summaryrefslogtreecommitdiff
path: root/Build/source/libs/icu/icu-xetex/i18n/nfrule.cpp
diff options
context:
space:
mode:
authorPeter Breitenlohner <peb@mppmu.mpg.de>2009-04-20 18:13:48 +0000
committerPeter Breitenlohner <peb@mppmu.mpg.de>2009-04-20 18:13:48 +0000
commite5786f530f9555469c01435f86039b06aa53feba (patch)
treec868e8d32282422d7d445b729db95c3fcdafb6d0 /Build/source/libs/icu/icu-xetex/i18n/nfrule.cpp
parentebaa1768b43c8606d923d2e861b5286b74207b3e (diff)
new build system: build icu libs and xetex plus misc updates
git-svn-id: svn://tug.org/texlive/trunk@12759 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Build/source/libs/icu/icu-xetex/i18n/nfrule.cpp')
-rw-r--r--Build/source/libs/icu/icu-xetex/i18n/nfrule.cpp1446
1 files changed, 1446 insertions, 0 deletions
diff --git a/Build/source/libs/icu/icu-xetex/i18n/nfrule.cpp b/Build/source/libs/icu/icu-xetex/i18n/nfrule.cpp
new file mode 100644
index 00000000000..d6cf1850f48
--- /dev/null
+++ b/Build/source/libs/icu/icu-xetex/i18n/nfrule.cpp
@@ -0,0 +1,1446 @@
+/*
+******************************************************************************
+* Copyright (C) 1997-2006, International Business Machines
+* Corporation and others. All Rights Reserved.
+******************************************************************************
+* file name: nfrule.cpp
+* encoding: US-ASCII
+* tab size: 8 (not used)
+* indentation:4
+*
+* Modification history
+* Date Name Comments
+* 10/11/2001 Doug Ported from ICU4J
+*/
+
+#include "nfrule.h"
+
+#if U_HAVE_RBNF
+
+#include "unicode/rbnf.h"
+#include "unicode/tblcoll.h"
+#include "unicode/coleitr.h"
+#include "unicode/uchar.h"
+#include "nfrs.h"
+#include "nfrlist.h"
+#include "nfsubs.h"
+
+#include "util.h"
+
+U_NAMESPACE_BEGIN
+
+NFRule::NFRule(const RuleBasedNumberFormat* _rbnf)
+ : baseValue((int32_t)0)
+ , radix(0)
+ , exponent(0)
+ , ruleText()
+ , sub1(NULL)
+ , sub2(NULL)
+ , formatter(_rbnf)
+{
+}
+
+NFRule::~NFRule()
+{
+ delete sub1;
+ delete sub2;
+}
+
+static const UChar gLeftBracket = 0x005b;
+static const UChar gRightBracket = 0x005d;
+static const UChar gColon = 0x003a;
+static const UChar gZero = 0x0030;
+static const UChar gNine = 0x0039;
+static const UChar gSpace = 0x0020;
+static const UChar gSlash = 0x002f;
+static const UChar gGreaterThan = 0x003e;
+static const UChar gLessThan = 0x003c;
+static const UChar gComma = 0x002c;
+static const UChar gDot = 0x002e;
+static const UChar gTick = 0x0027;
+//static const UChar gMinus = 0x002d;
+static const UChar gSemicolon = 0x003b;
+
+static const UChar gMinusX[] = {0x2D, 0x78, 0}; /* "-x" */
+static const UChar gXDotX[] = {0x78, 0x2E, 0x78, 0}; /* "x.x" */
+static const UChar gXDotZero[] = {0x78, 0x2E, 0x30, 0}; /* "x.0" */
+static const UChar gZeroDotX[] = {0x30, 0x2E, 0x78, 0}; /* "0.x" */
+
+static const UChar gLessLess[] = {0x3C, 0x3C, 0}; /* "<<" */
+static const UChar gLessPercent[] = {0x3C, 0x25, 0}; /* "<%" */
+static const UChar gLessHash[] = {0x3C, 0x23, 0}; /* "<#" */
+static const UChar gLessZero[] = {0x3C, 0x30, 0}; /* "<0" */
+static const UChar gGreaterGreater[] = {0x3E, 0x3E, 0}; /* ">>" */
+static const UChar gGreaterPercent[] = {0x3E, 0x25, 0}; /* ">%" */
+static const UChar gGreaterHash[] = {0x3E, 0x23, 0}; /* ">#" */
+static const UChar gGreaterZero[] = {0x3E, 0x30, 0}; /* ">0" */
+static const UChar gEqualPercent[] = {0x3D, 0x25, 0}; /* "=%" */
+static const UChar gEqualHash[] = {0x3D, 0x23, 0}; /* "=#" */
+static const UChar gEqualZero[] = {0x3D, 0x30, 0}; /* "=0" */
+static const UChar gEmptyString[] = {0}; /* "" */
+static const UChar gGreaterGreaterGreater[] = {0x3E, 0x3E, 0x3E, 0}; /* ">>>" */
+
+static const UChar * const tokenStrings[] = {
+ gLessLess, gLessPercent, gLessHash, gLessZero,
+ gGreaterGreater, gGreaterPercent,gGreaterHash, gGreaterZero,
+ gEqualPercent, gEqualHash, gEqualZero, NULL
+};
+
+void
+NFRule::makeRules(UnicodeString& description,
+ const NFRuleSet *ruleSet,
+ const NFRule *predecessor,
+ const RuleBasedNumberFormat *rbnf,
+ NFRuleList& rules,
+ UErrorCode& status)
+{
+ // we know we're making at least one rule, so go ahead and
+ // new it up and initialize its basevalue and divisor
+ // (this also strips the rule descriptor, if any, off the
+ // descripton string)
+ NFRule* rule1 = new NFRule(rbnf);
+ /* test for NULL */
+ if (rule1 == 0) {
+ status = U_MEMORY_ALLOCATION_ERROR;
+ return;
+ }
+ rule1->parseRuleDescriptor(description, status);
+
+ // check the description to see whether there's text enclosed
+ // in brackets
+ int32_t brack1 = description.indexOf(gLeftBracket);
+ int32_t brack2 = description.indexOf(gRightBracket);
+
+ // if the description doesn't contain a matched pair of brackets,
+ // or if it's of a type that doesn't recognize bracketed text,
+ // then leave the description alone, initialize the rule's
+ // rule text and substitutions, and return that rule
+ if (brack1 == -1 || brack2 == -1 || brack1 > brack2
+ || rule1->getType() == kProperFractionRule
+ || rule1->getType() == kNegativeNumberRule) {
+ rule1->ruleText = description;
+ rule1->extractSubstitutions(ruleSet, predecessor, rbnf, status);
+ rules.add(rule1);
+ } else {
+ // if the description does contain a matched pair of brackets,
+ // then it's really shorthand for two rules (with one exception)
+ NFRule* rule2 = NULL;
+ UnicodeString sbuf;
+
+ // we'll actually only split the rule into two rules if its
+ // base value is an even multiple of its divisor (or it's one
+ // of the special rules)
+ if ((rule1->baseValue > 0
+ && (rule1->baseValue % util64_pow(rule1->radix, rule1->exponent)) == 0)
+ || rule1->getType() == kImproperFractionRule
+ || rule1->getType() == kMasterRule) {
+
+ // if it passes that test, new up the second rule. If the
+ // rule set both rules will belong to is a fraction rule
+ // set, they both have the same base value; otherwise,
+ // increment the original rule's base value ("rule1" actually
+ // goes SECOND in the rule set's rule list)
+ rule2 = new NFRule(rbnf);
+ /* test for NULL */
+ if (rule2 == 0) {
+ status = U_MEMORY_ALLOCATION_ERROR;
+ return;
+ }
