint: Paths and guides. (line 169)
-* MidPoint: label. (line 56)
-* min <1>: three. (line 519)
-* min <2>: Arrays. (line 218)
-* min <3>: Frames and pictures. (line 7)
-* min: Paths and guides. (line 263)
-* minbound: Data types. (line 103)
-* minipage: label. (line 118)
-* mintimes: Paths and guides. (line 217)
-* miterjoin: Pens. (line 138)
-* miterlimit: Pens. (line 147)
-* mktemp: Files. (line 44)
-* mm: Tutorial. (line 63)
-* mode: Files. (line 75)
-* monotonic: graph. (line 37)
-* mouse: GUI. (line 6)
-* mouse bindings: three. (line 149)
-* Move: Pens. (line 339)
-* MoveQuiet: Pens. (line 345)
-* multisample: three. (line 140)
-* N: Tutorial. (line 106)
-* name: Files. (line 88)
-* named arguments: Named arguments. (line 6)
-* natural: graph. (line 37)
-* new <1>: Arrays. (line 109)
-* new: Structures. (line 6)
-* newframe: Frames and pictures. (line 7)
-* newl: Files. (line 61)
-* newton: Mathematical functions.
- (line 66)
-* next: Debugger. (line 42)
-* NFSS: Pens. (line 192)
-* nobasealign: Pens. (line 168)
-* NoFill <1>: Frames and pictures. (line 141)
-* NoFill: draw. (line 26)
-* NoMargin: draw. (line 42)
-* NoMargin3: three. (line 576)
-* none: Files. (line 61)
-* None: draw. (line 19)
-* normal: three. (line 505)
-* nosafe: Options. (line 164)
-* NOT: Arithmetic & logical.
- (line 80)
-* notaknot: graph. (line 37)
-* NoTicks: graph. (line 161)
-* NoTicks3: graph3. (line 35)
-* null: Structures. (line 6)
-* nullpen <1>: Frames and pictures. (line 127)
-* nullpen: label. (line 14)
-* NURBS: three. (line 375)
-* O: three. (line 286)
-* obj: obj. (line 9)
-* oblique: three. (line 331)
-* obliqueX: three. (line 339)
-* obliqueY: three. (line 346)
-* obliqueZ: three. (line 331)
-* ode: ode. (line 9)
-* offset <1>: Options. (line 169)
-* offset: Pens. (line 115)
-* OmitTick: graph. (line 239)
-* OmitTickInterval: graph. (line 239)
-* OmitTickIntervals: graph. (line 239)
-* opacity: Pens. (line 222)
-* open: Files. (line 12)
-* OpenGL: three. (line 140)
-* operator: User-defined operators.
- (line 6)
-* operator --: graph. (line 31)
-* operator ..: graph. (line 34)
-* operator answer: Interactive mode. (line 37)
-* operator cast: Casts. (line 30)
-* operator ecast: Casts. (line 57)
-* operator init <1>: Structures. (line 134)
-* operator init: Variable initializers.
- (line 6)
-* operators: Operators. (line 6)
-* options: Options. (line 6)
-* OR: Arithmetic & logical.
- (line 80)
-* orientation: Frames and pictures. (line 95)
-* orthographic: three. (line 350)
-* outformat: three. (line 140)
-* outprefix: Frames and pictures. (line 83)
-* output <1>: Options. (line 144)
-* output: Files. (line 36)
-* OutTicks: graph3. (line 35)
-* overloading functions: Functions. (line 44)
-* overwrite: Pens. (line 324)
-* P: Mathematical functions.
