diff options
author | Peter Breitenlohner <peb@mppmu.mpg.de> | 2015-06-20 10:38:01 +0000 |
---|---|---|
committer | Peter Breitenlohner <peb@mppmu.mpg.de> | 2015-06-20 10:38:01 +0000 |
commit | 265eb77be2ea7991cb155d175740f1978b9aff45 (patch) | |
tree | 50312a038421405d62654d95016e16f1ffc46499 /Build/source/libs/mpfr/mpfr-3.1.2/src/mulders.c | |
parent | cd9d1f5f065d7a8bb787f683ffac1f907356a285 (diff) |
mpfr 3.1.3
git-svn-id: svn://tug.org/texlive/trunk@37627 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Build/source/libs/mpfr/mpfr-3.1.2/src/mulders.c')
-rw-r--r-- | Build/source/libs/mpfr/mpfr-3.1.2/src/mulders.c | 495 |
1 files changed, 0 insertions, 495 deletions
diff --git a/Build/source/libs/mpfr/mpfr-3.1.2/src/mulders.c b/Build/source/libs/mpfr/mpfr-3.1.2/src/mulders.c deleted file mode 100644 index 273c75a5946..00000000000 --- a/Build/source/libs/mpfr/mpfr-3.1.2/src/mulders.c +++ /dev/null @@ -1,495 +0,0 @@ -/* Mulders' MulHigh function (short product) - -Copyright 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013 Free Software Foundation, Inc. -Contributed by the AriC and Caramel projects, INRIA. - -This file is part of the GNU MPFR Library. - -The GNU MPFR Library is free software; you can redistribute it and/or modify -it under the terms of the GNU Lesser General Public License as published by -the Free Software Foundation; either version 3 of the License, or (at your -option) any later version. - -The GNU MPFR Library is distributed in the hope that it will be useful, but -WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public -License for more details. - -You should have received a copy of the GNU Lesser General Public License -along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see -http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc., -51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */ - -/* References: - [1] Short Division of Long Integers, David Harvey and Paul Zimmermann, - Proceedings of the 20th Symposium on Computer Arithmetic (ARITH-20), - July 25-27, 2011, pages 7-14. -*/ - -#define MPFR_NEED_LONGLONG_H -#include "mpfr-impl.h" - -#ifndef MUL_FFT_THRESHOLD -#define MUL_FFT_THRESHOLD 8448 -#endif - -/* Don't use MPFR_MULHIGH_SIZE since it is handled by tuneup */ -#ifdef MPFR_MULHIGH_TAB_SIZE -static short mulhigh_ktab[MPFR_MULHIGH_TAB_SIZE]; -#else -static short mulhigh_ktab[] = {MPFR_MULHIGH_TAB}; -#define MPFR_MULHIGH_TAB_SIZE \ - ((mp_size_t) (sizeof(mulhigh_ktab) / sizeof(mulhigh_ktab[0]))) -#endif - -/* Put in rp[n..2n-1] an approximation of the n high limbs - of {up, n} * {vp, n}. The error is less than n ulps of rp[n] (and the - approximation is always less or equal to the truncated full product). - Assume 2n limbs are allocated at rp. - - Implements Algorithm ShortMulNaive from [1]. -*/ -static void -mpfr_mulhigh_n_basecase (mpfr_limb_ptr rp, mpfr_limb_srcptr up, - mpfr_limb_srcptr vp, mp_size_t n) -{ - mp_size_t i; - - rp += n - 1; - umul_ppmm (rp[1], rp[0], up[n-1], vp[0]); /* we neglect up[0..n-2]*vp[0], - which is less than B^n */ - for (i = 1 ; i < n ; i++) - /* here, we neglect up[0..n-i-2] * vp[i], which is less than B^n too */ - rp[i + 1] = mpn_addmul_1 (rp, up + (n - i - 1), i + 1, vp[i]); - /* in total, we neglect less than n*B^n, i.e., n ulps of rp[n]. */ -} - -/* Put in rp[0..n] the n+1 low limbs of {up, n} * {vp, n}. - Assume 2n limbs are allocated at rp. */ -static void -mpfr_mullow_n_basecase (mpfr_limb_ptr rp, mpfr_limb_srcptr up, - mpfr_limb_srcptr vp, mp_size_t n) -{ - mp_size_t i; - - rp[n] = mpn_mul_1 (rp, up, n, vp[0]); - for (i = 1 ; i < n ; i++) - mpn_addmul_1 (rp + i, up, n - i + 1, vp[i]); -} - -/* Put in rp[n..2n-1] an approximation of the n high limbs - of {np, n} * {mp, n}. The error is less than n ulps of rp[n] (and the - approximation is always less or equal to the truncated full product). - - Implements Algorithm ShortMul from [1]. -*/ -void -mpfr_mulhigh_n (mpfr_limb_ptr rp, mpfr_limb_srcptr np, mpfr_limb_srcptr mp, - mp_size_t n) -{ - mp_size_t k; - - MPFR_ASSERTN (MPFR_MULHIGH_TAB_SIZE >= 8); /* so that 3*(n/4) > n/2 */ - k = MPFR_LIKELY (n < MPFR_MULHIGH_TAB_SIZE) ? mulhigh_ktab[n] : 3*(n/4); - /* Algorithm ShortMul from [1] requires k >= (n+3)/2, which translates - into k >= (n+4)/2 in the C language. */ - MPFR_ASSERTD (k == -1 || k == 0 || (k >= (n+4)/2 && k < n)); - if (k < 0) - mpn_mul_basecase (rp, np, n, mp, n); /* result is exact, no error */ - else if (k == 0) - mpfr_mulhigh_n_basecase (rp, np, mp, n); /* basecase error < n ulps */ - else if (n > MUL_FFT_THRESHOLD) - mpn_mul_n (rp, np, mp, n); /* result is exact, no error */ - else - { - mp_size_t l = n - k; - mp_limb_t cy; - - mpn_mul_n (rp + 2 * l, np + l, mp + l, k); /* fills rp[2l..2n-1] */ - mpfr_mulhigh_n (rp, np + k, mp, l); /* fills rp[l-1..2l-1] */ - cy = mpn_add_n (rp + n - 1, rp + n - 1, rp + l - 1, l + 1); - mpfr_mulhigh_n (rp, np, mp + k, l); /* fills rp[l-1..2l-1] */ - cy += mpn_add_n (rp + n - 1, rp + n - 1, rp + l - 1, l + 1); - mpn_add_1 (rp + n + l, rp + n + l, k, cy); /* propagate carry */ - } -} - -/* Put in rp[0..n] the n+1 low limbs of {np, n} * {mp, n}. - Assume 2n limbs are allocated at rp. */ -void -mpfr_mullow_n (mpfr_limb_ptr rp, mpfr_limb_srcptr np, mpfr_limb_srcptr mp, - mp_size_t n) -{ - mp_size_t k; - - MPFR_ASSERTN (MPFR_MULHIGH_TAB_SIZE >= 8); /* so that 3*(n/4) > n/2 */ - k = MPFR_LIKELY (n < MPFR_MULHIGH_TAB_SIZE) ? mulhigh_ktab[n] : 3*(n/4); - MPFR_ASSERTD (k == -1 || k == 0 || (2 * k >= n && k < n)); - if (k < 0) - mpn_mul_basecase (rp, np, n, mp, n); - else if (k == 0) - mpfr_mullow_n_basecase (rp, np, mp, n); - else if (n > MUL_FFT_THRESHOLD) - mpn_mul_n (rp, np, mp, n); - else - { - mp_size_t l = n - k; - - mpn_mul_n (rp, np, mp, k); /* fills rp[0..2k] */ - mpfr_mullow_n (rp + n, np + k, mp, l); /* fills rp[n..n+2l] */ - mpn_add_n (rp + k, rp + k, rp + n, l + 1); - mpfr_mullow_n (rp + n, np, mp + k, l); /* fills rp[n..n+2l] */ - mpn_add_n (rp + k, rp + k, rp + n, l + 1); - } -} - -#ifdef MPFR_SQRHIGH_TAB_SIZE -static short sqrhigh_ktab[MPFR_SQRHIGH_TAB_SIZE]; -#else -static short sqrhigh_ktab[] = {MPFR_SQRHIGH_TAB}; -#define MPFR_SQRHIGH_TAB_SIZE (sizeof(sqrhigh_ktab) / sizeof(sqrhigh_ktab[0])) -#endif - -/* Put in rp[n..2n-1] an approximation of the n high limbs - of {np, n}^2. The error is less than n ulps of rp[n]. */ -void -mpfr_sqrhigh_n (mpfr_limb_ptr rp, mpfr_limb_srcptr np, mp_size_t n) -{ - mp_size_t k; - - MPFR_ASSERTN (MPFR_SQRHIGH_TAB_SIZE > 2); /* ensures k < n */ - k = MPFR_LIKELY (n < MPFR_SQRHIGH_TAB_SIZE) ? sqrhigh_ktab[n] - : (n+4)/2; /* ensures that k >= (n+3)/2 */ - MPFR_ASSERTD (k == -1 || k == 0 || (k >= (n+4)/2 && k < n)); - if (k < 0) - /* we can't use mpn_sqr_basecase here, since it requires - n <= SQR_KARATSUBA_THRESHOLD, where SQR_KARATSUBA_THRESHOLD - is not exported by GMP */ - mpn_sqr_n (rp, np, n); - else if (k == 0) - mpfr_mulhigh_n_basecase (rp, np, np, n); - else - { - mp_size_t l = n - k; - mp_limb_t cy; - - mpn_sqr_n (rp + 2 * l, np + l, k); /* fills rp[2l..2n-1] */ - mpfr_mulhigh_n (rp, np, np + k, l); /* fills rp[l-1..2l-1] */ - /* {rp+n-1,l+1} += 2 * {rp+l-1,l+1} */ - cy = mpn_lshift (rp + l - 1, rp + l - 1, l + 1, 1); - cy += mpn_add_n (rp + n - 1, rp + n - 1, rp + l - 1, l + 1); - mpn_add_1 (rp + n + l, rp + n + l, k, cy); /* propagate carry */ - } -} - -#ifdef MPFR_DIVHIGH_TAB_SIZE -static short divhigh_ktab[MPFR_DIVHIGH_TAB_SIZE]; -#else -static short divhigh_ktab[] = {MPFR_DIVHIGH_TAB}; -#define MPFR_DIVHIGH_TAB_SIZE (sizeof(divhigh_ktab) / sizeof(divhigh_ktab[0])) -#endif - -#ifndef __GMPFR_GMP_H__ -#define mpfr_pi1_t gmp_pi1_t /* with a GMP build */ -#endif - -#if !(defined(WANT_GMP_INTERNALS) && defined(HAVE___GMPN_SBPI1_DIVAPPR_Q)) -/* Put in Q={qp, n} an approximation of N={np, 2*n} divided by D={dp, n}, - with the most significant limb of the quotient as return value (0 or 1). - Assumes the most significant bit of D is set. Clobbers N. - - The approximate quotient Q satisfies - 2(n-1) < N/D - Q <= 4. -*/ -static mp_limb_t -mpfr_divhigh_n_basecase (mpfr_limb_ptr qp, mpfr_limb_ptr np, - mpfr_limb_srcptr dp, mp_size_t n) -{ - mp_limb_t qh, d1, d0, dinv, q2, q1, q0; - mpfr_pi1_t dinv2; - - np += n; - - if ((qh = (mpn_cmp (np, dp, n) >= 0))) - mpn_sub_n (np, np, dp, n); - - /* now {np, n} is less than D={dp, n}, which implies np[n-1] <= dp[n-1] */ - - d1 = dp[n - 1]; - - if (n == 1) - { - invert_limb (dinv, d1); - umul_ppmm (q1, q0, np[0], dinv); - qp[0] = np[0] + q1; - return qh; - } - - /* now n >= 2 */ - d0 = dp[n - 2]; - invert_pi1 (dinv2, d1, d0); - /* dinv2.inv32 = floor ((B^3 - 1) / (d0 + d1 B)) - B */ - while (n > 1) - { - /* Invariant: it remains to reduce n limbs from N (in addition to the - initial low n limbs). - Since n >= 2 here, necessarily we had n >= 2 initially, which means - that in addition to the limb np[n-1] to reduce, we have at least 2 - extra limbs, thus accessing np[n-3] is valid. */ - - /* warning: we can have np[n-1]=d1 and np[n-2]=d0, but since {np,n} < D, - the largest possible partial quotient is B-1 */ - if (MPFR_UNLIKELY(np[n - 1] == d1 && np[n - 2] == d0)) - q2 = ~ (mp_limb_t) 0; - else - udiv_qr_3by2 (q2, q1, q0, np[n - 1], np[n - 2], np[n - 3], - d1, d0, dinv2.inv32); - /* since q2 = floor((np[n-1]*B^2+np[n-2]*B+np[n-3])/(d1*B+d0)), - we have q2 <= (np[n-1]*B^2+np[n-2]*B+np[n-3])/(d1*B+d0), - thus np[n-1]*B^2+np[n-2]*B+np[n-3] >= q2*(d1*B+d0) - and {np-1, n} >= q2*D - q2*B^(n-2) >= q2*D - B^(n-1) - thus {np-1, n} - (q2-1)*D >= D - B^(n-1) >= 0 - which proves that at most one correction is needed */ - q0 = mpn_submul_1 (np - 1, dp, n, q2); - if (MPFR_UNLIKELY(q0 > np[n - 1])) - { - mpn_add_n (np - 1, np - 1, dp, n); - q2 --; - } - qp[--n] = q2; - dp ++; - } - - /* we have B+dinv2 = floor((B^3-1)/(d1*B+d0)) < B^2/d1 - q1 = floor(np[0]*(B+dinv2)/B) <= floor(np[0]*B/d1) - <= floor((np[0]*B+np[1])/d1) - thus q1 is not larger than the true quotient. - q1 > np[0]*(B+dinv2)/B - 1 > np[0]*(B^3-1)/(d1*B+d0)/B - 2 - For d1*B+d0 <> B^2/2, we have B+dinv2 = floor(B^3/(d1*B+d0)) - thus q1 > np[0]*B^2/(d1*B+d0) - 2, i.e., - (d1*B+d0)*q1 > np[0]*B^2 - 2*(d1*B+d0) - d1*B*q1 > np[0]*B^2 - 2*d1*B - 2*d0 - d0*q1 >= np[0]*B^2 - 2*d1*B - B^2 - thus q1 > np[0]*B/d1 - 2 - B/d1 > np[0]*B/d1 - 4. - - For d1*B+d0 = B^2/2, dinv2 = B-1 thus q1 > np[0]*(2B-1)/B - 1 > - np[0]*B/d1 - 2. - - In all cases, if q = floor((np[0]*B+np[1])/d1), we have: - q - 4 <= q1 <= q - */ - umul_ppmm (q1, q0, np[0], dinv2.inv32); - qp[0] = np[0] + q1; - - return qh; -} -#endif - -/* Put in {qp, n} an approximation of N={np, 2*n} divided by D={dp, n}, - with the most significant limb of the quotient as return value (0 or 1). - Assumes the most significant bit of D is set. Clobbers N. - - This implements the ShortDiv algorithm from reference [1]. -*/ -#if 1 -mp_limb_t -mpfr_divhigh_n (mpfr_limb_ptr qp, mpfr_limb_ptr np, mpfr_limb_ptr dp, - mp_size_t n) -{ - mp_size_t k, l; - mp_limb_t qh, cy; - mpfr_limb_ptr tp; - MPFR_TMP_DECL(marker); - - MPFR_ASSERTN (MPFR_MULHIGH_TAB_SIZE >= 15); /* so that 2*(n/3) >= (n+4)/2 */ - k = MPFR_LIKELY (n < MPFR_DIVHIGH_TAB_SIZE) ? divhigh_ktab[n] : 2*(n/3); - - if (k == 0) -#if defined(WANT_GMP_INTERNALS) && defined(HAVE___GMPN_SBPI1_DIVAPPR_Q) - { - mpfr_pi1_t dinv2; - invert_pi1 (dinv2, dp[n - 1], dp[n - 2]); - return __gmpn_sbpi1_divappr_q (qp, np, n + n, dp, n, dinv2.inv32); - } -#else /* use our own code for base-case short division */ - return mpfr_divhigh_n_basecase (qp, np, dp, n); -#endif - else if (k == n) - /* for k=n, we use a division with remainder (mpn_divrem), - which computes the exact quotient */ - return mpn_divrem (qp, 0, np, 2 * n, dp, n); - - MPFR_ASSERTD ((n+4)/2 <= k && k < n); /* bounds from [1] */ - MPFR_TMP_MARK (marker); - l = n - k; - /* first divide the most significant 2k limbs from N by the most significant - k limbs of D */ - qh = mpn_divrem (qp + l, 0, np + 2 * l, 2 * k, dp + l, k); /* exact */ - - /* it remains {np,2l+k} = {np,n+l} as remainder */ - - /* now we have to subtract high(Q1)*D0 where Q1=qh*B^k+{qp+l,k} and - D0={dp,l} */ - tp = MPFR_TMP_LIMBS_ALLOC (2 * l); - mpfr_mulhigh_n (tp, qp + k, dp, l); - /* we are only interested in the upper l limbs from {tp,2l} */ - cy = mpn_sub_n (np + n, np + n, tp + l, l); - if (qh) - cy += mpn_sub_n (np + n, np + n, dp, l); - while (cy > 0) /* Q1 was too large: subtract 1 to Q1 and add D to np+l */ - { - qh -= mpn_sub_1 (qp + l, qp + l, k, MPFR_LIMB_ONE); - cy -= mpn_add_n (np + l, np + l, dp, n); - } - - /* now it remains {np,n+l} to divide by D */ - cy = mpfr_divhigh_n (qp, np + k, dp + k, l); - qh += mpn_add_1 (qp + l, qp + l, k, cy); - MPFR_TMP_FREE(marker); - - return qh; -} -#else /* below is the FoldDiv(K) algorithm from [1] */ -mp_limb_t -mpfr_divhigh_n (mpfr_limb_ptr qp, mpfr_limb_ptr np, mpfr_limb_ptr dp, - mp_size_t n) -{ - mp_size_t k, r; - mpfr_limb_ptr ip, tp, up; - mp_limb_t qh = 0, cy, cc; - int count; - MPFR_TMP_DECL(marker); - -#define K 3 - if (n < K) - return mpn_divrem (qp, 0, np, 2 * n, dp, n); - - k = (n - 1) / K + 1; /* ceil(n/K) */ - - MPFR_TMP_MARK (marker); - ip = MPFR_TMP_LIMBS_ALLOC (k + 1); - tp = MPFR_TMP_LIMBS_ALLOC (n + k); - up = MPFR_TMP_LIMBS_ALLOC (2 * (k + 1)); - mpn_invert (ip, dp + n - (k + 1), k + 1, NULL); /* takes about 13% for n=1000 */ - /* {ip, k+1} = floor((B^(2k+2)-1)/D - B^(k+1) where D = {dp+n-(k+1),k+1} */ - for (r = n, cc = 0UL; r > 0;) - { - /* cc is the carry at np[n+r] */ - MPFR_ASSERTD(cc <= 1); - /* FIXME: why can we have cc as large as say 8? */ - count = 0; - while (cc > 0) - { - count ++; - MPFR_ASSERTD(count <= 1); - /* subtract {dp+n-r,r} from {np+n,r} */ - cc -= mpn_sub_n (np + n, np + n, dp + n - r, r); - /* add 1 at qp[r] */ - qh += mpn_add_1 (qp + r, qp + r, n - r, 1UL); - } - /* it remains r limbs to reduce, i.e., the remainder is {np, n+r} */ - if (r < k) - { - ip += k - r; - k = r; - } - /* now r >= k */ - /* qp + r - 2 * k -> up */ - mpfr_mulhigh_n (up, np + n + r - (k + 1), ip, k + 1); - /* take into account the term B^k in the inverse: B^k * {np+n+r-k, k} */ - cy = mpn_add_n (qp + r - k, up + k + 2, np + n + r - k, k); - /* since we need only r limbs of tp (below), it suffices to consider - r high limbs of dp */ - if (r > k) - { -#if 0 - mpn_mul (tp, dp + n - r, r, qp + r - k, k); -#else /* use a short product for the low k x k limbs */ - /* we know the upper k limbs of the r-limb product cancel with the - remainder, thus we only need to compute the low r-k limbs */ - if (r - k >= k) - mpn_mul (tp + k, dp + n - r + k, r - k, qp + r - k, k); - else /* r-k < k */ - { -/* #define LOW */ -#ifndef LOW - mpn_mul (tp + k, qp + r - k, k, dp + n - r + k, r - k); -#else - mpfr_mullow_n_basecase (tp + k, qp + r - k, dp + n - r + k, r - k); - /* take into account qp[2r-2k] * dp[n - r + k] */ - tp[r] += qp[2*r-2*k] * dp[n - r + k]; -#endif - /* tp[k..r] is filled */ - } -#if 0 - mpfr_mulhigh_n (up, dp + n - r, qp + r - k, k); -#else /* compute one more limb. FIXME: we could add one limb of dp in the - above, to save one mpn_addmul_1 call */ - mpfr_mulhigh_n (up, dp + n - r, qp + r - k, k - 1); /* {up,2k-2} */ - /* add {qp + r - k, k - 1} * dp[n-r+k-1] */ - up[2*k-2] = mpn_addmul_1 (up + k - 1, qp + r - k, k-1, dp[n-r+k-1]); - /* add {dp+n-r, k} * qp[r-1] */ - up[2*k-1] = mpn_addmul_1 (up + k - 1, dp + n - r, k, qp[r-1]); -#endif -#ifndef LOW - cc = mpn_add_n (tp + k, tp + k, up + k, k); - mpn_add_1 (tp + 2 * k, tp + 2 * k, r - k, cc); -#else - /* update tp[k..r] */ - if (r - k + 1 <= k) - mpn_add_n (tp + k, tp + k, up + k, r - k + 1); - else /* r - k >= k */ - { - cc = mpn_add_n (tp + k, tp + k, up + k, k); - mpn_add_1 (tp + 2 * k, tp + 2 * k, r - 2 * k + 1, cc); - } -#endif -#endif - } - else /* last step: since we only want the quotient, no need to update, - just propagate the carry cy */ - { - MPFR_ASSERTD(r < n); - if (cy > 0) - qh += mpn_add_1 (qp + r, qp + r, n - r, cy); - break; - } - /* subtract {tp, n+k} from {np+r-k, n+k}; however we only want to - update {np+n, n} */ - /* we should have tp[r] = np[n+r-k] up to 1 */ - MPFR_ASSERTD(tp[r] == np[n + r - k] || tp[r] + 1 == np[n + r - k]); -#ifndef LOW - cc = mpn_sub_n (np + n - 1, np + n - 1, tp + k - 1, r + 1); /* borrow at np[n+r] */ -#else - cc = mpn_sub_n (np + n - 1, np + n - 1, tp + k - 1, r - k + 2); -#endif - /* if cy = 1, subtract {dp, n} from {np+r, n}, thus - {dp+n-r,r} from {np+n,r} */ - if (cy) - { - if (r < n) - cc += mpn_sub_n (np + n - 1, np + n - 1, dp + n - r - 1, r + 1); - else - cc += mpn_sub_n (np + n, np + n, dp + n - r, r); - /* propagate cy */ - if (r == n) - qh = cy; - else - qh += mpn_add_1 (qp + r, qp + r, n - r, cy); - } - /* cc is the borrow at np[n+r] */ - count = 0; - while (cc > 0) /* quotient was too large */ - { - count++; - MPFR_ASSERTD (count <= 1); - cy = mpn_add_n (np + n, np + n, dp + n - (r - k), r - k); - cc -= mpn_add_1 (np + n + r - k, np + n + r - k, k, cy); - qh -= mpn_sub_1 (qp + r - k, qp + r - k, n - (r - k), 1UL); - } - r -= k; - cc = np[n + r]; - } - MPFR_TMP_FREE(marker); - - return qh; -} -#endif |