diff options
author | Karl Berry <karl@freefriends.org> | 2020-02-06 20:50:18 +0000 |
---|---|---|
committer | Karl Berry <karl@freefriends.org> | 2020-02-06 20:50:18 +0000 |
commit | dec495c25120bdd95ed719784bf1afa8a63145fa (patch) | |
tree | a769fb046b216e8d9848dabeb52bd5db4964419c | |
parent | de962227058faeeff3cdfca28647678552dadb42 (diff) |
tkz-euclide (6feb20)
git-svn-id: svn://tug.org/texlive/trunk@53697 c570f23f-e606-0410-a88d-b1316a301751
282 files changed, 9470 insertions, 497 deletions
diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/README b/Master/texmf-dist/doc/latex/tkz-euclide/README index b8617b381bc..8728f0a6de1 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/README +++ b/Master/texmf-dist/doc/latex/tkz-euclide/README @@ -1,6 +1,6 @@ -% encodage utf8 + % encodage utf8 -------------------- english readme ---------------------------------------- -readme-tkz-euclide.txt V3.01 c 2020/01/24 +readme-tkz-euclide.txt V3.02 c 2020/02/06 tkz-euclide is a package (latex) which allows you to draw two-dimensional geometric figures, in other words to create figures of Euclidean geometry. It uses a Cartesian coordinate system orthogonal provided by the tkz-base package as well as tools to define the unique coordinates of points and to manipulate them. The idea is to allow you to follow step by step a construction that would be done by hand as naturally as possible. @@ -16,8 +16,8 @@ archives in directory macros/latex/base/lppl.txt. Features -------- - -- needs xfp and numprint; - -- requires and automatically loads PGF/TikZ 3; + -- needs tkz-base !!, xfp and numprint; + -- requires and automatically loads PGF/TikZ > 3; -- compiles with utf8, pdflatex and lualatex; Installation @@ -62,12 +62,13 @@ Other examples are on my site : http://altermundus.fr (en français) Compatibility ------------- -The new package tkz-euclide 3.01c is *not* fully compatible with the version 1.16 but the differences are minor. +The new package tkz-euclide 3.02c is *not* fully compatible with the version 1.16 but the differences are minor. History ------- --- 3.01 this version +-- 3.02 replacement french documentation by english documentation, correction of bugs. +-- 3.01 replacement fp for xfp, addition of some macros, correction of bugs -- 1.16 correction of bugs -- 1.13 first version diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide.pdf b/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide.pdf Binary files differindex f9310bb8861..aabaae0c693 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide.pdf +++ b/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide.pdf diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/how_to_compile.txt b/Master/texmf-dist/doc/latex/tkz-euclide/examples/how_to_compile.txt deleted file mode 100644 index 096675e543b..00000000000 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/how_to_compile.txt +++ /dev/null @@ -1,2 +0,0 @@ -If you want to compile the file tkzeuclide-7-5-3.tex. -You add \input{tkzeuclide-7-5-3} inside the environment "document"
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/main.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/main.tex deleted file mode 100644 index 831c9060460..00000000000 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/main.tex +++ /dev/null @@ -1,11 +0,0 @@ -% !TEX TS-program = pdflatex -% Created by Alain Matthes on 2020-01-23. -% Copyright (c) 2020 __ AlterMundus __. - -\documentclass{standalone} -%\usepackage{xcolor} -\usepackage{tkz-euclide} %you can add tkz-fct etc. - -\begin{document} -\input{tkzeuclide-5-0-0} -\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/preamble-standalone.ltx b/Master/texmf-dist/doc/latex/tkz-euclide/examples/preamble-standalone.ltx new file mode 100644 index 00000000000..11b016acaa2 --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/preamble-standalone.ltx @@ -0,0 +1,6 @@ +\documentclass{standalone} +\usepackage{tkz-euclide,tkz-fct} + + + + diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-01-3-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-01-3-1.tex new file mode 100644 index 00000000000..a64287e178b --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-01-3-1.tex @@ -0,0 +1,34 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 2 (Section 1.3.1 : Example Part I gold triangle) + + \begin{tikzpicture} + \tkzDefPoint(0,0){C} + \tkzDefPoint(4,0){D} + \tkzDefSquare(C,D) + \tkzGetPoints{e}{f} + \tkzDefMidPoint(C,f) + \tkzGetPoint{m} + \tkzInterLC(C,f)(m,e) + \tkzGetSecondPoint{n} + \tkzInterCC[with nodes](C,C,n)(D,C,n) + \tkzGetFirstPoint{B} + \tkzInterLC(C,D)(D,B) \tkzGetSecondPoint{A} + \tkzInterLC(B,A)(B,D) \tkzGetSecondPoint{E} + \tkzInterLL(B,D)(C,E) \tkzGetPoint{F} + \tkzDrawPoints(C,D,B) + \tkzDrawPolygon(B,...,D) + \tkzDrawPolygon(B,C,D) + \tkzDrawSegments(D,A A,B C,E) + \tkzDrawArc[delta=10](B,C)(E) + \tkzDrawPoints(A,...,F) + \tkzMarkRightAngle[fill=blue!20](B,F,C) + \tkzFillAngles[fill=blue!10](C,B,D E,A,D) + \tkzMarkAngles(C,B,D E,A,D) + \tkzLabelAngles[pos=1.5](C,B,D E,A,D){$\alpha$} + \tkzLabelPoints[below](A,C,D,E) + \tkzLabelPoints[above right](B,F) +\end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-01-3-2.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-01-3-2.tex new file mode 100644 index 00000000000..78e0fd8fd21 --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-01-3-2.tex @@ -0,0 +1,32 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 4 (Section 1.3.2 : Example Part II two others methods gold and euclide triangle) + + \begin{tikzpicture} + \tkzDefPoint(0,0){C} % possible + % \tkzDefPoint[label=below:$C$](0,0){C} + % but don't do this + \tkzDefPoint(2,6){B} + % We get D and E with a rotation + \tkzDefPointBy[rotation= center B angle 36](C) \tkzGetPoint{D} + \tkzDefPointBy[rotation= center B angle 72](C) \tkzGetPoint{E} + % To get A we use an intersection of lines + \tkzInterLL(B,E)(C,D) \tkzGetPoint{A} + \tkzInterLL(C,E)(B,D) \tkzGetPoint{H} + % drawing + \tkzDrawArc[delta=10](B,C)(E) + \tkzDrawPolygon(C,B,D) + \tkzDrawSegments(D,A B,A C,E) + % angles + \tkzMarkAngles(C,B,D E,A,D) %this is to draw the arcs + \tkzLabelAngles[pos=1.5](C,B,D E,A,D){$\alpha$} + \tkzMarkRightAngle(B,H,C) + \tkzDrawPoints(A,...,E) + % Label only now + \tkzLabelPoints[below left](C,A) + \tkzLabelPoints[below right](D) + \tkzLabelPoints[above](B,E) +\end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-5-0-0.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-01-3-3.tex index d1ec248e52b..193e91a2372 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-5-0-0.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-01-3-3.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 5 (Section 1.3.3 : Complete but minimal example) + \begin{tikzpicture}[scale=1,ra/.style={fill=gray!20}] % fixed points \tkzDefPoint(0,0){A} @@ -20,4 +25,6 @@ \tkzLabelPoints[above left](C) \tkzLabelPoint[right](B){$B(10,0)$} \tkzLabelSegment[right=4pt](I,C){$IC=\sqrt{a}$} - \end{tikzpicture} +\end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-01-4-0.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-01-4-0.tex new file mode 100644 index 00000000000..41afbdc2276 --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-01-4-0.tex @@ -0,0 +1,18 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 6 (Section 1.4 : The Elements of tkz code) + + \begin{tikzpicture}[scale=.75] + \tkzDefPoints{0/0/A,8/0/B} + \foreach \tr in {equilateral,half,pythagore,% + school,golden,euclide, gold,cheops} + {\tkzDefTriangle[\tr](A,B) \tkzGetPoint{C} + \tkzDrawPoint(C) + \tkzLabelPoint[right](C){\tr} + \tkzDrawSegments(A,C C,B)} + \tkzDrawPoints(A,B) + \tkzDrawSegments(A,B) +\end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-01-6-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-01-6-1.tex new file mode 100644 index 00000000000..ea6d953b253 --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-01-6-1.tex @@ -0,0 +1,25 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 7 (Section 1.6.1 : Let's look at a classic example) + + \begin{tikzpicture}[scale=.5] + % fixed points + \tkzDefPoint(0,0){A} + \tkzDefPoint(5,2){B} + % calculus + \tkzInterCC(A,B)(B,A) + \tkzGetPoints{C}{D} + % drawings + \tkzDrawCircles[gray,dashed](A,B B,A) + \tkzDrawPolygon(A,B,C) + \tkzDrawPoints(A,...,D) + % marking + \tkzMarkSegments[mark=s||](A,B B,C C,A) + % labelling + \tkzLabelSegments[swap](A,B){$c$} + \tkzLabelPoints(A,B,D) + \tkzLabelPoints[above](C) +\end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-04-0-0.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-04-0-0.tex new file mode 100644 index 00000000000..94ab543939b --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-04-0-0.tex @@ -0,0 +1,24 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 11 (Section 4 : Definition of a point) + +\begin{tikzpicture}[,scale=1] + \tkzInit[xmax=5,ymax=5] + \tkzDefPoints{0/0/O,1/0/I,0/1/J} + \tkzDefPoint(40:4){P} + \tkzDrawXY[noticks,>=triangle 45] + \tkzDrawSegment[dim={$r$, + 16pt,above=6pt}](O,P) + \tkzDrawPoints(O,P) + \tkzMarkAngle[mark=none,->](I,O,P) + \tkzFillAngle[fill=blue!20, + opacity=.5](I,O,P) + \tkzLabelAngle[pos=1.25](I,O,P){$\alpha$} + \tkzLabelPoint(P){$P (\alpha : r )$} + \tkzDrawPoints[shape=cross](I,J) + \tkzLabelPoints(O,I) + \tkzLabelPoints[left](J) +\end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-04-1-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-04-1-1.tex new file mode 100644 index 00000000000..c38c3de860c --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-04-1-1.tex @@ -0,0 +1,15 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 12 (Section 4.1.1 : Cartesian coordinates ) + + \begin{tikzpicture} + \tkzInit[xmax=5,ymax=5] + \tkzDefPoint(0,0){A} + \tkzDefPoint(4,0){B} + \tkzDefPoint(0,3){C} + \tkzDrawPolygon(A,B,C) + \tkzDrawPoints(A,B,C) +\end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-04-1-2.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-04-1-2.tex new file mode 100644 index 00000000000..d17061d3465 --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-04-1-2.tex @@ -0,0 +1,15 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 13 (Section 4.1.2 : Calculations with \tkzNamePack{xfp}) + +\begin{tikzpicture}[scale=1] + \tkzInit[xmax=4,ymax=4] + \tkzGrid + \tkzDefPoint(-1+2,sqrt(4)){O} + \tkzDefPoint({3*ln(exp(1))},{exp(1)}){A} + \tkzDefPoint({4*sin(pi/6)},{4*cos(pi/6)}){B} + \tkzDrawPoints[color=blue](O,B,A) +\end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-04-1-3.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-04-1-3.tex new file mode 100644 index 00000000000..27a95601b9a --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-04-1-3.tex @@ -0,0 +1,13 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 14 (Section 4.1.3 : Polar coordinates ) + + \begin{tikzpicture} + \foreach \an [count=\i] in {0,60,...,300} + { \tkzDefPoint(\an:3){A_\i}} + \tkzDrawPolygon(A_1,A_...,A_6) + \tkzDrawPoints(A_1,A_...,A_6) +\end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-04-1-4.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-04-1-4.tex new file mode 100644 index 00000000000..ff7508f4b58 --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-04-1-4.tex @@ -0,0 +1,12 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 15 (Section 4.1.4 : Calculations and coordinates) + + \begin{tikzpicture}[scale=.5] + \foreach \an [count=\i] in {0,2,...,358} + { \tkzDefPoint(\an:sqrt(sqrt(\an mm))){A_\i}} + \tkzDrawPoints(A_1,A_...,A_180) +\end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-7-1-3.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-04-1-5.tex index fb4de230486..6d4830eb98a 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-7-1-3.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-04-1-5.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 16 (Section 4.1.5 : Relative points) + \begin{tikzpicture}[scale=1] \tkzSetUpLine[color=blue!60] \begin{scope}[rotate=30] @@ -5,10 +10,12 @@ \begin{scope}[shift=(A)] \tkzDefPoint(90:5){B} \tkzDefPoint(30:5){C} - \end{scope} - \end{scope} +\end{scope} +\end{scope} \tkzDrawPolygon(A,B,C) \tkzLabelPoints[above](B,C) \tkzLabelPoints[below](A) \tkzDrawPoints(A,B,C) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-7-5-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-04-2-1.tex index fee838752a6..33389d46964 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-7-5-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-04-2-1.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 17 (Section 4.2.1 : Isosceles triangle with \tkzcname{tkzDefShiftPoint}) + \begin{tikzpicture}[rotate=-30] \tkzDefPoint(2,3){A} \tkzDefShiftPoint[A](0:4){B} @@ -9,3 +14,5 @@ \tkzLabelPoints(B,C) \tkzLabelPoints[above left](A) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-7-5-2.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-04-2-2.tex index 8e18b9319c3..794969f7c06 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-7-5-2.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-04-2-2.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 18 (Section 4.2.2 : Equilateral triangle) + \begin{tikzpicture}[scale=1] \tkzDefPoint(2,3){A} \tkzDefShiftPoint[A](30:4){B} @@ -7,3 +12,5 @@ \tkzLabelPoints(B,C) \tkzLabelPoints[above left](A) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-7-5-3.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-04-2-3.tex index d6b6aba0f93..9b2cf820636 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-7-5-3.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-04-2-3.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 19 (Section 4.2.3 : Parallelogram) + \begin{tikzpicture} \tkzDefPoint(0,0){A} \tkzDefPoint(60:3){B} @@ -6,3 +11,5 @@ \tkzDrawPolygon(A,...,D) \tkzDrawPoints(A,...,D) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-7-3-0.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-04-4-0.tex index 7baa5d2f80c..71598e7cd85 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-7-3-0.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-04-4-0.tex @@ -1,5 +1,12 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 20 (Section 4.4 : Create a triangle) + \begin{tikzpicture}[scale=1] \tkzDefPoints{0/0/A,4/0/B,4/3/C} \tkzDrawPolygon(A,B,C) \tkzDrawPoints(A,B,C) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-7-4-0.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-04-5-0.tex index 49b9008cade..87885436ebd 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-7-4-0.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-04-5-0.tex @@ -1,5 +1,12 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 21 (Section 4.5 : Create a square) + \begin{tikzpicture}[scale=1] \tkzDefPoints{0/0/A,2/0/B,2/2/C,0/2/D} \tkzDrawPolygon(A,...,D) \tkzDrawPoints(A,B,C,D) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-8-1-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-05-1-1.tex index 2de647b2492..e655da26833 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-8-1-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-05-1-1.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 22 (Section 5.1.1 : Use of \tkzcname{tkzDefMidPoint}) + \begin{tikzpicture}[scale=1] \tkzDefPoint(2,3){A} \tkzDefPoint(4,0){B} @@ -6,3 +11,5 @@ \tkzDrawPoints(A,B,C) \tkzLabelPoints[right](A,B,C) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-8-2-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-05-2-1.tex index e44974aee6d..9df81202fd3 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-8-2-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-05-2-1.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 23 (Section 5.2.1 : Using \tkzcname{tkzDefBarycentricPoint} with two points) + \begin{tikzpicture} \tkzDefPoint(2,3){A} \tkzDefShiftPointCoord[2,3](30:4){B} @@ -7,3 +12,5 @@ \tkzDrawLine(A,B) \tkzLabelPoints(A,B,I) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-8-2-2.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-05-2-2.tex index 60178e199e3..0b04be6dad5 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-8-2-2.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-05-2-2.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 24 (Section 5.2.2 : Using \tkzcname{tkzDefBarycentricPoint} with three points) + \begin{tikzpicture}[scale=.8] \tkzDefPoint(2,1){A} \tkzDefPoint(5,3){B} @@ -15,3 +20,5 @@ \tkzAutoLabelPoints[center=M](A,B,C) \tkzAutoLabelPoints[center=M,above right](A',B',C') \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-05-3-0.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-05-3-0.tex new file mode 100644 index 00000000000..38fa5d98cfb --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-05-3-0.tex @@ -0,0 +1,29 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 25 (Section 5.3 : Internal Similitude Center) + +\begin{tikzpicture}[scale=.75,rotate=-30] + \tkzDefPoint(0,0){O} + \tkzDefPoint(4,-5){A} + \tkzDefIntSimilitudeCenter(O,3)(A,1) + \tkzGetPoint{I} + \tkzExtSimilitudeCenter(O,3)(A,1) + \tkzGetPoint{J} + \tkzDefTangent[from with R= I](O,3 cm) + \tkzGetPoints{D}{E} + \tkzDefTangent[from with R= I](A,1 cm) + \tkzGetPoints{D'}{E'} + \tkzDefTangent[from with R= J](O,3 cm) + \tkzGetPoints{F}{G} + \tkzDefTangent[from with R= J](A,1 cm) + \tkzGetPoints{F'}{G'} + \tkzDrawCircle[R,fill=red!50,opacity=.3](O,3 cm) + \tkzDrawCircle[R,fill=blue!50,opacity=.3](A,1 cm) + \tkzDrawSegments[add = .5 and .5,color=red](D,D' E,E') + \tkzDrawSegments[add= 0 and 0.25,color=blue](J,F J,G) + \tkzDrawPoints(O,A,I,J,D,E,F,G,D',E',F',G') + \tkzLabelPoints[font=\scriptsize](O,A,I,J,D,E,F,G,D',E',F',G') +\end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-9-1-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-06-1-1.tex index 4c61a52db4f..dd99b489680 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-9-1-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-06-1-1.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 26 (Section 6.1.1 : \IoptName{tkzDefTriangleCenter}{ortho}) + \begin{tikzpicture} \tkzDefPoint(0,0){A} \tkzDefPoint(5,1){B} @@ -9,7 +14,9 @@ \tkzDrawPolygon[color=blue](A,B,C) \tkzDrawPoints(A,B,C,H) \tkzDrawLines[add=0 and 1](A,Ha B,Hb C,Hc) - \tkzLabelPoint(M){$M$} + \tkzLabelPoint(H){$H$} \tkzAutoLabelPoints[center=H](A,B,C) \tkzMarkRightAngles(A,Ha,B B,Hb,C C,Hc,A) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-9-1-2.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-06-1-2.tex index 1bc90b5f4fd..640a06ed5d9 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-9-1-2.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-06-1-2.tex @@ -1,10 +1,17 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 27 (Section 6.1.2 : \IoptName{tkzDefTriangleCenter}{centroid}) + \begin{tikzpicture}[scale=.75] \tkzDefPoints{-1/1/A,5/1/B} \tkzDefEquilateral(A,B) \tkzGetPoint{C} \tkzDefTriangleCenter[centroid](A,B,C) \tkzGetPoint{G} - \tkzDrawPolygon[color=Maroon](A,B,C) + \tkzDrawPolygon[color=brown](A,B,C) \tkzDrawPoints(A,B,C,G) \tkzDrawLines[add = 0 and 2/3](A,G B,G C,G) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-06-1-3.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-06-1-3.tex new file mode 100644 index 00000000000..0277dd685ea --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-06-1-3.tex @@ -0,0 +1,15 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 28 (Section 6.1.3 : \IoptName{tkzDefTriangleCenter}{circum}) + + \begin{tikzpicture} + \tkzDefPoints{0/1/A,3/2/B,1/4/C} + \tkzDefTriangleCenter[circum](A,B,C) + \tkzGetPoint{G} + \tkzDrawPolygon[color=brown](A,B,C) + \tkzDrawCircle(G,A) + \tkzDrawPoints(A,B,C,G) +\end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-9-1-4.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-06-1-4.tex index 1a6cd619bca..64638de5a78 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-9-1-4.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-06-1-4.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 29 (Section 6.1.4 : \IoptName{tkzDefTriangleCenter}{in}) + \begin{tikzpicture} \tkzDefPoints{0/1/A,3/2/B,1/4/C} \tkzDefTriangleCenter[in](A,B,C)\tkzGetPoint{I} @@ -8,3 +13,5 @@ \tkzDrawLines[add = 0 and 2/3](A,I B,I C,I) \tkzDrawCircle(I,Ib) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-9-1-5.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-06-1-5.tex index ca30906a40b..e7a180434b4 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-9-1-5.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-06-1-5.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 30 (Section 6.1.5 : \IoptName{tkzDefTriangleCenter}{ex}) + \begin{tikzpicture}[scale=.5] \tkzDefPoints{0/1/A,3/2/B,1/4/C} \tkzDefCircle[ex](B,C,A) @@ -9,3 +14,5 @@ \tkzDrawLines[add=1.5 and 0](A,C B,C) \tkzLabelPoints(J_c) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-9-1-6.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-06-1-6.tex index d03e41f164b..2e6e8ea628d 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-9-1-6.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-06-1-6.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 31 (Section 6.1.6 : Utilisation de \IoptName{tkzDefTriangleCenter}{euler} ) + \begin{tikzpicture}[scale=1] \tkzDefPoints{0/0/A,6/0/B,0.8/4/C} \tkzDefSpcTriangle[medial, @@ -26,3 +31,5 @@ \tkzMarkSegments[mark=s|,size=3pt, color=blue,line width=1pt](B,E_B E_B,H) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-9-1-7.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-06-1-7.tex index 1ba2517fdc8..031afaeb833 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-9-1-7.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-06-1-7.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 32 (Section 6.1.7 : Using option \IoptName{tkzDefTriangleCenter}{symmedian}) + \begin{tikzpicture} \tkzDefPoint(0,0){A} \tkzDefPoint(5,0){B} @@ -14,3 +19,5 @@ \tkzDrawSegments[orange,dashed](A,Ia B,Ib C,Ic) \tkzDrawLine(G,I) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-06-1-8.