+ if (rule1->baseValue >= 0) {
+ rule2->baseValue = rule1->baseValue;
+ if (!ruleSet->isFractionRuleSet()) {
+ ++rule1->baseValue;
+ }
+ }
+
+ // if the description began with "x.x" and contains bracketed
+ // text, it describes both the improper fraction rule and
+ // the proper fraction rule
+ else if (rule1->getType() == kImproperFractionRule) {
+ rule2->setType(kProperFractionRule);
+ }
+
+ // if the description began with "x.0" and contains bracketed
+ // text, it describes both the master rule and the
+ // improper fraction rule
+ else if (rule1->getType() == kMasterRule) {
+ rule2->baseValue = rule1->baseValue;
+ rule1->setType(kImproperFractionRule);
+ }
+
+ // both rules have the same radix and exponent (i.e., the
+ // same divisor)
+ rule2->radix = rule1->radix;
+ rule2->exponent = rule1->exponent;
+
+ // rule2's rule text omits the stuff in brackets: initalize
+ // its rule text and substitutions accordingly
+ sbuf.append(description, 0, brack1);
+ if (brack2 + 1 < description.length()) {
+ sbuf.append(description, brack2 + 1, description.length() - brack2 - 1);
+ }
+ rule2->ruleText.setTo(sbuf);
+ rule2->extractSubstitutions(ruleSet, predecessor, rbnf, status);
+ }
+
+ // rule1's text includes the text in the brackets but omits
+ // the brackets themselves: initialize _its_ rule text and
+ // substitutions accordingly
+ sbuf.setTo(description, 0, brack1);
+ sbuf.append(description, brack1 + 1, brack2 - brack1 - 1);
+ if (brack2 + 1 < description.length()) {
+ sbuf.append(description, brack2 + 1, description.length() - brack2 - 1);
+ }
+ rule1->ruleText.setTo(sbuf);
+ rule1->extractSubstitutions(ruleSet, predecessor, rbnf, status);
+
+ // if we only have one rule, return it; if we have two, return
+ // a two-element array containing them (notice that rule2 goes
+ // BEFORE rule1 in the list: in all cases, rule2 OMITS the
+ // material in the brackets and rule1 INCLUDES the material
+ // in the brackets)
+ if (rule2 != NULL) {
+ rules.add(rule2);
+ }
+ rules.add(rule1);
+ }
+}
+
+/**
+ * This function parses the rule's rule descriptor (i.e., the base
+ * value and/or other tokens that precede the rule's rule text
+ * in the description) and sets the rule's base value, radix, and
+ * exponent according to the descriptor. (If the description doesn't
+ * include a rule descriptor, then this function sets everything to
+ * default values and the rule set sets the rule's real base value).
+ * @param description The rule's description
+ * @return If "description" included a rule descriptor, this is
+ * "description" with the descriptor and any trailing whitespace
+ * stripped off. Otherwise; it's "descriptor" unchangd.
+ */
+void
+NFRule::parseRuleDescriptor(UnicodeString& description, UErrorCode& status)
+{
+ // the description consists of a rule descriptor and a rule body,
+ // separated by a colon. The rule descriptor is optional. If
+ // it's omitted, just set the base value to 0.
+ int32_t p = description.indexOf(gColon);
+ if (p == -1) {
+ setBaseValue((int32_t)0, status);
+ } else {
+ // copy the descriptor out into its own string and strip it,
+ // along with any trailing whitespace, out of the original
+ // description
+ UnicodeString descriptor;
+ descriptor.setTo(description, 0, p);
+
+ ++p;
+ while (p < description.length() && uprv_isRuleWhiteSpace(description.charAt(p))) {
+ ++p;
+ }
+ description.removeBetween(0, p);
+
+ // check first to see if the rule descriptor matches the token
+ // for one of the special rules. If it does, set the base
+ // value to the correct identfier value
+ if (descriptor == gMinusX) {
+ setType(kNegativeNumberRule);
+ }
+ else if (descriptor == gXDotX) {
+ setType(kImproperFractionRule);
+ }
+ else if (descriptor == gZeroDotX) {
+ setType(kProperFractionRule);
+ }
+ else if (descriptor == gXDotZero) {
+ setType(kMasterRule);
+ }
+
+ // if the rule descriptor begins with a digit, it's a descriptor
+ // for a normal rule
+ // since we don't have Long.parseLong, and this isn't much work anyway,
+ // just build up the value as we encounter the digits.
+ else if (descriptor.charAt(0) >= gZero && descriptor.charAt(0) <= gNine) {
+ int64_t val = 0;
+ p = 0;
+ UChar c = gSpace;
+
+ // begin parsing the descriptor: copy digits
+ // into "tempValue", skip periods, commas, and spaces,
+ // stop on a slash or > sign (or at the end of the string),
+ // and throw an exception on any other character
+ int64_t ll_10 = 10;
+ while (p < descriptor.length()) {
+ c = descriptor.charAt(p);
+ if (c >= gZero && c <= gNine) {
+ val = val * ll_10 + (int32_t)(c - gZero);
+ }
+ else if (c == gSlash || c == gGreaterThan) {
+ break;
+ }
+ else if (uprv_isRuleWhiteSpace(c) || c == gComma || c == gDot) {
+ }
+ else {
+ // throw new IllegalArgumentException("Illegal character in rule descriptor");
+ status = U_PARSE_ERROR;
+ return;
+ }
+ ++p;
+ }
+
+ // we have the base value, so set it
+ setBaseValue(val, status);
+
+ // if we stopped the previous loop on a slash, we're
+ // now parsing the rule's radix. Again, accumulate digits
+ // in tempValue, skip punctuation, stop on a > mark, and
+ // throw an exception on anything else
+ if (c == gSlash) {
+ val = 0;
+ ++p;
+ int64_t ll_10 = 10;
+ while (p < descriptor.length()) {
+ c = descriptor.charAt(p);
+ if (c >= gZero && c <= gNine) {
+ val = val * ll_10 + (int32_t)(c - gZero);
+ }
+ else if (c == gGreaterThan) {
+ break;
+ }
+ else if (uprv_isRuleWhiteSpace(c) || c == gComma || c == gDot) {
+ }
+ else {
+ // throw new IllegalArgumentException("Illegal character is rule descriptor");
+ status = U_PARSE_ERROR;
+ return;
+ }
+ ++p;
+ }
+
+ // tempValue now contain's the rule's radix. Set it
+ // accordingly, and recalculate the rule's exponent
+ radix = (int32_t)val;
+ if (radix == 0) {
+ // throw new IllegalArgumentException("Rule can't have radix of 0");
+ status = U_PARSE_ERROR;
+ }
+
+ exponent = expectedExponent();
+ }
+
+ // if we stopped the previous loop on a > sign, then continue
+ // for as long as we still see > signs. For each one,
+ // decrement the exponent (unless the exponent is already 0).