- (line 48)
-* pack: label. (line 101)
-* packing: Rest arguments. (line 30)
-* pair <1>: Data types. (line 43)
-* pair: Tutorial. (line 51)
-* pairs: Arrays. (line 242)
-* paperheight: Configuring. (line 61)
-* papertype: Configuring. (line 61)
-* paperwidth: Configuring. (line 61)
-* parallelogram: flowchart. (line 50)
-* parametric surface: graph3. (line 101)
-* parametrized curve: graph. (line 637)
-* partialsum: math. (line 53)
-* patch-dependent colors: three. (line 81)
-* path <1>: flowchart. (line 81)
-* path <2>: three. (line 43)
-* path: Paths and guides. (line 7)
-* path markers: graph. (line 485)
-* path3: three. (line 6)
-* path[]: Tutorial. (line 134)
-* patterns <1>: patterns. (line 6)
-* patterns: Pens. (line 238)
-* PDF: Options. (line 144)
-* pdflatex: Options. (line 144)
-* pdfviewer: Configuring. (line 6)
-* pdfviewerOptions: Options. (line 131)
-* pen: Pens. (line 6)
-* PenMargin: draw. (line 42)
-* PenMargin2: three. (line 576)
-* PenMargin3: three. (line 576)
-* PenMargins: draw. (line 42)
-* PenMargins2: three. (line 576)
-* PenMargins3: three. (line 576)
-* periodic: graph. (line 37)
-* perl: LaTeX usage. (line 30)
-* perpendicular: geometry. (line 6)
-* perspective: three. (line 375)
-* picture: Frames and pictures. (line 35)
-* picture alignment: Frames and pictures. (line 209)
-* piecewisestraight: Paths and guides. (line 81)
-* pixel: three. (line 583)
-* Pl: Mathematical functions.
- (line 48)
-* plain: plain. (line 6)
-* planar: three. (line 89)
-* plane: three. (line 313)
-* planeproject: three. (line 502)
-* point <1>: three. (line 519)
-* point: Paths and guides. (line 84)
-* polar: Data types. (line 121)
-* polargraph: graph. (line 90)
-* polygon: graph. (line 485)
-* pop: Arrays. (line 39)
-* Portrait: Frames and pictures. (line 95)
-* postcontrol <1>: three. (line 519)
-* postcontrol: Paths and guides. (line 135)
-* postfix operators: Self & prefix operators.
- (line 19)
-* postscript: Frames and pictures. (line 271)
-* PostScript fonts: Pens. (line 210)
-* PostScript subpath: Tutorial. (line 134)
-* pow10: Mathematical functions.
- (line 6)
-* prc: three. (line 243)
-* precision: Files. (line 92)
-* precontrol <1>: three. (line 519)
-* precontrol: Paths and guides. (line 128)
-* prefix operators: Self & prefix operators.
- (line 6)
-* private: Structures. (line 6)
-* programming: Programming. (line 6)
-* pstoedit: PostScript to Asymptote.
- (line 6)
-* psview: Microsoft Windows. (line 16)
-* psviewer: Configuring. (line 6)
-* psviewerOptions: Options. (line 131)
-* pt: Tutorial. (line 63)
-* public: Structures. (line 6)
-* push: Arrays. (line 39)
-* Python usage: Interactive mode. (line 80)
-* quadraticroots: Arrays. (line 309)
-* quarticroots: math. (line 22)
-* quick reference: Description. (line 80)
-* quit <1>: Debugger. (line 54)
-* quit <2>: Interactive mode. (line 59)
-* quit: Tutorial. (line 37)
-* quote: Import. (line 116)
-* quotient: Arithmetic & logical.
- (line 6)
-* RadialShade: Frames and pictures. (line 159)
-* radialshade: fill. (line 51)
-* RadialShadeDraw: Frames and pictures. (line 163)
-* radians: Mathematical functions.
- (line 17)
-* radius <1>: three. (line 519)
-* radius: Paths and guides. (line 124)
-* Rainbow: palette. (line 12)
-* rand: Mathematical functions.
- (line 39)
-* randMax: Mathematical functions.
- (line 39)
-* read: Arrays. (line 385)
-* reading: Files. (line 12)
-* reading string arrays: Arrays. (line 354)
-* readline: Files. (line 134)
-* real: Data types. (line 33)
-* realDigits: Data types. (line 33)
-* realEpsilon: Data types. (line 33)
-* realMax: Data types. (line 33)
-* realMin: Data types. (line 33)
-* realmult: Data types. (line 97)
-* rectangle: flowchart. (line 37)
-* recursion: Functions. (line 88)
-* reference: Description. (line 80)
-* reflect: Transforms. (line 51)
-* Relative: label. (line 51)
-* relpoint: Paths and guides. (line 165)
-* reltime: Paths and guides. (line 161)
-* remainder: Mathematical functions.