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-06-1-8.tex new file mode 100644 index 00000000000..9ed2e4cdc43 --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-06-1-8.tex @@ -0,0 +1,26 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 33 (Section 6.1.8 : Using option \IoptName{tkzDefTriangleCenter}{nagel}) + + \begin{tikzpicture}[scale=.5] + \tkzDefPoints{0/0/A,6/0/B,4/6/C} + \tkzDefSpcTriangle[ex](A,B,C){Ja,Jb,Jc} + \tkzDefSpcTriangle[extouch](A,B,C){Ta,Tb,Tc} + \tkzDrawPoints(Ja,Jb,Jc,Ta,Tb,Tc) + \tkzLabelPoints(Ja,Jb,Jc,Ta,Tb,Tc) + \tkzDrawPolygon[blue](A,B,C) + \tkzDefTriangleCenter[nagel](A,B,C) \tkzGetPoint{Na} + \tkzDrawPoints[blue](B,C,A) + \tkzDrawPoints[red](Na) + \tkzLabelPoints[blue](B,C,A) + \tkzLabelPoints[red](Na) + \tkzDrawLines[add=0 and 1](A,Ta B,Tb C,Tc) + \tkzShowBB\tkzClipBB + \tkzDrawLines[add=1 and 1,dashed](A,B B,C C,A) + \tkzDrawCircles[ex,gray](A,B,C C,A,B B,C,A) + \tkzDrawSegments[dashed](Ja,Ta Jb,Tb Jc,Tc) + \tkzMarkRightAngles[fill=gray!20](Ja,Ta,C Jb,Tb,A Jc,Tc,B) +\end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-19-0-7.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-06-1-9.tex index 3308bd30493..75f79a104dc 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-19-0-7.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-06-1-9.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 34 (Section 6.1.9 : Option Triangle "mittenpunkt") + \begin{tikzpicture}[scale=.5] \tkzDefPoints{0/0/A,6/0/B,4/6/C} \tkzDefSpcTriangle[centroid](A,B,C){Ma,Mb,Mc} @@ -7,15 +12,18 @@ \tkzGetPoint{Mi} \tkzDrawPoints(Ma,Mb,Mc,Ja,Jb,Jc) \tkzClipBB - \tkzDrawPolygon[](A,B,C) + \tkzDrawPolygon[blue](A,B,C) \tkzDrawLines[add=0 and 1](Ja,Ma Jb,Mb Jc,Mc) \tkzDrawLines[add=1 and 1](A,B A,C B,C) - \tkzDrawCircles[dashed](Ja,Ta Jb,Tb Jc,Tc) - \tkzDrawPoints(B,C,A,Mi) - \tkzLabelPoints(B,C,A,Mi) + \tkzDrawCircles[gray](Ja,Ta Jb,Tb Jc,Tc) + \tkzDrawPoints[blue](B,C,A) + \tkzDrawPoints[red](Mi) + \tkzLabelPoints[red](Mi) \tkzLabelPoints[left](Mb) \tkzLabelPoints(Ma,Mc,Jb,Jc) \tkzLabelPoints[above left](Ja,Jc) \tkzShowBB \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-10-0-2.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-07-0-2.tex index 56d8ee76910..a384d79ccff 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-10-0-2.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-07-0-2.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 35 (Section 7.0.2 : Example of point drawings) + \begin{tikzpicture}[scale=.5] \tkzDefPoint(1,3){A} \tkzDefPoint(4,1){B} @@ -5,4 +10,6 @@ \tkzDrawPoint[color=red](A) \tkzDrawPoint[fill=blue!20,draw=blue](B) \tkzDrawPoint[color=green](O) - \end{tikzpicture} +\end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-07-0-3.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-07-0-3.tex new file mode 100644 index 00000000000..72c4c2a189b --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-07-0-3.tex @@ -0,0 +1,14 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 36 (Section 7.0.3 : First example) + +\begin{tikzpicture} + \tkzDefPoint(1,3){A} + \tkzDefPoint(4,1){B} + \tkzDefPoint(0,0){C} + \tkzDrawPoints[size=6,color=red, + fill=red!50](A,B,C) +\end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-10-0-3.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-07-0-4.tex index 9f1d52f4ce4..6f4a965fee4 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-10-0-3.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-07-0-4.tex @@ -1,10 +1,15 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 37 (Section 7.0.4 : Second example) + \begin{tikzpicture}[scale=.5] \tkzDefPoint(2,3){A} \tkzDefPoint(5,-1){B} \tkzDefPoint[label=below:$\mathcal{C}$, shift={(2,3)}](-30:5.5){E} \begin{scope}[shift=(A)] \tkzDefPoint(30:5){C} - \end{scope} +\end{scope} \tkzCalcLength[cm](A,B)\tkzGetLength{rAB} \tkzDrawCircle[R](A,\rAB cm) \tkzDrawSegment(A,B) @@ -12,3 +17,5 @@ \tkzLabelPoints(B,C) \tkzLabelPoints[above](A) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-08-1-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-08-1-1.tex new file mode 100644 index 00000000000..60d9222e9c0 --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-08-1-1.tex @@ -0,0 +1,24 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 38 (Section 8.1.1 : Use of option \tkzname{pos} 1) + + \begin{tikzpicture} + \tkzDefPoints{0/0/A,4/0/B} + \tkzDrawLine[red](A,B) + \tkzDefPointOnLine[pos=1.2](A,B) + \tkzGetPoint{P} + \tkzDefPointOnLine[pos=-0.2](A,B) + \tkzGetPoint{R} + \tkzDefPointOnLine[pos=0.5](A,B) + \tkzGetPoint{S} + \tkzDrawPoints(A,B,P) + \tkzLabelPoints(A,B) + \tkzLabelPoint[above](P){pos=$1.2$} + \tkzLabelPoint[above](R){pos=$-.2$} + \tkzLabelPoint[above](S){pos=$.5$} + \tkzDrawPoints(A,B,P,R,S) + \tkzLabelPoints(A,B) +\end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-08-2-0.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-08-2-0.tex new file mode 100644 index 00000000000..b59a15d8ea1 --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-08-2-0.tex @@ -0,0 +1,24 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 39 (Section 8.2 : Point on a circle) + +\begin{tikzpicture} + \tkzDefPoints{0/0/A,4/0/B,0.8/3/C} + \tkzDefPointOnCircle[angle=90,center=B, + radius=1 cm] + \tkzGetPoint{I} + \tkzDrawCircle[R,teal](B,1cm) + \tkzDrawPoint[teal](I) + \tkzDefCircle[circum](A,B,C) + \tkzGetPoint{G} \tkzGetLength{rG} + \tkzDefPointOnCircle[angle=30,center=G, + radius=\rG pt] + \tkzGetPoint{J} + \tkzDrawPoints(A,B,C) + \tkzDrawCircle(G,J) + \tkzDrawPoint(G) + \tkzDrawPoint[red](J) +\end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-11-1-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-09-1-1.tex index 476573282f9..ed299332347 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-11-1-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-09-1-1.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 40 (Section 9.1.1 : Example of reflection) + \begin{tikzpicture}[scale=1] \tkzInit[ymin=-4,ymax=6,xmin=-7,xmax=3] \tkzClip @@ -6,9 +11,14 @@ \tkzDefPoint(-2,-2){A} \foreach \i in {0,1,...,4}{% \pgfmathparse{0+\i * 72} - \tkzDefPointBy[rotation=center O angle \pgfmathresult](A) \tkzGetPoint{A\i} - \tkzDefPointBy[reflection = over C--D](A\i) \tkzGetPoint{A\i'}} + \tkzDefPointBy[rotation=% + center O angle \pgfmathresult](A) + \tkzGetPoint{A\i} + \tkzDefPointBy[reflection = over C--D](A\i) + \tkzGetPoint{A\i'}} \tkzDrawPolygon(A0, A2, A4, A1, A3) \tkzDrawPolygon(A0', A2', A4', A1', A3') \tkzDrawLine[add= .5 and .5](C,D) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-11-2-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-09-2-1.tex index da42148d17a..05d6c6a05a7 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-11-2-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-09-2-1.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 41 (Section 9.2.1 : Example of homothety and projection) + \begin{tikzpicture}[scale=1.25] \tkzInit \tkzClip \tkzDefPoint(0,1){A} \tkzDefPoint(6,3){B} \tkzDefPoint(3,6){C} @@ -11,3 +16,5 @@ \tkzDrawCircle(a',k) \tkzLabelPoints(a,a',k,A) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-11-3-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-09-3-1.tex index b063a581123..ced8e2745c2 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-11-3-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-09-3-1.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 42 (Section 9.3.1 : Example of projection) + \begin{tikzpicture}[scale=1.5] \tkzInit[xmin=-3,xmax=5,ymax=4] \tkzClip[space=.5] \tkzDefPoint(0,0){A} @@ -12,4 +17,6 @@ \tkzDrawPoints(A,C,F) \tkzLabelPoints(A,C,F) \tkzDrawPoints(B,D,E,G) \tkzLabelPoints[above right](B,D,E,G) - \end{tikzpicture} +\end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-11-4-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-09-4-1.tex index 28f09e524ce..5c52a48c781 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-11-4-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-09-4-1.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 43 (Section 9.4.1 : Example of symmetry) + \begin{tikzpicture}[scale=1.5] \tkzDefPoint(0,0){O} \tkzDefPoint(2,-1){A} @@ -5,8 +10,12 @@ \tkzDefPointsBy[symmetry=center O](B,A){} \tkzDrawLine(A,A') \tkzDrawLine(B,B') - \tkzMarkAngle[mark=s,arc=lll,size=2 cm,mkcolor=red](A,O,B) - \tkzLabelAngle[pos=1,circle,draw,fill=blue!10](A,O,B){$60^{\circ}$} + \tkzMarkAngle[mark=s,arc=lll, + size=2 cm,mkcolor=red](A,O,B) + \tkzLabelAngle[pos=1,circle,draw, + fill=blue!10](A,O,B){$60^{\circ}$} \tkzDrawPoints(A,B,O,A',B') \tkzLabelPoints(A,B,O,A',B') \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-09-5-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-09-5-1.tex new file mode 100644 index 00000000000..c0f119a85d3 --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-09-5-1.tex @@ -0,0 +1,25 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 44 (Section 9.5.1 : Example of rotation) + + \begin{tikzpicture}[scale=1] + \tkzInit + \tkzDefPoint(0,0){A} + \tkzDefPoint(5,0){B} + \tkzDrawSegment(A,B) + \tkzDefPointBy[rotation=% + center A angle 60](B) + \tkzGetPoint{C} + \tkzDefPointBy[symmetry=% + center C](A) + \tkzGetPoint{D} + \tkzDrawSegment(A,tkzPointResult) + \tkzDrawLine(B,D) + \tkzDrawArc[delta=10](A,B)(C) + \tkzDrawArc[delta=10](B,C)(A) + \tkzDrawArc[delta=10](C,D)(D) + \tkzMarkRightAngle(D,B,A) +\end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-11-6-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-09-6-1.tex index c76759cf1da..6bab89ec36c 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-11-6-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-09-6-1.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 45 (Section 9.6.1 : Example of rotation in radian) + \begin{tikzpicture} \tkzDefPoint["$A$" left](1,5){A} \tkzDefPoint["$B$" right](5,2){B} @@ -11,3 +16,5 @@ \tkzLabelPoints(C) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-09-7-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-09-7-1.tex new file mode 100644 index 00000000000..bd131e4c5f0 --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-09-7-1.tex @@ -0,0 +1,26 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 46 (Section 9.7.1 : Inversion of points) + +\begin{tikzpicture}[scale=1.5] + \tkzDefPoint(0,0){O} + \tkzDefPoint(1,0){A} + \tkzDrawCircle(O,A) + \tkzDefPoint(-1.5,-1.5){z1} + \tkzDefPoint(0.35,0){z2} + \tkzDrawPoints[color=black, + fill=red,size=4](O,z1,z2) + \tkzDefPointBy[inversion =% + center O through A](z1) + \tkzGetPoint{Z1} + \tkzDefPointBy[inversion =% + center O through A](z2) + \tkzGetPoint{Z2} + \tkzDrawPoints[color=black, + fill=red,size=4](Z1,Z2) + \tkzDrawSegments(z1,Z1 z2,Z2) + \tkzLabelPoints(O,A,z1,z2,Z1,Z2) +\end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-09-7-2.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-09-7-2.tex new file mode 100644 index 00000000000..4d943a54f1f --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-09-7-2.tex @@ -0,0 +1,22 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 47 (Section 9.7.2 : Point Inversion: Orthogonal Circles) + +\begin{tikzpicture}[scale=1.5] + \tkzDefPoint(0,0){O} + \tkzDefPoint(1,0){A} + \tkzDrawCircle(O,A) + \tkzDefPoint(0.5,-0.25){z1} + \tkzDefPoint(-0.5,-0.5){z2} + \tkzDefPointBy[inversion = % + center O through A](z1) + \tkzGetPoint{Z1} + \tkzCircumCenter(z1,z2,Z1) + \tkzGetPoint{c} + \tkzDrawCircle(c,Z1) + \tkzDrawPoints[color=black, + fill=red,size=4](O,z1,z2,Z1,O,A) +\end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-12-1-0.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-10-1-0.tex index ac4964b5c10..179a48984a5 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-12-1-0.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-10-1-0.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 48 (Section 10.1 : Example de translation) + \begin{tikzpicture} \tkzDefPoint(0,0){A} \tkzDefPoint(4,2){A'} \tkzDefPoint(3,0){B} \tkzDefPoint(1,2){C} @@ -11,3 +16,5 @@ \tkzDrawSegments[color = gray,->, style=dashed](A,A' B,B' C,C') \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-13-1-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-11-1-1.tex index 11fa6376274..c2f47fac433 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-13-1-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-11-1-1.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 49 (Section 11.1.1 : \tkzcname{tkzDefPointWith} et \tkzname{colinear at}) + \begin{tikzpicture}[scale=1.2, vect/.style={->,shorten >=3pt,>=latex'}] \tkzDefPoint(2,3){A} \tkzDefPoint(4,2){B} @@ -8,3 +13,5 @@ \tkzLabelPoints[above right=3pt](A,B,C,D) \tkzDrawSegments[vect](A,B C,D) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-13-1-10.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-11-1-10.tex index f51b6990c9c..553572a3173 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-13-1-10.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-11-1-10.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 58 (Section 11.1.10 : \tkzcname{tkzDefPointWith} \tkzname{linear} ) + \begin{tikzpicture}[scale=1.2] \tkzDefPoint(1,3){A} \tkzDefPoint(4,2){B} \tkzDefPointWith[linear,K=0.5](A,B) @@ -6,3 +11,5 @@ \tkzDrawSegment(A,B) \tkzLabelPoints[above right=3pt](A,B,C) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-13-1-11.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-11-1-11.tex index a348d741b25..2977b90624f 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-13-1-11.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-11-1-11.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 59 (Section 11.1.11 : \tkzcname{tkzDefPointWith} \tkzname{linear normed}) + \begin{tikzpicture}[scale=1.2] \tkzDefPoint(1,3){A} \tkzDefPoint(4,2){B} \tkzDefPointWith[linear normed](A,B) @@ -7,3 +12,5 @@ \tkzLabelSegment(A,C){$1$} \tkzLabelPoints[above right=3pt](A,B,C) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-13-1-2.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-11-1-2.tex index 464e81c6bd4..7ff8f22bef5 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-13-1-2.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-11-1-2.tex @@ -1,5 +1,10 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 50 (Section 11.1.2 : colinear at) + \begin{tikzpicture}[vect/.style={->, - shorten >=3pt,>=latex'}] + shorten >=3pt,>=latex'}] \tkzDefPoint(0,0){A} \tkzDefPoint(5,0){B} \tkzDefPoint(1,2){C} @@ -9,5 +14,7 @@ \tkzGetPoint{H} \tkzLabelPoints(A,B,C,G,H) \tkzDrawPoints(A,B,C,G,H) - \tkzDrawSegments[vect](A,B C,H) + \tkzDrawSegments[vect](A,B C,H) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-13-1-3.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-11-1-3.tex index 60d7f7a1bbc..645719cca96 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-13-1-3.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-11-1-3.tex @@ -1,5 +1,10 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 51 (Section 11.1.3 : colinear $K=\frac{\sqrt{2}}{2}$) + \begin{tikzpicture}[vect/.style={->, - shorten >=3pt,>=latex'}] + shorten >=3pt,>=latex'}] \tkzDefPoint(1,1){A} \tkzDefPoint(4,2){B} \tkzDefPoint(2,2){CU} @@ -8,3 +13,5 @@ \tkzDrawPoints[color=red](A,B,C,D) \tkzDrawSegments[vect](A,B C,D) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-13-1-4.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-11-1-4.tex index 0f9366c2af2..a0bc38ede31 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-13-1-4.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-11-1-4.tex @@ -1,7 +1,12 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 52 (Section 11.1.4 : \tkzcname{tkzDefPointWith} et \tkzname{orthogonal}) + \begin{tikzpicture}[scale=1.2, vect/.style={->,shorten >=3pt,>=latex'}] \tkzDefPoint(2,3){A} - \tkzDefPoint(4,2){B} + \tkzDefPoint(4,2){B} \tkzDefPointWith[orthogonal,K=-1](A,B) \tkzGetPoint{C} \tkzDrawPoints[color=red](A,B,C) @@ -9,3 +14,5 @@ \tkzDrawSegments[vect](A,B A,C) \tkzMarkRightAngle(B,A,C) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-13-1-5.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-11-1-5.tex index f4d040e71c3..b01a8b5ca00 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-13-1-5.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-11-1-5.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 53 (Section 11.1.5 : orthogonal simple) + \begin{tikzpicture}[scale=.75] \tkzDefPoint(1,2){O} \tkzDefPoint(2,5){I} @@ -11,3 +16,5 @@ \tkzDrawPoints(O,I,J,K) \tkzLabelPoints(O,I,J,K) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-13-1-6.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-11-1-6.tex index 068aeb6d697..b455e51a52a 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-13-1-6.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-11-1-6.tex @@ -1,19 +1,26 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 54 (Section 11.1.6 : advanced orthogonal) + \begin{tikzpicture}[scale=.75] \tkzDefPoints{0/0/A,6/0/B} \tkzDefMidPoint(A,B) - \tkzGetPoint{I} + \tkzGetPoint{I} \tkzDefPointWith[orthogonal,K=-.75](B,A) \tkzGetPoint{C} \tkzInterLC(B,C)(B,I) - \tkzGetPoints{D}{F} + \tkzGetPoints{D}{F} \tkzDuplicateSegment(B,F)(A,F) \tkzGetPoint{E} \tkzDrawArc[delta=10](F,E)(B) \tkzInterLC(A,B)(A,E) - \tkzGetPoints{N}{M} + \tkzGetPoints{N}{M} \tkzDrawArc[delta=10](A,M)(E) \tkzDrawLines(A,B B,C A,F) \tkzCompass(B,F) \tkzDrawPoints(A,B,C,F,M,E) \tkzLabelPoints(A,B,C,F,M,E) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-13-1-7.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-11-1-7.tex index 5025f0cdfe4..4f824311be5 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-13-1-7.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-11-1-7.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 55 (Section 11.1.7 : segment colinear and orthogonal) + \begin{tikzpicture}[scale=1.2, vect/.style={->,shorten >=3pt,>=latex'}] \tkzDefPoint(2,1){A} @@ -10,3 +15,5 @@ \tkzDrawSegments[vect](A,B A,C C,D) \tkzDrawPoints(A,...,D) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-13-1-8.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-11-1-8.tex index dbe2bb3b6e4..5bcb0f65bdf 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-13-1-8.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-11-1-8.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 56 (Section 11.1.8 : \tkzcname{tkzDefPointWith} \tkzname{orthogonal normed}, K=1) + \begin{tikzpicture}[scale=1.2, vect/.style={->,shorten >=3pt,>=latex'}] \tkzDefPoint(2,3){A} \tkzDefPoint(4,2){B} @@ -7,3 +12,5 @@ \tkzDrawSegments[vect](A,B A,C) \tkzMarkRightAngle[fill=gray!20](B,A,C) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-13-1-9.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-11-1-9.tex index 4e69660705b..42519ab2585 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-13-1-9.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-11-1-9.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 57 (Section 11.1.9 : \tkzcname{tkzDefPointWith} et \tkzname{orthogonal normed} K=2) + \begin{tikzpicture}[scale=1.2, vect/.style={->,shorten >=3pt,>=latex'}] \tkzDefPoint(2,3){A} \tkzDefPoint(5,1){B} @@ -9,3 +14,5 @@ \tkzMarkRightAngle[fill=gray!20](B,A,C) \tkzLabelPoints[above=3pt](A,B,C) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-13-2-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-11-2-1.tex index 390379750b8..747d00d9469 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-13-2-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-11-2-1.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 60 (Section 11.2.1 : Coordinate transfer with \tkzcname{tkzGetVectxy}) + \begin{tikzpicture} \tkzDefPoint(0,0){O} \tkzDefPoint(1,1){A} @@ -9,3 +14,5 @@ \tkzDrawPoints(A,B,O) \tkzLabelPoints(A,B,O,V) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-14-2-0.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-12-2-0.tex index 5dd1da2c1a6..8301f5ad87d 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-14-2-0.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-12-2-0.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 61 (Section 12.2 : Random point in a rectangle) + \begin{tikzpicture} \tkzInit[xmax=5,ymax=5]\tkzGrid \tkzDefPoints{0/0/A,2/2/B,5/5/C} @@ -9,3 +14,5 @@ \tkzDrawPoints(A,B,C,a,d) \tkzLabelPoints(A,B,C,a,d) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-14-3-0.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-12-3-0.tex index d237b813321..08286630a59 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-14-3-0.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-12-3-0.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 62 (Section 12.3 : Random point on a segment) + \begin{tikzpicture} \tkzInit[xmax=5,ymax=5] \tkzGrid \tkzDefPoints{0/0/A,2/2/B,3/3/C,5/5/D} @@ -6,3 +11,5 @@ \tkzDrawPoints(A,B,C,D,a,d) \tkzLabelPoints(A,B,C,D,a,d) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-14-4-0.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-12-4-0.tex index d75b58c5f16..d07f36751f1 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-14-4-0.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-12-4-0.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 63 (Section 12.4 : Random point on a straight line) + \begin{tikzpicture} \tkzInit[xmax=5,ymax=5] \tkzGrid \tkzDefPoints{0/0/A,2/2/B,3/3/C,5/5/D} @@ -6,3 +11,5 @@ \tkzDrawPoints(A,B,C,D,a,d) \tkzLabelPoints(A,B,C,D,a,d) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-14-4-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-12-4-1.tex index 2545f20b5bb..394404b53a0 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-14-4-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-12-4-1.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 64 (Section 12.4.1 : Example of random points) + \begin{tikzpicture} \tkzDefPoints{0/0/A,2/2/B,-1/-1/C} \tkzDefCircle[through=](A,C) @@ -18,3 +23,5 @@ \tkzDrawPoints[](A,B,C,a,b,...,e) \tkzDrawRectangle(A,B) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-14-6-0.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-12-5-0.tex index 0d8639e9c56..42d1f9e15bf 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-14-6-0.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-12-5-0.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 65 (Section 12.5 : Random point on a circle) + \begin{tikzpicture} \tkzInit[xmax=5,ymax=5] \tkzGrid \tkzDefPoints{3/2/A,1/1/B} @@ -9,3 +14,5 @@ \tkzDrawPoints(A,B,a) \tkzLabelPoints(A,B,a) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-14-5-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-12-5-1.tex index 35e28352ebd..cfedad22b4a 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-14-5-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-12-5-1.