diff options
author | Peter Breitenlohner <peb@mppmu.mpg.de> | 2009-04-20 18:13:48 +0000 |
---|---|---|
committer | Peter Breitenlohner <peb@mppmu.mpg.de> | 2009-04-20 18:13:48 +0000 |
commit | e5786f530f9555469c01435f86039b06aa53feba (patch) | |
tree | c868e8d32282422d7d445b729db95c3fcdafb6d0 /Build/source/libs/icu/icu-xetex/common/rbbitblb.cpp | |
parent | ebaa1768b43c8606d923d2e861b5286b74207b3e (diff) |
new build system: build icu libs and xetex plus misc updates
git-svn-id: svn://tug.org/texlive/trunk@12759 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Build/source/libs/icu/icu-xetex/common/rbbitblb.cpp')
-rw-r--r-- | Build/source/libs/icu/icu-xetex/common/rbbitblb.cpp | 1232 |
1 files changed, 1232 insertions, 0 deletions
diff --git a/Build/source/libs/icu/icu-xetex/common/rbbitblb.cpp b/Build/source/libs/icu/icu-xetex/common/rbbitblb.cpp new file mode 100644 index 00000000000..78fd1c51d9c --- /dev/null +++ b/Build/source/libs/icu/icu-xetex/common/rbbitblb.cpp @@ -0,0 +1,1232 @@ +/* +********************************************************************** +* Copyright (c) 2002-2007, International Business Machines +* Corporation and others. All Rights Reserved. +********************************************************************** +*/ +// +// rbbitblb.cpp +// + + +#include "unicode/utypes.h" + +#if !UCONFIG_NO_BREAK_ITERATION + +#include "unicode/unistr.h" +#include "rbbitblb.h" +#include "rbbirb.h" +#include "rbbisetb.h" +#include "rbbidata.h" +#include "cstring.h" +#include "uassert.h" +#include "cmemory.h" + +U_NAMESPACE_BEGIN + +RBBITableBuilder::RBBITableBuilder(RBBIRuleBuilder *rb, RBBINode **rootNode) : + fTree(*rootNode) { + fRB = rb; + fStatus = fRB->fStatus; + UErrorCode status = U_ZERO_ERROR; + fDStates = new UVector(status); + if (U_FAILURE(*fStatus)) { + return; + } + if (U_FAILURE(status)) { + *fStatus = status; + return; + } + if (fDStates == NULL) { + *fStatus = U_MEMORY_ALLOCATION_ERROR;; + } +} + + + +RBBITableBuilder::~RBBITableBuilder() { + int i; + for (i=0; i<fDStates->size(); i++) { + delete (RBBIStateDescriptor *)fDStates->elementAt(i); + } + delete fDStates; +} + + +//----------------------------------------------------------------------------- +// +// RBBITableBuilder::build - This is the main function for building the DFA state transtion +// table from the RBBI rules parse tree. +// +//----------------------------------------------------------------------------- +void RBBITableBuilder::build() { + + if (U_FAILURE(*fStatus)) { + return; + } + + // If there were no rules, just return. This situation can easily arise + // for the reverse rules. + if (fTree==NULL) { + return; + } + + // + // Walk through the tree, replacing any references to $variables with a copy of the + // parse tree for the substition expression. + // + fTree = fTree->flattenVariables(); +#ifdef RBBI_DEBUG + if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "ftree")) { + RBBIDebugPuts("Parse tree after flattening variable references."); + fTree->printTree(TRUE); + } +#endif + + // + // If the rules contained any references to {bof} + // add a {bof} <cat> <former root of tree> to the + // tree. Means that all matches must start out with the + // {bof} fake character. + // + if (fRB->fSetBuilder->sawBOF()) { + RBBINode *bofTop = new RBBINode(RBBINode::opCat); + RBBINode *bofLeaf = new RBBINode(RBBINode::leafChar); + bofTop->fLeftChild = bofLeaf; + bofTop->fRightChild = fTree; + bofLeaf->fParent = bofTop; + bofLeaf->fVal = 2; // Reserved value for {bof}. + fTree = bofTop; + } + + // + // Add a unique right-end marker to the expression. + // Appears as a cat-node, left child being the original tree, + // right child being the end marker. + // + RBBINode *cn = new RBBINode(RBBINode::opCat); + cn->fLeftChild = fTree; + fTree->fParent = cn; + cn->fRightChild = new RBBINode(RBBINode::endMark); + cn->fRightChild->fParent = cn; + fTree = cn; + + // + // Replace all references to UnicodeSets with the tree for the equivalent + // expression. + // + fTree->flattenSets(); +#ifdef RBBI_DEBUG + if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "stree")) { + RBBIDebugPuts("Parse tree after flattening Unicode Set references."); + fTree->printTree(TRUE); + } +#endif + + + // + // calculate the functions nullable, firstpos, lastpos and followpos on + // nodes in the parse tree. + // See the alogrithm description in Aho. + // Understanding how this works by looking at the code alone will be + // nearly