diff options
author | Peter Breitenlohner <peb@mppmu.mpg.de> | 2011-08-10 12:03:08 +0000 |
---|---|---|
committer | Peter Breitenlohner <peb@mppmu.mpg.de> | 2011-08-10 12:03:08 +0000 |
commit | 79b8b3a76d8eda7372bb4dedae0ec7aebdaebc12 (patch) | |
tree | 9e4992c8719febb576deb6120740611380d71f7a /Build/source/libs/icu/icu-4.8.1/i18n/nfrs.cpp | |
parent | 8cd13eb8f4bb7b92c6d9bb50aff9a62c37df026c (diff) |
icu 4.8.1
git-svn-id: svn://tug.org/texlive/trunk@23480 c570f23f-e606-0410-a88d-b1316a301751
Diffstat (limited to 'Build/source/libs/icu/icu-4.8.1/i18n/nfrs.cpp')
-rw-r--r-- | Build/source/libs/icu/icu-4.8.1/i18n/nfrs.cpp | 945 |
1 files changed, 945 insertions, 0 deletions
diff --git a/Build/source/libs/icu/icu-4.8.1/i18n/nfrs.cpp b/Build/source/libs/icu/icu-4.8.1/i18n/nfrs.cpp new file mode 100644 index 00000000000..b7b93b24b41 --- /dev/null +++ b/Build/source/libs/icu/icu-4.8.1/i18n/nfrs.cpp @@ -0,0 +1,945 @@ +/* +****************************************************************************** +* Copyright (C) 1997-2011, International Business Machines +* Corporation and others. All Rights Reserved. +****************************************************************************** +* file name: nfrs.cpp +* encoding: US-ASCII +* tab size: 8 (not used) +* indentation:4 +* +* Modification history +* Date Name Comments +* 10/11/2001 Doug Ported from ICU4J +*/ + +#include "nfrs.h" + +#if U_HAVE_RBNF + +#include "unicode/uchar.h" +#include "nfrule.h" +#include "nfrlist.h" +#include "patternprops.h" + +#ifdef RBNF_DEBUG +#include "cmemory.h" +#endif + +U_NAMESPACE_BEGIN + +#if 0 +// euclid's algorithm works with doubles +// note, doubles only get us up to one quadrillion or so, which +// isn't as much range as we get with longs. We probably still +// want either 64-bit math, or BigInteger. + +static int64_t +util_lcm(int64_t x, int64_t y) +{ + x.abs(); + y.abs(); + + if (x == 0 || y == 0) { + return 0; + } else { + do { + if (x < y) { + int64_t t = x; x = y; y = t; + } + x -= y * (x/y); + } while (x != 0); + + return y; + } +} + +#else +/** + * Calculates the least common multiple of x and y. + */ +static int64_t +util_lcm(int64_t x, int64_t y) +{ + // binary gcd algorithm from Knuth, "The Art of Computer Programming," + // vol. 2, 1st ed., pp. 298-299 + int64_t x1 = x; + int64_t y1 = y; + + int p2 = 0; + while ((x1 & 1) == 0 && (y1 & 1) == 0) { + ++p2; + x1 >>= 1; + y1 >>= 1; + } + + int64_t t; + if ((x1 & 1) == 1) { + t = -y1; + } else { + t = x1; + } + + while (t != 0) { + while ((t & 1) == 0) { + t = t >> 1; + } + if (t > 0) { + x1 = t; + } else { + y1 = -t; + } + t = x1 - y1; + } + + int64_t gcd = x1 << p2; + + // x * y == gcd(x, y) * lcm(x, y) + return x / gcd * y; +} +#endif + +static const UChar gPercent = 0x0025; +static const UChar gColon = 0x003a; +static const UChar gSemicolon = 0x003b; +static const UChar gLineFeed = 0x000a; + +static const UChar gFourSpaces[] = +{ + 0x20, 0x20, 0x20, 0x20, 0 +}; /* " " */ +static const UChar gPercentPercent[] = +{ + 0x25, 0x25, 0 +}; /* "%%" */ + +NFRuleSet::NFRuleSet(UnicodeString* descriptions, int32_t index, UErrorCode& status) + : name() + , rules(0) + , negativeNumberRule(NULL) + , fIsFractionRuleSet(FALSE) + , fIsPublic(FALSE) + , fRecursionCount(0) +{ + for (int i = 0; i < 3; ++i) { + fractionRules[i] = NULL; + } + + if (U_FAILURE(status)) { + return; + } + + UnicodeString& description = descriptions[index]; // !!! make sure index is valid + + if (description.length() == 0) { + // throw new IllegalArgumentException("Empty rule set description"); + status = U_PARSE_ERROR; + return; + } + + // if the description begins with a rule set name (the rule set + // name can be omitted in formatter descriptions that consist + // of