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 66 (Section 12.5.1 : Random example and circle of Apollonius) + \begin{tikzpicture}[scale=1] \tkzDefPoints{0/0/A,3/0/B} \def\coeffK{2} @@ -21,3 +26,5 @@ text centered](P,\tkzLengthResult pt-20pt)(-120)% { $MA/MB=\coeffK$\\$NA/NB=\coeffK$} \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-14-7-0.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-12-6-0.tex index e04b606698b..000691ea210 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-14-7-0.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-12-6-0.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 67 (Section 12.6 : Middle of a compass segment) + \begin{tikzpicture}[scale=.75] \tkzDefPoint(0,0){A} \tkzDefRandPointOn[circle= center A radius 4cm] @@ -22,4 +27,6 @@ \tkzCompasss[color=red,style=solid](B,I I,J J,C) \tkzDrawPoints(B,C,D,E,M) \tkzLabelPoints(A,B,M) - \end{tikzpicture} +\end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-15-1-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-13-1-1.tex index d4fabaab5b0..08b6b721025 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-15-1-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-13-1-1.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 68 (Section 13.1.1 : Example with \tkzname{mediator}) + \begin{tikzpicture}[rotate=25] \tkzInit \tkzDefPoints{-2/0/A,1/2/B} @@ -10,3 +15,5 @@ \tkzDrawSegments(D,B D,A) \tkzDrawSegments(C,B C,A) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-15-1-2.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-13-1-2.tex index 2eea88ee9cd..b15124718ce 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-15-1-2.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-13-1-2.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 69 (Section 13.1.2 : Example avec \tkzname{orthogonal} et \tkzname{parallel}) + \begin{tikzpicture} \tkzDefPoints{-1.5/-0.25/A,1/-0.75/B,-0.7/1/C} \tkzDrawLine(A,B) @@ -13,3 +18,5 @@ \tkzLabelLine[pos=1.25,left](C,c'){$(d_2)$} \tkzMarkRightAngle(I,C,c') \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-15-1-3.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-13-1-3.tex index 4049c8dc955..754b8d2c98c 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-15-1-3.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-13-1-3.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 70 (Section 13.1.3 : An envelope) + \begin{tikzpicture}[scale=1] \tkzInit[xmin=-6,ymin=-6,xmax=6,ymax=6] \tkzClip @@ -9,3 +14,5 @@ \tkzDefLine[mediator](A,M) \tkzDrawLine[color=magenta,add= 4 and 4](tkzFirstPointResult,tkzSecondPointResult)} \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-15-1-4.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-13-1-4.tex index cb58fa34522..bf3c722eaf2 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-15-1-4.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-13-1-4.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 71 (Section 13.1.4 : A parable) + \begin{tikzpicture}[scale=1.25] \tkzInit[xmin=-6,ymin=-6,xmax=6,ymax=6] \tkzClip @@ -9,4 +14,6 @@ \tkzDefLine[mediator](A,M) \tkzDrawLine[color=magenta, add= 4 and 4](tkzFirstPointResult,tkzSecondPointResult)} - \end{tikzpicture} +\end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-15-1-5.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-13-1-5.tex index 60e7b1c6955..c08103fbba3 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-15-1-5.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-13-1-5.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 72 (Section 13.1.5 : Drawing a tangent option \tkzimp{from with R} and \tkzimp{at}) + \begin{tikzpicture}[scale=.5] \tkzDefPoint(0,0){O} \tkzDefPoint(6,6){E} @@ -15,4 +20,6 @@ \tkzDrawLine[add = .5 and .5](A,h) \tkzDrawLine[add = .5 and .5](E,k) \tkzMarkRightAngle[fill=red!30](O,A,h) - \end{tikzpicture} +\end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-15-1-6.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-13-1-6.tex index 1347aecde95..f9c12b5df19 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-15-1-6.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-13-1-6.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 73 (Section 13.1.6 : Drawing a tangent option \tkzimp{from}) + \begin{tikzpicture}[scale=.5] \tkzDefPoint(0,0){B} \tkzDefPoint(0,8){A} @@ -18,3 +23,5 @@ \tkzDefPointBy[projection= onto B--A](tkzPointResult) \tkzDrawCircle[fill = blue!50!black](tkzPointResult,A) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-16-1-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-14-1-1.tex index 7a40607519e..b4a79c00dcd 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-16-1-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-14-1-1.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 74 (Section 14.1.1 : Examples of right-hand plots with \tkzname{add}) + \begin{tikzpicture} \tkzInit[xmin=-2,xmax=3,ymin=-2.25,ymax=2.25] \tkzClip[space=.25] @@ -7,7 +12,9 @@ \tkzDefPoint(0,-2){G} \tkzDefPoint(2,-1.5){H} \tkzDrawLine(A,B) \tkzDrawLine[add = 0 and .5](C,D) \tkzDrawLine[add = 1 and 0](E,F) -\tkzDrawLine[add = 0 and 0](G,H) + \tkzDrawLine[add = 0 and 0](G,H) \tkzDrawPoints(A,B,C,D,E,F,G,H) \tkzLabelPoints(A,B,C,D,E,F,G,H) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-16-1-2.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-14-1-2.tex index 6be63878139..38871e6f020 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-16-1-2.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-14-1-2.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 75 (Section 14.1.2 : Example with \tkzcname{tkzDrawLines}) + \begin{tikzpicture} \tkzDefPoint(0,0){A} \tkzDefPoint(2,0){B} @@ -6,3 +11,5 @@ \tkzDrawLines(A,B C,D A,C B,D) \tkzLabelPoints(A,B,C,D) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-16-1-3.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-14-1-3.tex index 18739883b8c..bc6fa74542d 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-16-1-3.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-14-1-3.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 76 (Section 14.1.3 : Example with the option \tkzname{add}) + \begin{tikzpicture}[scale=.5] \tkzDefPoint(0,0){O} \tkzDefPoint(3,1){I} @@ -9,3 +14,5 @@ \tkzDrawLines[add = 1 and .5,color=red](O,I O,J) \tkzDrawLines[add = 1 and .5,color=blue](O,i O,j) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-18-3-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-14-1-4.tex index 1accd70ba98..614db1b70f6 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-18-3-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-14-1-4.tex @@ -1,5 +1,9 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 77 (Section 14.1.4 : Medians in a triangle) + \begin{tikzpicture}[scale=1.25] - \tkzInit[xmin=0,xmax=4,ymin=0,ymax=3] \tkzClip \tkzDefPoint(0,0){A} \tkzDefPoint(4,0){B} \tkzDefPoint(1,3){C} \tkzDrawPolygon(A,B,C) \tkzSetUpLine[color=blue] @@ -7,3 +11,5 @@ \tkzDrawLine[median](C,A,B) \tkzDrawLine[median](A,B,C) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-18-4-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-14-1-5.tex index d323b4e1deb..0fa5586acc9 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-18-4-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-14-1-5.tex @@ -1,5 +1,9 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 78 (Section 14.1.5 : Altitudes in a triangle) + \begin{tikzpicture}[scale=1.25] - \tkzInit[xmin=0,xmax=4,ymin=0,ymax=3] \tkzClip \tkzDefPoint(0,0){A} \tkzDefPoint(4,0){B} \tkzDefPoint(1,3){C} \tkzDrawPolygon(A,B,C) \tkzSetUpLine[color=magenta] @@ -7,3 +11,5 @@ \tkzDrawLine[altitude](C,A,B) \tkzDrawLine[altitude](A,B,C) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-18-5-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-14-1-6.tex index 7dabe9e81a3..dea93902829 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-18-5-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-14-1-6.tex @@ -1,5 +1,9 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 79 (Section 14.1.6 : Bisectors in a triangle) + \begin{tikzpicture}[scale=1.5] - \tkzInit[xmin=0,xmax=4,ymin=0,ymax=3] \tkzClip \tkzDefPoint(0,0){A} \tkzDefPoint(4,0){B} \tkzDefPoint(1,3){C} \tkzDrawPolygon(A,B,C) \tkzSetUpLine[color=purple] @@ -7,3 +11,5 @@ \tkzDrawLine[bisector](C,A,B) \tkzDrawLine[bisector](A,B,C) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-16-2-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-14-2-1.tex index 2ea57441cc4..98cd8c990a3 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-16-2-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-14-2-1.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 80 (Section 14.2.1 : Example with \tkzcname{tkzLabelLine}) + \begin{tikzpicture} \tkzDefPoints{0/0/A,3/0/B,1/1/C} \tkzDefLine[perpendicular=through C,K=-1](A,B) @@ -6,3 +11,5 @@ \tkzLabelLine[pos=1.25,blue,right](C,c){$(\delta)$} \tkzLabelLine[pos=-0.25,red,left](C,c){encore $(\delta)$} \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-17-1-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-15-1-1.tex index cad85c29c51..d61e0491bd9 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-17-1-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-15-1-1.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 81 (Section 15.1.1 : Example with point references) + \begin{tikzpicture}[scale=1.5] \tkzDefPoint(0,0){A} \tkzDefPoint(2,1){B} @@ -5,3 +10,5 @@ \tkzDrawPoints(A,B) \tkzLabelPoints(A,B) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-17-1-2.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-15-1-2.tex index 2d79844eb24..a51b731c188 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-17-1-2.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-15-1-2.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 82 (Section 15.1.2 : Example of extending an option segment \tkzimp{add}) + \begin{tikzpicture} \tkzDefPoints{0/0/A,6/0/B,0.8/4/C} \tkzDefTriangleCenter[euler](A,B,C) @@ -6,4 +11,6 @@ \tkzDrawLines[add=.5 and .5](A,B A,C B,C) \tkzDrawPoints(A,B,C,E) \tkzLabelPoints(A,B,C,E) - \end{tikzpicture} +\end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-17-1-3.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-15-1-3.tex index 2cc2068bc37..64d616fde2d 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-17-1-3.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-15-1-3.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 83 (Section 15.1.3 : Example of adding dimensions (technical figure) option \tkzimp{dim}) + \begin{tikzpicture}[scale=2] \pgfkeys{/pgf/number format/.cd,fixed,precision=2} % Define the first two points @@ -18,4 +23,6 @@ 6pt,transform shape}](A,C) \tkzDrawSegment[dim={\pgfmathprintnumber\ABl, -6pt,transform shape}](A,B) - \end{tikzpicture} +\end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-17-2-0.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-15-2-0.tex index e2efe5a28fe..678362bd28c 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-17-2-0.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-15-2-0.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 84 (Section 15.2 : Drawing segments \tkzcname{tkzDrawSegments}) + \begin{tikzpicture} \tkzInit[xmin=-1,xmax=3,ymin=-1,ymax=2] \tkzClip[space=1] @@ -9,3 +14,5 @@ \tkzLabelPoints(A,C) \tkzLabelPoints[above](B) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-15-2-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-15-2-1.tex new file mode 100644 index 00000000000..cff3b62052d --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-15-2-1.tex @@ -0,0 +1,18 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 85 (Section 15.2.1 : Place an arrow on segment) + +\begin{tikzpicture} + \tikzset{ + arr/.style={postaction=decorate, + decoration={markings, + mark=at position .5 with {\arrow[thick]{#1}} + }}} + \tkzDefPoint(0,0){A} + \tkzDefPoint(4,0){B} + \tkzDrawSegments[arr=stealth](A,B) + \tkzDrawPoints(A,B) +\end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-17-3-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-15-3-1.tex index 37c9305c21d..8c6e4ec4926 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-17-3-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-15-3-1.tex @@ -1,11 +1,18 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 86 (Section 15.3.1 : Several marks ) + \begin{tikzpicture} \tkzDefPoint(2,1){A} \tkzDefPoint(6,4){B} \tkzDrawSegment(A,B) - \tkzMarkSegment[color=Maroon,size=2pt, + \tkzMarkSegment[color=brown,size=2pt, pos=0.4, mark=z](A,B) \tkzMarkSegment[color=blue, pos=0.2, mark=oo](A,B) \tkzMarkSegment[pos=0.8, mark=s,color=red](A,B) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-17-3-2.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-15-3-2.tex index b532bdbe818..26cb6fb9134 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-17-3-2.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-15-3-2.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 87 (Section 15.3.2 : Use of \tkzname{mark}) + \begin{tikzpicture} \tkzDefPoint(2,1){A} \tkzDefPoint(6,4){B} @@ -6,8 +11,10 @@ pos=0.2,mark=s|](A,B) \tkzMarkSegment[color=gray, pos=0.4,mark=s||](A,B) - \tkzMarkSegment[color=Maroon, + \tkzMarkSegment[color=brown, pos=0.6,mark=||](A,B) \tkzMarkSegment[color=red, pos=0.8,mark=|||](A,B) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-17-4-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-15-4-1.tex index a350f999610..1b5701802d4 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-17-4-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-15-4-1.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 88 (Section 15.4.1 : Marques pour un triangle isocèle) + \begin{tikzpicture}[scale=1] \tkzDefPoints{0/0/O,2/2/A,4/0/B,6/2/C} \tkzDrawSegments(O,A A,B) @@ -5,3 +10,5 @@ \tkzDrawLine(O,B) \tkzMarkSegments[mark=||,size=6pt](O,A A,B) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-17-5-0.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-15-5-0.tex index 618e7d219a0..c4bfea9313e 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-17-5-0.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-15-5-0.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 89 (Section 15.5 : Another marking) + \begin{tikzpicture}[scale=1] \tkzDefPoint(0,0){A}\tkzDefPoint(3,2){B} \tkzDefPoint(4,0){C}\tkzDefPoint(2.5,1){P} @@ -14,3 +19,5 @@ \tkzLabelPoints(A,C) \tkzLabelPoints[below](P) \tkzLabelPoints[above right](P',C',B) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-17-5-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-15-5-1.tex index 65bbee78059..e2987c9905b 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-17-5-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-15-5-1.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 90 (Section 15.5.1 : Labels multiples) + \begin{tikzpicture} \tkzInit \tkzDefPoint(0,0){A} @@ -6,3 +11,5 @@ \tkzLabelSegment[above,pos=.8](A,B){$a$} \tkzLabelSegment[below,pos=.2](A,B){$4$} \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-17-5-2.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-15-5-2.tex index 2798efaf6dc..41c37c42a58 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-17-5-2.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-15-5-2.tex @@ -1,7 +1,12 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 91 (Section 15.5.2 : Labels and right-angled triangle) + \begin{tikzpicture}[rotate=-60] \tikzset{label seg style/.append style = {% - color = red, - }} + color = red, + }} \tkzDefPoint(0,1){A} \tkzDefPoint(2,4){C} \tkzDefPointWith[orthogonal normed,K=7](C,A) @@ -24,3 +29,5 @@ color=orange,mark=||](B,A,C) \tkzMarkRightAngles[german](A,C,B B,P,C) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-17-5-3.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-15-5-3.tex index 450c9c3fd1c..d20e6414961 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-17-5-3.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-15-5-3.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 92 (Section 15.5.3 : Labels for an isosceles triangle) + \begin{tikzpicture}[scale=1] \tkzDefPoints{0/0/O,2/2/A,4/0/B,6/2/C} \tkzDrawSegments(O,A A,B) @@ -5,3 +10,5 @@ \tkzDrawLine(O,B) \tkzLabelSegments[color=red,above=4pt](O,A A,B){$a$} \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-18-1-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-16-1-1.tex index d276812b757..4d4374b3f69 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-18-1-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-16-1-1.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 93 (Section 16.1.1 : triangle doré (golden)) + \begin{tikzpicture}[scale=.8] \tkzInit[xmax=5,ymax=3] \tkzClip[space=.5] \tkzDefPoint(0,0){A} \tkzDefPoint(4,0){B} @@ -6,3 +11,5 @@ \tkzLabelPoints(A,B) \tkzDrawBisector(A,C,B) \tkzLabelPoints[above](C) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-18-1-2.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-16-1-2.tex index 231cc7e7d6c..47605fcc6ff 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-18-1-2.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-16-1-2.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 94 (Section 16.1.2 : triangle équilatéral) + \begin{tikzpicture} \tkzDefPoint(0,0){A} \tkzDefPoint(4,0){B} @@ -10,3 +15,5 @@ \tkzDrawPoints(A,B,C,D) \tkzLabelPoints(A,B,C,D) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-18-1-3.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-16-1-3.tex index d438bc79426..11f13d0f52a 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-18-1-3.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-16-1-3.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 95 (Section 16.1.3 : triangle d'or (euclide)) + \begin{tikzpicture} \tkzDefPoint(0,0){A} \tkzDefPoint(4,0){B} \tkzDefTriangle[euclide](A,B)\tkzGetPoint{C} @@ -7,3 +12,5 @@ \tkzLabelPoints[above](C) \tkzDrawBisector(A,C,B) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-16-2-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-16-2-1.tex new file mode 100644 index 00000000000..dbb9772f1d5 --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-16-2-1.tex @@ -0,0 +1,13 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 96 (Section 16.2.1 : triangle de Pythagore) + +\begin{tikzpicture} + \tkzDefPoint(0,0){A} + \tkzDefPoint(4,0){B} + \tkzDrawTriangle[pythagore,fill=blue!30](A,B) + \tkzMarkRightAngles(A,B,tkzPointResult) +\end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-16-2-2.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-16-2-2.tex new file mode 100644 index 00000000000..9bbceb668a7 --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-16-2-2.tex @@ -0,0 +1,16 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 97 (Section 16.2.2 : triangle 30 60 90 (school)) + +\begin{tikzpicture} +\tkzInit[ymin=-2.5,ymax=0,xmin=-5,xmax=0] +\tkzClip[space=.5] +\begin{scope}[rotate=-180] + \tkzDefPoint(0,0){A} \tkzDefPoint(4,0){B} + \tkzDrawTriangle[school,fill=red!30](A,B) + \tkzMarkRightAngles(B,A,tkzPointResult) +\end{scope} +\end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-17-0-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-17-0-1.tex new file mode 100644 index 00000000000..e1a75b5d374 --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-17-0-1.tex @@ -0,0 +1,21 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 98 (Section 17.0.1 : \tkzcname{tkzDefSpcTriangle} option "medial" ou "centroid") + +\begin{tikzpicture}[rotate=90,scale=.75] + \tkzDefPoints{0/0/A,6/0/B,0.8/4/C} + \tkzDefTriangleCenter[centroid](A,B,C) + \tkzGetPoint{M} + \tkzDefSpcTriangle[medial,name=M](A,B,C){_A,_B,_C} + \tkzDrawPolygon[color=blue](A,B,C) + \tkzDrawSegments[dashed,red](A,M_A B,M_B C,M_C) + \tkzDrawPolygon[color=red](M_A,M_B,M_C) + \tkzDrawPoints(A,B,C,M) + \tkzDrawPoints[red](M_A,M_B,M_C) +\tkzAutoLabelPoints[center=M,font=\scriptsize]% +(A,B,C,M_A,M_B,M_C) + \tkzLabelPoints[font=\scriptsize](M) +\end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-19-0-2.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-17-0-2.tex index dc76c839919..7d41f95ce81 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-19-0-2.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-17-0-2.tex @@ -1,11 +1,22 @@ -\begin{tikzpicture}[scale=1.5] +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 99 (Section 17.0.2 : Option : "in" ou "incentral") + +\begin{tikzpicture}[scale=1] \tkzDefPoints{ 0/0/A,5/0/B,1/3/C} \tkzDefSpcTriangle[in,name=I](A,B,C){a,b,c} \tkzInCenter(A,B,C)\tkzGetPoint{I} \tkzDrawPolygon[red](A,B,C) \tkzDrawPolygon[blue](Ia,Ib,Ic) \tkzDrawPoints(A,B,C,I,Ia,Ib,Ic) - \tkzLabelPoints(A,B,C,I,Ia,Ib,Ic) \tkzDrawCircle[in](A,B,C) \tkzDrawSegments[dashed](A,Ia B,Ib C,Ic) + \tkzAutoLabelPoints[center=I,blue,font=\scriptsize]% +(Ia,Ib,Ic) + \tkzAutoLabelPoints[center=I,red,font=\scriptsize]% +(A,B,C) +(A,B,C,Ia,Ib,Ic) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-17-0-3.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-17-0-3.tex new file mode 100644 index 00000000000..1a8293accdc --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-17-0-3.tex @@ -0,0 +1,21 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 100 (Section 17.0.3 : Option : "ex" ou "Excentral") + +\begin{tikzpicture}[scale=.6] + \tkzDefPoints{0/0/A,6/0/B,0.8/4/C} + \tkzDefSpcTriangle[excentral,name=J](A,B,C){a,b,c} + \tkzDefSpcTriangle[extouch,name=T](A,B,C){a,b,c} + \tkzDrawPolygon[blue](A,B,C) + \tkzDrawPolygon[red](Ja,Jb,Jc) + \tkzDrawPoints(A,B,C) + \tkzDrawPoints[red](Ja,Jb,Jc) + \tkzLabelPoints(A,B,C) + \tkzLabelPoints[red](Jb,Jc) + \tkzLabelPoints[red,above](Ja) + \tkzClipBB \tkzShowBB + \tkzDrawCircles[gray](Ja,Ta Jb,Tb Jc,Tc) +\end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-17-0-4.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-17-0-4.tex new file mode 100644 index 00000000000..77666ae9079 --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-17-0-4.tex @@ -0,0 +1,21 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 101 (Section 17.0.4 : Option : "intouch") + +\begin{tikzpicture}[scale=.75] + \tkzDefPoints{0/0/A,6/0/B,0.8/4/C} + \tkzDefSpcTriangle[intouch,name=x](A,B,C){a,b,c} + \tkzInCenter(A,B,C)\tkzGetPoint{I} + \tkzDrawPolygon[red](A,B,C) + \tkzDrawPolygon[blue](xa,xb,xc) + \tkzDrawPoints[red](A,B,C) + \tkzDrawPoints[blue](xa,xb,xc) + \tkzDrawCircle[in](A,B,C) + \tkzAutoLabelPoints[center=I,blue,font=\scriptsize]% +(xa,xb,xc) + \tkzAutoLabelPoints[center=I,red,font=\scriptsize]% +(A,B,C) +\end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-17-0-5.