impossible. + // + calcNullable(fTree); + calcFirstPos(fTree); + calcLastPos(fTree); + calcFollowPos(fTree); + if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "pos")) { + RBBIDebugPuts("\n"); + printPosSets(fTree); + } + + // + // For "chained" rules, modify the followPos sets + // + if (fRB->fChainRules) { + calcChainedFollowPos(fTree); + } + + // + // BOF (start of input) test fixup. + // + if (fRB->fSetBuilder->sawBOF()) { + bofFixup(); + } + + // + // Build the DFA state transition tables. + // + buildStateTable(); + flagAcceptingStates(); + flagLookAheadStates(); + flagTaggedStates(); + + // + // Update the global table of rule status {tag} values + // The rule builder has a global vector of status values that are common + // for all tables. Merge the ones from this table into the global set. + // + mergeRuleStatusVals(); + + if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "states")) {printStates();}; +} + + + +//----------------------------------------------------------------------------- +// +// calcNullable. Impossible to explain succinctly. See Aho, section 3.9 +// +//----------------------------------------------------------------------------- +void RBBITableBuilder::calcNullable(RBBINode *n) { + if (n == NULL) { + return; + } + if (n->fType == RBBINode::setRef || + n->fType == RBBINode::endMark ) { + // These are non-empty leaf node types. + n->fNullable = FALSE; + return; + } + + if (n->fType == RBBINode::lookAhead || n->fType == RBBINode::tag) { + // Lookahead marker node. It's a leaf, so no recursion on children. + // It's nullable because it does not match any literal text from the input stream. + n->fNullable = TRUE; + return; + } + + + // The node is not a leaf. + // Calculate nullable on its children. + calcNullable(n->fLeftChild); + calcNullable(n->fRightChild); + + // Apply functions from table 3.40 in Aho + if (n->fType == RBBINode::opOr) { + n->fNullable = n->fLeftChild->fNullable || n->fRightChild->fNullable; + } + else if (n->fType == RBBINode::opCat) { + n->fNullable = n->fLeftChild->fNullable && n->fRightChild->fNullable; + } + else if (n->fType == RBBINode::opStar || n->fType == RBBINode::opQuestion) { + n->fNullable = TRUE; + } + else { + n->fNullable = FALSE; + } +} + + + + +//----------------------------------------------------------------------------- +// +// calcFirstPos. Impossible to explain succinctly. See Aho, section 3.9 +// +//----------------------------------------------------------------------------- +void RBBITableBuilder::calcFirstPos(RBBINode *n) { + if (n == NULL) { + return; + } + if (n->fType == RBBINode::leafChar || + n->fType == RBBINode::endMark || + n->fType == RBBINode::lookAhead || + n->fType == RBBINode::tag) { + // These are non-empty leaf node types. + // Note: In order to maintain the sort invariant on the set, + // this function should only be called on a node whose set is + // empty to start with. + n->fFirstPosSet->addElement(n, *fStatus); + return; + } + + // The node is not a leaf. + // Calculate firstPos on its children. + calcFirstPos(n->fLeftChild); + calcFirstPos(n->fRightChild); + + // Apply functions from table 3.40 in Aho + if (n->fType == RBBINode::opOr) { + setAdd(n->fFirstPosSet, n->fLeftChild->fFirstPosSet); + setAdd(n->fFirstPosSet, n->fRightChild->fFirstPosSet); + } + else if (n->fType == RBBINode::opCat) { + setAdd(n->fFirstPosSet, n->fLeftChild->fFirstPosSet); + if (n->fLeftChild->fNullable) { + setAdd(n->fFirstPosSet, n->fRightChild->fFirstPosSet); + } + } + else if (n->fType == RBBINode::opStar || + n->fType == RBBINode::opQuestion || + n->fType == RBBINode::opPlus) { + setAdd(n->fFirstPosSet, n->fLeftChild->fFirstPosSet); + } +} + + + +//----------------------------------------------------------------------------- +// +// calcLastPos. Impossible to explain succinctly. See Aho, section 3.9 +// +//----------------------------------------------------------------------------- +void RBBITableBuilder::calcLastPos(RBBINode *n) { + if (n == NULL) { + return; + } + if (n->fType == RBBINode::leafChar || + n->fType == RBBINode::endMark || + n->fType == RBBINode::lookAhead || + n->fType == RBBINode::tag) { + // These are non-empty leaf node types. + // Note: In order to maintain the sort invariant on the set, + // this function should only be called on a node whose set is + // empty to start with. + n->fLastPosSet->addElement(n, *fStatus); + return; + } + + // The node is not a leaf. + // Calculate lastPos on its children. + calcLastPos(n->fLeftChild); + calcLastPos(n->fRightChild); + + // Apply functions from table 3.40 in Aho + if (n->fType == RBBINode::opOr) { + setAdd(n->fLastPosSet, n->fLeftChild->fLastPosSet); + setAdd(n->fLastPosSet, n->fRightChild->fLastPosSet); + } + else if (n->fType == RBBINode::opCat) { + setAdd(n->fLastPosSet, n->fRightChild->fLastPosSet); + if (n->fRightChild->fNullable) { + setAdd(n->fLastPosSet, n->fLeftChild->fLastPosSet); + } + } + else if (n->fType == RBBINode::opStar || + n->fType == RBBINode::opQuestion || + n->fType == RBBINode::opPlus) { + setAdd(n->fLastPosSet, n->fLeftChild->fLastPosSet); + } +} + + + +//----------------------------------------------------------------------------- +// +// calcFollowPos. Impossible to explain succinctly. See Aho, section 3.9 +// +//----------------------------------------------------------------------------- +void RBBITableBuilder::calcFollowPos(RBBINode *n) { + if (n == NULL || + n->fType == RBBINode::leafChar || + n->fType == RBBINode::endMark) { + return; + } + + calcFollowPos(n->fLeftChild); + calcFollowPos(n->fRightChild); + + // Aho rule #1 + if (n->fType == RBBINode::opCat) { + RBBINode *i; // is 'i' in Aho's description + uint32_t ix; + + UVector *LastPosOfLeftChild = n->fLeftChild->fLastPosSet; + + for (ix=0; ix<(uint32_t)LastPosOfLeftChild->size(); ix++) { + i = (RBBINode *)LastPosOfLeftChild->elementAt(ix); + setAdd(i->fFollowPos, n->fRightChild->fFirstPosSet); + } + } + + // Aho rule #2 + if (n->fType == RBBINode::opStar || + n->fType == RBBINode::opPlus) { + RBBINode *i; // again, n and i are the names from Aho's description. + uint32_t ix; + + for (ix=0; ix<(uint32_t)n->fLastPosSet->size(); ix++) { + i = (RBBINode *)n->fLastPosSet->elementAt(ix); + setAdd(i->fFollowPos, n->fFirstPosSet); + } + } + + + +} + + +//----------------------------------------------------------------------------- +// +// calcChainedFollowPos. Modify the previously calculated followPos sets +// to implement rule chaining. NOT described by Aho +// +//----------------------------------------------------------------------------- +void RBBITableBuilder::calcChainedFollowPos(RBBINode *tree) { + + UVector endMarkerNodes(*fStatus); + UVector leafNodes(*fStatus); + int32_t i; + + if (U_FAILURE(*fStatus)) { + return; + } + + // get a list of all endmarker nodes. + tree->findNodes(&endMarkerNodes, RBBINode::endMark, *fStatus); + + // get a list all leaf nodes + tree->findNodes(&leafNodes, RBBINode::leafChar, *fStatus); + if (U_FAILURE(*fStatus)) { + return; + } + + // Get all nodes that can be the start a match, which is FirstPosition() + // of the portion of the tree corresponding to user-written rules. + // See the tree description in bofFixup(). + RBBINode *userRuleRoot = tree; + if (fRB->fSetBuilder->sawBOF()) { + userRuleRoot = tree->fLeftChild->fRightChild; + } + U_ASSERT(userRuleRoot != NULL); + UVector *matchStartNodes = userRuleRoot->fFirstPosSet; + + + // Iteratate over all leaf nodes, + // + int32_t endNodeIx; + int32_t startNodeIx; + + for (endNodeIx=0; endNodeIx<leafNodes.size(); endNodeIx++) { + RBBINode *tNode = (RBBINode *)leafNodes.elementAt(endNodeIx); + RBBINode *endNode = NULL; + + // Identify leaf nodes that correspond to overall rule match positions. + // These include an endMarkerNode in their followPos sets. + for (i=0; i<endMarkerNodes.size(); i++) { + if (tNode->fFollowPos->contains(endMarkerNodes.elementAt(i))) { + endNode = tNode; + break; + } + } + if (endNode == NULL) { + // node wasn't an end node. Try again with the next. + continue; + } + + // We've got a node that can end a match. + + // Line Break Specific hack: If this node's val correspond to the $CM char class, + // don't chain from it. + // TODO: Add rule syntax for this behavior, get specifics out of here and + // into the rule file. + if (fRB->fLBCMNoChain) { + UChar32 c = this->fRB->fSetBuilder->getFirstChar(endNode->fVal); + if (c != -1) { + // c == -1 occurs with sets containing only the {eof} marker string. + ULineBreak cLBProp = (ULineBreak)u_getIntPropertyValue(c, UCHAR_LINE_BREAK); + if (cLBProp == U_LB_COMBINING_MARK) { + continue; + } + } + } + + + // Now iterate over the nodes that can start a match, looking for ones + // with the same char class as our ending node. + RBBINode *startNode; + for (startNodeIx = 0; startNodeIx<matchStartNodes->size(); startNodeIx++) { + startNode = (RBBINode *)matchStartNodes->elementAt(startNodeIx); + if (startNode->fType != RBBINode::leafChar) { + continue; + } + + if (endNode->fVal == startNode->fVal) { + // The end val (character class) of one possible match is the + // same as the start of another. + + // Add all