only one rule set), copy it out into our "name" member + // and delete it from the description + if (description.charAt(0) == gPercent) { + int32_t pos = description.indexOf(gColon); + if (pos == -1) { + // throw new IllegalArgumentException("Rule set name doesn't end in colon"); + status = U_PARSE_ERROR; + } else { + name.setTo(description, 0, pos); + while (pos < description.length() && PatternProps::isWhiteSpace(description.charAt(++pos))) { + } + description.remove(0, pos); + } + } else { + name.setTo(UNICODE_STRING_SIMPLE("%default")); + } + + if (description.length() == 0) { + // throw new IllegalArgumentException("Empty rule set description"); + status = U_PARSE_ERROR; + } + + fIsPublic = name.indexOf(gPercentPercent) != 0; + + // all of the other members of NFRuleSet are initialized + // by parseRules() +} + +void +NFRuleSet::parseRules(UnicodeString& description, const RuleBasedNumberFormat* owner, UErrorCode& status) +{ + // start by creating a Vector whose elements are Strings containing + // the descriptions of the rules (one rule per element). The rules + // are separated by semicolons (there's no escape facility: ALL + // semicolons are rule delimiters) + + if (U_FAILURE(status)) { + return; + } + + // dlf - the original code kept a separate description array for no reason, + // so I got rid of it. The loop was too complex so I simplified it. + + UnicodeString currentDescription; + int32_t oldP = 0; + while (oldP < description.length()) { + int32_t p = description.indexOf(gSemicolon, oldP); + if (p == -1) { + p = description.length(); + } + currentDescription.setTo(description, oldP, p - oldP); + NFRule::makeRules(currentDescription, this, rules.last(), owner, rules, status); + oldP = p + 1; + } + + // for rules that didn't specify a base value, their base values + // were initialized to 0. Make another pass through the list and + // set all those rules' base values. We also remove any special + // rules from the list and put them into their own member variables + int64_t defaultBaseValue = 0; + + // (this isn't a for loop because we might be deleting items from + // the vector-- we want to make sure we only increment i when + // we _didn't_ delete aything from the vector) + uint32_t i = 0; + while (i < rules.size()) { + NFRule* rule = rules[i]; + + switch (rule->getType()) { + // if the rule's base value is 0, fill in a default + // base value (this will be 1 plus the preceding + // rule's base value for regular rule sets, and the + // same as the preceding rule's base value in fraction + // rule sets) + case NFRule::kNoBase: + rule->setBaseValue(defaultBaseValue, status); + if (!isFractionRuleSet()) { + ++defaultBaseValue; + } + ++i; + break; + + // if it's the negative-number rule, copy it into its own + // data member and delete it from the list + case NFRule::kNegativeNumberRule: + negativeNumberRule = rules.remove(i); + break; + + // if it's the improper fraction rule, copy it into the + // correct element of fractionRules + case NFRule::kImproperFractionRule: + fractionRules[0] = rules.remove(i); + break; + + // if it's the proper fraction rule, copy it into the + // correct element of fractionRules + case NFRule::kProperFractionRule: + fractionRules[1] = rules.remove(i); + break; + + // if it's the master rule, copy it into the + // correct element of fractionRules + case NFRule::kMasterRule: + fractionRules[2] = rules.remove(i); + break; + + // if it's a regular rule that already knows its base value, + // check to make sure the rules are in order, and update + // the default base value for the next rule + default: + if (rule->getBaseValue() < defaultBaseValue) { + // throw new IllegalArgumentException("Rules are not in order"); + status = U_PARSE_ERROR; + return; + } + defaultBaseValue = rule->getBaseValue(); + if (!isFractionRuleSet()) { + ++defaultBaseValue; + } + ++i; + break; + } + } +} + +NFRuleSet::~NFRuleSet() +{ + delete negativeNumberRule; + delete fractionRules[0]; + delete fractionRules[1]; + delete fractionRules[2]; +} + +static UBool +util_equalRules(const NFRule* rule1, const NFRule* rule2) +{ + if (rule1) { + if (rule2) { + return *rule1 == *rule2; + } + } else if (!rule2) { + return TRUE; + } + return FALSE; +} + +UBool +NFRuleSet::operator==(const NFRuleSet& rhs) const +{ + if (rules.size() == rhs.rules.size() && + fIsFractionRuleSet == rhs.fIsFractionRuleSet && + name == rhs.name && + util_equalRules(negativeNumberRule, rhs.negativeNumberRule) && + util_equalRules(fractionRules[0], rhs.fractionRules[0]) && + util_equalRules(fractionRules[1], rhs.fractionRules[1]) && + util_equalRules(fractionRules[2], rhs.fractionRules[2])) { + + for (uint32_t i = 0; i < rules.size(); ++i) { + if (*rules[i] != *rhs.rules[i]) { + return FALSE; + } + } + return TRUE; + } + return FALSE; +} + +#define RECURSION_LIMIT 50 + +void +NFRuleSet::format(int64_t number, UnicodeString& toAppendTo, int32_t pos) const +{ + NFRule *rule = findNormalRule(number); + if (rule) { // else error, but can't report it + NFRuleSet* ncThis = (NFRuleSet*)this; + if (ncThis->fRecursionCount++ >= RECURSION_LIMIT) { + // stop recursion + ncThis->fRecursionCount = 0; + } else { + rule->doFormat(number, toAppendTo, pos); + ncThis->fRecursionCount--; + } + } +} + +void +NFRuleSet::format(double number, UnicodeString& toAppendTo, int32_t pos) const +{ + NFRule *rule = findDoubleRule(number); + if (rule) { // else error, but can't report it + NFRuleSet* ncThis = (NFRuleSet*)this; + if (ncThis->fRecursionCount++ >= RECURSION_LIMIT) { + // stop recursion + ncThis->fRecursionCount = 0; + } else { + rule->doFormat(number, toAppendTo, pos); + ncThis->fRecursionCount--; + } + } +} + +NFRule* +NFRuleSet::findDoubleRule(double number) const +{ + // if this is a fraction rule set, use findFractionRuleSetRule() + if (isFractionRuleSet()) { + return findFractionRuleSetRule(number); + } + + // if the number is negative, return the negative number rule + // (if there isn't a negative-number rule, we pretend it's a + // positive number) + if (number < 0) { + if (negativeNumberRule) { + return negativeNumberRule; + } else { + number = -number; + } + } + + // if the number isn't an integer, we use one of the fraction rules... + if (number != uprv_floor(number)) { + // if the number is between 0 and 1, return the proper + // fraction rule + if (number < 1 && fractionRules[1]) { + return fractionRules[1]; + } + // otherwise, return the improper fraction rule + else if (fractionRules[0]) { + return fractionRules[0]; + } + } + + // if there's a master rule, use it to format the number + if (fractionRules[2]) { + return fractionRules[2]; + } + + // and if we haven't yet returned a rule, use findNormalRule() + // to find the applicable rule + int64_t r = util64_fromDouble(number + 0.5); + return findNormalRule(r); +} + +NFRule * +NFRuleSet::findNormalRule(int64_t number) const +{ + // if this is a fraction rule set, use findFractionRuleSetRule() + // to find the rule (we should only go into this clause if the + // value is 0) + if (fIsFractionRuleSet) { + return findFractionRuleSetRule((double)number); + } + + // if the number is negative, return the negative-number rule + // (if there isn't one, pretend the number is positive) + if (number < 0) { + if (negativeNumberRule) { + return negativeNumberRule; + } else { + number = -number; + } + } + + // we have to repeat the preceding two checks, even though we + // do them in findRule(), because the