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-17-0-5.tex new file mode 100644 index 00000000000..208bb862974 --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-17-0-5.tex @@ -0,0 +1,33 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 102 (Section 17.0.5 : Option : "extouch") + +\begin{tikzpicture}[scale=.7] +\tkzDefPoints{0/0/A,6/0/B,0.8/4/C} +\tkzDefSpcTriangle[excentral, + name=J](A,B,C){a,b,c} +\tkzDefSpcTriangle[extouch, + name=T](A,B,C){a,b,c} +\tkzDefTriangleCenter[nagel](A,B,C) +\tkzGetPoint{Na} +\tkzDefTriangleCenter[centroid](A,B,C) +\tkzGetPoint{G} +\tkzDrawPoints[blue](Ja,Jb,Jc) +\tkzClipBB \tkzShowBB +\tkzDrawCircles[gray](Ja,Ta Jb,Tb Jc,Tc) +\tkzDrawLines[add=1 and 1](A,B B,C C,A) +\tkzDrawSegments[gray](A,Ta B,Tb C,Tc) +\tkzDrawSegments[gray](Ja,Ta Jb,Tb Jc,Tc) +\tkzDrawPolygon[blue](A,B,C) +\tkzDrawPolygon[red](Ta,Tb,Tc) +\tkzDrawPoints(A,B,C,Na) +\tkzLabelPoints(Na) +\tkzAutoLabelPoints[center=Na,blue](A,B,C) +\tkzAutoLabelPoints[center=G,red, + dist=.4](Ta,Tb,Tc) +\tkzMarkRightAngles[fill=gray!15](Ja,Ta,B + Jb,Tb,C Jc,Tc,A) +\end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-17-0-6.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-17-0-6.tex new file mode 100644 index 00000000000..82ae803be6c --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-17-0-6.tex @@ -0,0 +1,27 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 103 (Section 17.0.6 : Option : "feuerbach") + +\begin{tikzpicture}[scale=1] + \tkzDefPoint(0,0){A} + \tkzDefPoint(3,0){B} + \tkzDefPoint(0.5,2.5){C} + \tkzDefCircle[euler](A,B,C) \tkzGetPoint{N} + \tkzDefSpcTriangle[feuerbach, + name=F](A,B,C){_a,_b,_c} + \tkzDefSpcTriangle[excentral, + name=J](A,B,C){_a,_b,_c} + \tkzDefSpcTriangle[extouch, + name=T](A,B,C){_a,_b,_c} + \tkzDrawPoints[blue](J_a,J_b,J_c,F_a,F_b,F_c,A,B,C) + \tkzClipBB \tkzShowBB + \tkzDrawCircle[purple](N,F_a) + \tkzDrawPolygon(A,B,C) + \tkzDrawPolygon[blue](F_a,F_b,F_c) + \tkzDrawCircles[gray](J_a,F_a J_b,F_b J_c,F_c) + \tkzAutoLabelPoints[center=N,dist=.3, + font=\scriptsize](A,B,C,F_a,F_b,F_c,J_a,J_b,J_c) +\end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-19-0-5.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-17-0-7.tex index 384b9963a8b..b71f602432a 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-19-0-5.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-17-0-7.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 104 (Section 17.0.7 : Option Triangle "tangential") + \begin{tikzpicture}[scale=.5,rotate=80] \tkzDefPoints{0/0/A,6/0/B,1.8/4/C} \tkzDefSpcTriangle[tangential, @@ -12,3 +17,5 @@ \tkzLabelPoints[red](A,B,C) \tkzLabelPoints[blue](Ta,Tb,Tc) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-19-0-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-17-0-8.tex index 211cc716375..d5041da322e 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-19-0-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-17-0-8.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 105 (Section 17.0.8 : Option Triangle "euler") + \begin{tikzpicture}[rotate=90,scale=1.25] \tkzDefPoints{0/0/A,6/0/B,0.8/4/C} \tkzDefSpcTriangle[medial, @@ -24,3 +29,5 @@ color=blue,line width=1pt](B,E_B E_B,H) \tkzDrawPolygon[color=red](M_A,M_B,M_C) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-20-1-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-18-1-1.tex index ada53493da9..faead36ac40 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-20-1-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-18-1-1.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 106 (Section 18.1.1 : Using \tkzcname{tkzDefSquare} with two points) + \begin{tikzpicture}[scale=.5] \tkzDefPoint(0,0){A} \tkzDefPoint(3,0){B} \tkzDefSquare(A,B) @@ -7,3 +12,5 @@ \tkzDrawPolygon[color=blue](B,A,tkzFirstPointResult,% tkzSecondPointResult) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-20-1-2.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-18-1-2.tex index 23e0a855732..82a8f36d925 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-20-1-2.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-18-1-2.tex @@ -1,6 +1,13 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 107 (Section 18.1.2 : Use of \tkzcname{tkzDefSquare} to obtain an isosceles right-angled triangle) + \begin{tikzpicture}[scale=1] \tkzDefPoint(0,0){A} \tkzDefPoint(3,0){B} \tkzDefSquare(A,B) \tkzGetFirstPoint{C} \tkzDrawPolygon[color=blue,fill=blue!30](A,B,C) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-20-1-3.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-18-1-3.tex index 2ff0bbf24f2..915ff3b88a8 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-20-1-3.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-18-1-3.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 108 (Section 18.1.3 : Pythagorean Theorem and \tkzcname{tkzDefSquare} ) + \begin{tikzpicture}[scale=.5] \tkzInit \tkzDefPoint(0,0){C} @@ -18,3 +23,5 @@ \tkzLabelSegment[](C,B){$b$} \tkzLabelSegment[swap](A,B){$c$} \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-20-3-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-18-3-1.tex index 2d6b95b7ff0..beb81b3d884 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-20-3-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-18-3-1.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 109 (Section 18.3.1 : Example of a parallelogram definition) + \begin{tikzpicture}[scale=1] \tkzDefPoints{0/0/A,3/0/B,4/2/C} \tkzDefParallelogram(A,B,C) @@ -7,3 +12,5 @@ \tkzLabelPoints[above right](C,D) \tkzDrawPoints(A,...,D) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-20-3-2.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-18-3-2.tex index 695e68316eb..1ccd775cd7b 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-20-3-2.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-18-3-2.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 110 (Section 18.3.2 : Simple example) + \begin{tikzpicture}[scale=1] \tkzDefPoints{0/0/A,3/0/B,4/2/C} \tkzDefPointWith[colinear= at C](B,A) @@ -7,3 +12,5 @@ \tkzLabelPoints[above right](C,D) \tkzDrawPoints(A,...,D) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-20-3-3.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-18-3-3.tex index 7a0ec301b9a..bd138f15e93 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-20-3-3.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-18-3-3.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 111 (Section 18.3.3 : Construction of the golden rectangle ) + \begin{tikzpicture}[scale=.5] \tkzInit[xmax=14,ymax=10] \tkzClip[space=1] @@ -15,3 +20,5 @@ \tkzDrawSegments[style=dashed,color=gray]% (E,F C,F B,E) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-20-4-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-18-4-1.tex index 5c07f233fd8..89419953986 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-20-4-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-18-4-1.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 112 (Section 18.4.1 : The idea is to inscribe two squares in a semi-circle.) + \begin{tikzpicture}[scale=.75] \tkzInit[ymax=8,xmax=8] \tkzClip[space=.25] \tkzDefPoint(0,0){A} @@ -15,3 +20,5 @@ \tkzDrawPolySeg[color=red](J,K,L) \tkzDrawPoints(E,G,H,F,J,K,L) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-20-5-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-18-5-1.tex index 1e87cc36d38..be38a5cd004 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-20-5-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-18-5-1.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 113 (Section 18.5.1 : Golden Rectangles) + \begin{tikzpicture}[scale=.6] \tkzDefPoint(0,0){A} \tkzDefPoint(8,0){B} \tkzDefGoldRectangle(A,B) \tkzGetPoints{C}{D} @@ -5,3 +10,5 @@ \tkzDrawPolygon[color=red,fill=red!20](A,B,C,D) \tkzDrawPolygon[color=blue,fill=blue!20](B,C,E,F) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-18-6-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-18-6-1.tex new file mode 100644 index 00000000000..8be32ed78cf --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-18-6-1.tex @@ -0,0 +1,15 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 114 (Section 18.6.1 : Draw a polygon 1) + +\begin{tikzpicture} [rotate=18,scale=1.5] + \tkzDefPoint(0,0){A} + \tkzDefPoint(2.25,0.2){B} + \tkzDefPoint(2.5,2.75){C} + \tkzDefPoint(-0.75,2){D} + \tkzDrawPolygon[fill=black!50!blue!20!](A,B,C,D) + \tkzDrawSegments[style=dashed](A,C B,D) +\end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-18-7-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-18-7-1.tex new file mode 100644 index 00000000000..3045821ae35 --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-18-7-1.tex @@ -0,0 +1,17 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 115 (Section 18.7.1 : Simple Example) + +\begin{tikzpicture}[scale=1.25] + \tkzInit[xmin=0,xmax=4,ymin=0,ymax=3] + \tkzClip[space=.5] + \tkzDefPoint(0,0){A} \tkzDefPoint(4,0){B} + \tkzDefPoint(1,3){C} \tkzDrawPolygon(A,B,C) + \tkzDefPoint(0,2){D} \tkzDefPoint(2,0){E} + \tkzDrawPoints(D,E) \tkzLabelPoints(D,E) + \tkzClipPolygon(A,B,C) + \tkzDrawLine[color=red](D,E) +\end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-20-6-2.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-18-7-2.tex index 6c5492a5ee8..9b070480a70 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-20-6-2.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-18-7-2.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 116 (Section 18.7.2 : Example Sangaku in a square) + \begin{tikzpicture}[scale=.75] \tkzDefPoint(0,0){A} \tkzDefPoint(8,0){B} \tkzDefSquare(A,B) \tkzGetPoints{C}{D} @@ -18,3 +23,5 @@ \tkzFillCircle[R,color = yellow](M,\dMI pt) \tkzFillCircle[R,color = blue!50!black](F,4 cm)% \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-20-7-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-18-8-1.tex index b69484368a6..d1c480a078f 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-20-7-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-18-8-1.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 117 (Section 18.8.1 : Color a polygon) + \begin{tikzpicture}[scale=0.7] \tkzInit[xmin=-3,xmax=6,ymin=-1,ymax=6] \tkzDrawX[noticks] @@ -15,3 +20,5 @@ \tkzFillPolygon[red!30,opacity=0.25](A,B,O) \tkzLabelAngle[pos = 1.5](A,O,B){$\alpha$} \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-21-1-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-19-1-1.tex index 0ad9d2a9b60..b3166a802f8 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-21-1-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-19-1-1.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 118 (Section 19.1.1 : Example with a random point and the option \tkzimp{through}) + \begin{tikzpicture}[scale=1] \tkzDefPoint(0,4){A} \tkzDefPoint(2,2){B} @@ -10,9 +15,11 @@ \tkzDrawCircle(A,C) \tkzDrawPoints(A,B,C) \tkzLabelPoints(A,B,C) - \tkzLabelCircle[draw,fill=Gold,% - text width=3cm,text centered, - font=\scriptsize](A,C)(-90)% + \tkzLabelCircle[draw,fill=orange, + text width=3cm,text centered, + font=\scriptsize](A,C)(-90)% {La mesure du rayon est : \rACpt pt soit \rACcm cm} - \end{tikzpicture} +\end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-21-1-7.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-19-1-10.tex index e7b34c99f3c..ced687050c2 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-21-1-7.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-19-1-10.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 127 (Section 19.1.10 : Orthogonal circle of given center) + \begin{tikzpicture}[scale=.75] \tkzDefPoints{0/0/O,1/0/A} \tkzDefPoints{1.5/1.25/B,-2/-3/C} @@ -12,3 +17,5 @@ \tkzDrawPoints(z1,z2,O,A,B) \tkzLabelPoints(O,A,B,C) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-19-1-2.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-19-1-2.tex new file mode 100644 index 00000000000..92388060275 --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-19-1-2.tex @@ -0,0 +1,17 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 119 (Section 19.1.2 : Example with the option \tkzimp{diameter}) + + \begin{tikzpicture}[scale=1] + \tkzDefPoint(0,0){A} + \tkzDefPoint(2,2){B} + \tkzDefCircle[diameter](A,B) + \tkzGetPoint{O} + \tkzDrawCircle[blue,fill=blue!20](O,B) + \tkzDrawSegment(A,B) + \tkzDrawPoints(A,B,O) + \tkzLabelPoints(A,B,O) +\end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-21-1-2.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-19-1-3.tex index 5fbdc3260fa..cd1e96675e9 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-21-1-2.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-19-1-3.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 120 (Section 19.1.3 : Circles inscribed and circumscribed for a given triangle) + \begin{tikzpicture}[scale=1] \tkzDefPoint(2,2){A} \tkzDefPoint(5,-2){B} @@ -13,3 +18,5 @@ \tkzLabelPoints[above left](A,I,K) \tkzDrawPolygon(A,B,C) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-19-1-4.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-19-1-4.tex new file mode 100644 index 00000000000..19eb9c017fe --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-19-1-4.tex @@ -0,0 +1,32 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 121 (Section 19.1.4 : Example with the option \tkzimp{ex}) + +\begin{tikzpicture}[scale=.75] + \tkzDefPoints{ 0/0/A,4/0/B,0.8/4/C} + \tkzDefCircle[ex](B,C,A) + \tkzGetPoint{Jc} \tkzGetLength{rc} + \tkzDefPointBy[projection=onto A--C ](Jc) + \tkzGetPoint{Xc} + \tkzDefPointBy[projection=onto A--B ](Jc) + \tkzGetPoint{Yc} + \tkzGetPoint{I} + \tkzDrawPolygon[color=blue](A,B,C) + \tkzDrawCircle[R,color=lightgray](Jc,\rc pt) + % possible \tkzDrawCircle[ex](A,B,C) + \tkzDrawCircle[in,color=red](A,B,C) \tkzGetPoint{I} + \tkzDefPointBy[projection=onto A--C ](I) + \tkzGetPoint{F} + \tkzDefPointBy[projection=onto A--B ](I) + \tkzGetPoint{D} + \tkzDrawLines[add=0 and 2.2,dashed](C,A C,B) + \tkzDrawSegments[dashed](Jc,Xc I,D I,F Jc,Yc) + \tkzMarkRightAngles(A,F,I B,D,I Jc,Xc,A Jc,Yc,B) + \tkzDrawPoints(B,C,A,I,D,F,Xc,Jc,Yc) + \tkzLabelPoints(B,A,Jc,I,D,Xc,Yc) + \tkzLabelPoints[above left](C) + \tkzLabelPoints[left](F) +\end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-21-1-5.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-19-1-5.tex index bce823f4821..6ba01e00770 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-21-1-5.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-19-1-5.tex @@ -1,11 +1,19 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 122 (Section 19.1.5 : Euler's circle for a given triangle) + \begin{tikzpicture}[scale=.75] \tkzDefPoint(5,3.5){A} \tkzDefPoint(0,0){B} \tkzDefPoint(7,0){C} \tkzDefCircle[euler](A,B,C) \tkzGetPoint{E} \tkzGetLength{rEuler} - \tkzDrawPoints(A,B,C,E) + \tkzDefSpcTriangle[medial](A,B,C){Ma,Mb,Mc} + \tkzDrawPoints(A,B,C,E,Ma,Mb,Mc) \tkzDrawCircle[R,blue](E,\rEuler pt) \tkzDrawPolygon(A,B,C) \tkzLabelPoints[below](B,C) \tkzLabelPoints[left](A,E) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-21-1-3.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-19-1-6.tex index df2e1419195..d157b65d284 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-21-1-3.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-19-1-6.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 123 (Section 19.1.6 : Coloured Apollonius circles for a given segment) + \begin{tikzpicture}[scale=0.75] \tkzDefPoint(0,0){A} \tkzDefPoint(4,0){B} @@ -14,3 +19,5 @@ \tkzDrawPoints(A,B,K1,K2) \tkzDrawLine[add=.2 and 1](A,B) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-21-1-4.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-19-1-7.tex index f68e7e70268..fb7dca42865 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-21-1-4.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-19-1-7.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 124 (Section 19.1.7 : Circles exinscribed to a given triangle) + \begin{tikzpicture}[scale=.6] \tkzDefPoint(0,0){A} \tkzDefPoint(3,0){B} @@ -20,3 +25,5 @@ \tkzDrawCircles[R](J,{\rJ} I,{\rI} K,{\rK}) \tkzLabelPoints(A,B,C,I,J,K) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-19-1-8.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-19-1-8.tex new file mode 100644 index 00000000000..21cc8385d44 --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-19-1-8.tex @@ -0,0 +1,21 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 125 (Section 19.1.8 : Spieker circle) + +\begin{tikzpicture}[scale=1] + \tkzDefPoints{ 0/0/A,4/0/B,0.8/4/C} + \tkzDefSpcTriangle[medial](A,B,C){Ma,Mb,Mc} + \tkzDefTriangleCenter[spieker](A,B,C) + \tkzGetPoint{Sp} + \tkzDrawPolygon[blue](A,B,C) + \tkzDrawPolygon[red](Ma,Mb,Mc) + \tkzDrawPoints[blue](B,C,A) + \tkzDrawPoints[red](Ma,Mb,Mc,Sp) + \tkzDrawCircle[in,red](Ma,Mb,Mc) + \tkzAutoLabelPoints[center=Sp,dist=.3](Ma,Mb,Mc) + \tkzLabelPoints[blue,right](Sp) + \tkzAutoLabelPoints[center=Sp](A,B,C) +\end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-21-1-6.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-19-1-9.tex index 0ff0838882f..d5bd2678d4a 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-21-1-6.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-19-1-9.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 126 (Section 19.1.9 : Orthogonal circle passing through two given points) + \begin{tikzpicture}[scale=1] \tkzDefPoint(0,0){O} \tkzDefPoint(1,0){A} @@ -11,3 +16,5 @@ size=4](O,A,z1,z2,c) \tkzLabelPoints(O,A,z1,z2,c) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-21-2-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-19-2-1.tex index ee965078516..e370a90725c 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-21-2-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-19-2-1.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 128 (Section 19.2.1 : Example of a tangent passing through a point on the circle ) + \begin{tikzpicture}[scale=.5] \tkzDefPoint(0,0){O} \tkzDefPoint(6,6){E} @@ -10,3 +15,5 @@ \tkzDrawLine[add = 4 and 3](A,h) \tkzMarkRightAngle[fill=red!30](O,A,h) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-21-2-2.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-19-2-2.tex index adf7aee1dfb..bdaac686b0a 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-21-2-2.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-19-2-2.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 129 (Section 19.2.2 : Example of tangents passing through an external point ) + \begin{tikzpicture}[scale=0.75] \tkzDefPoint(3,3){c} \tkzDefPoint(6,3){a0} @@ -12,3 +17,5 @@ \tkzDrawSegments(c,e c,f) }% \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-21-2-3.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-19-2-3.tex index a39c9a1f221..0cb9cec7fb3 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-21-2-3.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-19-2-3.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 130 (Section 19.2.3 : Example of Andrew Mertz ) + \begin{tikzpicture}[scale=.5] \tkzDefPoint(100:8){A}\tkzDefPoint(50:8){B} \tkzDefPoint(0,0){C} \tkzDefPoint(0,4){R} @@ -8,4 +13,6 @@ \tkzFillSector[color=red!80!black,opacity=0.5](B,F)(G) \tkzInterCC(A,D)(B,F) \tkzGetSecondPoint{I} \tkzDrawPoint[color=black](I) - \end{tikzpicture} +\end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-22-1-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-20-1-1.tex index 43155310bfe..8e58ae04d49 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-22-1-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-20-1-1.tex @@ -1,13 +1,17 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 131 (Section 20.1.1 : Circles and styles, draw a circle and color the disc) + \begin{tikzpicture} \tkzDefPoint(0,0){O} \tkzDefPoint(3,0){A} - % cercle de centre O et passant par A \tkzDrawCircle[color=blue,style=dashed](O,A) - % cercle de diamètre $[OA]$ \tkzDrawCircle[diameter,color=red,% line width=2pt,fill=red!40,% opacity=.5](O,A) - % cercle de centre O et de rayon = exp(1) cm \edef\rayon{\fpeval{exp(1)}} \tkzDrawCircle[R,color=orange](O,\rayon cm) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-22-2-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-20-2-1.tex index 70022aba09b..a5ceb7175fa 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-22-2-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-20-2-1.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 132 (Section 20.2.1 : Circles defined by a triangle.) + \begin{tikzpicture} \tkzDefPoint(0,0){A} \tkzDefPoint(2,0){B} @@ -7,3 +12,5 @@ \tkzDrawPoints(A,B,C) \tkzLabelPoints(A,B,C) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-22-2-2.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-20-2-2.tex index baa5197b8d1..ac9c9684041 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-22-2-2.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-20-2-2.tex @@ -1,6 +1,13 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 133 (Section 20.2.2 : Concentric circles.) + \begin{tikzpicture} \tkzDefPoint(0,0){A} \tkzDrawCircles[R](A,1cm A,2cm A,3cm) \tkzDrawPoint(A) \tkzLabelPoints(A) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-22-2-3.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-20-2-3.tex index 1cdae932408..cf37487d365 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-22-2-3.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-20-2-3.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 134 (Section 20.2.3 : Exinscribed circles.) + \begin{tikzpicture}[scale=1] \tkzDefPoints{0/0/A,4/0/B,1/2.5/C} \tkzDrawPolygon(A,B,C) @@ -10,3 +15,5 @@ \tkzMarkRightAngle(Jc,Tc,B) \tkzDrawPoints(A,B,C,Jc,Tc) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-22-2-4.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-20-2-4.tex index 89498667651..e0efc4e8a91 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-22-2-4.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-20-2-4.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 135 (Section 20.2.4 : Cardioid) + \begin{tikzpicture}[scale=.5] \tkzDefPoint(0,0){O} \tkzDefPoint(2,0){A} @@ -5,4 +10,6 @@ \tkzDefPoint(\ang:2){M} \tkzDrawCircle(M,A) } - \end{tikzpicture} +\end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-22-4-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-20-4-1.tex index 19d2ee8b32f..997b49528cd 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-22-4-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-20-4-1.