- (line 6)
-* rename: Files. (line 151)
-* render <1>: Options. (line 144)
-* render: three. (line 47)
-* replace: Data types. (line 254)
-* resetdefaultpen: Pens. (line 353)
-* rest arguments: Rest arguments. (line 6)
-* restore: Frames and pictures. (line 265)
-* restricted: Structures. (line 6)
-* return: Debugger. (line 48)
-* reverse <1>: three. (line 519)
-* reverse <2>: Arrays. (line 146)
-* reverse <3>: Paths and guides. (line 172)
-* reverse: Data types. (line 250)
-* rewind: Files. (line 92)
-* rfind: Data types. (line 231)
-* rgb: Pens. (line 30)
-* Riemann zeta function: Mathematical functions.
- (line 48)
-* Right: graph. (line 287)
-* RightSide: label. (line 61)
-* RightTicks: graph. (line 161)
-* RightView: three. (line 398)
-* rotate: three. (line 470)
-* Rotate: label. (line 36)
-* Rotate(pair z): label. (line 39)
-* round: Mathematical functions.
- (line 26)
-* roundcap: Pens. (line 129)
-* roundedpath: roundedpath. (line 6)
-* roundjoin: Pens. (line 138)
-* roundrectangle: flowchart. (line 69)
-* RPM: UNIX binary distributions.
- (line 6)
-* runtime imports: Import. (line 98)
-* Russian: unicode. (line 7)
-* S: Tutorial. (line 106)
-* safe: Options. (line 164)
-* save: Frames and pictures. (line 262)
-* saveline: Files. (line 134)
-* scale: three. (line 469)
-* Scale: graph. (line 698)
-* scale <1>: graph. (line 682)
-* scale <2>: Transforms. (line 39)
-* scale: Pens. (line 115)
-* Scale: label. (line 45)
-* scale3: three. (line 466)
-* scaled graph: graph. (line 663)
-* scientific graph: graph. (line 397)
-* scroll: Files. (line 108)
-* search: Arrays. (line 164)
-* search paths: Search paths. (line 6)
-* Seascape: Frames and pictures. (line 100)
-* secondary axis: graph. (line 812)
-* secondaryX: graph. (line 812)
-* secondaryY: graph. (line 812)
-* seconds: Data types. (line 306)
-* seek: Files. (line 92)
-* seekeof: Files. (line 92)
-* segment: math. (line 50)
-* segmentation fault: Help. (line 33)
-* self operators: Self & prefix operators.
- (line 6)
-* sequence: Arrays. (line 128)
-* settings <1>: Options. (line 116)
-* settings: Configuring. (line 23)
-* sgn: Mathematical functions.
- (line 26)
-* shading: fill. (line 32)
-* shift <1>: three. (line 454)
-* shift: Transforms. (line 27)
-* Shift: label. (line 33)
-* shiftless: Transforms. (line 53)
-* shipout: Frames and pictures. (line 83)
-* showtarget: three. (line 350)
-* Si: Mathematical functions.
- (line 48)
-* signedint: Files. (line 75)
-* SimpleHead: draw. (line 26)
-* simplex: simplex. (line 6)
-* simpson: Mathematical functions.
- (line 82)
-* Sin: Mathematical functions.
- (line 20)
-* sin: Mathematical functions.
- (line 6)
-* single precision: Files. (line 75)
-* singleint: Files. (line 75)
-* singlereal: Files. (line 75)
-* sinh: Mathematical functions.
- (line 6)
-* SixViews: three. (line 413)
-* SixViewsFR: three. (line 413)
-* SixViewsUS: three. (line 413)
-* size <1>: Options. (line 144)
-* size <2>: three. (line 519)
-* size <3>: Frames and pictures. (line 43)
-* size: Paths and guides. (line 70)
-* size3: three. (line 271)
-* slant: Transforms. (line 45)
-* Slant: label. (line 42)
-* sleep: Data types. (line 351)
-* slice: Paths and guides. (line 240)
-* slices: Slices. (line 6)
-* slide: slide. (line 6)
-* slope: math. (line 44)
-* slopefield: slopefield. (line 6)
-* sncndn: Mathematical functions.
- (line 48)
-* solid: Pens. (line 95)
-* solids: solids. (line 9)
-* solve: Arrays. (line 278)
-* sort: Arrays. (line 184)
-* Spline <1>: graph3. (line 101)
-* Spline: graph. (line 34)
-* split: Data types. (line 263)
-* sqrt: Mathematical functions.
- (line 6)
-* squarecap: Pens. (line 129)
-* srand: Mathematical functions.
