summaryrefslogtreecommitdiff
path: root/Build/source/utils/asymptote/base/lmfit.asy
diff options
context:
space:
mode:
authorKarl Berry <karl@freefriends.org>2009-07-08 01:04:31 +0000
committerKarl Berry <karl@freefriends.org>2009-07-08 01:04:31 +0000
commit17ee31b51081b8281b652fa06b997918003f7772 (patch)
treec5c1420540fe9a31454c1450ec5d96c096f91a9b /Build/source/utils/asymptote/base/lmfit.asy
parentbf914f81a2ff8552e1438251f4b6b56f9acf0b90 (diff)
asymptote 1.80
git-svn-id: svn://tug.org/texlive/trunk@14179 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Build/source/utils/asymptote/base/lmfit.asy')
-rw-r--r--Build/source/utils/asymptote/base/lmfit.asy89
1 files changed, 66 insertions, 23 deletions
diff --git a/Build/source/utils/asymptote/base/lmfit.asy b/Build/source/utils/asymptote/base/lmfit.asy
index d0367547b74..72745625824 100644
--- a/Build/source/utils/asymptote/base/lmfit.asy
+++ b/Build/source/utils/asymptote/base/lmfit.asy
@@ -23,6 +23,18 @@
*/
/*
+ Fitting $n$ data points $(x_1, y_1 \pm \Delta y_1), \dots, (x_n, y_n \pm \Delta y_n)$
+ to a function $f$ that depends on $m$ parameters $a_1, \dots, a_m$ means minimizing
+ the least-squares sum
+ %
+ \begin{equation*}
+ \sum_{i = 1}^n \left( \frac{y_i - f(a_1, \dots, a_m; x_i)}{\Delta y_i} \right)^2
+ \end{equation*}
+ %
+ with respect to the parameters $a_1, \dots, a_m$.
+*/
+
+/*
This module provides an implementation of the Levenberg--Marquardt
(LM) algorithm, converted from the C lmfit routine by Joachim Wuttke
(see http://www.messen-und-deuten.de/lmfit/).
@@ -747,16 +759,20 @@ void lm_minimize(int m_dat, int n_par, real[] par, lm_evaluate_ftype evaluate, l
// convenience functions; wrappers of lm_minimize
-struct FitControl {
- real squareSumTolerance;
- real approximationTolerance;
- real desiredOrthogonality;
- real epsilon;
- real stepBound;
- int maxIterations;
- bool verbose;
- void operator init(real squareSumTolerance, real approximationTolerance, real desiredOrthogonality, real epsilon, real stepBound, int maxIterations, bool verbose) {
+/*
+ The structure FitControl specifies various control parameters.
+*/
+struct FitControl {
+ real squareSumTolerance; // relative error desired in the sum of squares
+ real approximationTolerance; // relative error between last two approximations
+ real desiredOrthogonality; // orthogonality desired between the residue vector and its derivatives
+ real epsilon; // step used to calculate the jacobian
+ real stepBound; // initial bound to steps in the outer loop
+ int maxIterations; // maximum number of iterations
+ bool verbose; // whether to print detailed information about every iteration, or nothing
+
+ void operator init(real squareSumTolerance=LM_USERTOL, real approximationTolerance=LM_USERTOL, real desiredOrthogonality=LM_USERTOL, real epsilon=LM_USERTOL, real stepBound=100, int maxIterations=100, bool verbose=false) {
this.squareSumTolerance = squareSumTolerance;
this.approximationTolerance = approximationTolerance;
this.desiredOrthogonality = desiredOrthogonality;
@@ -779,30 +795,44 @@ struct FitControl {
}
};
+FitControl operator init() {
+ return FitControl();
+}
+
FitControl defaultControl;
-defaultControl.squareSumTolerance = LM_USERTOL;
-defaultControl.approximationTolerance = LM_USERTOL;
-defaultControl.desiredOrthogonality = LM_USERTOL;
-defaultControl.epsilon = LM_USERTOL;
-defaultControl.stepBound = 100;
-defaultControl.maxIterations = 100;
-defaultControl.verbose = false;
+/*
+ Upon returning, this structure provides information about the fit.
+*/
struct FitResult {
- restricted real norm;
- restricted int iterations;
- restricted int status;
+ real norm; // norm of the residue vector
+ int iterations; // actual number of iterations
+ int status; // status of minimization
- void operator init(real norm, int status, int iterations) {
+ void operator init(real norm, int iterations, int status) {
this.norm = norm;
- this.status = status;
this.iterations = iterations;
+ this.status = status;
}
};
-// Fits data points (xdata, ydata ± errors) to the given function using the given parameters.
+/*
+ Fits data points to a function that depends on some parameters.
+
+ Parameters:
+ - xdata: Array of x values.
+ - ydata: Array of y values.
+ - errors: Array of experimental errors; each element must be strictly positive
+ - function: Fit function.
+ - parameters: Parameter array. Before calling fit(), this must contain the initial guesses for the parameters.
+ Upon return, it will contain the solution parameters.
+ - control: object of type FitControl that controls various aspects of the fitting procedure.
+
+ Returns:
+ An object of type FitResult that conveys information about the fitting process.
+*/
FitResult fit(real[] xdata, real[] ydata, real[] errors, real function(real[], real), real[] parameters, FitControl control=defaultControl) {
int m_dat = min(xdata.length, ydata.length);
int n_par = parameters.length;
@@ -831,7 +861,20 @@ FitResult fit(real[] xdata, real[] ydata, real[] errors, real function(real[], r
}
-// Fits data points (xdata, ydata) to the given function using the given parameters.
+/*
+ Fits data points to a function that depends on some parameters.
+
+ Parameters:
+ - xdata: Array of x values.
+ - ydata: Array of y values.
+ - function: Fit function.
+ - parameters: Parameter array. Before calling fit(), this must contain the initial guesses for the parameters.
+ Upon return, it will contain the solution parameters.
+ - control: object of type FitControl that controls various aspects of the fitting procedure.
+
+ Returns:
+ An object of type FitResult that conveys information about the fitting process.
+*/
FitResult fit(real[] xdata, real[] ydata, real function(real[], real), real[] parameters, FitControl control=defaultControl) {
return fit(xdata, ydata, array(min(xdata.length, ydata.length), 1.0), function, parameters, control);
}