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 136 (Section 20.4.1 : Example from a sangaku) + \begin{tikzpicture} \tkzInit[xmin=0,xmax = 6,ymin=0,ymax=6] \tkzDefPoint(0,0){B} \tkzDefPoint(6,0){C}% @@ -10,10 +15,12 @@ \tkzInterLL(F,G)(C,D) \tkzGetPoint{J} \tkzInterLL(A,J)(F,E) \tkzGetPoint{K} \tkzDefPointBy[projection=onto B--A](K) - \tkzGetPoint{M} + \tkzGetPoint{M} \tkzFillPolygon[color = green](A,B,C,D) \tkzFillCircle[color = orange](B,A) \tkzFillCircle[color = blue!50!black](M,A) \tkzFillCircle[color = purple](E,B) \tkzFillCircle[color = yellow](K,Q) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-22-5-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-20-5-1.tex index 693ccd8b0aa..00000d13042 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-22-5-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-20-5-1.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 137 (Section 20.5.1 : Example) + \begin{tikzpicture} \tkzInit[xmax=5,ymax=5] \tkzGrid \tkzClip @@ -12,3 +17,5 @@ \tkzDrawLine(A,C) \tkzDrawCircle[fill=red!20,opacity=.5](C,O) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-20-6-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-20-6-1.tex new file mode 100644 index 00000000000..d9b0db98a32 --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-20-6-1.tex @@ -0,0 +1,23 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 138 (Section 20.6.1 : Example) + +\begin{tikzpicture} + \tkzDefPoint(0,0){O} \tkzDefPoint(2,0){N} + \tkzDefPointBy[rotation=center O angle 50](N) + \tkzGetPoint{M} + \tkzDefPointBy[rotation=center O angle -20](N) + \tkzGetPoint{P} + \tkzDefPointBy[rotation=center O angle 125](N) + \tkzGetPoint{P'} + \tkzLabelCircle[above=4pt](O,N)(120){$\mathcal{C}$} + \tkzDrawCircle(O,M) + \tkzFillCircle[color=blue!20,opacity=.4](O,M) + \tkzLabelCircle[R,draw,fill=orange,% + text width=2cm,text centered](O,3 cm)(-60)% + {Le cercle\\ $\mathcal{C}$} + \tkzDrawPoints(M,P)\tkzLabelPoints[right](M,P) +\end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-23-1-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-21-1-1.tex index 1b3105765a3..f65c476c832 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-23-1-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-21-1-1.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 139 (Section 21.1.1 : Example of intersection between two straight lines) + \begin{tikzpicture}[rotate=-45,scale=.75] \tkzDefPoint(2,1){A} \tkzDefPoint(6,5){B} @@ -9,3 +14,5 @@ \tkzDrawPoints[color=blue](A,B,C,D) \tkzDrawPoint[color=red](I) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-23-2-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-21-2-1.tex index 98b596114f1..0aa2171586a 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-23-2-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-21-2-1.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 140 (Section 21.2.1 : Simple example of a line-circle intersection) + \begin{tikzpicture}[scale=.75] \tkzInit[xmax=5,ymax=4] \tkzDefPoint(1,1){O} @@ -11,3 +16,5 @@ \tkzDrawLine(A,B) \tkzLabelPoints[above right](O,A,B,C,D,E) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-23-2-2.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-21-2-2.tex index 6983d24ed08..1b1472086b0 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-23-2-2.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-21-2-2.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 141 (Section 21.2.2 : More complex example of a line-circle intersection) + \begin{tikzpicture}[scale=.75] \tkzDefPoint(0,0){A} \tkzDefPoint(8,0){B} @@ -20,3 +25,5 @@ \tkzDrawPoints(A,B,O,O',E,D) \tkzLabelPoints(A,B,O,O',E,D) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-23-2-3.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-21-2-3.tex index 2f4e52bac02..d5e11a7c130 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-23-2-3.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-21-2-3.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 142 (Section 21.2.3 : Circle defined by a center and a measure, and special cases) + \begin{tikzpicture}[scale=.5] \tkzDefPoint(0,8){A} \tkzDefPoint(8,0){B} \tkzDefPoint(8,8){C} \tkzDefPoint(4,4){I} @@ -13,3 +18,5 @@ \tkzDrawPoints[color=red](I2,J2) \tkzDrawLine(I2,J2) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-23-2-4.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-21-2-4.tex index 3d1924a2f35..3f1f3c77988 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-23-2-4.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-21-2-4.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 143 (Section 21.2.4 : More complex example) + \begin{tikzpicture}[scale=1.25] \tkzDefPoint(0,1){J} \tkzDefPoint(0,0){O} @@ -17,3 +22,5 @@ \tkzDrawPoints[red](M) } \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-23-2-6.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-21-2-6.tex index 93125ba98fd..50a5e0823e1 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-23-2-6.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-21-2-6.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 144 (Section 21.2.6 : Calculation of radius dimension 1) + \begin{tikzpicture} \tkzDefPoint(2,2){A} \tkzDefPoint(5,4){B} @@ -10,3 +15,5 @@ \tkzDrawPoints[color=red](I,J) \tkzDrawLine(I,J) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-21-2-7.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-21-2-7.tex new file mode 100644 index 00000000000..e1c50f98dd8 --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-21-2-7.tex @@ -0,0 +1,17 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 145 (Section 21.2.7 : Calculation of radius dimension 2) + +\begin{tikzpicture} + \tkzDefPoints{2/2/A,5/4/B,4/4/0} + \tkzLength=2cm + \tkzDrawCircle[R](O,\tkzLength) + \tkzInterLC[R](A,B)(O,\tkzLength) + \tkzGetPoints{I}{J} + \tkzDrawPoints[color=blue](A,B) + \tkzDrawPoints[color=red](I,J) + \tkzDrawLine(I,J) +\end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-23-2-8.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-21-2-8.tex index d25d796e121..1529306d697 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-23-2-8.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-21-2-8.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 146 (Section 21.2.8 : Squares in half a disc) + \begin{tikzpicture}[scale=.75] \tkzDefPoints{0/0/A,8/0/B,4/0/I} \tkzDefSquare(A,B) \tkzGetPoints{C}{D} @@ -6,10 +11,12 @@ \tkzDefPointsBy[projection = onto A--B](E,F){H,G} \tkzDefPointsBy[symmetry = center H](I){J} \tkzDefSquare(H,J)\tkzGetPoints{K}{L} - \tkzDrawSector[fill=Maroon!30](I,B)(A) + \tkzDrawSector[fill=brown!30](I,B)(A) \tkzFillPolygon[color=red!40](H,E,F,G) \tkzFillPolygon[color=blue!40](H,J,K,L) \tkzDrawPolySeg[color=red](H,E,F,G) \tkzDrawPolySeg[color=red](J,K,L) \tkzDrawPoints(E,G,H,F,J,K,L) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-23-2-9.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-21-2-9.tex index 4312b4957a8..f7efc3d2bb8 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-23-2-9.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-21-2-9.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 147 (Section 21.2.9 : Option "with nodes") + \begin{tikzpicture}[scale=.75] \tkzDefPoints{0/0/A,4/0/B,1/1/D,2/0/E} \tkzDefTriangle[equilateral](A,B) @@ -9,3 +14,5 @@ \tkzDrawPoints(A,...,G) \tkzDrawLine(F,G) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-23-3-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-21-3-1.tex index 4b7811624a0..8e9d4b64192 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-23-3-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-21-3-1.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 148 (Section 21.3.1 : Construction of an equilateral triangle) + \begin{tikzpicture}[trim left=-1cm,scale=.5] \tkzDefPoint(1,1){A} \tkzDefPoint(5,1){B} @@ -12,3 +17,5 @@ \tkzLabelPoints[](A,B) \tkzLabelPoint[above](C){$C$} \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-23-3-2.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-21-3-2.tex index 92788e4448d..39232148c8d 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-23-3-2.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-21-3-2.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 149 (Section 21.3.2 : Example a mediator) + \begin{tikzpicture}[scale=.5] \tkzDefPoint(0,0){A} \tkzDefPoint(2,2){B} @@ -8,3 +13,5 @@ \tkzDrawPoints(M,N) \tkzDrawLine[color=red](M,N) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-23-3-3.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-21-3-3.tex index af783dc912e..cf947a87ca3 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-23-3-3.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-21-3-3.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 150 (Section 21.3.3 : An isosceles triangle.) + \begin{tikzpicture}[rotate=120,scale=.75] \tkzDefPoint(1,2){A} \tkzDefPoint(4,0){B} @@ -13,3 +18,5 @@ \tkzLabelPoints[](A,B) \tkzLabelPoint[above](C){$C$} \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-23-3-4.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-21-3-4.tex index 0a4fbabee6c..47f624f4188 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-23-3-4.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-21-3-4.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 151 (Section 21.3.4 : Segment trisection) + \begin{tikzpicture}[scale=.8] \tkzDefPoint(0,0){A} \tkzDefPoint(3,2){B} @@ -27,3 +32,5 @@ A,F F,G E,G B,E) \tkzMarkSegments[mark=s|](A,I I,J J,B) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-21-3-5.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-21-3-5.tex new file mode 100644 index 00000000000..60258c92f8f --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-21-3-5.tex @@ -0,0 +1,20 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 152 (Section 21.3.5 : Angle trisection) + +\begin{tikzpicture} + \tikzset{arc/.style={color=gray,style=dashed}} + \tkzDefPoints{0/0/a,0/5/I,5/0/J} + \tkzDrawArc[angles](O,I)(0,90) + \tkzDrawArc[angles,/tikz/arc](I,O)(90,180) + \tkzDrawArc[angles,/tikz/arc](J,O)(-90,0) + \tkzInterCC(O,I)(I,O)\tkzGetPoints{B}{C} + \tkzInterCC(O,I)(J,O)\tkzGetPoints{D}{A} + \tkzInterCC(I,O)(J,O)\tkzGetPoints{L}{K} + \tkzDrawPoints(A,B,K) + \foreach \point in {I,A,B,J,K}{% + \tkzDrawSegment(O,\point)} +\end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-21-3-6.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-21-3-6.tex new file mode 100644 index 00000000000..9d8708cf16c --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-21-3-6.tex @@ -0,0 +1,25 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 153 (Section 21.3.6 : with the option \tkzimp{with nodes}) + +\begin{tikzpicture}[scale=.5] + \tkzDefPoints{0/0/a,0/5/B,5/0/C} + \tkzDefPoint(54:5){F} + \tkzDrawCircle[color=gray](A,C) + \tkzInterCC[with nodes](A,A,C)(C,B,F) + \tkzGetPoints{a}{e} + \tkzInterCC(A,C)(a,e) \tkzGetFirstPoint{b} + \tkzInterCC(A,C)(b,a) \tkzGetFirstPoint{c} + \tkzInterCC(A,C)(c,b) \tkzGetFirstPoint{d} + \tkzDrawPoints(a,b,c,d,e) + \tkzDrawPolygon[color=red](a,b,c,d,e) + \foreach \vertex/\num in {a/36,b/108,c/180, + d/252,e/324}{% + \tkzDrawPoint(\vertex) + \tkzLabelPoint[label=\num:$\vertex$](\vertex){} + \tkzDrawSegment[color=gray,style=dashed](A,\vertex) + } +\end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-24-1-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-22-1-1.tex index d540c6cfde4..8c37a7e6177 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-24-1-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-22-1-1.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 154 (Section 22.1.1 : Exemple avec \tkzname{size}) + \begin{tikzpicture} \tkzInit \tkzDefPoints{0/0/O,2.5/0/A,1.5/2/B} @@ -5,3 +10,5 @@ \tkzDrawLines(O,A O,B) \tkzDrawPoints(O,A,B) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-24-1-2.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-22-1-2.tex index 06c1ef5916a..715832f9b83 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-24-1-2.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-22-1-2.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 156 (Section 22.1.2 : Changement de l'ordre des points) + \begin{tikzpicture} \tkzInit \tkzDefPoints{0/0/O,5/0/A,3/4/B} @@ -7,3 +12,5 @@ \tkzDrawLines(O,A O,B) \tkzDrawPoints(O,A,B) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-24-1-3.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-22-1-3.tex index 9a3b074d558..ebb3dfbb9ff 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-24-1-3.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-22-1-3.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 157 (Section 22.1.3 : Multiples angles) + \begin{tikzpicture}[scale=0.75] \tkzDefPoint(0,0){B} \tkzDefPoint(8,0){C} @@ -21,3 +26,5 @@ \tkzFillAngles[fill=red!20,opacity=.2](C,B,M% B,M,C M,C,B D,L,N L,N,D N,D,L) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-24-2-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-22-2-1.tex index 974edf526da..51b68f1e22d 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-24-2-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-22-2-1.tex @@ -1,7 +1,14 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 158 (Section 22.2.1 : Exemple avec \tkzname{mark = x}) + \begin{tikzpicture}[scale=.75] \tkzDefPoints{0/0/O,5/0/A,3/4/B} \tkzMarkAngle[size = 4cm,mark = x, arc=ll,mkcolor = red](A,O,B) \tkzDrawLines(O,A O,B) \tkzDrawPoints(O,A,B) - \end{tikzpicture} +\end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-24-2-2.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-22-2-2.tex index 9d63fd90ecb..a8b52efe9b3 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-24-2-2.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-22-2-2.tex @@ -1,7 +1,14 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 159 (Section 22.2.2 : Exemple avec \tkzname{mark =||}) + \begin{tikzpicture}[scale=.75] \tkzDefPoints{0/0/O,5/0/A,3/4/B} \tkzMarkAngle[size = 4cm,mark = ||, arc=ll,mkcolor = red](A,O,B) \tkzDrawLines(O,A O,B) \tkzDrawPoints(O,A,B) - \end{tikzpicture} +\end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-24-3-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-22-3-1.tex index f29510f1870..47b17523816 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-24-3-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-22-3-1.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 161 (Section 22.3.1 : Exemple avec \tkzname{pos}) + \begin{tikzpicture}[rotate=30] \tkzDefPoint(2,1){S} \tkzDefPoint(7,3){T} @@ -19,3 +24,5 @@ \tkzLabelAngle[pos = 1.5](T,S,P){$60^{\circ}$}% \tkzLabelAngles[pos = 2.7](T,S,s s,S,P){$30^{\circ}$}% \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-24-4-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-22-4-1.tex index e1d4e7a667c..6ddd6bb111d 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-24-4-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-22-4-1.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 162 (Section 22.4.1 : Exemple de marquage d'un angle droit) + \begin{tikzpicture} \tkzDefPoints{0/0/A,3/1/B,0.9/-1.2/P} \tkzDefPointBy[projection = onto B--A](P) \tkzGetPoint{H} @@ -7,3 +12,5 @@ \tkzDrawLines[add=.5 and .5](A,B) \tkzMarkRightAngle[fill=red!20,size=.8](B,H,P) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-24-4-2.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-22-4-2.tex index 1592570ec36..5e0dcb4a87d 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-24-4-2.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-22-4-2.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 163 (Section 22.4.2 : Exemple de marquage d'un angle droit, german style) + \begin{tikzpicture} \tkzDefPoints{0/0/A,3/1/B,0.9/-1.2/P} \tkzDefPointBy[projection = onto B--A](P) \tkzGetPoint{H} @@ -8,3 +13,5 @@ \tkzDrawLines[add=.5 and .5,fill=blue!20](A,B) \tkzMarkRightAngle[german,size=.8](P,H,B) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-24-4-3.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-22-4-3.tex index c916444fa5d..95ed0f5cc15 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-24-4-3.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-22-4-3.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 164 (Section 22.4.3 : Mélange de styles) + \begin{tikzpicture}[scale=.75] \tkzDefPoint(0,0){A} \tkzDefPoint(4,1){B} @@ -12,3 +17,5 @@ \tkzLabelPoints(A,B,C,H) \tkzDrawPoints(A,B,C) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-24-4-4.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-22-4-4.tex index 79de801c37f..fb1c7dd8bd3 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-24-4-4.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-22-4-4.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 165 (Section 22.4.4 : Exemple complet) + \begin{tikzpicture}[rotate=-90] \tkzDefPoint(0,1){A} \tkzDefPoint(2,4){C} @@ -22,3 +27,5 @@ \tkzMarkRightAngle[german](A,C,B) \tkzMarkRightAngle[german](B,P,C) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-24-7-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-22-7-1.tex index bfeee8fcd31..95d407fc1c0 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-24-7-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-22-7-1.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 166 (Section 22.7.1 : Vérication de la mesure d'un angle) + \begin{tikzpicture}[scale=.75] \tkzDefPoint(-1,1){A} \tkzDefPoint(5,2){B} @@ -13,3 +18,5 @@ \tkzLabelAngle(B,A,C){\angleBAC$^\circ$} \tkzMarkAngle[size=1.5cm](B,A,C) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-24-7-2.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-22-7-2.tex index f85ea68b914..7eb4f82bc5e 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-24-7-2.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-22-7-2.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 167 (Section 22.7.2 : Détermination des trois angles d'un triangle) + \begin{tikzpicture}[scale=1.25,rotate=30] \tkzDefPoints{0.5/1.5/A, 3.5/4/B, 6/2.5/C} \tkzDrawPolygon(A,B,C) @@ -20,4 +25,6 @@ \tkzGetAngle{angleABC} \edef\angleABC{\fpeval{round(\angleABC,2)}} \tkzLabelAngle[pos = 1](A,B,C){$\angleABC^{\circ}$} - \end{tikzpicture} +\end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-24-8-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-22-8-1.tex index d2a8bf4e78b..6f4efbdff23 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-24-8-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-22-8-1.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 168 (Section 22.8.1 : Pliage) + \begin{tikzpicture} \tkzDefPoint(1,5){A} \tkzDefPoint(5,2){B} \tkzDrawSegment(A,B) @@ -9,5 +14,7 @@ \tkzCompass[length=1](A,C) \tkzCompass[delta=10](B,C) \tkzDrawPoints(A,B,C,D) \tkzLabelPoints(B,C,D) \tkzLabelPoints[above left](A) - \tkzDrawSegments[style=dashed,color=bistre](A,C A,D) + \tkzDrawSegments[style=dashed,color=orange](A,C A,D) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-25-1-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-23-1-1.tex index bfe7933081b..12af0238a8f 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-25-1-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-23-1-1.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 169 (Section 23.1.1 : \tkzcname{tkzDrawSector} et \tkzname{towards}) + \begin{tikzpicture}[scale=1] \tkzDefPoint(0,0){O} \tkzDefPoint(-30:3){A} @@ -8,5 +13,7 @@ \tkzDefPoint(-30:3){A} \tkzDefPointBy[rotation = center O angle -60](A) \tkzDrawSector[fill=blue!50](O,tkzPointResult)(A) - \end{scope} +\end{scope} \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-25-1-2.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-23-1-2.tex index a79b62bb96c..a50a6f5099a 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-25-1-2.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-23-1-2.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 170 (Section 23.1.2 : \tkzcname{tkzDrawSector} et \tkzname{rotate}) + \begin{tikzpicture}[scale=2] \tkzDefPoint(0,0){O} \tkzDefPoint(2,2){A} @@ -6,3 +11,5 @@ \tkzDrawSector[rotate,draw=blue!50!black,% fill=blue!20](O,A)(-30) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-25-1-3.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-23-1-3.tex index 43471594061..fe10e558cf5 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-25-1-3.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-23-1-3.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 171 (Section 23.1.3 : \tkzcname{tkzDrawSector} et \tkzname{R}) + \begin{tikzpicture}[scale=1.25] \tkzDefPoint(0,0){O} \tkzDefPoint(2,-1){A} @@ -10,3 +15,5 @@ \tkzDrawSector[R,draw=white,% fill=red!90](O,2cm)(270,360) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-25-1-4.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-23-1-4.tex index 5d9c7cfa55e..cf0a6d0315e 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-25-1-4.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-23-1-4.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 172 (Section 23.1.4 : \tkzcname{tkzDrawSector} et \tkzname{R}) + \begin{tikzpicture}[scale=1.25] \tkzDefPoint(0,0){O} \tkzDefPoint(4,-2){A} @@ -12,3 +17,5 @@ \tkzLabelPoints(A,B,C) \tkzLabelPoints[left](O) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-25-1-5.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-23-1-5.tex index f5368e5d185..a53cce0c9aa 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-25-1-5.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-23-1-5.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 173 (Section 23.1.5 : \tkzcname{tkzDrawSector} et \tkzname{R with nodes}) + \begin{tikzpicture} [scale=.5] \tkzDefPoint(-1,-2){A} \tkzDefPoint(1,3){B} @@ -22,3 +27,5 @@ \tkzDrawSector[R with nodes,fill=red!20](S,2 cm)(A,B) \tkzLabelAngle[pos=1.5](A,S,B){$\alpha$} \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-25-2-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-23-2-1.tex index e4b36514970..cb566d7e1ba 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-25-2-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-23-2-1.