nodes from the followPos of the start node to the + // followPos set of the end node, which will have the effect of + // letting matches transition from a match state at endNode + // to the second char of a match starting with startNode. + setAdd(endNode->fFollowPos, startNode->fFollowPos); + } + } + } +} + + +//----------------------------------------------------------------------------- +// +// bofFixup. Fixup for state tables that include {bof} beginning of input testing. +// Do an swizzle similar to chaining, modifying the followPos set of +// the bofNode to include the followPos nodes from other {bot} nodes +// scattered through the tree. +// +// This function has much in common with calcChainedFollowPos(). +// +//----------------------------------------------------------------------------- +void RBBITableBuilder::bofFixup() { + + if (U_FAILURE(*fStatus)) { + return; + } + + // The parse tree looks like this ... + // fTree root ---> <cat> + // / \ . + // <cat> <#end node> + // / \ . + // <bofNode> rest + // of tree + // + // We will be adding things to the followPos set of the <bofNode> + // + RBBINode *bofNode = fTree->fLeftChild->fLeftChild; + U_ASSERT(bofNode->fType == RBBINode::leafChar); + U_ASSERT(bofNode->fVal == 2); + + // Get all nodes that can be the start a match of the user-written rules + // (excluding the fake bofNode) + // We want the nodes that can start a match in the + // part labeled "rest of tree" + // + UVector *matchStartNodes = fTree->fLeftChild->fRightChild->fFirstPosSet; + + RBBINode *startNode; + int startNodeIx; + for (startNodeIx = 0; startNodeIx<matchStartNodes->size(); startNodeIx++) { + startNode = (RBBINode *)matchStartNodes->elementAt(startNodeIx); + if (startNode->fType != RBBINode::leafChar) { + continue; + } + + if (startNode->fVal == bofNode->fVal) { + // We found a leaf node corresponding to a {bof} that was + // explicitly written into a rule. + // Add everything from the followPos set of this node to the + // followPos set of the fake bofNode at the start of the tree. + // + setAdd(bofNode->fFollowPos, startNode->fFollowPos); + } + } +} + +//----------------------------------------------------------------------------- +// +// buildStateTable() Determine the set of runtime DFA states and the +// transition tables for these states, by the algorithm +// of fig. 3.44 in Aho. +// +// Most of the comments are quotes of Aho's psuedo-code. +// +//----------------------------------------------------------------------------- +void RBBITableBuilder::buildStateTable() { + if (U_FAILURE(*fStatus)) { + return; + } + // + // Add a dummy state 0 - the stop state. Not from Aho. + int lastInputSymbol = fRB->fSetBuilder->getNumCharCategories() - 1; + RBBIStateDescriptor *failState = new RBBIStateDescriptor(lastInputSymbol, fStatus); + failState->fPositions = new UVector(*fStatus); + if (U_FAILURE(*fStatus)) { + return; + } + fDStates->addElement(failState, *fStatus); + if (U_FAILURE(*fStatus)) { + return; + } + + // initially, the only unmarked state in Dstates is firstpos(root), + // where toot is the root of the syntax tree for (r)#; + RBBIStateDescriptor *initialState = new RBBIStateDescriptor(lastInputSymbol, fStatus); + if (U_FAILURE(*fStatus)) { + return; + } + initialState->fPositions = new UVector(*fStatus); + if (U_FAILURE(*fStatus)) { + return; + } + setAdd(initialState->fPositions, fTree->fFirstPosSet); + fDStates->addElement(initialState, *fStatus); + if (U_FAILURE(*fStatus)) { + return; + } + + // while there is an unmarked state T in Dstates do begin + for (;;) { + RBBIStateDescriptor *T = NULL; + int32_t tx; + for (tx=1; tx<fDStates->size(); tx++) { + RBBIStateDescriptor *temp; + temp = (RBBIStateDescriptor *)fDStates->elementAt(tx); + if (temp->fMarked == FALSE) { + T = temp; + break; + } + } + if (T == NULL) { + break; + } + + // mark T; + T->fMarked = TRUE; + + // for each input symbol a do begin + int32_t a; + for (a = 1; a<=lastInputSymbol; a++) { + // let U be the set of positions that are in followpos(p) + // for some position p in T + // such that the symbol at position p is a; + UVector *U = NULL; + RBBINode *p; + int32_t px; + for (px=0; px<T->fPositions->size(); px++) { + p = (RBBINode *)T->fPositions->elementAt(px); + if ((p->fType == RBBINode::leafChar) && (p->fVal == a)) { + if (U == NULL) { + U = new UVector(*fStatus); + } + setAdd(U, p->fFollowPos); + } + } + + // if U is not empty and not in DStates then + int32_t ux = 0; + UBool UinDstates = FALSE; + if (U != NULL) { + U_ASSERT(U->size() > 0); + int ix; + for (ix=0; ix<fDStates->size(); ix++) { + RBBIStateDescriptor *temp2; + temp2 = (RBBIStateDescriptor *)fDStates->elementAt(ix); + if (setEquals(U, temp2->fPositions)) { + delete U; + U = temp2->fPositions; + ux = ix; + UinDstates = TRUE; + break; + } + } + + // Add U as an unmarked state to Dstates + if (!UinDstates) + { + RBBIStateDescriptor *newState = new RBBIStateDescriptor(lastInputSymbol, fStatus); + if (U_FAILURE(*fStatus)) { + return; + } + newState->fPositions = U; + fDStates->addElement(newState, *fStatus); + if (U_FAILURE(*fStatus)) { + return; + } + ux = fDStates->size()-1; + } + + // Dtran[T, a] := U; + T->fDtran->setElementAt(ux, a); + } + } + } +} + + + +//----------------------------------------------------------------------------- +// +// flagAcceptingStates Identify accepting states. +// First get a list of all of the end marker nodes. +// Then, for each state s, +// if s contains one of the end marker nodes in its list of tree positions then +// s is an accepting state. +// +//----------------------------------------------------------------------------- +void RBBITableBuilder::flagAcceptingStates() { + if (U_FAILURE(*fStatus)) { + return; + } + UVector endMarkerNodes(*fStatus); + RBBINode *endMarker; + int32_t i; + int32_t n; + + if (U_FAILURE(*fStatus)) { + return; + } + + fTree->findNodes(&endMarkerNodes, RBBINode::endMark, *fStatus); + if (U_FAILURE(*fStatus)) { + return; + } + + for (i=0; i<endMarkerNodes.size(); i++) { + endMarker = (RBBINode *)endMarkerNodes.elementAt(i); + for (n=0; n<fDStates->size(); n++) { + RBBIStateDescriptor *sd = (RBBIStateDescriptor *)fDStates->elementAt(n); + if (sd->fPositions->indexOf(endMarker) >= 0) { + // Any non-zero value for fAccepting means this is an accepting node. + // The value is what will be returned to the user as the break status. + // If no other value was specified, force it to -1. + + if (sd->fAccepting==0) { + // State hasn't been marked as accepting yet. Do it now. + sd->fAccepting = endMarker->fVal; + if (sd->fAccepting == 0) { + sd->fAccepting = -1; + } + } + if (sd->fAccepting==-1 && endMarker->fVal != 0) { + // Both lookahead and non-lookahead accepting for this state. + // Favor the look-ahead. Expedient for line break. + // TODO: need a more elegant resolution for conflicting rules. + sd->fAccepting = endMarker->fVal; + } + // implicit else: + // if sd->fAccepting already had a value other than 0 or -1, leave it be. + + // If the end marker node is from a look-ahead rule, set + // the fLookAhead field or this state also. + if (endMarker->fLookAheadEnd) { + // TODO: don't change value if already set? + // TODO: allow for more than one active look-ahead rule in engine. + // Make value here an index to a side array in engine? + sd->fLookAhead = sd->fAccepting; + } + } + } + } +} + + +//----------------------------------------------------------------------------- +// +// flagLookAheadStates Very similar to flagAcceptingStates, above. +// +//----------------------------------------------------------------------------- +void RBBITableBuilder::flagLookAheadStates() { + if (U_FAILURE(*fStatus)) { + return; + } + UVector lookAheadNodes(*fStatus); + RBBINode *lookAheadNode; + int32_t i; + int32_t n; + + fTree->findNodes(&lookAheadNodes, RBBINode::lookAhead, *fStatus); + if (U_FAILURE(*fStatus)) { + return; + } + for (i=0; i<lookAheadNodes.size(); i++) { + lookAheadNode = (RBBINode *)lookAheadNodes.elementAt(i); + + for (n=0; n<fDStates->size(); n++) { + RBBIStateDescriptor *sd = (RBBIStateDescriptor *)fDStates->elementAt(n); + if (sd->fPositions->indexOf(lookAheadNode) >= 0) { + sd->fLookAhead = lookAheadNode->fVal; + } + } + } +} + + + + +//----------------------------------------------------------------------------- +// +// flagTaggedStates +// +//----------------------------------------------------------------------------- +void RBBITableBuilder::flagTaggedStates() { + if (U_FAILURE(*fStatus)) { + return; + } + UVector tagNodes(*fStatus); + RBBINode *tagNode; + int32_t i; + int32_t n; + + if (U_FAILURE(*fStatus)) { + return; + } + fTree->findNodes(&tagNodes, RBBINode::tag, *fStatus); + if (U_FAILURE(*fStatus)) { + return; + } + for (i=0; i<tagNodes.size(); i++) { // For each tag node t (all of 'em) + tagNode = (RBBINode *)tagNodes.elementAt(i); + + for (n=0; n<fDStates->size(); n++) { // For each state s (row in the state table) + RBBIStateDescriptor *sd = (RBBIStateDescriptor *)fDStates->elementAt(n); + if (sd->fPositions->indexOf(tagNode) >= 0) { // if s include the tag node t + sortedAdd(&sd->fTagVals, tagNode->fVal); + } + } + } +} + + + + +//----------------------------------------------------------------------------- +// +// mergeRuleStatusVals +// +// Update the global table of rule status {tag} values +// The rule builder has a global vector of status values that are common +// for all tables. Merge the ones from this table into the global set. +// +//----------------------------------------------------------------------------- +void RBBITableBuilder::mergeRuleStatusVals() { + // + // The basic outline of what happens here is this... + // + // for each state in this state table + // if the status tag list for this state is in the global statuses list + // record where and + // continue with the next state + // else + // add the tag list for this state to the global list. + // + int i; + int n; + + // Pre-set a single tag of {0} into the table. + // We will need this as a default, for rule sets with no explicit tagging. + if (fRB->fRuleStatusVals->size() == 0) { + fRB->fRuleStatusVals->addElement(1, *fStatus); // Num of statuses in group + fRB->fRuleStatusVals->addElement((int32_t)0, *fStatus); // and our single status of zero + } + + // For each state + for (n=0; n<fDStates->size(); n++) { + RBBIStateDescriptor *sd = (RBBIStateDescriptor *)fDStates->elementAt(n); + UVector *thisStatesTagValues = sd->fTagVals; + if (thisStatesTagValues == NULL) { + // No tag values are explicitly associated with this state. + // Set the default tag value. + sd->fTagsIdx = 0; + continue; + } + + // There are tag(s) associated with this state. + // fTagsIdx will be the index into the global tag list for this state's tag values. + // Initial value of -1 flags that we haven't got it set yet. + sd->fTagsIdx = -1; + int32_t thisTagGroupStart = 0; // indexes into the global rule status vals list + int32_t nextTagGroupStart = 0; + + // Loop runs once per group of tags in the global list + while (nextTagGroupStart < fRB->fRuleStatusVals->size()) { + thisTagGroupStart = nextTagGroupStart; + nextTagGroupStart += fRB->fRuleStatusVals->elementAti(thisTagGroupStart) + 1; + if (thisStatesTagValues->size() != fRB->fRuleStatusVals->elementAti(thisTagGroupStart)) { + // The number of tags for this state is different from + // the number of tags in this group from the global list. + // Continue with the next group from the global list. + continue; + } + // The lengths match, go ahead and compare the actual tag values + // between this state and the group from the global list. + for (i=0; i<thisStatesTagValues->size(); i++) { + if (thisStatesTagValues->elementAti(i) != + fRB->fRuleStatusVals->elementAti(thisTagGroupStart + 1 + i) ) { + // Mismatch. + break; + } + } + + if (i == thisStatesTagValues->size()) { + // We found a set of tag values in the global list that match + // those for this state. Use them. + sd->fTagsIdx = thisTagGroupStart; + break; + } + } + + if (sd->fTagsIdx == -1) { + // No suitable entry in the global tag list already. Add one + sd->fTagsIdx = fRB->fRuleStatusVals->size(); + fRB->fRuleStatusVals->addElement(thisStatesTagValues->size(), *fStatus); + for (i=0; i<thisStatesTagValues->size(); i++) { + fRB->fRuleStatusVals->addElement(thisStatesTagValues->elementAti(i), *fStatus); + } + } + } +} + + + + + + + +//----------------------------------------------------------------------------- +// +// sortedAdd Add a value to a vector of sorted values (ints). +// Do not replicate entries; if the value is already there, do not +// add a second one. +// Lazily create the vector if it does not already exist. +// +//----------------------------------------------------------------------------- +void RBBITableBuilder::sortedAdd(UVector **vector, int32_t val) { + int32_t i; + + if (*vector == NULL) { + *vector = new UVector(*fStatus); + } + if (*vector == NULL || U_FAILURE(*fStatus)) { + return; + } + UVector *vec = *vector; + int32_t vSize = vec->size(); + for (i=0; i<vSize; i++) { + int32_t valAtI = vec->elementAti(i); + if (valAtI == val) { + // The value is already in the vector. Don't add it again. + return; + } + if (valAtI > val) { + break; + } + } + vec->insertElementAt(val, i, *fStatus); +} + + + +//----------------------------------------------------------------------------- +// +// setAdd Set operation on UVector +// dest = dest union source +// Elements may only appear once and must be sorted. +// +//----------------------------------------------------------------------------- +void RBBITableBuilder::setAdd(UVector *dest, UVector *source) { + int32_t