+ // If we see another character before reaching the end of
+ // the descriptor, that's also a syntax error.
+ if (c == gGreaterThan) {
+ while (p < descriptor.length()) {
+ c = descriptor.charAt(p);
+ if (c == gGreaterThan && exponent > 0) {
+ --exponent;
+ } else {
+ // throw new IllegalArgumentException("Illegal character in rule descriptor");
+ status = U_PARSE_ERROR;
+ return;
+ }
+ ++p;
+ }
+ }
+ }
+ }
+
+ // finally, if the rule body begins with an apostrophe, strip it off
+ // (this is generally used to put whitespace at the beginning of
+ // a rule's rule text)
+ if (description.length() > 0 && description.charAt(0) == gTick) {
+ description.removeBetween(0, 1);
+ }
+
+ // return the description with all the stuff we've just waded through
+ // stripped off the front. It now contains just the rule body.
+ // return description;
+}
+
+/**
+* Searches the rule's rule text for the substitution tokens,
+* creates the substitutions, and removes the substitution tokens
+* from the rule's rule text.
+* @param owner The rule set containing this rule
+* @param predecessor The rule preseding this one in "owners" rule list
+* @param ownersOwner The RuleBasedFormat that owns this rule
+*/
+void
+NFRule::extractSubstitutions(const NFRuleSet* ruleSet,
+ const NFRule* predecessor,
+ const RuleBasedNumberFormat* rbnf,
+ UErrorCode& status)
+{
+ if (U_SUCCESS(status)) {
+ sub1 = extractSubstitution(ruleSet, predecessor, rbnf, status);
+ sub2 = extractSubstitution(ruleSet, predecessor, rbnf, status);
+ }
+}
+
+/**
+* Searches the rule's rule text for the first substitution token,
+* creates a substitution based on it, and removes the token from
+* the rule's rule text.
+* @param owner The rule set containing this rule
+* @param predecessor The rule preceding this one in the rule set's
+* rule list
+* @param ownersOwner The RuleBasedNumberFormat that owns this rule
+* @return The newly-created substitution. This is never null; if
+* the rule text doesn't contain any substitution tokens, this will
+* be a NullSubstitution.
+*/
+NFSubstitution *
+NFRule::extractSubstitution(const NFRuleSet* ruleSet,
+ const NFRule* predecessor,
+ const RuleBasedNumberFormat* rbnf,
+ UErrorCode& status)
+{
+ NFSubstitution* result = NULL;
+
+ // search the rule's rule text for the first two characters of
+ // a substitution token
+ int32_t subStart = indexOfAny(tokenStrings);
+ int32_t subEnd = subStart;
+
+ // if we didn't find one, create a null substitution positioned
+ // at the end of the rule text
+ if (subStart == -1) {
+ return NFSubstitution::makeSubstitution(ruleText.length(), this, predecessor,
+ ruleSet, rbnf, gEmptyString, status);
+ }
+
+ // special-case the ">>>" token, since searching for the > at the
+ // end will actually find the > in the middle
+ if (ruleText.indexOf(gGreaterGreaterGreater) == subStart) {
+ subEnd = subStart + 2;
+
+ // otherwise the substitution token ends with the same character
+ // it began with
+ } else {
+ UChar c = ruleText.charAt(subStart);
+ subEnd = ruleText.indexOf(c, subStart + 1);
+ // special case for '<%foo<<'
+ if (c == gLessThan && subEnd != -1 && subEnd < ruleText.length() - 1 && ruleText.charAt(subEnd+1) == c) {
+ // ordinals use "=#,##0==%abbrev=" as their rule. Notice that the '==' in the middle
+ // occurs because of the juxtaposition of two different rules. The check for '<' is a hack
+ // to get around this. Having the duplicate at the front would cause problems with
+ // rules like "<<%" to format, say, percents...
+ ++subEnd;
+ }
+ }
+
+ // if we don't find the end of the token (i.e., if we're on a single,
+ // unmatched token character), create a null substitution positioned
+ // at the end of the rule
+ if (subEnd == -1) {
+ return NFSubstitution::makeSubstitution(ruleText.length(), this, predecessor,
+ ruleSet, rbnf, gEmptyString, status);
+ }
+
+ // if we get here, we have a real substitution token (or at least
+ // some text bounded by substitution token characters). Use
+ // makeSubstitution() to create the right kind of substitution
+ UnicodeString subToken;
+ subToken.setTo(ruleText, subStart, subEnd + 1 - subStart);
+ result = NFSubstitution::makeSubstitution(subStart, this, predecessor, ruleSet,
+ rbnf, subToken, status);
+
+ // remove the substitution from the rule text
+ ruleText.removeBetween(subStart, subEnd+1);
+
+ return result;
+}
+
+/**
+ * Sets the rule's base value, and causes the radix and exponent
+ * to be recalculated. This is used during construction when we
+ * don't know the rule's base value until after it's been
+ * constructed. It should be used at any other time.
+ * @param The new base value for the rule.
+ */
+void
+NFRule::setBaseValue(int64_t newBaseValue, UErrorCode& status)
+{
+ // set the base value
+ baseValue = newBaseValue;
+
+ // if this isn't a special rule, recalculate the radix and exponent
+ // (the radix always defaults to 10; if it's supposed to be something
+ // else, it's cleaned up by the caller and the exponent is
+ // recalculated again-- the only function that does this is
+ // NFRule.parseRuleDescriptor() )
+ if (baseValue >= 1) {
+ radix = 10;
+ exponent = expectedExponent();
+
+ // this function gets called on a fully-constructed rule whose
+ // description didn't specify a base value. This means it
+ // has substitutions, and some substitutions hold on to copies
+ // of the rule's divisor. Fix their copies of the divisor.
+ if (sub1 != NULL) {
+ sub1->setDivisor(radix, exponent, status);
+ }
+ if (sub2 != NULL) {
+ sub2->setDivisor(radix, exponent, status);
+ }
+
+ // if this is a special rule, its radix and exponent are basically
+ // ignored. Set them to "safe" default values
+ } else {
+ radix = 10;
+ exponent = 0;
+ }
+}
+
+/**
+* This calculates the rule's exponent based on its radix and base
+* value. This will be the highest power the radix can be raised to
+* and still produce a result less than or equal to the base value.