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 174 (Section 23.2.1 : \tkzcname{tkzFillSector} et \tkzname{towards}) + \begin{tikzpicture}[scale=.6] \tkzDefPoint(0,0){O} \tkzDefPoint(-30:3){A} @@ -8,5 +13,7 @@ \tkzDefPoint(-30:3){A} \tkzDefPointBy[rotation = center O angle -60](A) \tkzFillSector[color=blue!50](O,tkzPointResult)(A) - \end{scope} +\end{scope} \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-25-2-2.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-23-2-2.tex index 037db1d4907..df408c52722 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-25-2-2.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-23-2-2.tex @@ -1,5 +1,12 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 175 (Section 23.2.2 : \tkzcname{tkzFillSector} et \tkzname{rotate}) + \begin{tikzpicture}[scale=1.5] \tkzDefPoint(0,0){O} \tkzDefPoint(2,2){A} \tkzFillSector[rotate,color=red!20](O,A)(30) \tkzFillSector[rotate,color=blue!20](O,A)(-30) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-25-3-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-23-3-1.tex index 4573f7dd113..91c586f5c64 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-25-3-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-23-3-1.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 176 (Section 23.3.1 : \tkzcname{tkzClipSector}) + \begin{tikzpicture}[scale=1.5] \tkzDefPoint(0,0){O} \tkzDefPoint(2,-1){A} @@ -8,6 +13,8 @@ \begin{scope} \tkzClipSector(O,B)(A) \draw[fill=gray!20] (-1,0) rectangle (3,3); - \end{scope} +\end{scope} \tkzDrawPoints(A,B,O) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-26-1-0.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-24-1-0.tex index 0c53e42379e..b0b2cf72025 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-26-1-0.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-24-1-0.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 177 (Section 24.1 : \tkzcname{tkzDrawArc} et \tkzname{towards}) + \begin{tikzpicture} \tkzDefPoint(0,0){O} \tkzDefPoint(2,-1){A} @@ -9,3 +14,5 @@ \tkzDrawPoints(O,A,B) \tkzLabelPoints[below](O,A,B) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-26-2-0.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-24-2-0.tex index 0460c12fa24..84b29c8aff7 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-26-2-0.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-24-2-0.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 178 (Section 24.2 : \tkzcname{tkzDrawArc} et \tkzname{towards}) + \begin{tikzpicture}[scale=1.5] \tkzDefPoint(0,0){O} \tkzDefPoint(2,-1){A} @@ -9,3 +14,5 @@ \tkzDrawPoints(O,A,B) \tkzLabelPoints[below](O,A,B) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-26-3-0.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-24-3-0.tex index bb198c5f803..93f76879c37 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-26-3-0.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-24-3-0.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 179 (Section 24.3 : \tkzcname{tkzDrawArc} et \tkzname{rotate}) + \begin{tikzpicture} \tkzDefPoint(0,0){O} \tkzDefPoint(2,-2){A} @@ -7,3 +12,5 @@ \tkzDrawPoints(O,A,B) \tkzLabelPoints[below](O,A,B) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-26-4-0.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-24-4-0.tex index 670c9005c6e..5d6510e9122 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-26-4-0.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-24-4-0.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 180 (Section 24.4 : \tkzcname{tkzDrawArc} et \tkzname{R}) + \begin{tikzpicture} \tkzDefPoints{0/0/O} \tikzset{compass style/.append style={<->}} @@ -6,3 +11,5 @@ \tkzDrawPoint(O) \tkzLabelPoint[below](O){$O$} \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-26-5-0.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-24-5-0.tex index 6502588b88c..23ede67eef2 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-26-5-0.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-24-5-0.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 181 (Section 24.5 : \tkzcname{tkzDrawArc} et \tkzname{R with nodes}) + \begin{tikzpicture} \tkzDefPoint(0,0){O} \tkzDefPoint(2,-1){A} @@ -5,3 +10,5 @@ \tkzCalcLength(B,A)\tkzGetLength{radius} \tkzDrawArc[R with nodes](B,\radius pt)(A,O) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-26-6-0.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-24-6-0.tex index 97d9c8c4733..cc9585049e6 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-26-6-0.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-24-6-0.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 182 (Section 24.6 : \tkzcname{tkzDrawArc} et \tkzname{delta}) + \begin{tikzpicture} \tkzInit \tkzDefPoint(0,0){A} @@ -17,3 +22,5 @@ \tkzLabelPoints(A,B,C,D) \tkzMarkRightAngle(D,B,A) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-27-1-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-25-1-1.tex index 963751ee6cc..0f008bc0bc1 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-27-1-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-25-1-1.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 183 (Section 25.1.1 : Option \tkzname{length}) + \begin{tikzpicture} \tkzDefPoint(1,1){A} \tkzDefPoint(6,1){B} @@ -8,3 +13,5 @@ \tkzCompass[color=red](B,C) \tkzDrawSegments(A,B A,C B,C) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-27-1-2.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-25-1-2.tex index a1fa345499b..746db992e2b 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-27-1-2.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-25-1-2.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 184 (Section 25.1.2 : Option \tkzname{delta}) + \begin{tikzpicture} \tkzDefPoint(0,0){A} \tkzDefPoint(5,0){B} @@ -9,3 +14,5 @@ \tkzDrawPolygon(A,B,C) \tkzMarkAngle(A,C,B) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-27-2-0.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-25-2-0.tex index d482cd74d33..1cffbd27c4b 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-27-2-0.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-25-2-0.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 185 (Section 25.2 : Multiples constructions \tkzcname{tkzCompasss}) + \begin{tikzpicture}[scale=.75] \tkzDefPoint(2,2){A} \tkzDefPoint(5,-2){B} \tkzDefPoint(3,4){C} \tkzDrawPoints(A,B) @@ -13,3 +18,5 @@ \tkzDrawLines(i,j) \tkzDrawPoints(A,B,C,i,j,D) \tkzLabelPoints(A,B,C,i,j,D) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-27-3-0.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-25-3-0.tex index a5f54ae66de..706b2255ca2 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-27-3-0.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-25-3-0.tex @@ -1,5 +1,10 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 186 (Section 25.3 : Macro de configuration \tkzcname{tkzSetUpCompass}) + \begin{tikzpicture}[scale=.75, - showbi/.style={bisector,size=2,gap=3}] + showbi/.style={bisector,size=2,gap=3}] \tkzSetUpCompass[color=blue,line width=.3 pt] \tkzDefPoints{0/1/A, 8/3/B, 3/6/C} \tkzDrawPolygon(A,B,C) @@ -9,9 +14,11 @@ \tkzShowLine[showbi](C,B,A) \tkzInterLL(A,a)(B,b) \tkzGetPoint{I} \tkzDefPointBy[projection= onto A--B](I) - \tkzGetPoint{H} + \tkzGetPoint{H} \tkzDrawCircle[radius,color=gray](I,H) \tkzDrawSegments[color=gray!50](I,H) \tkzDrawLines[add=0 and -.2,color=blue!50 ](A,a B,b) - \tkzShowBB + \tkzShowBB \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-28-1-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-26-1-1.tex index d811ea5e81d..690427362c6 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-28-1-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-26-1-1.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 187 (Section 26.1.1 : Exemple de \tkzcname{tkzShowLine} et \tkzname{parallel}) + \begin{tikzpicture} \tkzDefPoints{-1.5/-0.25/A,1/-0.75/B,-1.5/2/C} \tkzDrawLine(A,B) @@ -5,3 +10,5 @@ \tkzShowLine[parallel=through C](A,B) \tkzDrawLine(C,c) \tkzDrawPoints(A,B,C,c) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-28-1-2.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-26-1-2.tex index f65806086e0..edb0c11dd1e 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-28-1-2.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-26-1-2.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 188 (Section 26.1.2 : Exemple de \tkzcname{tkzShowLine} et \tkzname{perpendicular}) + \begin{tikzpicture} \tkzDefPoints{0/0/A, 3/2/B, 2/2/C} \tkzDefLine[perpendicular=through C,K=-.5](A,B) \tkzGetPoint{c} @@ -7,3 +12,5 @@ \tkzDrawLines[add=1 and 1](A,B C,c) \tkzDrawPoints(A,B,C,h,c) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-28-1-3.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-26-1-3.tex index 53a63eeed5f..cb5639c088f 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-28-1-3.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-26-1-3.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 189 (Section 26.1.3 : Exemple de \tkzcname{tkzShowLine} et \tkzname{bisector}) + \begin{tikzpicture}[scale=1.25] \tkzDefPoints{0/0/A, 4/2/B, 1/4/C} \tkzDrawPolygon(A,B,C) @@ -14,3 +19,5 @@ \tkzDrawSegments[color=red!50](I,tkzPointResult) \tkzDrawLines[add=0 and -0.3,color=red!50](A,a B,b) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-28-1-4.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-26-1-4.tex index 45e5e8bb47b..4a90c177133 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-28-1-4.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-26-1-4.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 190 (Section 26.1.4 : Exemple de \tkzcname{tkzShowLine} et \tkzname{mediator}) + \begin{tikzpicture} \tkzDefPoint(2,2){A} \tkzDefPoint(5,4){B} @@ -8,3 +13,5 @@ \tkzDrawLines(A,B) \tkzLabelPoints[below =3pt](A,B) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-28-2-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-26-2-1.tex index 9b1a67fe58f..7a6f39ed3d7 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-28-2-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-26-2-1.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 191 (Section 26.2.1 : Exemple d'utilisation de \tkzcname{tkzShowTransformation}) + \begin{tikzpicture}[scale=.6] \tkzDefPoint(0,0){O} \tkzDefPoint(2,-2){A} \tkzDefPoint(70:4){B} \tkzDrawPoints(A,O,B) @@ -25,3 +30,5 @@ \tkzShowTransformation[projection=onto O--A,% color=red,size=3,gap=-2](C) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-28-2-2.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-26-2-2.tex index 4190880fc9f..5d233157d18 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-28-2-2.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-26-2-2.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 192 (Section 26.2.2 : Autre exemple d'utilisation de \tkzcname{tkzShowTransformation}) + \begin{tikzpicture}[scale=.6] \tkzDefPoints{0/0/A,8/0/B,3.5/10/I} \tkzDefMidPoint(A,B) \tkzGetPoint{O} @@ -17,3 +22,5 @@ \tkzLabelPoints[above right](N,I) \tkzLabelPoints[below left](M,A) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-29-1-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-27-1-1.tex index 8d6f2662864..674791cac89 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-29-1-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-27-1-1.tex @@ -1,10 +1,15 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 193 (Section 27.1.1 : Utilisation de \tkzcname{tkzDefEquiPoints} avec des options) + \begin{tikzpicture} \tkzSetUpCompass[color=purple,line width=1pt] \tkzDefPoint(0,1){A} \tkzDefPoint(5,2){B} \tkzDefPoint(3,4){C} \tkzDefEquiPoints[from=C,dist=1,show, - /compass/delta=20](A,B) + /tkzcompass/delta=20](A,B) \tkzGetPoints{E}{H} \tkzDrawLines[color=blue](C,E C,H A,B) \tkzDrawPoints[color=blue](A,B,C) @@ -12,3 +17,5 @@ \tkzLabelPoints(E,H) \tkzLabelPoints[color=blue](A,B,C) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-30-1-0.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-28-1-0.tex index 2d6d85ca2d3..0a4e8657e44 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-30-1-0.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-28-1-0.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 194 (Section 28.1 : Le rapporteur circulaire) + \begin{tikzpicture}[scale=.5] \tkzDefPoint(2,0){A}\tkzDefPoint(0,0){O} \tkzDefShiftPoint[A](31:5){B} @@ -7,3 +12,5 @@ line width = 1pt](A,B A,C) \tkzProtractor[scale = 1](A,B) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-30-2-0.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-28-2-0.tex index e5a2083e53c..ba0005a4fc2 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-30-2-0.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-28-2-0.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 195 (Section 28.2 : Le rapporteur circulaire, transparent et retourné) + \begin{tikzpicture}[scale=.5] \tkzDefPoint(2,3){A} \tkzDefShiftPoint[A](31:5){B} @@ -5,3 +10,5 @@ \tkzDrawSegments[color=red,line width=1pt](A,B A,C) \tkzProtractor[return](A,C) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-31-1-2.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-29-1-2.tex index cca399bbfea..57fc3d3ef40 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-31-1-2.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-29-1-2.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 196 (Section 29.1.2 : version revue "Tangente") + \begin{tikzpicture}[scale=.8,rotate=60] \tkzDefPoint(6,0){X} \tkzDefPoint(3,3){Y} \tkzDefShiftPoint[X](-110:6){A} \tkzDefShiftPoint[X](-70:6){B} @@ -15,3 +20,5 @@ \tkzDrawPoints(A,B,C,X,Y,O,Z) \tkzLabelPoints(A,B,C,Z) \tkzLabelPoints[above right](X,Y,O) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-31-1-3.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-29-1-3.tex index a48aeff7027..82e98b1c95f 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-31-1-3.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-29-1-3.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 197 (Section 29.1.3 : version "Le Monde") + \begin{tikzpicture}[scale=1.25] \tkzDefPoint(0,0){A} \tkzDefPoint(3,0){B} @@ -19,3 +24,5 @@ \tkzLabelPoints(A,B,C,Z) \tkzLabelPoints[above right](X,Y,M,I) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-31-1-4.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-29-1-4.tex index efb277291ea..9b70cff832a 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-31-1-4.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-29-1-4.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 198 (Section 29.1.4 : Hauteurs d'un triangle) + \begin{tikzpicture}[scale=.8] \tkzDefPoint(0,0){C} \tkzDefPoint(7,0){B} @@ -22,3 +27,5 @@ \tkzDrawPoints(A,B,C,A',B',C',H) \tkzLabelPoints(A,B,C,A',B',C',H) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-31-1-5.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-29-1-5.tex index 9aa39ec3748..5a328799676 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-31-1-5.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-29-1-5.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 199 (Section 29.1.5 : Hauteurs - autre construction) + \begin{tikzpicture}[scale=.75] \tkzDefPoint(0,0){A} \tkzDefPoint(8,0){B} @@ -14,13 +19,15 @@ \tkzGetPoint{I} \tkzDrawCircle[diameter](A,B) \tkzDrawSegments(C,A C,B A,B B,M A,N) - \tkzMarkRightAngles[fill=Maroon!20](A,M,B A,N,B A,P,C) + \tkzMarkRightAngles[fill=brown!20](A,M,B A,N,B A,P,C) \tkzDrawSegment[style=dashed,color=orange](C,P) \tkzLabelPoints(O,A,B,P) \tkzLabelPoint[left](M){$M$} \tkzLabelPoint[right](N){$N$} \tkzLabelPoint[above](C){$C$} - \tkzLabelPoint[fill=fondpaille,above right](I){$I$} + \tkzLabelPoint[above right](I){$I$} \tkzDrawPoints[color=red](M,N,P,I) - \tkzDrawPoints[color=Maroon](O,A,B,C) + \tkzDrawPoints[color=brown](O,A,B,C) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-31-2-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-29-2-1.tex index 1c473fcdfbf..c673e80b66f 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-31-2-1.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-29-2-1.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 200 (Section 29.2.1 : Square root of the integers ) + \begin{tikzpicture}[scale=1.5] \tkzDefPoint(0,0){O} \tkzDefPoint(1,0){a0} @@ -6,4 +11,6 @@ \tkzDefPointWith[orthogonal normed](a\i,O) \tkzGetPoint{a\j} \tkzDrawPolySeg[color=blue](a\i,a\j,O)} - \end{tikzpicture} +\end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-31-2-10.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-29-2-10.tex index e01dd07d0f1..86353f826f4 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-31-2-10.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-29-2-10.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 209 (Section 29.2.10 : Example from Indonesia) + \begin{tikzpicture}[scale=3] \tkzDefPoints{0/0/A,2/0/B} \tkzDefSquare(A,B) \tkzGetPoints{C}{D} @@ -14,3 +19,5 @@ \tkzLabelPoints[above](G)\tkzLabelPoints[below](E) \tkzMarkRightAngles(D,A,B D,G,F) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-29-2-11.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-29-2-11.tex new file mode 100644 index 00000000000..b5717e72ce9 --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-29-2-11.tex @@ -0,0 +1,58 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 210 (Section 29.2.11 : Another example from Indonesia) + + \begin{tikzpicture}[pol/.style={fill=brown!40,opacity=.5}, + seg/.style={tkzdotted,color=gray}, + hidden pt/.style={fill=gray!40}, + mra/.style={color=gray!70,tkzdotted,/tkzrightangle/size=.2}, + scale=3] + \tkzSetUpPoint[size=2] + \tkzDefPoints{0/0/A,2.5/0/B,1.33/0.75/D,0/2.5/E,2.5/2.5/F} + \tkzDefLine[parallel=through D](A,B) \tkzGetPoint{I1} + \tkzDefLine[parallel=through B](A,D) \tkzGetPoint{I2} + \tkzInterLL(D,I1)(B,I2) \tkzGetPoint{C} + \tkzDefLine[parallel=through E](A,D) \tkzGetPoint{I3} + \tkzDefLine[parallel=through D](A,E) \tkzGetPoint{I4} + \tkzInterLL(E,I3)(D,I4) \tkzGetPoint{H} + \tkzDefLine[parallel=through F](E,H) \tkzGetPoint{I5} + \tkzDefLine[parallel=through H](E,F) \tkzGetPoint{I6} + \tkzInterLL(F,I5)(H,I6) \tkzGetPoint{G} + \tkzDefMidPoint(G,H) \tkzGetPoint{P} + \tkzDefMidPoint(G,C) \tkzGetPoint{Q} + \tkzDefMidPoint(B,C) \tkzGetPoint{R} + \tkzDefMidPoint(A,B) \tkzGetPoint{S} + \tkzDefMidPoint(A,E) \tkzGetPoint{T} + \tkzDefMidPoint(E,H) \tkzGetPoint{U} + \tkzDefMidPoint(A,D) \tkzGetPoint{M} + \tkzDefMidPoint(D,C) \tkzGetPoint{N} + \tkzInterLL(B,D)(S,R) \tkzGetPoint{L} + \tkzInterLL(H,F)(U,P) \tkzGetPoint{K} + \tkzDefLine[parallel=through K](D,H) \tkzGetPoint{I7} + \tkzInterLL(K,I7)(B,D) \tkzGetPoint{O} + + \tkzFillPolygon[pol](P,Q,R,S,T,U) + \tkzDrawSegments[seg](K,O K,L P,Q R,S T,U + C,D H,D A,D M,N B,D) + \tkzDrawSegments(E,H B,C G,F G,H G,C Q,R S,T U,P H,F) + \tkzDrawPolygon(A,B,F,E) + \tkzDrawPoints(A,B,C,E,F,G,H,P,Q,R,S,T,U,K) + \tkzDrawPoints[hidden pt](M,N,O,D) + \tkzMarkRightAngle[mra](L,O,K) + \tkzMarkSegments[mark=|,size=1pt,thick,color=gray](A,S B,S B,R C,R + Q,C Q,G G,P H,P + E,U H,U E,T A,T) + + \tkzLabelAngle[pos=.3](K,L,O){$\alpha$} + \tkzLabelPoints[below](O,A,S,B) + \tkzLabelPoints[above](H,P,G) + \tkzLabelPoints[left](T,E) + \tkzLabelPoints[right](C,Q) + \tkzLabelPoints[above left](U,D,M) + \tkzLabelPoints[above right](L,N) + \tkzLabelPoints[below right](F,R) + \tkzLabelPoints[below left](K) +\end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-31-2-11.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-29-2-12.tex index 0e564d3ccb5..9d596313037 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-31-2-11.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-29-2-12.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 211 (Section 29.2.12 : Three circles) + \begin{tikzpicture}[scale=1.5] \tkzDefPoints{0/0/A,8/0/B,0/4/a,8/4/b,8/8/c} \tkzDefTriangle[equilateral](A,B) \tkzGetPoint{C} @@ -30,3 +35,5 @@ \tkzDrawPoints(G,Ia,Ib,Ic) \tkzDrawSegments[gray,dashed](C,M A,N B,P M,a M,b A,a a,b b,B A,D Ia,ha) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-31-2-12.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-29-2-13.tex index 7034319c4f7..1a6f14bfb89 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-31-2-12.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-29-2-13.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 212 (Section 29.2.13 : "The" Circle of APOLLONIUS) + \begin{tikzpicture}[scale=.5] \tkzDefPoints{0/0/A,6/0/B,0.8/4/C} \tkzDefTriangleCenter[euler](A,B,C) \tkzGetPoint{N} @@ -40,4 +45,6 @@ \tkzDrawPoints(A,B,C,N,Ja,Jb,Jc,Xb,Xc,B',C',Za,Zb,Ba,Ca,Bc,Ac,Q,Sp,K,O) \tkzLabelPoints(A,B,C,N,Ja,Jb,Jc,Xb,Xc,B',C',Za,Zb,Ba,Ca,Bc,Ac,Q,Sp) \tkzLabelPoints[above](K,O) - \end{tikzpicture} +\end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-31-2-2.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-29-2-2.tex index 47c8f5aa9ca..3e4d69b6e52 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-31-2-2.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-29-2-2.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 201 (Section 29.2.2 : Circle and tangent) + \begin{tikzpicture} \edef\alphaR{\fpeval{asin(2/3)}} \edef\xB{8-3*cos(\alphaR)} @@ -14,4 +19,6 @@ \tkzDrawCircle[R,color=blue,line width=.8pt](A,3 cm) \tkzDrawPoint(B') \tkzDrawLine(B,B') - \end{tikzpicture} +\end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-31-2-3.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-29-2-3.tex index 1ce86d3030a..5e34acb8901 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-31-2-3.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-29-2-3.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 202 (Section 29.2.3 : About right triangle) + \begin{tikzpicture} \tkzDefPoint["$A$" left](2,1){A} \tkzDefPoint(6,4){B} @@ -13,3 +18,5 @@ \tkzMarkRightAngle(A,B,C) \tkzDrawLine[color=gray,style=dashed](A,C) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-31-2-4.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-29-2-4.tex index 776f45de17a..9043a7862f6 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-31-2-4.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-29-2-4.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 203 (Section 29.2.4 : Archimedes) + \begin{tikzpicture}[scale=1.25] \tkzDefPoint(0,0){A}\tkzDefPoint(6,0){D} \tkzDefPoint(8,0){B}\tkzDefPoint(4,0){I} @@ -15,3 +20,5 @@ \tkzLabelPoints(A,B,I,D) \tkzLabelPoints[above right](C,T) \tkzMarkSegment[pos=.25,mark=s|](C,D) \tkzMarkSegment[pos=.75,mark=s|](C,D) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-31-2-5.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-29-2-5.tex index 7018e92f9b1..3c691fd04ef 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-31-2-5.