destOriginalSize = dest->size(); + int32_t sourceSize = source->size(); + int32_t di = 0; + void *(destS[16]), *(sourceS[16]); // Handle small cases without malloc + void **destH = 0, **sourceH = 0; + void **destBuff, **sourceBuff; + void **destLim, **sourceLim; + + if (destOriginalSize > (int32_t)(sizeof(destS)/sizeof(destS[0]))) { + destH = (void **)uprv_malloc(sizeof(void *) * destOriginalSize); + destBuff = destH; + } + else { + destBuff = destS; + } + if (destBuff == 0) { + return; + } + destLim = destBuff + destOriginalSize; + + if (sourceSize > (int32_t)(sizeof(sourceS)/sizeof(sourceS[0]))) { + sourceH = (void **)uprv_malloc(sizeof(void *) * sourceSize); + sourceBuff = sourceH; + } + else { + sourceBuff = sourceS; + } + if (sourceBuff == 0) { + if (destH) { + uprv_free(destH); + } + return; + } + sourceLim = sourceBuff + sourceSize; + + // Avoid multiple "get element" calls by getting the contents into arrays + (void) dest->toArray(destBuff); + (void) source->toArray(sourceBuff); + + dest->setSize(sourceSize+destOriginalSize); + + while (sourceBuff < sourceLim && destBuff < destLim) { + if (*destBuff == *sourceBuff) { + dest->setElementAt(*sourceBuff++, di++); + destBuff++; + } + // This check is required for machines with segmented memory, like i5/OS. + // Direct pointer comparison is not recommended. + else if (uprv_memcmp(destBuff, sourceBuff, sizeof(void *)) < 0) { + dest->setElementAt(*destBuff++, di++); + } + else { /* *sourceBuff < *destBuff */ + dest->setElementAt(*sourceBuff++, di++); + } + } + + // At most one of these two cleanup loops will execute + while (destBuff < destLim) { + dest->setElementAt(*destBuff++, di++); + } + while (sourceBuff < sourceLim) { + dest->setElementAt(*sourceBuff++, di++); + } + + dest->setSize(di); + if (destH) { + uprv_free(destH); + } + if (sourceH) { + uprv_free(sourceH); + } +} + + + +//----------------------------------------------------------------------------- +// +// setEqual Set operation on UVector. +// Compare for equality. +// Elements must be sorted. +// +//----------------------------------------------------------------------------- +UBool RBBITableBuilder::setEquals(UVector *a, UVector *b) { + return a->equals(*b); +} + + +//----------------------------------------------------------------------------- +// +// printPosSets Debug function. Dump Nullable, firstpos, lastpos and followpos +// for each node in the tree. +// +//----------------------------------------------------------------------------- +#ifdef RBBI_DEBUG +void RBBITableBuilder::printPosSets(RBBINode *n) { + if (n==NULL) { + return; + } + n->printNode(); + RBBIDebugPrintf(" Nullable: %s\n", n->fNullable?"TRUE":"FALSE"); + + RBBIDebugPrintf(" firstpos: "); + printSet(n->fFirstPosSet); + + RBBIDebugPrintf(" lastpos: "); + printSet(n->fLastPosSet); + + RBBIDebugPrintf(" followpos: "); + printSet(n->fFollowPos); + + printPosSets(n->fLeftChild); + printPosSets(n->fRightChild); +} +#endif + + + +//----------------------------------------------------------------------------- +// +// getTableSize() Calculate the size of the runtime form of this +// state transition table. +// +//----------------------------------------------------------------------------- +int32_t RBBITableBuilder::getTableSize() const { + int32_t size = 0; + int32_t numRows; + int32_t numCols; + int32_t rowSize; + + if (fTree == NULL) { + return 0; + } + + size = sizeof(RBBIStateTable) - 4; // The header, with no rows to the table. + + numRows = fDStates->size(); + numCols = fRB->fSetBuilder->getNumCharCategories(); + + // Note The declaration of RBBIStateTableRow is for a table of two columns. + // Therefore we subtract two from numCols when determining + // how much storage to add to a row for the total columns. + rowSize = sizeof(RBBIStateTableRow) + sizeof(uint16_t)*(numCols-2); + size += numRows * rowSize; + return size; +} + + + +//----------------------------------------------------------------------------- +// +// exportTable() export the state transition table in the format required +// by the runtime engine. getTableSize() bytes of memory +// must be available at the output address "where". +// +//----------------------------------------------------------------------------- +void RBBITableBuilder::exportTable(void *where) { + RBBIStateTable *table = (RBBIStateTable *)where; + uint32_t state; + int col; + + if (U_FAILURE(*fStatus) || fTree == NULL) { + return; + } + + if (fRB->fSetBuilder->getNumCharCategories() > 0x7fff || + fDStates->size() > 0x7fff) { + *fStatus = U_BRK_INTERNAL_ERROR; + return; + } + + table->fRowLen = sizeof(RBBIStateTableRow) + + sizeof(uint16_t) * (fRB->fSetBuilder->getNumCharCategories() - 2); + table->fNumStates = fDStates->size(); + table->fFlags = 0; + if (fRB->fLookAheadHardBreak) { + table->fFlags |= RBBI_LOOKAHEAD_HARD_BREAK; + } + if (fRB->fSetBuilder->sawBOF()) { + table->fFlags |= RBBI_BOF_REQUIRED; + } + table->fReserved = 0; + + for (state=0; state<table->fNumStates; state++) { + RBBIStateDescriptor *sd = (RBBIStateDescriptor *)fDStates->elementAt(state); + RBBIStateTableRow *row = (RBBIStateTableRow *)(table->fTableData + state*table->fRowLen); + U_ASSERT (-32768 < sd->fAccepting && sd->fAccepting <= 32767); + U_ASSERT (-32768 < sd->fLookAhead && sd->fLookAhead <= 32767); + row->fAccepting = (int16_t)sd->fAccepting; + row->fLookAhead = (int16_t)sd->fLookAhead; + row->fTagIdx = (int16_t)sd->fTagsIdx; + for (col=0; col<fRB->fSetBuilder->getNumCharCategories(); col++) { + row->fNextState[col] = (uint16_t)sd->fDtran->elementAti(col); + } + } +} + + + +//----------------------------------------------------------------------------- +// +// printSet Debug function. Print the contents of a UVector +// +//----------------------------------------------------------------------------- +#ifdef RBBI_DEBUG +void RBBITableBuilder::printSet(UVector *s) { + int32_t i; + for (i=0; i<s->size(); i++) { + void *v = s->elementAt(i); + RBBIDebugPrintf("%10p", v); + } + RBBIDebugPrintf("\n"); +} +#endif + + +//----------------------------------------------------------------------------- +// +// printStates Debug Function. Dump the fully constructed state transition table. +// +//----------------------------------------------------------------------------- +#ifdef RBBI_DEBUG +void RBBITableBuilder::printStates() { + int c; // input "character" + int n; // state number + + RBBIDebugPrintf("state | i n p u t s y m b o l s \n"); + RBBIDebugPrintf(" | Acc LA Tag"); + for (c=0; c<fRB->fSetBuilder->getNumCharCategories(); c++) { + RBBIDebugPrintf(" %2d", c); + } + RBBIDebugPrintf("\n"); + RBBIDebugPrintf(" |---------------"); + for (c=0; c<fRB->fSetBuilder->getNumCharCategories(); c++) { + RBBIDebugPrintf("---"); + } + RBBIDebugPrintf("\n"); + + for (n=0; n<fDStates->size(); n++) { + RBBIStateDescriptor *sd = (RBBIStateDescriptor *)fDStates->elementAt(n); + RBBIDebugPrintf(" %3d | " , n); + RBBIDebugPrintf("%3d %3d %5d ", sd->fAccepting, sd->fLookAhead, sd->fTagsIdx); + for (c=0; c<fRB->fSetBuilder->getNumCharCategories(); c++) { + RBBIDebugPrintf(" %2d", sd->fDtran->elementAti(c)); + } + RBBIDebugPrintf("\n"); + } + RBBIDebugPrintf("\n\n"); +} +#endif + + + +//----------------------------------------------------------------------------- +// +// printRuleStatusTable Debug Function. Dump the common rule status table +// +//----------------------------------------------------------------------------- +#ifdef RBBI_DEBUG +void RBBITableBuilder::printRuleStatusTable() { + int32_t thisRecord = 0; + int32_t nextRecord = 0; + int i; + UVector *tbl = fRB->fRuleStatusVals; + + RBBIDebugPrintf("index | tags \n"); + RBBIDebugPrintf("-------------------\n"); + + while (nextRecord < tbl->size()) { + thisRecord = nextRecord; + nextRecord = thisRecord + tbl->elementAti(thisRecord) + 1; + RBBIDebugPrintf("%4d ", thisRecord); + for (i=thisRecord+1; i<nextRecord; i++) { + RBBIDebugPrintf(" %5d", tbl->elementAti(i)); + } + RBBIDebugPrintf("\n"); + } + RBBIDebugPrintf("\n\n"); +} +#endif + + +//----------------------------------------------------------------------------- +// +// RBBIStateDescriptor Methods. This is a very struct-like class +// Most access is directly to the fields. +// +//----------------------------------------------------------------------------- + +RBBIStateDescriptor::RBBIStateDescriptor(int lastInputSymbol, UErrorCode *fStatus) { + fMarked = FALSE; + fAccepting = 0; + fLookAhead = 0; + fTagsIdx = 0; + fTagVals = NULL; + fPositions = NULL; + fDtran = NULL; + + fDtran = new UVector(lastInputSymbol+1, *fStatus); + if (U_FAILURE(*fStatus)) { + return; + } + if (fDtran == NULL) { + *fStatus = U_MEMORY_ALLOCATION_ERROR; + return; + } + fDtran->setSize(lastInputSymbol+1); // fDtran needs to be pre-sized. + // It is indexed by input symbols, and will + // hold the next state number for each + // symbol. +} + + +RBBIStateDescriptor::~RBBIStateDescriptor() { + delete fPositions; + delete fDtran; + delete fTagVals; + fPositions = NULL; + fDtran = NULL; + fTagVals = NULL; +} + +U_NAMESPACE_END + +#endif /* #if !UCONFIG_NO_BREAK_ITERATION */ |