version of format() that + // takes a long bypasses findRule() and goes straight to this + // function. This function does skip the fraction rules since + // we know the value is an integer (it also skips the master + // rule, since it's considered a fraction rule. Skipping the + // master rule in this function is also how we avoid infinite + // recursion) + + // {dlf} unfortunately this fails if there are no rules except + // special rules. If there are no rules, use the master rule. + + // binary-search the rule list for the applicable rule + // (a rule is used for all values from its base value to + // the next rule's base value) + int32_t hi = rules.size(); + if (hi > 0) { + int32_t lo = 0; + + while (lo < hi) { + int32_t mid = (lo + hi) / 2; + if (rules[mid]->getBaseValue() == number) { + return rules[mid]; + } + else if (rules[mid]->getBaseValue() > number) { + hi = mid; + } + else { + lo = mid + 1; + } + } + if (hi == 0) { // bad rule set, minimum base > 0 + return NULL; // want to throw exception here + } + + NFRule *result = rules[hi - 1]; + + // use shouldRollBack() to see whether we need to invoke the + // rollback rule (see shouldRollBack()'s documentation for + // an explanation of the rollback rule). If we do, roll back + // one rule and return that one instead of the one we'd normally + // return + if (result->shouldRollBack((double)number)) { + if (hi == 1) { // bad rule set, no prior rule to rollback to from this base + return NULL; + } + result = rules[hi - 2]; + } + return result; + } + // else use the master rule + return fractionRules[2]; +} + +/** + * If this rule is a fraction rule set, this function is used by + * findRule() to select the most appropriate rule for formatting + * the number. Basically, the base value of each rule in the rule + * set is treated as the denominator of a fraction. Whichever + * denominator can produce the fraction closest in value to the + * number passed in is the result. If there's a tie, the earlier + * one in the list wins. (If there are two rules in a row with the + * same base value, the first one is used when the numerator of the + * fraction would be 1, and the second rule is used the rest of the + * time. + * @param number The number being formatted (which will always be + * a number between 0 and 1) + * @return The rule to use to format this number + */ +NFRule* +NFRuleSet::findFractionRuleSetRule(double number) const +{ + // the obvious way to do this (multiply the value being formatted + // by each rule's base value until you get an integral result) + // doesn't work because of rounding error. This method is more + // accurate + + // find the least common multiple of the rules' base values + // and multiply this by the number being formatted. This is + // all the precision we need, and we can do all of the rest + // of the math using integer arithmetic + int64_t leastCommonMultiple = rules[0]->getBaseValue(); + int64_t numerator; + { + for (uint32_t i = 1; i < rules.size(); ++i) { + leastCommonMultiple = util_lcm(leastCommonMultiple, rules[i]->getBaseValue()); + } + numerator = util64_fromDouble(number * (double)leastCommonMultiple + 0.5); + } + // for each rule, do the following... + int64_t tempDifference; + int64_t difference = util64_fromDouble(uprv_maxMantissa()); + int32_t winner = 0; + for (uint32_t i = 0; i < rules.size(); ++i) { + // "numerator" is the numerator of the fraction if the + // denominator is the LCD. The numerator if the rule's + // base value is the denominator is "numerator" times the + // base value divided bythe LCD. Here we check to see if + // that's an integer, and if not, how close it is to being + // an integer. + tempDifference = numerator * rules[i]->getBaseValue() % leastCommonMultiple; + + + // normalize the result of the above calculation: we want + // the numerator's distance from the CLOSEST multiple + // of the LCD + if (leastCommonMultiple - tempDifference < tempDifference) { + tempDifference = leastCommonMultiple - tempDifference; + } + + // if this is as close as we've come, keep track of how close + // that is, and the line number of the rule that did it. If + // we've scored a direct hit, we don't have to look at any more + // rules + if (tempDifference < difference) { + difference = tempDifference; + winner = i; + if (difference == 0) { + break; + } + } + } + + // if we have two successive rules that both have the winning base + // value, then the first one (the one we found above) is used if + // the numerator of the fraction is 1 and the second one is used if + // the numerator of the fraction is anything else (this lets us + // do things like "one third"/"two thirds" without haveing to define + // a whole bunch of extra rule sets) + if ((unsigned)(winner + 1) < rules.size() && + rules[winner + 1]->getBaseValue() == rules[winner]->getBaseValue()) { + double n = ((double)rules[winner]->getBaseValue()) * number; + if (n < 0.5 || n >= 2) { + ++winner; + } + } + + // finally, return the winning rule + return rules[winner]; +} + +/** + * Parses a string. Matches the string to be parsed against each + * of its rules (with a base value less than upperBound) and returns + * the value produced by the rule that matched the most charcters + * in the source string. + * @param text The string to parse + * @param parsePosition The initial position is ignored and assumed + * to be 0. On exit, this object has been updated to point to the + * first character position this rule set didn't consume. + * @param upperBound Limits the rules that can be allowed to match. + * Only rules whose base values are strictly less than upperBound + * are considered. + * @return The numerical result of parsing this string. This will + * be the matching rule's base value, composed appropriately with + * the results of matching any of its substitutions. The object + * will be an instance of Long if it's an integral value; otherwise, + * it will be an instance of Double. This function always returns + * a valid object: If nothing matched the input string at all, + * this function returns new Long(0), and the parse position is + * left unchanged. + */ +#ifdef RBNF_DEBUG +#include <stdio.h> + +static void dumpUS(FILE* f, const UnicodeString& us) { + int len = us.length(); + char* buf = (char *)uprv_malloc((len+1)*sizeof(char)); //new char[len+1]; + if (buf != NULL) { + us.extract(0, len, buf); + buf[len] = 0; + fprintf(f, "%s", buf); + uprv_free(buf); //delete[] buf; + } +} +#endif + +UBool +NFRuleSet::parse(const UnicodeString& text, ParsePosition& pos, double upperBound, Formattable& result) const +{ + // try matching each rule in the rule set against the text being + // parsed. Whichever one matches the most characters is the one + // that determines the value we return. + + result.setLong(0); + + // dump out if there's no text to parse + if (text.length() == 0) { + return 0; + } + + ParsePosition highWaterMark; + ParsePosition workingPos = pos; + +#ifdef RBNF_DEBUG + fprintf(stderr, "<nfrs> %x '", this); + dumpUS(stderr, name); + fprintf(stderr, "' text '"); + dumpUS(stderr, text); + fprintf(stderr, "'\n"); + fprintf(stderr, " parse negative: %d\n", this, negativeNumberRule != 0); +#endif + + // start by trying the negative number rule (if there is one) + if (negativeNumberRule) { + Formattable tempResult; +#ifdef RBNF_DEBUG + fprintf(stderr, " <nfrs before negative> %x ub: %g\n", negativeNumberRule, upperBound); +#endif + UBool success = negativeNumberRule->doParse(text, workingPos, 0, upperBound, tempResult); +#ifdef RBNF_DEBUG + fprintf(stderr, " <nfrs after negative> success: %d wpi: %d\n", success, workingPos.getIndex()); +#endif + if (success && workingPos.getIndex() > highWaterMark.getIndex()) { + result = tempResult; + highWaterMark = workingPos; + } + workingPos = pos; + } +#ifdef RBNF_DEBUG + fprintf(stderr, "<nfrs> continue fractional with text '"); + dumpUS(stderr, text); + fprintf(stderr, "' hwm: %d\n", highWaterMark.getIndex()); +#endif + // then try each of the fraction rules + { + for (int i = 0; i < 3; i++) { + if (fractionRules[i]) { + Formattable tempResult; + UBool success = fractionRules[i]->doParse(text, workingPos, 0, upperBound, tempResult); + if (success && (workingPos.getIndex() > highWaterMark.getIndex())) { + result = tempResult; + highWaterMark = workingPos; + } + workingPos = pos; + } + } + } +#ifdef RBNF_DEBUG + fprintf(stderr, "<nfrs> continue other with text '"); + dumpUS(stderr, text); + fprintf(stderr, "' hwm: %d\n", highWaterMark.getIndex()); +#endif + + // finally, go through the regular rules one at a time. We start + // at the end of the list because we want to try matching the most + // sigificant rule first (this helps ensure that we parse + // "five thousand three hundred six" as + // "(five thousand) (three hundred) (six)" rather than + // "((five thousand three) hundred) (six)"). Skip rules whose + // base values are higher than the upper bound (again, this helps + // limit ambiguity by making sure the rules that match a rule's + // are less significant than the rule containing the substitutions)/ + { + int64_t ub = util64_fromDouble(upperBound); +#ifdef RBNF_DEBUG + { + char ubstr[64]; + util64_toa(ub, ubstr, 64); + char ubstrhex[64]; + util64_toa(ub, ubstrhex, 64, 16); + fprintf(stderr, "ub: %g, i64: %s (%s)\n", upperBound, ubstr, ubstrhex); + } +#endif + for (int32_t i = rules.size(); --i >= 0 && highWaterMark.getIndex() < text.length();) { + if ((!fIsFractionRuleSet) && (rules[i]->getBaseValue() >= ub)) { + continue; + } + Formattable tempResult; + UBool success = rules[i]->doParse(text, workingPos, fIsFractionRuleSet, upperBound, tempResult); + if (success && workingPos.getIndex() > highWaterMark.getIndex()) { + result = tempResult; + highWaterMark = workingPos; + } + workingPos = pos; + } + } +#ifdef RBNF_DEBUG + fprintf(stderr, "<nfrs> exit\n"); +#endif + // finally, update the parse postion we were passed to point to the + // first character we didn't use, and return the result that + // corresponds to that string of characters + pos = highWaterMark; + + return 1; +} + +void +NFRuleSet::appendRules(UnicodeString& result) const +{ + // the rule set name goes first... + result.append(name); + result.append(gColon); + result.append(gLineFeed); + + // followed by the regular rules... + for (uint32_t i = 0; i < rules.size(); i++) { + result.append(gFourSpaces); + rules[i]->_appendRuleText(result); + result.append(gLineFeed); + } + + // followed by the special rules (if they exist) + if (negativeNumberRule) { + result.append(gFourSpaces); + negativeNumberRule->_appendRuleText(result); + result.append(gLineFeed); + } + + { + for (uint32_t i = 0; i < 3; ++i) { + if (fractionRules[i]) { + result.append(gFourSpaces); + fractionRules[i]->_appendRuleText(result); + result.append(gLineFeed); + } + } + } +} + +// utility functions + +int64_t util64_fromDouble(double d) { + int64_t result = 0; + if (!uprv_isNaN(d)) { + double mant = uprv_maxMantissa(); + if (d < -mant) { + d = -mant; + } else if (d > mant) { + d = mant; + } + UBool neg = d < 0; + if (neg) { + d = -d; + } + result = (int64_t)uprv_floor(d); + if (neg) { + result = -result; + } + } + return result; +} + +int64_t