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-29-2-5.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 204 (Section 29.2.5 : Exemple : Dimitris Kapeta) + \begin{tikzpicture}[scale=1.25] \tkzDefPoint(0,0){O} \tkzDefPoint(2.5,0){N} @@ -19,3 +24,5 @@ \tkzLabelPoints[above left](M,C) \tkzLabelPoint[below left](A'){$A'$} \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-31-2-6.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-29-2-6.tex index 4679a437410..e3e2f35be13 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-31-2-6.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-29-2-6.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 205 (Section 29.2.6 : Example : John Kitzmiller ) + \begin{tikzpicture}[scale=2] \tkzDefPoint[label=below left:A](0,0){A} \tkzDefPoint[label=below right:B](6,0){B} @@ -24,3 +29,5 @@ \tkzDrawSegments[line width=3pt,color=red,opacity=0.4](A,L B,K C,J) \tkzMarkSegments[mark=o](J,K K,L L,J) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-31-2-7.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-29-2-7.tex index f83abadd82d..16133d1b7d7 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-31-2-7.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-29-2-7.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 206 (Section 29.2.7 : Exemple : John Kitzmiller ) + \begin{tikzpicture}[scale=2,decoration={markings, mark=at position 3cm with {\arrow[scale=2]{>}}}] \tkzDefPoints{0/0/E, 6/0/F, 0/1.8/P, 6/1.8/Q, 0/3/R, 6/3/S} @@ -17,3 +22,5 @@ \tkzDrawSegments[color=teal, line width=3pt, opacity=0.4](B,D) \tkzDrawSegments[color=magenta, line width=3pt, opacity=0.4](D,F) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-31-2-8.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-29-2-8.tex index f7e05f7c8b3..7314c830de4 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-31-2-8.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-29-2-8.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 207 (Section 29.2.8 : Exemple : John Kitzmiller ) + \begin{tikzpicture}[scale=2] \tkzDefPoints{0/0/B, 5/0/D} \tkzDefPoint(70:3){A} \tkzDrawPolygon(B,D,A) @@ -8,7 +13,7 @@ \begin{scope}[decoration={markings, mark=at position .5 with {\arrow[scale=2]{>}}}] \tkzDrawSegments[postaction={decorate},dashed](C,A P,B) - \end{scope} +\end{scope} \tkzDrawSegment(A,C) \tkzDrawSegment[style=dashed](A,P) \tkzLabelPoints[below](B,C,D) \tkzLabelPoints[above](A,P) \tkzDrawSegments[color=magenta, line width=3pt, opacity=0.4](B,C P,A) @@ -22,3 +27,5 @@ \tkzLabelAngle[pos=1](A,B,P){3} \tkzLabelAngle[pos=1](B,P,A){4} \tkzMarkSegments[mark=|](A,B A,P) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-31-2-9.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-29-2-9.tex index 7c340929a9c..350113e1174 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-31-2-9.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-29-2-9.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 208 (Section 29.2.9 : Exemple : author John Kitzmiller ) + \begin{tikzpicture}[scale=2] \tkzDefPoint(0,3){A} \tkzDefPoint(6,3){E} \tkzDefPoint(1.35,3){B} \tkzDefPoint(4.65,3){D} \tkzDefPoint(1,1){G} \tkzDefPoint(5,5){F} @@ -17,3 +22,5 @@ \tkzDrawSegments(A,G G,B E,F F,D) \tkzLabelPoints[below](C,D,E,G) \tkzLabelPoints[above](A,B,F) \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-30-1-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-30-1-1.tex new file mode 100644 index 00000000000..65261c69a59 --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-30-1-1.tex @@ -0,0 +1,29 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 213 (Section 30.1.1 : Example 1 change line width) + +\begin{tikzpicture} +\begin{scope}[rotate=-90] + \tkzDefPoint(10,6){C} + \tkzDefPoint( 0,6){A} + \tkzDefPoint(10,0){B} + \tkzDefPointBy[projection = onto B--A](C) + \tkzGetPoint{H} + \tkzDrawPolygon(A,B,C) + \tkzMarkRightAngle[size=.4,fill=blue!20](B,C,A) + \tkzMarkRightAngle[size=.4,fill=red!20](B,H,C) + \tkzDrawSegment[color=red](C,H) +\end{scope} + \tkzSetUpLine[color=blue,line width=1pt] + \tkzLabelSegment[below](C,B){$a$} + \tkzLabelSegment[right](A,C){$b$} + \tkzLabelSegment[left](A,B){$c$} + \tkzLabelSegment[color=red](C,H){$h$} + \tkzDrawPoints(A,B,C) + \tkzLabelPoints[above left](H) + \tkzLabelPoints(B,C) + \tkzLabelPoints[above](A) +\end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-30-1-2.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-30-1-2.tex new file mode 100644 index 00000000000..ce3f561f2ee --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-30-1-2.tex @@ -0,0 +1,27 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 214 (Section 30.1.2 : Example 2 change style of line) + +\begin{tikzpicture}[scale=.6] + \tkzDefPoint(1,0){A} \tkzDefPoint(4,0){B} + \tkzDefPoint(1,1){C} \tkzDefPoint(5,1){D} + \tkzDefPoint(1,2){E} \tkzDefPoint(6,2){F} + \tkzDefPoint(0,4){A'}\tkzDefPoint(3,4){B'} + \tkzDrawSegments(A,B C,D E,F) + \tkzDrawLine(A',B') + \tkzSetUpLine[style=dashed,color=gray] + \tkzCompass(A',B') + \tkzCalcLength[cm](C,D) \tkzGetLength{rCD} + \tkzDrawCircle[R](A',\rCD cm) + \tkzCalcLength[cm](E,F) \tkzGetLength{rEF} + \tkzDrawCircle[R](B',\rEF cm) + \tkzInterCC[R](A',\rCD cm)(B',\rEF cm) + \tkzGetPoints{I}{J} + \tkzSetUpLine[color=red] \tkzDrawLine(A',B') + \tkzDrawSegments(A',I B',I) + \tkzDrawPoints(A,B,C,D,E,F,A',B',I,J) + \tkzLabelPoints(A,B,C,D,E,F,A',B',I,J) +\end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-30-1-3.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-30-1-3.tex new file mode 100644 index 00000000000..0452f420a36 --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-30-1-3.tex @@ -0,0 +1,12 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 215 (Section 30.1.3 : Example 3 extend lines) + + \begin{tikzpicture} + \tkzSetUpLine[add=.5 and .5] + \tkzDefPoints{0/0/A,4/0/B,1/3/C} + \tkzDrawLines(A,B B,C A,C) +\end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-30-2-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-30-2-1.tex new file mode 100644 index 00000000000..1472372575c --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-30-2-1.tex @@ -0,0 +1,15 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 216 (Section 30.2.1 : use of\tkzcname{tkzSetUpPoint}) + +\begin{tikzpicture} + \tkzSetUpPoint[shape = cross out,color=blue] + \tkzInit[xmax=100,xstep=20,ymax=.5] + \tkzDefPoint(20,1){A} + \tkzDefPoint(80,0){B} + \tkzDrawLine(A,B) + \tkzDrawPoints(A,B) +\end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-30-2-2.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-30-2-2.tex new file mode 100644 index 00000000000..313205c831d --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-30-2-2.tex @@ -0,0 +1,23 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 217 (Section 30.2.2 : use of\tkzcname{tkzSetUpPoint} inside a group) + + \begin{tikzpicture} + \tkzInit[ymin=-0.5,ymax=3,xmin=-0.5,xmax=7] + \tkzDefPoint(0,0){A} + \tkzDefPoint(02.25,04.25){B} + \tkzDefPoint(4,0){C} + \tkzDefPoint(3,2){D} + \tkzDrawSegments(A,B A,C A,D) + {\tkzSetUpPoint[shape=cross out, + fill= teal!50, + size=4,color=teal] + \tkzDrawPoints(A,B)} + \tkzSetUpPoint[fill= teal!50,size=4, + color=teal] + \tkzDrawPoints(C,D) + \tkzLabelPoints(A,B,C,D) +\end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-30-3-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-30-3-1.tex new file mode 100644 index 00000000000..3b30aef8e25 --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-30-3-1.tex @@ -0,0 +1,21 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 218 (Section 30.3.1 : use of\tkzcname{tkzSetUpCompass} with bisector) + + \begin{tikzpicture}[scale=0.75] + \tkzDefPoints{0/1/A, 8/3/B, 3/6/C} + \tkzDrawPolygon(A,B,C) + \tkzSetUpCompass[color=red,line width=.2 pt] + \tkzDefLine[bisector](A,C,B) \tkzGetPoint{c} + \tkzDefLine[bisector](B,A,C) \tkzGetPoint{a} + \tkzDefLine[bisector](C,B,A) \tkzGetPoint{b} + \tkzShowLine[bisector,size=2,gap=3](A,C,B) + \tkzShowLine[bisector,size=2,gap=3](B,A,C) + \tkzShowLine[bisector,size=1,gap=2](C,B,A) + \tkzDrawLines[add=0 and 0 ](B,b C,c) + \tkzDrawLine[add=0 and -.4 ](A,a) + \tkzLabelPoints(A,B) \tkzLabelPoints[above](C) +\end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-30-3-2.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-30-3-2.tex new file mode 100644 index 00000000000..a09172bba7e --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-30-3-2.tex @@ -0,0 +1,26 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 219 (Section 30.3.2 : Another example of of\tkzcname{tkzSetUpCompass}) + + \begin{tikzpicture}[scale=1,rotate=90] + \tkzDefPoints{0/1/A, 8/3/B, 3/6/C} + \tkzDrawPolygon(A,B,C) + \tkzSetUpCompass[color=brown, + line width=.3 pt,style=tkzdotted] + \tkzDefLine[bisector](B,A,C) \tkzGetPoint{a} + \tkzDefLine[bisector](C,B,A) \tkzGetPoint{b} + \tkzInterLL(A,a)(B,b) \tkzGetPoint{I} + \tkzDefPointBy[projection= onto A--B](I) + \tkzGetPoint{H} + \tkzMarkRightAngle(I,H,A) + \tkzDrawCircle[radius,color=red](I,H) + \tkzDrawSegments[color=red](I,H) + \tkzDrawLines[add=0 and -.5,,color=red](A,a) + \tkzDrawLines[add=0 and 0,color=red](B,b) + \tkzShowLine[bisector,size=2,gap=3](B,A,C) + \tkzShowLine[bisector,size=1,gap=3](C,B,A) + \tkzLabelPoints(A,B,C) +\end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-30-4-0.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-30-4-0.tex new file mode 100644 index 00000000000..149bdfe307a --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-30-4-0.tex @@ -0,0 +1,18 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 220 (Section 30.4 : Own style) + +\tkzSetUpPoint[color=blue!50!white, fill=gray!20!red!50!white] +\tikzset{/tikz/mystyle/.style={ + color=blue!20!black, + fill=blue!20}} + \begin{tikzpicture} + \tkzDefPoint(0,0){O} + \tkzDefPoint(0,1){A} + \tkzDrawPoints(O) % general style + \tkzDrawPoints[mystyle,size=4](A) % my style + \tkzLabelPoints(O,A) +\end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-31-2-0.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-31-2-0.tex new file mode 100644 index 00000000000..b60291f2770 --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-31-2-0.tex @@ -0,0 +1,12 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 221 (Section 31.2 : \tkzcname{tkzInit} et \tkzcname{tkzShowBB}) + +\begin{tikzpicture} + \tkzInit[xmin=-1,xmax=3,ymin=-1, ymax=3] + \tkzGrid + \tkzShowBB[red,line width=2pt] +\end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-6-3-0.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-31-3-0.tex index c80a756aaa3..62f5ee84a14 100644 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-6-3-0.tex +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-31-3-0.tex @@ -1,3 +1,8 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 222 (Section 31.3 : \tkzcname{tkzClip}) + \begin{tikzpicture} \tkzInit[xmax=4, ymax=3] \tkzAxeXY @@ -5,3 +10,5 @@ \tkzClip \draw[red] (-1,-1)--(5,2); \end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-31-4-0.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-31-4-0.tex new file mode 100644 index 00000000000..30ec471939e --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzEuclide-31-4-0.tex @@ -0,0 +1,14 @@ +\input{preamble-standalone.ltx} +\begin{document} + +% Ex. No. 223 (Section 31.4 : \tkzcname{tkzClip} et l'option \tkzname{space}) + +\begin{tikzpicture} + \tkzInit[xmax=4, ymax=3] + \tkzAxeXY + \tkzGrid + \tkzClip[space=1] + \draw[red] (-1,-1)--(5,2); +\end{tikzpicture} + +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-11-5-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-11-5-1.tex deleted file mode 100644 index 8a1ff71d7c5..00000000000 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-11-5-1.tex +++ /dev/null @@ -1,15 +0,0 @@ - \begin{tikzpicture}[scale=1.2,rotate=-90] - \tkzInit - \tkzDefPoint(0,0){A} \tkzDefPoint(5,0){B} - \tkzDrawSegment(A,B) - \tkzDefPointBy[rotation= center A angle 60](B) - \tkzGetPoint{C} - \tkzDefPointBy[symmetry= center C](A) - \tkzGetPoint{D} - \tkzDrawSegment(A,tkzPointResult) - \tkzDrawLine(B,D) - \tkzDrawArc[delta=10](A,B)(C) - \tkzDrawArc[delta=10](B,C)(A) - \tkzDrawArc[delta=10](C,D)(D) - \tkzMarkRightAngle(D,B,A) -\end{tikzpicture} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-11-7-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-11-7-1.tex deleted file mode 100644 index 68c0cedbaa9..00000000000 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-11-7-1.tex +++ /dev/null @@ -1,15 +0,0 @@ -\begin{tikzpicture}[scale=2] - \tkzDefPoint(0,0){O} - \tkzDefPoint(1,0){A} - \tkzDrawCircle(O,A) - \tkzDefPoint(-1.5,-1.5){z1} - \tkzDefPoint(0.35,0){z2} - \tkzDrawPoints[color=black,fill=red,size=4](O,z1,z2) - \tkzDefPointBy[inversion = center O through A](z1) - \tkzGetPoint{Z1} - \tkzDefPointBy[inversion = center O through A](z2) - \tkzGetPoint{Z2} - \tkzDrawPoints[color=black,fill=red,size=4](Z1,Z2) - \tkzDrawSegments(z1,Z1 z2,Z2) - \tkzLabelPoints(O,A,z1,z2,Z1,Z2) -\end{tikzpicture} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-11-7-2.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-11-7-2.tex deleted file mode 100644 index 89ef4d3b9ad..00000000000 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-11-7-2.tex +++ /dev/null @@ -1,12 +0,0 @@ -\begin{tikzpicture}[scale=3] - \tkzDefPoint(0,0){O} - \tkzDefPoint(1,0){A} - \tkzDrawCircle(O,A) - \tkzDefPoint(0.5,-0.25){z1} - \tkzDefPoint(-0.5,-0.5){z2} - \tkzDefPointBy[inversion = center O through A](z1) - \tkzGetPoint{Z1} - \tkzCircumCenter(z1,z2,Z1)\tkzGetPoint{c} - \tkzDrawCircle(c,Z1) - \tkzDrawPoints[color=black,fill=red,size=4](O,z1,z2,Z1,O,A) -\end{tikzpicture} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-18-2-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-18-2-1.tex deleted file mode 100644 index 08a4e700690..00000000000 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-18-2-1.tex +++ /dev/null @@ -1,5 +0,0 @@ -\begin{tikzpicture} - \tkzDefPoint(0,0){A} - \tkzDefPoint(4,0){B} - \tkzDrawTriangle[pythagore,fill=blue!30](A,B) -\end{tikzpicture} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-18-2-2.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-18-2-2.tex deleted file mode 100644 index b315e5d77b6..00000000000 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-18-2-2.tex +++ /dev/null @@ -1,8 +0,0 @@ -\begin{tikzpicture} -\tkzInit[ymin=-2.5,ymax=0,xmin=-5,xmax=0] -\tkzClip[space=.5] - \begin{scope}[rotate=-180] - \tkzDefPoint(0,0){A} \tkzDefPoint(4,0){B} - \tkzDrawTriangle[school,fill=red!30](A,B) - \end{scope} -\end{tikzpicture} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-19-0-3.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-19-0-3.tex deleted file mode 100644 index 4c50c4d99c2..00000000000 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-19-0-3.tex +++ /dev/null @@ -1,12 +0,0 @@ -\begin{tikzpicture}[scale=.5,rotate=60] - \tkzDefPoints{0/0/A,6/0/B,0.8/4/C} - \tkzDefSpcTriangle[excentral,name=J](A,B,C){a,b,c} - \tkzDefSpcTriangle[extouch,name=T](A,B,C){a,b,c} - \tkzDrawCircles[red](Ja,Ta Jb,Tb Jc,Tc) - \tkzDrawLines[add=1 and 1](A,B B,C C,A) - \tkzDrawPolygon(A,B,C) - \tkzDrawPolygon[blue](Ja,Jb,Jc) - \tkzDrawPoints(A,B,C) - \tkzDrawPoints[blue](Ja,Jb,Jc) - \tkzLabelPoints(A,B,C) -\end{tikzpicture} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-19-0-4.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-19-0-4.tex deleted file mode 100644 index 72d2ddff8be..00000000000 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-19-0-4.tex +++ /dev/null @@ -1,17 +0,0 @@ -\begin{tikzpicture}[scale=.75,rotate=60] - \tkzDefPoint(0,0){A} - \tkzDefPoint(3,0){B} - \tkzDefPoint(0.5,2.5){C} - \tkzDefCircle[euler](A,B,C) \tkzGetPoint{N} - \tkzDefSpcTriangle[feuerbach,name=F](A,B,C){_a,_b,_c} - \tkzDefSpcTriangle[excentral,name=J](A,B,C){_a,_b,_c} - \tkzDefSpcTriangle[extouch,name=T](A,B,C){_a,_b,_c} - \tkzDrawCircle[red](N,F_a) - % \tkzDrawCircle[in](A,B,C) - \tkzDrawPolygon(A,B,C) - \tkzDrawPolygon[blue](F_a,F_b,F_c) - \tkzDrawPoints[blue](J_a,J_b,J_c,F_a,F_b,F_c,A,B,C)) - \tkzDrawCircles[purple](J_a,F_a J_b,F_b J_c,F_c) - \tkzAutoLabelPoints[center=N,dist=.3, - font=\scriptsize](A,B,C,F_a,F_b,F_c,J_a,J_b,J_c) -\end{tikzpicture} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-19-0-6.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-19-0-6.tex deleted file mode 100644 index 2983b4249e1..00000000000 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-19-0-6.tex +++ /dev/null @@ -1,22 +0,0 @@ - \begin{tikzpicture}[scale=.4] - \tkzDefPoints{% x y name - 0 /0 /A, - 6 /0 /B, - 4 /6 /C} - - \tkzDefSpcTriangle[ex](A,B,C){Ja,Jb,Jc} - \tkzDefSpcTriangle[extouch](A,B,C){Ta,Tb,Tc} - \tkzDrawPoints(Ja,Jb,Jc,Ta,Tb,Tc) - \tkzLabelPoints(Ja,Jb,Jc,Ta,Tb,Tc) - \tkzDrawPolygon[](A,B,C) - \tkzDefTriangleCenter[nagel](A,B,C) - \tkzGetPoint{Na} - \tkzDrawPoints(B,C,A,Na) - \tkzLabelPoints(B,C,A,Na) - \tkzShowBB\tkzClipBB - \tkzDrawLines[add=1 and 1,dashed](A,B B,C C,A) - \tkzDrawCircles[dashed](Ja,Ta Jb,Tb Jc,Tc) - \tkzDrawSegments[dashed](Ja,Ta Jb,Tb Jc,Tc) - \tkzMarkRightAngles[fill=gray!20](Ja,Ta,C - Jb,Tb,A Jc,Tc,B) - \end{tikzpicture} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-20-6-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-20-6-1.tex deleted file mode 100644 index f654bcee821..00000000000 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-20-6-1.tex +++ /dev/null @@ -1,35 +0,0 @@ -\begin{tikzpicture} [rotate=18,scale=1.5] - \tkzDefPoint(0,0){A} - \tkzDefPoint(2.25,0.2){B} - \tkzDefPoint(2.5,2.75){C} - \tkzDefPoint(-0.75,2){D} - \tkzDrawPolygon[fill=black!50!blue!20!](A,B,C,D) - \tkzDrawSegments[style=dashed](A,C B,D) -\end{tikzpicture}\end{tkzexample} - - -\subsection{Clipper un polygone} - \begin{NewMacroBox}{tkzClipPolygon}{\oarg{local options}\parg{liste de points}} -Cette macro permet de contenir les différentes tracés dans le polygone désigné. - -\medskip -\begin{tabular}{lll} -\toprule -options & exemple & explication \\ -\midrule -\TAline{\parg{pt1,pt2}}{\parg{A,B}}{} -%\bottomrule - \end{tabular} -\end{NewMacroBox} -\subsubsection{Exemple simple avec \tkzcname{tkzClipPolygon}} -\begin{tkzexample}[latex=7 cm,small] -\begin{tikzpicture}[scale=1.25] - \tkzInit[xmin=0,xmax=4,ymin=0,ymax=3] - \tkzClip[space=.5] - \tkzDefPoint(0,0){A} \tkzDefPoint(4,0){B} - \tkzDefPoint(1,3){C} \tkzDrawPolygon(A,B,C) - \tkzDefPoint(0,2){D} \tkzDefPoint(2,0){E} - \tkzDrawPoints(D,E) \tkzLabelPoints(D,E) - \tkzClipPolygon(A,B,C) - \tkzDrawLine[color=red](D,E) -\end{tikzpicture} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-22-6-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-22-6-1.tex deleted file mode 100644 index 439677fb190..00000000000 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-22-6-1.tex +++ /dev/null @@ -1,16 +0,0 @@ -\begin{tikzpicture} - \tkzDefPoint(0,0){O} \tkzDefPoint(2,0){N} - \tkzDefPointBy[rotation=center O angle 50](N) - \tkzGetPoint{M} - \tkzDefPointBy[rotation=center O angle -20](N) - \tkzGetPoint{P} - \tkzDefPointBy[rotation=center O angle 125](N) - \tkzGetPoint{P'} - \tkzLabelCircle[above=4pt](O,N)(120){$\mathcal{C}$} - \tkzDrawCircle(O,M) - \tkzFillCircle[color=blue!20,opacity=.4](O,M) - \tkzLabelCircle[R,draw,fill=Gold,% - text width=2cm,text centered](O,3 cm)(-60)% - {Le cercle\\ $\mathcal{C}$} - \tkzDrawPoints(M,P)\tkzLabelPoints[right](M,P) -\end{tikzpicture} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-23-2-7.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-23-2-7.tex deleted file mode 100644 index 21775947e71..00000000000 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-23-2-7.tex +++ /dev/null @@ -1,10 +0,0 @@ -\begin{tikzpicture} - \tkzDefPoints{2/2/A,5/4/B,4/4/0} - \tkzLength=2cm - \tkzDrawCircle[R](O,\tkzLength pt) - \tkzInterLC[R](A,B)(O,\tkzLength pt) - \tkzGetPoints{I}{J} - \tkzDrawPoints[color=blue](A,B) - \tkzDrawPoints[color=red](I,J) - \tkzDrawLine(I,J) -\end{tikzpicture} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-6-2-0.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-6-2-0.tex deleted file mode 100644 index b113d42898b..00000000000 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-6-2-0.tex +++ /dev/null @@ -1,5 +0,0 @@ -\begin{tikzpicture} - \tkzInit[xmin=-1,xmax=3,ymin=-1, ymax=3] - \tkzGrid - \tkzShowBB[red,line width=2pt] -\end{tikzpicture} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-6-4-0.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-6-4-0.tex deleted file mode 100644 index 2a0df0756e3..00000000000 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-6-4-0.tex +++ /dev/null @@ -1,7 +0,0 @@ -\begin{tikzpicture} - \tkzInit[xmax=4, ymax=3] - \tkzAxeXY - \tkzGrid - \tkzClip[space=1] - \draw[red] (-1,-1)--(5,2); -\end{tikzpicture} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-7-1-1.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-7-1-1.tex deleted file mode 100644 index 99a4a10e091..00000000000 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-7-1-1.tex +++ /dev/null @@ -1,10 +0,0 @@ -\begin{tikzpicture}[rotate=90] - \tkzDefPoint[label=right:$A_n$](2,3){A} - \begin{scope}[shift={(A)}] - \tkzDefPoint[label= right:$B_n$](31:3){B} - \tkzDefPoint[label= right:$C_n$](158:3){C} - \end{scope} - \tkzDrawSegments[color=red,% - line width=1pt](A,B A,C) - \tkzDrawPoints[color=red](A,B,C) - \end{tikzpicture} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-7-1-2.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-7-1-2.tex deleted file mode 100644 index 0180cdf0c0f..00000000000 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-7-1-2.tex +++ /dev/null @@ -1,16 +0,0 @@ -\begin{tikzpicture}[scale=1] - \tkzInit[xmax=6,ymax=6] - \tkzGrid - \tkzDefPoint(-1+1,-1+4){O} - \tkzDefPoint({3*ln(exp(1))},{exp(1)}){A} - \tkzDefPoint({4*sin(pi/6)},{4*cos(pi/6)}){B} - \tkzDefPoint({4*sin(pi/3)},{4*cos(pi/3)}){B'} - \tkzDefPoint(30:5){C} - \tkzDefPoint[shift={(1,3)}](45:4){A'} - \begin{scope}[shift=(A)] - \tkzDefPoint(30:3){C'} - \end{scope} - \tkzDrawPoints[color=blue](O,B,C) - \tkzDrawPoints[color=red](B',A,A',C') - \tkzLabelPoints(A,O,B,B',A',C,C') -\end{tikzpicture} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-8-3-0.