+*/
+int16_t
+NFRule::expectedExponent() const
+{
+ // since the log of 0, or the log base 0 of something, causes an
+ // error, declare the exponent in these cases to be 0 (we also
+ // deal with the special-rule identifiers here)
+ if (radix == 0 || baseValue < 1) {
+ return 0;
+ }
+
+ // we get rounding error in some cases-- for example, log 1000 / log 10
+ // gives us 1.9999999996 instead of 2. The extra logic here is to take
+ // that into account
+ int16_t tempResult = (int16_t)(uprv_log((double)baseValue) / uprv_log((double)radix));
+ int64_t temp = util64_pow(radix, tempResult + 1);
+ if (temp <= baseValue) {
+ tempResult += 1;
+ }
+ return tempResult;
+}
+
+/**
+ * Searches the rule's rule text for any of the specified strings.
+ * @param strings An array of strings to search the rule's rule
+ * text for
+ * @return The index of the first match in the rule's rule text
+ * (i.e., the first substring in the rule's rule text that matches
+ * _any_ of the strings in "strings"). If none of the strings in
+ * "strings" is found in the rule's rule text, returns -1.
+ */
+int32_t
+NFRule::indexOfAny(const UChar* const strings[]) const
+{
+ int result = -1;
+ for (int i = 0; strings[i]; i++) {
+ int32_t pos = ruleText.indexOf(*strings[i]);
+ if (pos != -1 && (result == -1 || pos < result)) {
+ result = pos;
+ }
+ }
+ return result;
+}
+
+//-----------------------------------------------------------------------
+// boilerplate
+//-----------------------------------------------------------------------
+
+/**
+* Tests two rules for equality.
+* @param that The rule to compare this one against
+* @return True is the two rules are functionally equivalent
+*/
+UBool
+NFRule::operator==(const NFRule& rhs) const
+{
+ return baseValue == rhs.baseValue
+ && radix == rhs.radix
+ && exponent == rhs.exponent
+ && ruleText == rhs.ruleText
+ && *sub1 == *rhs.sub1
+ && *sub2 == *rhs.sub2;
+}
+
+/**
+* Returns a textual representation of the rule. This won't
+* necessarily be the same as the description that this rule
+* was created with, but it will produce the same result.
+* @return A textual description of the rule
+*/
+static void util_append64(UnicodeString& result, int64_t n)
+{
+ UChar buffer[256];
+ int32_t len = util64_tou(n, buffer, sizeof(buffer));
+ UnicodeString temp(buffer, len);
+ result.append(temp);
+}
+
+void
+NFRule::_appendRuleText(UnicodeString& result) const
+{
+ switch (getType()) {
+ case kNegativeNumberRule: result.append(gMinusX); break;
+ case kImproperFractionRule: result.append(gXDotX); break;
+ case kProperFractionRule: result.append(gZeroDotX); break;
+ case kMasterRule: result.append(gXDotZero); break;
+ default:
+ // for a normal rule, write out its base value, and if the radix is
+ // something other than 10, write out the radix (with the preceding
+ // slash, of course). Then calculate the expected exponent and if
+ // if isn't the same as the actual exponent, write an appropriate
+ // number of > signs. Finally, terminate the whole thing with
+ // a colon.
+ util_append64(result, baseValue);
+ if (radix != 10) {
+ result.append(gSlash);
+ util_append64(result, radix);
+ }
+ int numCarets = expectedExponent() - exponent;
+ for (int i = 0; i < numCarets; i++) {
+ result.append(gGreaterThan);
+ }
+ break;
+ }
+ result.append(gColon);
+ result.append(gSpace);
+
+ // if the rule text begins with a space, write an apostrophe
+ // (whitespace after the rule descriptor is ignored; the
+ // apostrophe is used to make the whitespace significant)
+ if (ruleText.startsWith(gSpace) && sub1->getPos() != 0) {
+ result.append(gTick);
+ }
+
+ // now, write the rule's rule text, inserting appropriate
+ // substitution tokens in the appropriate places
+ UnicodeString ruleTextCopy;
+ ruleTextCopy.setTo(ruleText);
+
+ UnicodeString temp;
+ sub2->toString(temp);
+ ruleTextCopy.insert(sub2->getPos(), temp);
+ sub1->toString(temp);
+ ruleTextCopy.insert(sub1->getPos(), temp);
+
+ result.append(ruleTextCopy);
+
+ // and finally, top the whole thing off with a semicolon and
+ // return the result
+ result.append(gSemicolon);
+}
+
+//-----------------------------------------------------------------------
+// formatting
+//-----------------------------------------------------------------------
+
+/**
+* Formats the number, and inserts the resulting text into
+* toInsertInto.
+* @param number The number being formatted
+* @param toInsertInto The string where the resultant text should
+* be inserted
+* @param pos The position in toInsertInto where the resultant text
+* should be inserted
+*/
+void
+NFRule::doFormat(int64_t number, UnicodeString& toInsertInto, int32_t pos) const
+{
+ // first, insert the rule's rule text into toInsertInto at the
+ // specified position, then insert the results of the substitutions
+ // into the right places in toInsertInto (notice we do the
+ // substitutions in reverse order so that the offsets don't get
+ // messed up)
+ toInsertInto.insert(pos, ruleText);
+ sub2->doSubstitution(number, toInsertInto, pos);
+ sub1->doSubstitution(number, toInsertInto, pos);
+}
+
+/**
+* Formats the number, and inserts the resulting text into
+* toInsertInto.
+* @param number The number being formatted
+* @param toInsertInto The string where the resultant text should
+* be inserted
+* @param pos The position in toInsertInto where the resultant text
+* should be inserted
+*/
+void
+NFRule::doFormat(double number, UnicodeString& toInsertInto, int32_t pos) const
+{
+ // first, insert the rule's rule text into toInsertInto at the
+ // specified position, then insert the results of the substitutions
+ // into the right places in toInsertInto
+ // [again, we have two copies of this routine that do the same thing
+ // so that we don't sacrifice precision in a long by casting it
+ // to a double]
+ toInsertInto.insert(pos, ruleText);
+ sub2->doSubstitution(number, toInsertInto, pos);
+ sub1->doSubstitution(number, toInsertInto, pos);
+}
+
+/**
+* Used by the owning rule set to determine whether to invoke the
+* rollback rule (i.e., whether this rule or the one that precedes
+* it in the rule set's list should be used to format the number)
+* @param The number being formatted
+* @return True if the rule set should use the rule that precedes
+* this one in its list; false if it should use this rule
+*/
+UBool
+NFRule::shouldRollBack(double number) const
+{
+ // we roll back if the rule contains a modulus substitution,
+ // the number being formatted is an even multiple of the rule's
+ // divisor, and the rule's base value is NOT an even multiple
+ // of its divisor
+ // In other words, if the original description had
+ // 100: << hundred[ >>];
+ // that expands into
+ // 100: << hundred;
+ // 101: << hundred >>;
+ // internally. But when we're formatting 200, if we use the rule
+ // at 101, which would normally apply, we get "two hundred zero".