util64_pow(int32_t r, uint32_t e) { + if (r == 0) { + return 0; + } else if (e == 0) { + return 1; + } else { + int64_t n = r; + while (--e > 0) { + n *= r; + } + return n; + } +} + +static const uint8_t asciiDigits[] = { + 0x30u, 0x31u, 0x32u, 0x33u, 0x34u, 0x35u, 0x36u, 0x37u, + 0x38u, 0x39u, 0x61u, 0x62u, 0x63u, 0x64u, 0x65u, 0x66u, + 0x67u, 0x68u, 0x69u, 0x6au, 0x6bu, 0x6cu, 0x6du, 0x6eu, + 0x6fu, 0x70u, 0x71u, 0x72u, 0x73u, 0x74u, 0x75u, 0x76u, + 0x77u, 0x78u, 0x79u, 0x7au, +}; + +static const UChar kUMinus = (UChar)0x002d; + +#ifdef RBNF_DEBUG +static const char kMinus = '-'; + +static const uint8_t digitInfo[] = { + 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, + 0x80u, 0x81u, 0x82u, 0x83u, 0x84u, 0x85u, 0x86u, 0x87u, + 0x88u, 0x89u, 0, 0, 0, 0, 0, 0, + 0, 0x8au, 0x8bu, 0x8cu, 0x8du, 0x8eu, 0x8fu, 0x90u, + 0x91u, 0x92u, 0x93u, 0x94u, 0x95u, 0x96u, 0x97u, 0x98u, + 0x99u, 0x9au, 0x9bu, 0x9cu, 0x9du, 0x9eu, 0x9fu, 0xa0u, + 0xa1u, 0xa2u, 0xa3u, 0, 0, 0, 0, 0, + 0, 0x8au, 0x8bu, 0x8cu, 0x8du, 0x8eu, 0x8fu, 0x90u, + 0x91u, 0x92u, 0x93u, 0x94u, 0x95u, 0x96u, 0x97u, 0x98u, + 0x99u, 0x9au, 0x9bu, 0x9cu, 0x9du, 0x9eu, 0x9fu, 0xa0u, + 0xa1u, 0xa2u, 0xa3u, 0, 0, 0, 0, 0, +}; + +int64_t util64_atoi(const char* str, uint32_t radix) +{ + if (radix > 36) { + radix = 36; + } else if (radix < 2) { + radix = 2; + } + int64_t lradix = radix; + + int neg = 0; + if (*str == kMinus) { + ++str; + neg = 1; + } + int64_t result = 0; + uint8_t b; + while ((b = digitInfo[*str++]) && ((b &= 0x7f) < radix)) { + result *= lradix; + result += (int32_t)b; + } + if (neg) { + result = -result; + } + return result; +} + +int64_t util64_utoi(const UChar* str, uint32_t radix) +{ + if (radix > 36) { + radix = 36; + } else if (radix < 2) { + radix = 2; + } + int64_t lradix = radix; + + int neg = 0; + if (*str == kUMinus) { + ++str; + neg = 1; + } + int64_t result = 0; + UChar c; + uint8_t b; + while (((c = *str++) < 0x0080) && (b = digitInfo[c]) && ((b &= 0x7f) < radix)) { + result *= lradix; + result += (int32_t)b; + } + if (neg) { + result = -result; + } + return result; +} + +uint32_t util64_toa(int64_t w, char* buf, uint32_t len, uint32_t radix, UBool raw) +{ + if (radix > 36) { + radix = 36; + } else if (radix < 2) { + radix = 2; + } + int64_t base = radix; + + char* p = buf; + if (len && (w < 0) && (radix == 10) && !raw) { + w = -w; + *p++ = kMinus; + --len; + } else if (len && (w == 0)) { + *p++ = (char)raw ? 0 : asciiDigits[0]; + --len; + } + + while (len && w != 0) { + int64_t n = w / base; + int64_t m = n * base; + int32_t d = (int32_t)(w-m); + *p++ = raw ? (char)d : asciiDigits[d]; + w = n; + --len; + } + if (len) { + *p = 0; // null terminate if room for caller convenience + } + + len = p - buf; + if (*buf == kMinus) { + ++buf; + } + while (--p > buf) { + char c = *p; + *p = *buf; + *buf = c; + ++buf; + } + + return len; +} +#endif + +uint32_t util64_tou(int64_t w, UChar* buf, uint32_t len, uint32_t radix, UBool raw) +{ + if (radix > 36) { + radix = 36; + } else if (radix < 2) { + radix = 2; + } + int64_t base = radix; + + UChar* p = buf; + if (len && (w < 0) && (radix == 10) && !raw) { + w = -w; + *p++ = kUMinus; + --len; + } else if (len && (w == 0)) { + *p++ = (UChar)raw ? 0 : asciiDigits[0]; + --len; + } + + while (len && (w != 0)) { + int64_t n = w / base; + int64_t m = n * base; + int32_t d = (int32_t)(w-m); + *p++ = (UChar)(raw ? d : asciiDigits[d]); + w = n; + --len; + } + if (len) { + *p = 0; // null terminate if room for caller convenience + } + + len = (uint32_t)(p - buf); + if (*buf == kUMinus) { + ++buf; + } + while (--p > buf) { + UChar c = *p; + *p = *buf; + *buf = c; + ++buf; + } + + return len; +} + + +U_NAMESPACE_END + +/* U_HAVE_RBNF */ +#endif + |