diff options
author | Akira Kakuto <kakuto@fuk.kindai.ac.jp> | 2016-03-07 13:18:57 +0000 |
---|---|---|
committer | Akira Kakuto <kakuto@fuk.kindai.ac.jp> | 2016-03-07 13:18:57 +0000 |
commit | f7fd80054d9fb1620b6c65db276325f35d86f7ee (patch) | |
tree | cc7052c8a052eb2e0981b9c47f9b3902afd51561 /Build/source/libs/mpfr/mpfr-src/src/root.c | |
parent | ab4c67522df470475142ea5802c2951d0319ccac (diff) |
mpfr 3.1.4
git-svn-id: svn://tug.org/texlive/trunk@39960 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Build/source/libs/mpfr/mpfr-src/src/root.c')
-rw-r--r-- | Build/source/libs/mpfr/mpfr-src/src/root.c | 194 |
1 files changed, 134 insertions, 60 deletions
diff --git a/Build/source/libs/mpfr/mpfr-src/src/root.c b/Build/source/libs/mpfr/mpfr-src/src/root.c index c1a141c90bf..5bf45449851 100644 --- a/Build/source/libs/mpfr/mpfr-src/src/root.c +++ b/Build/source/libs/mpfr/mpfr-src/src/root.c @@ -1,7 +1,7 @@ /* mpfr_root -- kth root. -Copyright 2005-2015 Free Software Foundation, Inc. -Contributed by the AriC and Caramel projects, INRIA. +Copyright 2005-2016 Free Software Foundation, Inc. +Contributed by the AriC and Caramba projects, INRIA. This file is part of the GNU MPFR Library. @@ -23,13 +23,15 @@ http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc., #define MPFR_NEED_LONGLONG_H #include "mpfr-impl.h" - /* The computation of y = x^(1/k) is done as follows: + /* The computation of y = x^(1/k) is done as follows, except for large + values of k, for which this would be inefficient or yield internal + integer overflows: Let x = sign * m * 2^(k*e) where m is an integer with 2^(k*(n-1)) <= m < 2^(k*n) where n = PREC(y) - and m = s^k + r where 0 <= r and m < (s+1)^k + and m = s^k + t where 0 <= t and m < (s+1)^k we want that s has n bits i.e. s >= 2^(n-1), or m >= 2^(k*(n-1)) i.e. m must have at least k*(n-1)+1 bits @@ -38,11 +40,15 @@ http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc., x^(1/k) = s * 2^e or (s+1) * 2^e according to the rounding mode. */ +static int +mpfr_root_aux (mpfr_ptr y, mpfr_srcptr x, unsigned long k, + mpfr_rnd_t rnd_mode); + int mpfr_root (mpfr_ptr y, mpfr_srcptr x, unsigned long k, mpfr_rnd_t rnd_mode) { mpz_t m; - mpfr_exp_t e, r, sh; + mpfr_exp_t e, r, sh, f; mpfr_prec_t n, size_m, tmp; int inexact, negative; MPFR_SAVE_EXPO_DECL (expo); @@ -55,50 +61,27 @@ mpfr_root (mpfr_ptr y, mpfr_srcptr x, unsigned long k, mpfr_rnd_t rnd_mode) if (MPFR_UNLIKELY (k <= 1)) { - if (k < 1) /* k==0 => y=x^(1/0)=x^(+Inf) */ -#if 0 - /* For 0 <= x < 1 => +0. - For x = 1 => 1. - For x > 1, => +Inf. - For x < 0 => NaN. - */ + if (k == 0) { - if (MPFR_IS_NEG (x) && !MPFR_IS_ZERO (x)) - { - MPFR_SET_NAN (y); - MPFR_RET_NAN; - } - inexact = mpfr_cmp (x, __gmpfr_one); - if (inexact == 0) - return mpfr_set_ui (y, 1, rnd_mode); /* 1 may be Out of Range */ - else if (inexact < 0) - return mpfr_set_ui (y, 0, rnd_mode); /* 0+ */ - else - { - mpfr_set_inf (y, 1); - return 0; - } + MPFR_SET_NAN (y); + MPFR_RET_NAN; } -#endif - { - MPFR_SET_NAN (y); - MPFR_RET_NAN; - } - else /* y =x^(1/1)=x */ + else /* y = x^(1/1) = x */ return mpfr_set (y, x, rnd_mode); } /* Singular values */ - else if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x))) + if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x))) { if (MPFR_IS_NAN (x)) { MPFR_SET_NAN (y); /* NaN^(1/k) = NaN */ MPFR_RET_NAN; } - else if (MPFR_IS_INF (x)) /* +Inf^(1/k) = +Inf - -Inf^(1/k) = -Inf if k odd - -Inf^(1/k) = NaN if k even */ + + if (MPFR_IS_INF (x)) /* +Inf^(1/k) = +Inf + -Inf^(1/k) = -Inf if k odd + -Inf^(1/k) = NaN if k even */ { if (MPFR_IS_NEG(x) && (k % 2 == 0)) { @@ -106,27 +89,31 @@ mpfr_root (mpfr_ptr y, mpfr_srcptr x, unsigned long k, mpfr_rnd_t rnd_mode) MPFR_RET_NAN; } MPFR_SET_INF (y); - MPFR_SET_SAME_SIGN (y, x); - MPFR_RET (0); } else /* x is necessarily 0: (+0)^(1/k) = +0 (-0)^(1/k) = -0 */ { MPFR_ASSERTD (MPFR_IS_ZERO (x)); MPFR_SET_ZERO (y); - MPFR_SET_SAME_SIGN (y, x); - MPFR_RET (0); } + MPFR_SET_SAME_SIGN (y, x); + MPFR_RET (0); } /* Returns NAN for x < 0 and k even */ - else if (MPFR_IS_NEG (x) && (k % 2 == 0)) + if (MPFR_UNLIKELY (MPFR_IS_NEG (x) && (k % 2 == 0))) { MPFR_SET_NAN (y); MPFR_RET_NAN; } /* General case */ + + /* For large k, use exp(log(x)/k). The threshold of 100 seems to be quite + good when the precision goes to infinity. */ + if (k > 100) + return mpfr_root_aux (y, x, k, rnd_mode); + MPFR_SAVE_EXPO_MARK (expo); mpz_init (m); @@ -135,31 +122,24 @@ mpfr_root (mpfr_ptr y, mpfr_srcptr x, unsigned long k, mpfr_rnd_t rnd_mode) mpz_neg (m, m); r = e % (mpfr_exp_t) k; if (r < 0) - r += k; /* now r = e (mod k) with 0 <= e < r */ + r += k; /* now r = e (mod k) with 0 <= r < k */ + MPFR_ASSERTD (0 <= r && r < k); /* x = (m*2^r) * 2^(e-r) where e-r is a multiple of k */ MPFR_MPZ_SIZEINBASE2 (size_m, m); /* for rounding to nearest, we want the round bit to be in the root */ n = MPFR_PREC (y) + (rnd_mode == MPFR_RNDN); - /* we now multiply m by 2^(r+k*sh) so that root(m,k) will give - exactly n bits: we want k*(n-1)+1 <= size_m + k*sh + r <= k*n - i.e. sh = floor ((kn-size_m-r)/k) */ - if ((mpfr_exp_t) size_m + r > k * (mpfr_exp_t) n) - sh = 0; /* we already have too many bits */ + /* we now multiply m by 2^sh so that root(m,k) will give + exactly n bits: we want k*(n-1)+1 <= size_m + sh <= k*n + i.e. sh = k*f + r with f = max(floor((k*n-size_m-r)/k),0) */ + if ((mpfr_exp_t) size_m + r >= k * (mpfr_exp_t) n) + f = 0; /* we already have too many bits */ else - sh = (k * (mpfr_exp_t) n - (mpfr_exp_t) size_m - r) / k; - sh = k * sh + r; - if (sh >= 0) - { - mpz_mul_2exp (m, m, sh); - e = e - sh; - } - else if (r > 0) - { - mpz_mul_2exp (m, m, r); - e = e - r; - } + f = (k * (mpfr_exp_t) n - (mpfr_exp_t) size_m - r) / k; + sh = k * f + r; + mpz_mul_2exp (m, m, sh); + e = e - sh; /* invariant: x = m*2^e, with e divisible by k */ @@ -203,3 +183,97 @@ mpfr_root (mpfr_ptr y, mpfr_srcptr x, unsigned long k, mpfr_rnd_t rnd_mode) MPFR_SAVE_EXPO_FREE (expo); return mpfr_check_range (y, inexact, rnd_mode); } + +/* Compute y <- x^(1/k) using exp(log(x)/k). + Assume all special cases have been eliminated before. + In the extended exponent range, overflows/underflows are not possible. + Assume x > 0, or x < 0 and k odd. +*/ +static int +mpfr_root_aux (mpfr_ptr y, mpfr_srcptr x, unsigned long k, mpfr_rnd_t rnd_mode) +{ + int inexact, exact_root = 0; + mpfr_prec_t w; /* working precision */ + mpfr_t absx, t; + MPFR_GROUP_DECL(group); + MPFR_TMP_DECL(marker); + MPFR_ZIV_DECL(loop); + MPFR_SAVE_EXPO_DECL (expo); + + MPFR_TMP_INIT_ABS (absx, x); + + MPFR_TMP_MARK(marker); + w = MPFR_PREC(y) + 10; + /* Take some guard bits to prepare for the 'expt' lost bits below. + If |x| < 2^k, then log|x| < k, thus taking log2(k) bits should be fine. */ + if (MPFR_GET_EXP(x) > 0) + w += MPFR_INT_CEIL_LOG2 (MPFR_GET_EXP(x)); + MPFR_GROUP_INIT_1(group, w, t); + MPFR_SAVE_EXPO_MARK (expo); + MPFR_ZIV_INIT (loop, w); + for (;;) + { + mpfr_exp_t expt; + unsigned int err; + + mpfr_log (t, absx, MPFR_RNDN); + /* t = log|x| * (1 + theta) with |theta| <= 2^(-w) */ + mpfr_div_ui (t, t, k, MPFR_RNDN); + expt = MPFR_GET_EXP (t); + /* t = log|x|/k * (1 + theta) + eps with |theta| <= 2^(-w) + and |eps| <= 1/2 ulp(t), thus the total error is bounded + by 1.5 * 2^(expt - w) */ + mpfr_exp (t, t, MPFR_RNDN); + /* t = |x|^(1/k) * exp(tau) * (1 + theta1) with + |tau| <= 1.5 * 2^(expt - w) and |theta1| <= 2^(-w). + For |tau| <= 0.5 we have |exp(tau)-1| < 4/3*tau, thus + for w >= expt + 2 we have: + t = |x|^(1/k) * (1 + 2^(expt+2)*theta2) * (1 + theta1) with + |theta1|, |theta2| <= 2^(-w). + If expt+2 > 0, as long as w >= 1, we have: + t = |x|^(1/k) * (1 + 2^(expt+3)*theta3) with |theta3| < 2^(-w). + For expt+2 = 0, we have: + t = |x|^(1/k) * (1 + 2^2*theta3) with |theta3| < 2^(-w). + Finally for expt+2 < 0 we have: + t = |x|^(1/k) * (1 + 2*theta3) with |theta3| < 2^(-w). + */ + err = (expt + 2 > 0) ? expt + 3 + : (expt + 2 == 0) ? 2 : 1; + /* now t = |x|^(1/k) * (1 + 2^(err-w)) thus the error is at most + 2^(EXP(t) - w + err) */ + if (MPFR_LIKELY (MPFR_CAN_ROUND(t, w - err, MPFR_PREC(y), rnd_mode))) + break; + + /* If we fail to round correctly, check for an exact result or a + midpoint result with MPFR_RNDN (regarded as hard-to-round in + all precisions in order to determine the ternary value). */ + { + mpfr_t z, zk; + + mpfr_init2 (z, MPFR_PREC(y) + (rnd_mode == MPFR_RNDN)); + mpfr_init2 (zk, MPFR_PREC(x)); + mpfr_set (z, t, MPFR_RNDN); + inexact = mpfr_pow_ui (zk, z, k, MPFR_RNDN); + exact_root = !inexact && mpfr_equal_p (zk, absx); + if (exact_root) /* z is the exact root, thus round z directly */ + inexact = mpfr_set4 (y, z, rnd_mode, MPFR_SIGN (x)); + mpfr_clear (zk); + mpfr_clear (z); + if (exact_root) + break; + } + + MPFR_ZIV_NEXT (loop, w); + MPFR_GROUP_REPREC_1(group, w, t); + } + MPFR_ZIV_FREE (loop); + + if (!exact_root) + inexact = mpfr_set4 (y, t, rnd_mode, MPFR_SIGN (x)); + + MPFR_GROUP_CLEAR(group); + MPFR_TMP_FREE(marker); + MPFR_SAVE_EXPO_FREE (expo); + + return mpfr_check_range (y, inexact, rnd_mode); +} |