+ // To prevent this, we roll back and use the rule at 100 instead.
+ // This is the logic that makes this happen: the rule at 101 has
+ // a modulus substitution, its base value isn't an even multiple
+ // of 100, and the value we're trying to format _is_ an even
+ // multiple of 100. This is called the "rollback rule."
+ if ((sub1->isModulusSubstitution()) || (sub2->isModulusSubstitution())) {
+ int64_t re = util64_pow(radix, exponent);
+ return uprv_fmod(number, (double)re) == 0 && (baseValue % re) != 0;
+ }
+ return FALSE;
+}
+
+//-----------------------------------------------------------------------
+// parsing
+//-----------------------------------------------------------------------
+
+/**
+* Attempts to parse the string with this rule.
+* @param text The string being parsed
+* @param parsePosition On entry, the value is ignored and assumed to
+* be 0. On exit, this has been updated with the position of the first
+* character not consumed by matching the text against this rule
+* (if this rule doesn't match the text at all, the parse position
+* if left unchanged (presumably at 0) and the function returns
+* new Long(0)).
+* @param isFractionRule True if this rule is contained within a
+* fraction rule set. This is only used if the rule has no
+* substitutions.
+* @return If this rule matched the text, this is the rule's base value
+* combined appropriately with the results of parsing the substitutions.
+* If nothing matched, this is new Long(0) and the parse position is
+* left unchanged. The result will be an instance of Long if the
+* result is an integer and Double otherwise. The result is never null.
+*/
+#ifdef RBNF_DEBUG
+#include <stdio.h>
+
+static void dumpUS(FILE* f, const UnicodeString& us) {
+ int len = us.length();
+ char* buf = (char *)uprv_malloc((len+1)*sizeof(char)); //new char[len+1];
+ us.extract(0, len, buf);
+ buf[len] = 0;
+ fprintf(f, "%s", buf);
+ uprv_free(buf); //delete[] buf;
+}
+#endif
+
+UBool
+NFRule::doParse(const UnicodeString& text,
+ ParsePosition& parsePosition,
+ UBool isFractionRule,
+ double upperBound,
+ Formattable& resVal) const
+{
+ // internally we operate on a copy of the string being parsed
+ // (because we're going to change it) and use our own ParsePosition
+ ParsePosition pp;
+ UnicodeString workText(text);
+
+ // check to see whether the text before the first substitution
+ // matches the text at the beginning of the string being
+ // parsed. If it does, strip that off the front of workText;
+ // otherwise, dump out with a mismatch
+ UnicodeString prefix;
+ prefix.setTo(ruleText, 0, sub1->getPos());
+
+#ifdef RBNF_DEBUG
+ fprintf(stderr, "doParse %x ", this);
+ {
+ UnicodeString rt;
+ _appendRuleText(rt);
+ dumpUS(stderr, rt);
+ }
+
+ fprintf(stderr, " text: '", this);
+ dumpUS(stderr, text);
+ fprintf(stderr, "' prefix: '");
+ dumpUS(stderr, prefix);
+#endif
+ stripPrefix(workText, prefix, pp);
+ int32_t prefixLength = text.length() - workText.length();
+
+#ifdef RBNF_DEBUG
+ fprintf(stderr, "' pl: %d ppi: %d s1p: %d\n", prefixLength, pp.getIndex(), sub1->getPos());
+#endif
+
+ if (pp.getIndex() == 0 && sub1->getPos() != 0) {
+ // commented out because ParsePosition doesn't have error index in 1.1.x
+ // restored for ICU4C port
+ parsePosition.setErrorIndex(pp.getErrorIndex());
+ resVal.setLong(0);
+ return TRUE;
+ }
+
+ // this is the fun part. The basic guts of the rule-matching
+ // logic is matchToDelimiter(), which is called twice. The first
+ // time it searches the input string for the rule text BETWEEN
+ // the substitutions and tries to match the intervening text
+ // in the input string with the first substitution. If that
+ // succeeds, it then calls it again, this time to look for the
+ // rule text after the second substitution and to match the
+ // intervening input text against the second substitution.
+ //
+ // For example, say we have a rule that looks like this:
+ // first << middle >> last;
+ // and input text that looks like this:
+ // first one middle two last
+ // First we use stripPrefix() to match "first " in both places and
+ // strip it off the front, leaving
+ // one middle two last
+ // Then we use matchToDelimiter() to match " middle " and try to
+ // match "one" against a substitution. If it's successful, we now
+ // have
+ // two last
+ // We use matchToDelimiter() a second time to match " last" and
+ // try to match "two" against a substitution. If "two" matches
+ // the substitution, we have a successful parse.
+ //
+ // Since it's possible in many cases to find multiple instances
+ // of each of these pieces of rule text in the input string,
+ // we need to try all the possible combinations of these
+ // locations. This prevents us from prematurely declaring a mismatch,
+ // and makes sure we match as much input text as we can.
+ int highWaterMark = 0;
+ double result = 0;
+ int start = 0;
+ double tempBaseValue = (double)(baseValue <= 0 ? 0 : baseValue);
+
+ UnicodeString temp;
+ do {
+ // our partial parse result starts out as this rule's base
+ // value. If it finds a successful match, matchToDelimiter()
+ // will compose this in some way with what it gets back from
+ // the substitution, giving us a new partial parse result
+ pp.setIndex(0);
+
+ temp.setTo(ruleText, sub1->getPos(), sub2->getPos() - sub1->getPos());
+ double partialResult = matchToDelimiter(workText, start, tempBaseValue,
+ temp, pp, sub1,
+ upperBound);
+
+ // if we got a successful match (or were trying to match a
+ // null substitution), pp is now pointing at the first unmatched
+ // character. Take note of that, and try matchToDelimiter()
+ // on the input text again
+ if (pp.getIndex() != 0 || sub1->isNullSubstitution()) {
+ start = pp.getIndex();
+
+ UnicodeString workText2;
+ workText2.setTo(workText, pp.getIndex(), workText.length() - pp.getIndex());
+ ParsePosition pp2;
+
+ // the second matchToDelimiter() will compose our previous
+ // partial result with whatever it gets back from its
+ // substitution if there's a successful match, giving us
+ // a real result
+ temp.setTo(ruleText, sub2->getPos(), ruleText.length() - sub2->getPos());
+ partialResult = matchToDelimiter(workText2, 0, partialResult,
+ temp, pp2, sub2,
+ upperBound);
+
+ // if we got a successful match on this second
+ // matchToDelimiter() call, update the high-water mark
+ // and result (if necessary)
+ if (pp2.getIndex() != 0 || sub2->isNullSubstitution()) {
+ if (prefixLength + pp.getIndex() + pp2.getIndex() > highWaterMark) {
+ highWaterMark = prefixLength + pp.getIndex() + pp2.getIndex();
+ result = partialResult;
+ }
+ }
+ // commented out because ParsePosition doesn't have error index in 1.1.x
+ // restored for ICU4C port
+ else {
+ int32_t temp = pp2.getErrorIndex() + sub1->getPos() + pp.getIndex();
+ if (temp> parsePosition.getErrorIndex()) {
+ parsePosition.setErrorIndex(temp);
+ }
+ }
+ }
+ // commented out because ParsePosition doesn't have error index in 1.1.x
+ // restored for ICU4C port
+ else {
+ int32_t temp = sub1->getPos() + pp.getErrorIndex();
+ if (temp > parsePosition.getErrorIndex()) {
+ parsePosition.setErrorIndex(temp);
+ }
+ }
+ // keep trying to match things until the outer matchToDelimiter()
+ // call fails to make a match (each time, it picks up where it
+ // left off the previous time)
+ } while (sub1->getPos() != sub2->getPos()
+ && pp.getIndex() > 0
+ && pp.getIndex() < workText.length()
+ && pp.getIndex() != start);
+
+ // update the caller's ParsePosition with our high-water mark
+ // (i.e., it now points at the first character this function
+ // didn't match-- the ParsePosition is therefore unchanged if
+ // we didn't match anything)
+ parsePosition.setIndex(highWaterMark);
+ // commented out because ParsePosition doesn't have error index in 1.1.x
+ // restored for ICU4C port
+ if (highWaterMark > 0) {
+ parsePosition.setErrorIndex(0);
+ }
+
+ // this is a hack for one unusual condition: Normally, whether this
+ // rule belong to a fraction rule set or not is handled by its
+ // substitutions. But if that rule HAS NO substitutions, then
+ // we have to account for it here. By definition, if the matching
+ // rule in a fraction rule set has no substitutions, its numerator
+ // is 1, and so the result is the reciprocal of its base value.