- (line 39)
-* stack overflow <1>: Help. (line 33)
-* stack overflow: Functions. (line 88)
-* static: Static. (line 6)
-* stats: stats. (line 6)
-* stdin: Files. (line 48)
-* stdout: Files. (line 48)
-* step: Debugger. (line 39)
-* stickframe: markers. (line 16)
-* stop: Debugger. (line 10)
-* straight: three. (line 519)
-* Straight: graph. (line 31)
-* straight: Paths and guides. (line 77)
-* strftime: Data types. (line 298)
-* string: Data types. (line 181)
-* stroke: fill. (line 36)
-* strokepath: Paths and guides. (line 297)
-* strptime: Data types. (line 306)
-* struct: Structures. (line 6)
-* structures: Structures. (line 6)
-* subpath <1>: three. (line 519)
-* subpath: Paths and guides. (line 175)
-* subpictures: Frames and pictures. (line 103)
-* substr: Data types. (line 246)
-* Subversion: Subversion. (line 6)
-* sum: Arrays. (line 213)
-* superpath: Tutorial. (line 134)
-* Suppress: Pens. (line 331)
-* SuppressQuiet: Pens. (line 335)
-* surface <1>: graph3. (line 101)
-* surface: three. (line 47)
-* SVG: Options. (line 144)
-* SVN: Subversion. (line 6)
-* system <1>: Options. (line 164)
-* system: Data types. (line 328)
-* syzygy: syzygy. (line 6)
-* tab: Files. (line 61)
-* tab completion: Tutorial. (line 37)
-* Tan: Mathematical functions.
- (line 20)
-* tan: Mathematical functions.
- (line 6)
-* tanh: Mathematical functions.
- (line 6)
-* target: three. (line 350)
-* tell: Files. (line 92)
-* tension <1>: three. (line 6)
-* tension: Bezier curves. (line 56)
-* tensionSpecifier: Paths and guides. (line 388)
-* tensor product shading: fill. (line 78)
-* tensorshade: fill. (line 78)
-* tessellation: three. (line 112)
-* tex <1>: Options. (line 144)
-* tex: Frames and pictures. (line 278)
-* TeX fonts: Pens. (line 201)
-* TeX string: Data types. (line 181)
-* texcommand: Configuring. (line 67)
-* TeXHead: draw. (line 26)
-* TeXHead3: three. (line 560)
-* texpath <1>: label. (line 115)
-* texpath: Configuring. (line 67)
-* texpreamble: Frames and pictures. (line 286)
-* texreset: Frames and pictures. (line 289)
-* textbook graph: graph. (line 372)
-* tgz: UNIX binary distributions.
- (line 6)
-* thick: three. (line 123)
-* thin: three. (line 123)
-* this: Structures. (line 6)
-* three: three. (line 6)
-* ThreeViews: three. (line 413)
-* ThreeViewsFR: three. (line 413)
-* ThreeViewsUS: three. (line 413)
-* tick: graph. (line 343)
-* Ticks: graph. (line 161)
-* ticks: graph. (line 161)
-* tildeframe: markers. (line 26)
-* tile: Pens. (line 251)
-* tilings: Pens. (line 238)
-* time <1>: math. (line 30)
-* time: Data types. (line 298)
-* times: Paths and guides. (line 209)
-* Top: graph. (line 137)
-* TopView: three. (line 398)
-* trace: Debugger. (line 51)
-* trailingzero: graph. (line 175)
-* transform <1>: three. (line 494)
-* transform: Transforms. (line 6)
-* transform3: three. (line 449)
-* transparency: Pens. (line 222)
-* transpose: Arrays. (line 205)
-* tree: tree. (line 9)
-* trembling: trembling. (line 6)
-* triangle: geometry. (line 6)
-* triangles: three. (line 112)
-* triangulate: contour. (line 156)
-* tridiagonal: Arrays. (line 266)
-* trigonometric integrals: Mathematical functions.