+ if (isFractionRule &&
+ highWaterMark > 0 &&
+ sub1->isNullSubstitution()) {
+ result = 1 / result;
+ }
+
+ resVal.setDouble(result);
+ return TRUE; // ??? do we need to worry if it is a long or a double?
+}
+
+/**
+* This function is used by parse() to match the text being parsed
+* against a possible prefix string. This function
+* matches characters from the beginning of the string being parsed
+* to characters from the prospective prefix. If they match, pp is
+* updated to the first character not matched, and the result is
+* the unparsed part of the string. If they don't match, the whole
+* string is returned, and pp is left unchanged.
+* @param text The string being parsed
+* @param prefix The text to match against
+* @param pp On entry, ignored and assumed to be 0. On exit, points
+* to the first unmatched character (assuming the whole prefix matched),
+* or is unchanged (if the whole prefix didn't match).
+* @return If things match, this is the unparsed part of "text";
+* if they didn't match, this is "text".
+*/
+void
+NFRule::stripPrefix(UnicodeString& text, const UnicodeString& prefix, ParsePosition& pp) const
+{
+ // if the prefix text is empty, dump out without doing anything
+ if (prefix.length() != 0) {
+ // use prefixLength() to match the beginning of
+ // "text" against "prefix". This function returns the
+ // number of characters from "text" that matched (or 0 if
+ // we didn't match the whole prefix)
+ int32_t pfl = prefixLength(text, prefix);
+ if (pfl != 0) {
+ // if we got a successful match, update the parse position
+ // and strip the prefix off of "text"
+ pp.setIndex(pp.getIndex() + pfl);
+ text.remove(0, pfl);
+ }
+ }
+}
+
+/**
+* Used by parse() to match a substitution and any following text.
+* "text" is searched for instances of "delimiter". For each instance
+* of delimiter, the intervening text is tested to see whether it
+* matches the substitution. The longest match wins.
+* @param text The string being parsed
+* @param startPos The position in "text" where we should start looking
+* for "delimiter".
+* @param baseValue A partial parse result (often the rule's base value),
+* which is combined with the result from matching the substitution
+* @param delimiter The string to search "text" for.
+* @param pp Ignored and presumed to be 0 on entry. If there's a match,
+* on exit this will point to the first unmatched character.
+* @param sub If we find "delimiter" in "text", this substitution is used
+* to match the text between the beginning of the string and the
+* position of "delimiter." (If "delimiter" is the empty string, then
+* this function just matches against this substitution and updates
+* everything accordingly.)
+* @param upperBound When matching the substitution, it will only
+* consider rules with base values lower than this value.
+* @return If there's a match, this is the result of composing
+* baseValue with the result of matching the substitution. Otherwise,
+* this is new Long(0). It's never null. If the result is an integer,
+* this will be an instance of Long; otherwise, it's an instance of
+* Double.
+*
+* !!! note {dlf} in point of fact, in the java code the caller always converts
+* the result to a double, so we might as well return one.
+*/
+double
+NFRule::matchToDelimiter(const UnicodeString& text,
+ int32_t startPos,
+ double _baseValue,
+ const UnicodeString& delimiter,
+ ParsePosition& pp,
+ const NFSubstitution* sub,
+ double upperBound) const
+{
+ // if "delimiter" contains real (i.e., non-ignorable) text, search
+ // it for "delimiter" beginning at "start". If that succeeds, then
+ // use "sub"'s doParse() method to match the text before the
+ // instance of "delimiter" we just found.
+ if (!allIgnorable(delimiter)) {
+ ParsePosition tempPP;
+ Formattable result;
+
+ // use findText() to search for "delimiter". It returns a two-
+ // element array: element 0 is the position of the match, and
+ // element 1 is the number of characters that matched
+ // "delimiter".
+ int32_t dLen;
+ int32_t dPos = findText(text, delimiter, startPos, &dLen);
+
+ // if findText() succeeded, isolate the text preceding the
+ // match, and use "sub" to match that text
+ while (dPos >= 0) {
+ UnicodeString subText;
+ subText.setTo(text, 0, dPos);
+ if (subText.length() > 0) {
+ UBool success = sub->doParse(subText, tempPP, _baseValue, upperBound,
+#if UCONFIG_NO_COLLATION
+ FALSE,
+#else
+ formatter->isLenient(),
+#endif
+ result);
+
+ // if the substitution could match all the text up to
+ // where we found "delimiter", then this function has
+ // a successful match. Bump the caller's parse position
+ // to point to the first character after the text
+ // that matches "delimiter", and return the result
+ // we got from parsing the substitution.
+ if (success && tempPP.getIndex() == dPos) {
+ pp.setIndex(dPos + dLen);
+ return result.getDouble();
+ }
+ // commented out because ParsePosition doesn't have error index in 1.1.x
+ // restored for ICU4C port
+ else {
+ if (tempPP.getErrorIndex() > 0) {
+ pp.setErrorIndex(tempPP.getErrorIndex());
+ } else {
+ pp.setErrorIndex(tempPP.getIndex());
+ }
+ }
+ }
+
+ // if we didn't match the substitution, search for another
+ // copy of "delimiter" in "text" and repeat the loop if
+ // we find it
+ tempPP.setIndex(0);
+ dPos = findText(text, delimiter, dPos + dLen, &dLen);
+ }
+ // if we make it here, this was an unsuccessful match, and we
+ // leave pp unchanged and return 0
+ pp.setIndex(0);
+ return 0;
+
+ // if "delimiter" is empty, or consists only of ignorable characters
+ // (i.e., is semantically empty), thwe we obviously can't search
+ // for "delimiter". Instead, just use "sub" to parse as much of
+ // "text" as possible.
+ } else {
+ ParsePosition tempPP;
+ Formattable result;
+
+ // try to match the whole string against the substitution
+ UBool success = sub->doParse(text, tempPP, _baseValue, upperBound,
+#if UCONFIG_NO_COLLATION
+ FALSE,
+#else
+ formatter->isLenient(),
+#endif
+ result);
+ if (success && (tempPP.getIndex() != 0 || sub->isNullSubstitution())) {
+ // if there's a successful match (or it's a null
+ // substitution), update pp to point to the first
+ // character we didn't match, and pass the result from
+ // sub.doParse() on through to the caller
+ pp.setIndex(tempPP.getIndex());
+ return result.getDouble();
+ }
+ // commented out because ParsePosition doesn't have error index in 1.1.x
+ // restored for ICU4C port
+ else {
+ pp.setErrorIndex(tempPP.getErrorIndex());
+ }
+
+ // and if we get to here, then nothing matched, so we return
+ // 0 and leave pp alone
+ return 0;
+ }
+}
+
+/**
+* Used by stripPrefix() to match characters. If lenient parse mode
+* is off, this just calls startsWith(). If lenient parse mode is on,
+* this function uses CollationElementIterators to match characters in
+* the strings (only primary-order differences are significant in
+* determining whether there's a match).
+* @param str The string being tested
+* @param prefix The text we're hoping to see at the beginning
+* of "str"
+* @return If "prefix" is found at the beginning of "str", this
+* is the number of characters in "str" that were matched (this
+* isn't necessarily the same as the length of "prefix" when matching
+* text with a collator). If there's no match, this is 0.
+*/
+int32_t
+NFRule::prefixLength(const UnicodeString& str, const UnicodeString& prefix) const
+{
+ // if we're looking for an empty prefix, it obviously matches
+ // zero characters. Just go ahead and return 0.
+ if (prefix.length() == 0) {
+ return 0;
+ }
+
+#if !UCONFIG_NO_COLLATION
+ // go through all this grief if we're in lenient-parse mode
+ if (formatter->isLenient()) {
+ // get the formatter's collator and use it to create two
+ // collation element iterators, one over the target string
+ // and another over the prefix (right now, we'll throw an
+ // exception if the collator we get back from the formatter
+ // isn't a RuleBasedCollator, because RuleBasedCollator defines
+ // the CollationElementIterator protocol. Hopefully, this
+ // will change someday.)
+ RuleBasedCollator* collator = (RuleBasedCollator*)formatter->getCollator();
+ CollationElementIterator* strIter = collator->createCollationElementIterator(str);
+ CollationElementIterator* prefixIter = collator->createCollationElementIterator(prefix);
+
+ UErrorCode err = U_ZERO_ERROR;
+
+ // The original code was problematic. Consider this match:
+ // prefix = "fifty-"
+ // string = " fifty-7"
+ // The intent is to match string up to the '7', by matching 'fifty-' at position 1
+ // in the string. Unfortunately, we were getting a match, and then computing where
+ // the match terminated by rematching the string. The rematch code was using as an
+ // initial guess the substring of string between 0 and prefix.length. Because of
+ // the leading space and trailing hyphen (both ignorable) this was succeeding, leaving
+ // the position before the hyphen in the string. Recursing down, we then parsed the
+ // remaining string '-7' as numeric. The resulting number turned out as 43 (50 - 7).
+ // This was not pretty, especially since the string "fifty-7" parsed just fine.
+ //
+ // We have newer APIs now, so we can use calls on the iterator to determine what we
+ // matched up to. If we terminate because we hit the last element in the string,
+ // our match terminates at this length. If we terminate because we hit the last element
+ // in the target, our match terminates at one before the element iterator position.
+
+ // match collation elements between the strings
+ int32_t oStr = strIter->next(err);
+ int32_t oPrefix = prefixIter->next(err);
+
+ while (oPrefix != CollationElementIterator::NULLORDER) {
+ // skip over ignorable characters in the target string
+ while (CollationElementIterator::primaryOrder(oStr) == 0
+ && oStr != CollationElementIterator::NULLORDER) {
+ oStr = strIter->next(err);
+ }
+
+ // skip over ignorable characters in the prefix
+ while (CollationElementIterator::primaryOrder(oPrefix) == 0
+ && oPrefix != CollationElementIterator::NULLORDER) {
+ oPrefix = prefixIter->next(err);
+ }
+
+ // dlf: move this above following test, if we consume the
+ // entire target, aren't we ok even if the source was also
+ // entirely consumed?
+
+ // if skipping over ignorables brought to the end of
+ // the prefix, we DID match: drop out of the loop
+ if (oPrefix == CollationElementIterator::NULLORDER) {
+ break;
+ }
+
+ // if skipping over ignorables brought us to the end
+ // of the target string, we didn't match and return 0
+ if (oStr == CollationElementIterator::NULLORDER) {
+ delete prefixIter;
+ delete strIter;
+ return 0;
+ }
+
+ // match collation elements from the two strings
+ // (considering only primary differences). If we
+ // get a mismatch, dump out and return 0
+ if (CollationElementIterator::primaryOrder(oStr)
+ != CollationElementIterator::primaryOrder(oPrefix)) {
+ delete prefixIter;
+ delete strIter;
+ return 0;
+
+ // otherwise, advance to the next character in each string
+ // and loop (we drop out of the loop when we exhaust
+ // collation elements in the prefix)
+ } else {
+ oStr = strIter->next(err);
+ oPrefix = prefixIter->next(err);
+ }
+ }
+
+ int32_t result = strIter->getOffset();
+ if (oStr != CollationElementIterator::NULLORDER) {
+ --result; // back over character that we don't want to consume;
+ }
+
+#ifdef RBNF_DEBUG
+ fprintf(stderr, "prefix length: %d\n", result);
+#endif
+ delete prefixIter;
+ delete strIter;
+
+ return result;
+#if 0
+ //----------------------------------------------------------------
+ // JDK 1.2-specific API call
+ // return strIter.getOffset();
+ //----------------------------------------------------------------
+ // JDK 1.1 HACK (take out for 1.2-specific code)
+
+ // if we make it to here, we have a successful match. Now we
+ // have to find out HOW MANY characters from the target string
+ // matched the prefix (there isn't necessarily a one-to-one
+ // mapping between collation elements and characters).
+ // In JDK 1.2, there's a simple getOffset() call we can use.
+ // In JDK 1.1, on the other hand, we have to go through some
+ // ugly contortions. First, use the collator to compare the
+ // same number of characters from the prefix and target string.
+ // If they're equal, we're done.