- (line 48)
-* triple: Data types. (line 110)
-* TrueMargin: draw. (line 42)
-* TrueMargin3: three. (line 576)
-* tube <1>: tube. (line 6)
-* tube: three. (line 123)
-* tutorial: Tutorial. (line 6)
-* type1cm: Pens. (line 178)
-* typedef <1>: Functions. (line 36)
-* typedef: Data types. (line 361)
-* U3D: embed. (line 24)
-* undefined: Paths and guides. (line 271)
-* UnFill: Frames and pictures. (line 152)
-* unfill: fill. (line 110)
-* UnFill: draw. (line 26)
-* unicode: unicode. (line 6)
-* uniform: Arrays. (line 155)
-* Uninstall: Uninstall. (line 6)
-* unique: math. (line 64)
-* unit: Data types. (line 80)
-* unitbox <1>: three. (line 319)
-* unitbox: Tutorial. (line 155)
-* unitcircle <1>: three. (line 286)
-* unitcircle: Tutorial. (line 128)
-* unitrand: Mathematical functions.
- (line 39)
-* unitsize <1>: Frames and pictures. (line 64)
-* unitsize: Tutorial. (line 86)
-* UNIX binary distributions: UNIX binary distributions.
- (line 6)
-* unpacking: Rest arguments. (line 39)
-* unravel: Import. (line 30)
-* up: three. (line 350)
-* update: Files. (line 36)
-* UpsideDown: Frames and pictures. (line 95)
-* usepackage: Frames and pictures. (line 291)
-* user coordinates: Tutorial. (line 86)
-* user-defined operators: User-defined operators.
- (line 6)
-* usleep: Data types. (line 354)
-* value: math. (line 38)
-* var: Variable initializers.
- (line 63)
-* variable initializers: Variable initializers.
- (line 6)
-* vectorfield: graph. (line 974)
-* vectorfield3: graph3. (line 160)
-* vectorization: Arrays. (line 323)
-* verbatim: Frames and pictures. (line 271)
-* vertex-dependent colors: three. (line 81)
-* Vertical: flowchart. (line 81)
-* viewportheight: LaTeX usage. (line 51)
-* viewportmargin: three. (line 274)
-* viewportsize: three. (line 274)
-* viewportwidth: LaTeX usage. (line 51)
-* views: three. (line 243)
-* vim: Editing modes. (line 33)
-* virtual functions: Structures. (line 181)
-* void: Data types. (line 10)
-* W: Tutorial. (line 106)
-* whatever: Paths and guides. (line 235)
-* Wheel: palette. (line 22)
-* wheel mouse: GUI. (line 6)
-* while: Programming. (line 29)
-* white-space string delimiter mode: Arrays. (line 354)
-* width: LaTeX usage. (line 51)
-* windingnumber: Paths and guides. (line 271)
-* word: Arrays. (line 354)
-* write <1>: Arrays. (line 394)
-* write: Files. (line 53)
-* X: three. (line 286)
-* xasy: GUI. (line 6)
-* xaxis3: graph3. (line 7)
-* xdr: Files. (line 75)
-* xelatex: Options. (line 144)
-* xequals: graph. (line 294)
-* XEquals: graph. (line 280)
-* xlimits: graph. (line 637)
-* XOR: Arithmetic & logical.
- (line 80)
-* xpart: Data types. (line 91)
-* xscale: Transforms. (line 33)
-* xscale3: three. (line 457)
-* xtick: graph. (line 343)
-* XY: three. (line 479)
-* XYEquals: graph3. (line 21)
-* XYZero: graph3. (line 21)
-* XZEquals: graph3. (line 21)
-* XZero: graph. (line 275)
-* XZZero: graph3. (line 21)
-* Y <1>: three. (line 286)
-* Y: Mathematical functions.
- (line 6)
-* yaxis3: graph3. (line 7)
-* yequals: graph. (line 294)
-* YEquals: graph. (line 130)
-* ylimits: graph. (line 637)
-* ypart: Data types. (line 94)
-* yscale: Transforms. (line 36)
-* yscale3: three. (line 460)
-* ytick: graph. (line 343)
-* YX: three. (line 494)
-* YZ: three. (line 494)
-* YZEquals: graph3. (line 21)
-* YZero: graph. (line 125)
-* YZZero: graph3. (line 21)
-* Z: three. (line 286)
-* zaxis3: graph3. (line 7)
-* zero_Ai: Mathematical functions.
- (line 48)
-* zero_Ai_deriv: Mathematical functions.
- (line 48)
-* zero_Bi: Mathematical functions.
- (line 48)
-* zero_Bi_deriv: Mathematical functions.
- (line 48)
-* zero_J: Mathematical functions.
- (line 48)
-* zerowinding: Pens. (line 152)
-* zeta: Mathematical functions.
- (line 48)
-* zpart: Data types. (line 163)
-* zscale3: three. (line 463)
-* ZX: three. (line 494)
-* ZY: three. (line 494)
-* |: Arithmetic & logical.
- (line 62)
-* ||: Arithmetic & logical.
- (line 59)
-
-
-
-Tag Table:
-Node: Top575
-Node: Description6834
-Node: Installation10450
-Node: UNIX binary distributions11503
-Node: MacOS X binary distributions12609
-Node: Microsoft Windows13493
-Ref: psview14203
-Node: Configuring15137
-Node: Search paths19351
-Node: Compiling from UNIX source20193
-Node: Editing modes23051
-Node: Subversion25483
-Node: Uninstall25946
-Node: Tutorial26296
-Ref: unitcircle30594
-Node: Drawing commands32530
-Node: draw34241
-Ref: arrows35389
-Node: fill40632
-Ref: gradient shading41676
-Node: clip46231
-Node: label46823
-Ref: Label47421
-Node: Bezier curves53224
-Node: Programming56926
-Ref: array iteration57740
-Node: Data types58821
-Ref: format68018
-Node: Paths and guides72271
-Ref: circle72525
-Ref: extension81945
-Node: Pens88628
-Ref: fillrule95996
-Ref: basealign96893
-Ref: transparency99719
-Ref: makepen103162
-Ref: overwrite104000
-Node: Transforms105210
-Node: Frames and pictures107001
-Ref: envelope108142
-Ref: size109225
-Ref: unitsize110212
-Ref: shipout111272
-Ref: filltype113605
-Ref: add116742
-Ref: add about117688
-Ref: tex120626
-Node: Files121500
-Ref: cd122483
-Ref: scroll127157
-Node: Variable initializers130072
-Node: Structures132797
-Node: Operators140241
-Node: Arithmetic & logical140555
-Node: Self & prefix operators142528
-Node: User-defined operators143316
-Node: Implicit scaling144227
-Node: Functions144790
-Ref: stack overflow147543
-Node: Default arguments148107
-Node: Named arguments148846
-Node: Rest arguments151417
-Node: Mathematical functions154538
-Node: Arrays159203
-Ref: sort166192
-Ref: tridiagonal168596
-Ref: solve169824
-Node: Slices174017
-Node: Casts177907
-Node: Import179872
-Node: Static185109
-Node: LaTeX usage188003
-Node: Base modules194415
-Node: plain196915
-Node: simplex197567
-Node: math197840
-Node: interpolate200545
-Node: geometry200824
-Node: trembling201418
-Node: stats201687
-Node: patterns201947
-Node: markers202183
-Node: tree203966
-Node: binarytree204154
-Node: drawtree204774
-Node: syzygy204978
-Node: feynman205252
-Node: roundedpath205527
-Node: animation205810
-Ref: animate206230
-Node: embed207369
-Node: slide208396
-Node: MetaPost208736
-Node: unicode209452
-Node: latin1210340
-Node: babel210708
-Node: labelpath210937
-Node: labelpath3211757
-Node: annotate212068
-Node: CAD212539
-Node: graph212849
-Ref: ticks219978
-Ref: pathmarkers233305
-Ref: marker233770
-Ref: markuniform234121
-Ref: errorbars235912
-Ref: automatic scaling239949
-Node: palette250578
-Ref: images250696
-Ref: image254868
-Ref: logimage255346
-Ref: penimage256407
-Ref: penfunctionimage256628
-Node: three257352
-Ref: PostScript3D282920
-Node: obj284612
-Node: graph3284864
-Ref: GaussianSurface290019
-Node: grid3291123
-Node: solids291863
-Node: tube292811
-Node: flowchart295046
-Node: contour299615
-Node: contour3304705
-Node: slopefield305012
-Node: ode306449
-Node: Options306709
-Ref: configuration file312754
-Ref: settings312754
-Ref: convert313955
-Node: Interactive mode316922
-Ref: history319075
-Node: GUI320380
-Node: GUI installation320883
-Node: GUI usage322013
-Node: PostScript to Asymptote322916
-Node: Help323672
-Node: Debugger325408
-Node: Credits327193
-Node: Index328125
-
-End Tag Table