+ collator->setStrength(Collator::PRIMARY);
+ if (str.length() >= prefix.length()) {
+ UnicodeString temp;
+ temp.setTo(str, 0, prefix.length());
+ if (collator->equals(temp, prefix)) {
+#ifdef RBNF_DEBUG
+ fprintf(stderr, "returning: %d\n", prefix.length());
+#endif
+ return prefix.length();
+ }
+ }
+
+ // if they're not equal, then we have to compare successively
+ // larger and larger substrings of the target string until we
+ // get to one that matches the prefix. At that point, we know
+ // how many characters matched the prefix, and we can return.
+ int32_t p = 1;
+ while (p <= str.length()) {
+ UnicodeString temp;
+ temp.setTo(str, 0, p);
+ if (collator->equals(temp, prefix)) {
+ return p;
+ } else {
+ ++p;
+ }
+ }
+
+ // SHOULD NEVER GET HERE!!!
+ return 0;
+ //----------------------------------------------------------------
+#endif
+
+ // If lenient parsing is turned off, forget all that crap above.
+ // Just use String.startsWith() and be done with it.
+ } else
+#endif
+ {
+ if (str.startsWith(prefix)) {
+ return prefix.length();
+ } else {
+ return 0;
+ }
+ }
+}
+
+/**
+* Searches a string for another string. If lenient parsing is off,
+* this just calls indexOf(). If lenient parsing is on, this function
+* uses CollationElementIterator to match characters, and only
+* primary-order differences are significant in determining whether
+* there's a match.
+* @param str The string to search
+* @param key The string to search "str" for
+* @param startingAt The index into "str" where the search is to
+* begin
+* @return A two-element array of ints. Element 0 is the position
+* of the match, or -1 if there was no match. Element 1 is the
+* number of characters in "str" that matched (which isn't necessarily
+* the same as the length of "key")
+*/
+int32_t
+NFRule::findText(const UnicodeString& str,
+ const UnicodeString& key,
+ int32_t startingAt,
+ int32_t* length) const
+{
+#if !UCONFIG_NO_COLLATION
+ // if lenient parsing is turned off, this is easy: just call
+ // String.indexOf() and we're done
+ if (!formatter->isLenient()) {
+ *length = key.length();
+ return str.indexOf(key, startingAt);
+
+ // but if lenient parsing is turned ON, we've got some work
+ // ahead of us
+ } else
+#endif
+ {
+ //----------------------------------------------------------------
+ // JDK 1.1 HACK (take out of 1.2-specific code)
+
+ // in JDK 1.2, CollationElementIterator provides us with an
+ // API to map between character offsets and collation elements
+ // and we can do this by marching through the string comparing
+ // collation elements. We can't do that in JDK 1.1. Insted,
+ // we have to go through this horrible slow mess:
+ int32_t p = startingAt;
+ int32_t keyLen = 0;
+
+ // basically just isolate smaller and smaller substrings of
+ // the target string (each running to the end of the string,
+ // and with the first one running from startingAt to the end)
+ // and then use prefixLength() to see if the search key is at
+ // the beginning of each substring. This is excruciatingly
+ // slow, but it will locate the key and tell use how long the
+ // matching text was.
+ UnicodeString temp;
+ while (p < str.length() && keyLen == 0) {
+ temp.setTo(str, p, str.length() - p);
+ keyLen = prefixLength(temp, key);
+ if (keyLen != 0) {
+ *length = keyLen;
+ return p;
+ }
+ ++p;
+ }
+ // if we make it to here, we didn't find it. Return -1 for the
+ // location. The length should be ignored, but set it to 0,
+ // which should be "safe"
+ *length = 0;
+ return -1;
+
+ //----------------------------------------------------------------
+ // JDK 1.2 version of this routine
+ //RuleBasedCollator collator = (RuleBasedCollator)formatter.getCollator();
+ //
+ //CollationElementIterator strIter = collator.getCollationElementIterator(str);
+ //CollationElementIterator keyIter = collator.getCollationElementIterator(key);
+ //
+ //int keyStart = -1;
+ //
+ //str.setOffset(startingAt);
+ //
+ //int oStr = strIter.next();
+ //int oKey = keyIter.next();
+ //while (oKey != CollationElementIterator.NULLORDER) {
+ // while (oStr != CollationElementIterator.NULLORDER &&
+ // CollationElementIterator.primaryOrder(oStr) == 0)
+ // oStr = strIter.next();
+ //
+ // while (oKey != CollationElementIterator.NULLORDER &&
+ // CollationElementIterator.primaryOrder(oKey) == 0)
+ // oKey = keyIter.next();
+ //
+ // if (oStr == CollationElementIterator.NULLORDER) {
+ // return new int[] { -1, 0 };
+ // }
+ //
+ // if (oKey == CollationElementIterator.NULLORDER) {
+ // break;
+ // }
+ //
+ // if (CollationElementIterator.primaryOrder(oStr) ==
+ // CollationElementIterator.primaryOrder(oKey)) {
+ // keyStart = strIter.getOffset();
+ // oStr = strIter.next();
+ // oKey = keyIter.next();
+ // } else {
+ // if (keyStart != -1) {
+ // keyStart = -1;
+ // keyIter.reset();
+ // } else {
+ // oStr = strIter.next();
+ // }
+ // }
+ //}
+ //
+ //if (oKey == CollationElementIterator.NULLORDER) {
+ // return new int[] { keyStart, strIter.getOffset() - keyStart };
+ //} else {
+ // return new int[] { -1, 0 };
+ //}
+ }
+}
+
+/**
+* Checks to see whether a string consists entirely of ignorable
+* characters.
+* @param str The string to test.
+* @return true if the string is empty of consists entirely of
+* characters that the number formatter's collator says are
+* ignorable at the primary-order level. false otherwise.
+*/
+UBool
+NFRule::allIgnorable(const UnicodeString& str) const
+{
+ // if the string is empty, we can just return true
+ if (str.length() == 0) {
+ return TRUE;
+ }
+
+#if !UCONFIG_NO_COLLATION
+ // if lenient parsing is turned on, walk through the string with
+ // a collation element iterator and make sure each collation
+ // element is 0 (ignorable) at the primary level
+ if (formatter->isLenient()) {
+ RuleBasedCollator* collator = (RuleBasedCollator*)(formatter->getCollator());
+ CollationElementIterator* iter = collator->createCollationElementIterator(str);
+
+ UErrorCode err = U_ZERO_ERROR;
+ int32_t o = iter->next(err);
+ while (o != CollationElementIterator::NULLORDER
+ && CollationElementIterator::primaryOrder(o) == 0) {
+ o = iter->next(err);
+ }
+
+ delete iter;
+ return o == CollationElementIterator::NULLORDER;
+ }
+#endif
+
+ // if lenient parsing is turned off, there is no such thing as
+ // an ignorable character: return true only if the string is empty
+ return FALSE;
+}
+
+U_NAMESPACE_END
+
+/* U_HAVE_RBNF */
+#endif
+
+