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-8-3-0.tex deleted file mode 100644 index 5c7e97e8df3..00000000000 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-8-3-0.tex +++ /dev/null @@ -1,16 +0,0 @@ -\begin{tikzpicture}[scale=.75,rotate=-30] - \tkzDefPoint(0,0){O} - \tkzDefPoint(4,-5){A} - \tkzDefIntSimilitudeCenter(O,3)(A,1) \tkzGetPoint{I} - \tkzExtSimilitudeCenter(O,3)(A,1) \tkzGetPoint{J} - \tkzDefTangent[from with R= I](O,3 cm) \tkzGetPoints{D}{E} - \tkzDefTangent[from with R= I](A,1 cm) \tkzGetPoints{D'}{E'} - \tkzDefTangent[from with R= J](O,3 cm) \tkzGetPoints{F}{G} - \tkzDefTangent[from with R= J](A,1 cm) \tkzGetPoints{F'}{G'} - \tkzDrawCircle[R,fill=red!50,opacity=.3](O,3 cm) - \tkzDrawCircle[R,fill=blue!50,opacity=.3](A,1 cm) - \tkzDrawSegments[add = .5 and .5,color=red](D,D' E,E') - \tkzDrawSegments[add= 0 and 0.25,color=blue](J,F J,G) - \tkzDrawPoints(O,A,I,J,D,E,F,G,D',E',F',G') - \tkzLabelPoints[font=\scriptsize](O,A,I,J,D,E,F,G,D',E',F',G') -\end{tikzpicture} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-9-1-3.tex b/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-9-1-3.tex deleted file mode 100644 index ed4b53eb0f9..00000000000 --- a/Master/texmf-dist/doc/latex/tkz-euclide/examples/tkzeuclide-9-1-3.tex +++ /dev/null @@ -1,8 +0,0 @@ - \begin{tikzpicture} - \tkzDefPoints{0/1/A,3/2/B,1/4/C} - \tkzDefTriangleCenter[circum](A,B,C) - \tkzGetPoint{G} - \tkzDrawPolygon[color=Maroon](A,B,C) - \tkzDrawCircle(G,A) - \tkzDrawPoints(A,B,C,G) - \end{tikzpicture} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-FAQ.tex b/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-FAQ.tex new file mode 100644 index 00000000000..0725aa2c3a1 --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-FAQ.tex @@ -0,0 +1,35 @@ +\section{FAQ} + +\subsection{Most common errors} + For the moment, I'm basing myself on my own, because having changed syntax several times, I've made a number of mistakes. This section is going to be expanded. + + \begin{itemize}\setlength{\itemsep}{10pt} + + \item \tkzcname{tkzDrawPoint(A,B)} when it is necessary \tkzcname{tkzDrawPoints} + +\item \tkzcname{tkzGetPoint(A)} When defining an object, use braces and not brackets, so write~: \tkzcname{tkzGetPoint\{A\}} + +\item \tkzcname{tkzGetPoint\{A\}} in place of \tkzcname{tkzGetFirstPoint\{A\}}. When a macro gives two points as results, either we retrieve these points using \tkzcname{tkzGetPoints\{A\}\{B\}}, or we retrieve only one of the two points, using \tkzcname{tkzGetFirstPoint\{A\}} or +\tkzcname{tkzGetSecondPoint\{A\}}. These two points can be used with the reference \tkzname{tkzFirstPointResult} or +\tkzname{tkzSecondPointResult}. It is possible that a third point is given as \tkzname{tkzPointResult}. + +\item \tkzcname{tkzDrawSegment(A,B A,C)} when you need \tkzcname{tkzDrawSegments}. It is possible to use only the versions with an "s" but it is less efficient! + +\item Mixing options and arguments; all macros that use a circle need to know the radius of the circle. If the radius is given by a measure then the option includes a \tkzname{R}. + +\item \tkzcname{tkzDrawSegments[color = gray,style=dashed]\{B,B' C,C'\}} is a mistake. Only macros that define an object use braces. + +\item The angles are given in degrees, more rarely in radians. + +\item If an error occurs in a calculation when passing parameters, then it is better to make these calculations before calling the macro. + +\item Do not mix the syntax of \tkzNamePack{pgfmath} and \tkzNamePack{xfp}. I've often chosen \tkzNamePack{xfp} but if you prefer pgfmath then do your calculations before passing parameters. + +\item Use of \tkzcname{tkzClip} : In order to get accurate results, I avoided using normalized vectors. The advantage of normalization is to control the dimension of the manipulated objects, the disadvantage is that with TeX, this implies inaccuracies. These inaccuracies are often small, in the order of a thousandth, but they lead to disasters if the drawing is enlarged. Not normalizing implies that some points are far away from the working area and \tkzcname{tkzClip} allows you to reduce the size of the drawing. + + +\item An error occurs if you use the macro \tkzcname{tkzDrawAngle} + with too small an angle. The error is produced by the \NameLib{decoration} library when you want to place a mark on an arc. Even if the mark is absent, the error is still present. It is possible to get around this difficulty with the option \tkzname{mkpos=.2} for example, which will place the mark before the arc. Another possibility is to use the macro \tkzcname{tkzFillAngle}. + + \end{itemize} +\endinput
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-angles.tex b/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-angles.tex new file mode 100644 index 00000000000..f4516e05d38 --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-angles.tex @@ -0,0 +1,515 @@ +\section{Les angles} + +\subsection{Colorier un angle : fill} + +L'opération la plus simple +\begin{NewMacroBox}{tkzFillAngle}{\oarg{local options}\parg{A,O,B}} +O est le sommet de l'angle. OA et OB sont les côtés. Attention l'angle est déterminé avec l'ordre des points. + +\medskip + +\begin{tabular}{lll} +\toprule +options & default & definition \\ +\midrule +\TOline{size}{1 cm}{cette option détermine le rayon du secteur angulaire colorié} + +\bottomrule +\end{tabular} + +\medskip +Il faut ajouter bien sûr tous les styles de \TIKZ\ comme par exemple l'usage de fill \index{fill} ou encore shade \index{shade} +\end{NewMacroBox} + +\subsubsection{Exemple avec \tkzname{size}} +\begin{tkzexample}[latex=7cm,small] +\begin{tikzpicture} + \tkzInit + \tkzDefPoints{0/0/O,2.5/0/A,1.5/2/B} + \tkzFillAngle[size=2cm, fill=gray!10](A,O,B) + \tkzDrawLines(O,A O,B) + \tkzDrawPoints(O,A,B) +\end{tikzpicture} +\end{tkzexample} + + +\subsubsection{Changement de l'ordre des points} +\begin{tkzexample}[latex=7cm,small] +\begin{tikzpicture} + \tkzInit + \tkzDefPoints{0/0/O,2.5/0/A,1.5/2/B} + \tkzFillAngle[size=2cm,fill=gray!10](B,O,A) + \tkzDrawLines(O,A O,B) + \tkzDrawPoints(O,A,B) +\end{tikzpicture} +\end{tkzexample} + +\begin{tkzexample}[latex=7cm,small] +\begin{tikzpicture} + \tkzInit + \tkzDefPoints{0/0/O,5/0/A,3/4/B} + % Don't forget {} to get, () to use + \tkzFillAngle[size=4cm,left color=white, + right color=red!50](A,O,B) + \tkzDrawLines(O,A O,B) + \tkzDrawPoints(O,A,B) +\end{tikzpicture} +\end{tkzexample} + +\begin{NewMacroBox}{tkzFillAngles}{\oarg{local options}\parg{A,O,B}\parg{A',O',B'}etc.} +Avec des options communes, il existe une macro pour de mutiples angles + \end{NewMacroBox} + +\subsubsection{Multiples angles} +\begin{tkzexample}[latex=7cm,small] +\begin{tikzpicture}[scale=0.75] + \tkzDefPoint(0,0){B} + \tkzDefPoint(8,0){C} + \tkzDefPoint(0,8){A} + \tkzDefPoint(8,8){D} + \tkzDrawPolygon(B,C,D,A) + \tkzDefTriangle[equilateral](B,C) + \tkzGetPoint{M} + \tkzInterLL(D,M)(A,B) \tkzGetPoint{N} + \tkzDefPointBy[rotation=center N angle -60](D) + \tkzGetPoint{L} + \tkzInterLL(N,L)(M,B) \tkzGetPoint{P} + \tkzInterLL(M,C)(D,L) \tkzGetPoint{Q} + \tkzDrawSegments(D,N N,L L,D B,M M,C) + \tkzDrawPoints(L,N,P,Q,M,A,D) + \tkzLabelPoints[left](N,P,Q) + \tkzLabelPoints[above](M,A,D) + \tkzLabelPoints(L,B,C) + \tkzMarkAngles(C,B,M B,M,C M,C,B% + D,L,N L,N,D N,D,L) + \tkzFillAngles[fill=red!20,opacity=.2](C,B,M% + B,M,C M,C,B D,L,N L,N,D N,D,L) +\end{tikzpicture} +\end{tkzexample} + + \newpage +\subsection{Marquer un angle mark} +Opération plus délicate car les options sont nombreuses. Les symboles utilisés pour le marquage outre ceux de TikZ sont définis dans le fichier |tkz-lib-marks.tex| et désignés par les caractères suivants:\begin{tkzltxexample}[] +|, ||,|||, z, s, x, o, oo +\end{tkzltxexample} + +Leurs définitions est la suivante + +\begin{tkzltxexample}[] +\pgfdeclareplotmark{||} + %double bar +{% + \pgfpathmoveto{\pgfqpoint{2\pgflinewidth}{\pgfplotmarksize}} + \pgfpathlineto{\pgfqpoint{2\pgflinewidth}{-\pgfplotmarksize}} + \pgfpathmoveto{\pgfqpoint{-2\pgflinewidth}{\pgfplotmarksize}} + \pgfpathlineto{\pgfqpoint{-2\pgflinewidth}{-\pgfplotmarksize}} + \pgfusepathqstroke +} +\end{tkzltxexample} + +\begin{tkzltxexample}[] + %triple bar + \pgfdeclareplotmark{|||} + {% + \pgfpathmoveto{\pgfqpoint{0 pt}{\pgfplotmarksize}} + \pgfpathlineto{\pgfqpoint{0 pt}{-\pgfplotmarksize}} + \pgfpathmoveto{\pgfqpoint{-3\pgflinewidth}{\pgfplotmarksize}} + \pgfpathlineto{\pgfqpoint{-3\pgflinewidth}{-\pgfplotmarksize}} + \pgfpathmoveto{\pgfqpoint{3\pgflinewidth}{\pgfplotmarksize}} + \pgfpathlineto{\pgfqpoint{3\pgflinewidth}{-\pgfplotmarksize}} + \pgfusepathqstroke + } +\end{tkzltxexample} + +\begin{tkzltxexample}[] + % An bar slant + \pgfdeclareplotmark{s|} + {% + \pgfpathmoveto{\pgfqpoint{-.70710678\pgfplotmarksize}% + {-.70710678\pgfplotmarksize}} + \pgfpathlineto{\pgfqpoint{.70710678\pgfplotmarksize}% + {.70710678\pgfplotmarksize}} + \pgfusepathqstroke + } +\end{tkzltxexample} + + +\begin{tkzltxexample}[] + % An double bar slant + \pgfdeclareplotmark{s||} + {% + \pgfpathmoveto{\pgfqpoint{-0.75\pgfplotmarksize}{-\pgfplotmarksize}} + \pgfpathlineto{\pgfqpoint{0.25\pgfplotmarksize}{\pgfplotmarksize}} + \pgfpathmoveto{\pgfqpoint{0\pgfplotmarksize}{-\pgfplotmarksize}} + \pgfpathlineto{\pgfqpoint{1\pgfplotmarksize}{\pgfplotmarksize}} + \pgfusepathqstroke + } +\end{tkzltxexample} + + +\begin{tkzltxexample}[] + % z + \pgfdeclareplotmark{z} + {% + \pgfpathmoveto{\pgfqpoint{0.75\pgfplotmarksize}{-\pgfplotmarksize}} + \pgfpathlineto{\pgfqpoint{-0.75\pgfplotmarksize}{-\pgfplotmarksize}} + \pgfpathlineto{\pgfqpoint{0.75\pgfplotmarksize}{\pgfplotmarksize}} + \pgfpathlineto{\pgfqpoint{-0.75\pgfplotmarksize}{\pgfplotmarksize}} + \pgfusepathqstroke + } +\end{tkzltxexample} + +\begin{tkzltxexample}[] + % s + \pgfdeclareplotmark{s} + {% + \pgfpathmoveto{\pgfqpoint{0pt}{0pt}} + \pgfpathcurveto + {\pgfpoint{0pt}{0pt}} + {\pgfpoint{-\pgfplotmarksize}{\pgfplotmarksize}} + {\pgfpoint{\pgfplotmarksize}{\pgfplotmarksize}} + \pgfpathmoveto{\pgfqpoint{0pt}{0pt}} + \pgfpathcurveto + {\pgfpoint{0pt}{0pt}} + {\pgfpoint{\pgfplotmarksize}{-\pgfplotmarksize}} + {\pgfpoint{-\pgfplotmarksize}{-\pgfplotmarksize}} + \pgfusepathqstroke + } +\end{tkzltxexample} + +\begin{tkzltxexample}[] + % infinity + \pgfdeclareplotmark{oo} + {% + \pgfpathmoveto{\pgfqpoint{0pt}{0pt}} + \pgfpathcurveto + {\pgfpoint{0pt}{0pt}} + {\pgfpoint{.5\pgfplotmarksize}{1\pgfplotmarksize}} + {\pgfpoint{\pgfplotmarksize}{0pt}} + \pgfpathmoveto{\pgfqpoint{0pt}{0pt}} + \pgfpathcurveto + {\pgfpoint{0pt}{0pt}} + {\pgfpoint{-.5\pgfplotmarksize}{1\pgfplotmarksize}} + {\pgfpoint{-\pgfplotmarksize}{0pt}} + \pgfpathmoveto{\pgfqpoint{0pt}{0pt}} + \pgfpathcurveto + {\pgfpoint{0pt}{0pt}} + {\pgfpoint{.5\pgfplotmarksize}{-1\pgfplotmarksize}} + {\pgfpoint{\pgfplotmarksize}{0pt}} + \pgfpathmoveto{\pgfqpoint{0pt}{0pt}} + \pgfpathcurveto + {\pgfpoint{0pt}{0pt}} + {\pgfpoint{-.5\pgfplotmarksize}{-1\pgfplotmarksize}} + {\pgfpoint{-\pgfplotmarksize}{0pt}} + \pgfusepathqstroke + } +\end{tkzltxexample} + +\newpage + + +% \tkzMarkAngle(B, A, C) +% +% Marque d'angle +% arc de cercle (simple/double/triple) et marque d'églité. +% +% Par défaut: +% arc = simple +% mksize = 1cm (rayon de l'arc) +% style traits pleins +% mkpos ? position: 0.5 (position de la marque) +% mark rien du tout (ignoré si type est utilisé) +% +% Paramètres (optionnels) +% arc : l, ll, lll +% mksize : 1cm +% gap : 3pt +% dist : 1? +% style : type de traits +% mkpos : 0.5 +% mark : none , |, ||,|||, z, s, x, o, oo mais tous les +% % symboles de tikz sont permis + +\begin{NewMacroBox}{tkzMarkAngle}{\oarg{local options}\parg{A,O,B}} +O est le sommet. Attention les arguments varient en fonction des options. Plusieurs marquages sont possibles. Vous pouvez simplement tracer un arc ou bian ajouter une marque sur cet arc. Le style de l'arc est choisi avec l'option \tkzname{arc}, le rayon de l'arc est donné par \tkzname{mksize}, l'arc peut bien sûr être colorié. + +\medskip + +\begin{tabular}{lll} +\toprule +options & default & definition \\ +\midrule +\TOline{arc}{l}{choix parmi l, ll et lll simple, double ou triple.} +\TOline{size}{1 cm}{rayon de l'arc.} +\TOline{mark}{none}{choix parmi s.} +\TOline{mksize}{4pt}{taille du symbol (mark).} +\TOline{mkcolor}{black}{couleur du symbole (mark).} +\TOline{mkpos}{0.5}{position du symbole sur l'arc.} +\end{tabular} +\end{NewMacroBox} + +\subsubsection{Exemple avec \tkzname{mark = x}} +\begin{tkzexample}[latex=6cm,small] + \begin{tikzpicture}[scale=.75] + \tkzDefPoints{0/0/O,5/0/A,3/4/B} + \tkzMarkAngle[size = 4cm,mark = x, + arc=ll,mkcolor = red](A,O,B) + \tkzDrawLines(O,A O,B) + \tkzDrawPoints(O,A,B) + \end{tikzpicture} +\end{tkzexample} +\DeleteShortVerb{\|} +\subsubsection{Exemple avec \tkzname{mark =||}} +\MakeShortVerb{\|} +\begin{tkzexample}[latex=6cm,small] + \begin{tikzpicture}[scale=.75] + \tkzDefPoints{0/0/O,5/0/A,3/4/B} + \tkzMarkAngle[size = 4cm,mark = ||, + arc=ll,mkcolor = red](A,O,B) + \tkzDrawLines(O,A O,B) + \tkzDrawPoints(O,A,B) + \end{tikzpicture} +\end{tkzexample} + +\begin{NewMacroBox}{tkzMarkAngles}{\oarg{local options}\parg{A,O,B}\parg{A',O',B'}etc.} +Avec des options communes, il existe une macro pour de mutiples angles + \end{NewMacroBox} + + +\subsection{Label dans un angle} + +\begin{NewMacroBox}{tkzLabelAngle}{\oarg{local options}\parg{A,O,B}} +Une seule option \tkzname{dist} qui n'est pas indispensable car l'option \tkzname{pos} de \TIKZ\ fonctionne très bien. + +\begin{tabular}{lll} + \toprule +options & default & definition \\ +\midrule +\TOline{pos}{1}{ ou dist, permet de contrôler la distance du sommet au label.} +\bottomrule +\end{tabular} + +\medskip +Il est possible de déplacer le label avec toutes les options de TikZ : rotate, shift, below, etc. +\end{NewMacroBox} + +\subsubsection{Exemple avec \tkzname{pos}} +\begin{tkzexample}[latex=7cm,small] +\begin{tikzpicture}[scale=.75] + \tkzDefPoints{0/0/O,5/0/A,3/4/B} + \tkzMarkAngle[size = 4cm,mark = ||, + arc=ll,color = red](A,O,B)% + \tkzDrawLines(O,A O,B) + \tkzDrawPoints(O,A,B) + \tkzLabelAngle[pos=2,draw,circle, + fill=blue!10](A,O,B){$\alpha$} +\end{tikzpicture} +\end{tkzexample} + +\begin{tkzexample}[latex=7cm,small] +\begin{tikzpicture}[rotate=30] + \tkzDefPoint(2,1){S} + \tkzDefPoint(7,3){T} + \tkzDefPointBy[rotation=center S angle 60](T) + \tkzGetPoint{P} + \tkzDefLine[bisector,normed](T,S,P) + \tkzGetPoint{s} + \tkzDrawPoints(S,T,P) + \tkzDrawPolygon[color=blue](S,T,P) + \tkzDrawLine[dashed,color=blue,add=0 and 3](S,s) + \tkzLabelPoint[above right](P){$P$} + \tkzLabelPoints(S,T) + \tkzMarkAngle[size = 1.8cm,mark = |,arc=ll, + color = blue](T,S,P) + \tkzMarkAngle[size = 2.1cm,mark = |,arc=l, + color = blue](T,S,s) + \tkzMarkAngle[size = 2.3cm,mark = |,arc=l, + color = blue](s,S,P) + \tkzLabelAngle[pos = 1.5](T,S,P){$60^{\circ}$}% + \tkzLabelAngles[pos = 2.7](T,S,s s,S,P){$30^{\circ}$}% +\end{tikzpicture} +\end{tkzexample} + +\begin{NewMacroBox}{tkzLabelAngles}{\oarg{local options}\parg{A,O,B}\parg{A',O',B'}etc.} +Avec des options communes, il existe une macro pour de mutiples angles + \end{NewMacroBox} + +\subsection{Marquer un angle droit} + +\begin{NewMacroBox}{tkzMarkRightAngle}{\oarg{local options}\parg{A,O,B}} +L'option \tkzname{german} permet de changer le style du dessin. L'option \tkzname{size} permet de modifier la taille du dessin. +\begin{tabular}{lll} +\toprule +options & default & definition \\ +\midrule +\TOline{german}{normal}{ german arc avec point intérieur.} +\TOline{size}{0.2}{ taille d'un coté.} +\end{tabular} +\end{NewMacroBox} + +\subsubsection{Exemple de marquage d'un angle droit} +\begin{tkzexample}[latex=6cm,small] +\begin{tikzpicture} + \tkzDefPoints{0/0/A,3/1/B,0.9/-1.2/P} + \tkzDefPointBy[projection = onto B--A](P) \tkzGetPoint{H} + \tkzDrawLines[add=.5 and .5](P,H) + \tkzMarkRightAngle[fill=blue!20,size=.5,draw](A,H,P) + \tkzDrawPoints[](A,B,P,H) + \tkzDrawLines[add=.5 and .5](A,B) + \tkzMarkRightAngle[fill=red!20,size=.8](B,H,P) +\end{tikzpicture} +\end{tkzexample} + +\subsubsection{Exemple de marquage d'un angle droit, german style} +\begin{tkzexample}[latex=6cm,small] +\begin{tikzpicture} + \tkzDefPoints{0/0/A,3/1/B,0.9/-1.2/P} + \tkzDefPointBy[projection = onto B--A](P) \tkzGetPoint{H} + \pgfresetboundingbox + \tkzDrawLines[add=.5 and .5](P,H) + \tkzMarkRightAngle[german,size=.5,draw](A,H,P) + \tkzDrawPoints[](A,B,P,H) + \tkzDrawLines[add=.5 and .5,fill=blue!20](A,B) + \tkzMarkRightAngle[german,size=.8](P,H,B) +\end{tikzpicture} +\end{tkzexample} + +\subsubsection{Mélange de styles} +\begin{tkzexample}[latex=6cm,small] +\begin{tikzpicture}[scale=.75] + \tkzDefPoint(0,0){A} + \tkzDefPoint(4,1){B} + \tkzDefPoint(2,5){C} + \tkzDefPointBy[projection=onto B--A](C) + \tkzGetPoint{H} + \tkzDrawLine(A,B) + \tkzDrawLine[add = .5 and .2,color=red](C,H) + \tkzMarkRightAngle[,size=1,color=red](C,H,A) + \tkzMarkRightAngle[german,size=.8,color=blue](B,H,C) + \tkzFillAngle[opacity=.2,fill=blue!20,size=.8](B,H,C) + \tkzLabelPoints(A,B,C,H) + \tkzDrawPoints(A,B,C) +\end{tikzpicture} +\end{tkzexample} + +\subsubsection{Exemple complet} + +\begin{tkzexample}[latex=6cm,small] +\begin{tikzpicture}[rotate=-90] +\tkzDefPoint(0,1){A} +\tkzDefPoint(2,4){C} +\tkzDefPointWith[orthogonal normed,K=7](C,A) +\tkzGetPoint{B} +\tkzDrawSegment[green!60!black](A,C) +\tkzDrawSegment[green!60!black](C,B) +\tkzDrawSegment[green!60!black](B,A) +\tkzDrawLine[altitude,dashed,color=magenta](B,C,A) +\tkzGetPoint{P} +\tkzLabelPoint[left](A){$A$} +\tkzLabelPoint[right](B){$B$} +\tkzLabelPoint[above](C){$C$} +\tkzLabelPoint[left](P){$P$} +\tkzLabelSegment[auto](B,A){$c$} +\tkzLabelSegment[auto,swap](B,C){$a$} +\tkzLabelSegment[auto,swap](C,A){$b$} +\tkzMarkAngle[size=1cm,color=cyan,mark=|](C,B,A) +\tkzMarkAngle[size=1cm,color=cyan,mark=|](A,C,P) +\tkzMarkAngle[size=0.75cm,color=orange,mark=||](P,C,B) +\tkzMarkAngle[size=0.75cm,color=orange,mark=||](B,A,C) +\tkzMarkRightAngle[german](A,C,B) +\tkzMarkRightAngle[german](B,P,C) +\end{tikzpicture} +\end{tkzexample} + +\subsection{\tkzcname{tkzMarkRightAngles}} +\begin{NewMacroBox}{tkzMarkRightAngles}{\oarg{local options}\parg{A,O,B}\parg{A',O',B'}etc.} +Avec des options communes, il existe une macro pour de mutiples angles + \end{NewMacroBox} + +\subsection{\tkzcname{tkzGetAngle}} +\begin{NewMacroBox}{tkzGetAngle}{\parg{macro}} +Attribue la valeur d'un angle à une macro. + \end{NewMacroBox} + +\subsection{\tkzcname{tkzFindAngle}} +\begin{NewMacroBox}{tkzFindAngle}{\parg{A,O,B}} +Détermine la valeur de l'angle en degrés. + \end{NewMacroBox} + +\subsubsection{Vérication de la mesure d'un angle} + +\begin{tkzexample}[latex=7cm,small] +\begin{tikzpicture}[scale=.75] + \tkzDefPoint(-1,1){A} + \tkzDefPoint(5,2){B} + \tkzDefEquilateral(A,B) + \tkzGetPoint{C} + \tkzDrawPolygon(A,B,C) + \tkzFindAngle(B,A,C) + \tkzGetAngle{angleBAC} + \edef\angleBAC{\fpeval{round(\angleBAC)}} + \tkzDrawPoints(A,B,C) + \tkzLabelPoints(A,B) + \tkzLabelPoint[right](C){$C$} + \tkzLabelAngle(B,A,C){\angleBAC$^\circ$} + \tkzMarkAngle[size=1.5cm](B,A,C) +\end{tikzpicture} +\end{tkzexample} + +\subsubsection{Détermination des trois angles d'un triangle} + +\begin{tkzexample}[latex=7cm,small] + \begin{tikzpicture}[scale=1.25,rotate=30] + \tkzDefPoints{0.5/1.5/A, 3.5/4/B, 6/2.5/C} + \tkzDrawPolygon(A,B,C) + \tkzDrawPoints(A,B,C) + \tkzLabelPoints[below](A,C) + \tkzLabelPoints[above](B) + \tkzMarkAngle[size=1cm](B,C,A) + \tkzFindAngle(B,C,A) + \tkzGetAngle{angleBCA} + \edef\angleBCA{\fpeval{round(\angleBCA,2)}} + \tkzLabelAngle[pos = 1](B,C,A){$\angleBCA^{\circ}$} + \tkzMarkAngle[size=1cm](C,A,B) + \tkzFindAngle(C,A,B) + \tkzGetAngle{angleBAC} + \edef\angleBAC{\fpeval{round(\angleBAC,2)}} + \tkzLabelAngle[pos = 1.8](C,A,B){% + $\angleBAC^{\circ}$} + \tkzMarkAngle[size=1cm](A,B,C) + \tkzFindAngle(A,B,C) + \tkzGetAngle{angleABC} + \edef\angleABC{\fpeval{round(\angleABC,2)}} + \tkzLabelAngle[pos = 1](A,B,C){$\angleABC^{\circ}$} + \end{tikzpicture} +\end{tkzexample} + +\subsection{\tkzcname{tkzFindSlopeAngle}} +\begin{NewMacroBox}{tkzFindSlopeAngle}{\parg{A,B}} +Détermine la pente de la droite (AB). + \end{NewMacroBox} + + \subsubsection{Pliage} +\begin{tkzexample}[latex=6cm,small] +\begin{tikzpicture} + \tkzDefPoint(1,5){A} + \tkzDefPoint(5,2){B} \tkzDrawSegment(A,B) + \tkzFindSlopeAngle(A,B)\tkzGetAngle{tkzang} + \tkzDefPointBy[rotation= center A angle \tkzang ](B) + \tkzGetPoint{C} + \tkzDefPointBy[rotation= center A angle -\tkzang ](B) + \tkzGetPoint{D} + \tkzCompass[length=1](A,C) + \tkzCompass[delta=10](B,C) \tkzDrawPoints(A,B,C,D) + \tkzLabelPoints(B,C,D) \tkzLabelPoints[above left](A) + \tkzDrawSegments[style=dashed,color=orange](A,C A,D) +\end{tikzpicture} +\end{tkzexample} + + +\endinput +% \tkzGetAngle +% \tkzNormalizeAngle +% \tkzFindSlopeAngle +% \tkzFindAngle + diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-arcs.tex b/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-arcs.tex new file mode 100644 index 00000000000..91d130cabd5 --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-arcs.tex @@ -0,0 +1,138 @@ +\section{Les arcs} + +\begin{NewMacroBox}{tkzDrawArc}{\oarg{local options}\parg{O,\dots}\parg{\dots} } + +Cette macro trace un arc de centre O. Suivant les options, les arguments diffèrent. Il s'agit de déterminer un point de départ et un point d'arrivée. Soit le point de départ est donné, c'est ce qu'il y a de plus simple, soit on donne le rayon de l'arc. Dans ce dernier cas, il est nécessaire d'avoir deux angles. On peut soit donner directement les angles, soit donner des nodes qui associés au centre permettront de les déterminer. + +\medskip + +\begin{tabular}{lll} +\toprule +options & default & definition \\ +\midrule +\TOline{towards}{towards}{O est le centre et l'arc par de A vers (OB)} +\TOline{rotate} {towards}{l'arc part de A et l'angle détermine sa longueur } +\TOline{R}{towards}{On donne le rayon et deux angles} +\TOline{R with nodes}{towards}{On donne le rayon et deux points} +\TOline{delta}{0}{angle ajouté de chaque côté } +\bottomrule +\end{tabular} + +\medskip +Il faut ajouter bien sûr tous les styles de \TIKZ pour les tracés + +\medskip + +\begin{tabular}{lll} +\toprule +options & arguments & exemple \\ +\midrule +\TOline{towards}{\parg{pt,pt}\parg{pt}}{\tkzcname{tkzDrawArc[delta=10](O,A)(B)}} +\TOline{rotate} {\parg{pt,pt}\parg{an}}{\tkzcname{tkzDrawArc[rotate,color=red](O,A)(90)}} +\TOline{R}{\parg{pt,$r$}\parg{an,an}}{\tkzcname{tkzDrawArc[R,color=blue](O,2 cm)(30,90)}} +\TOline{R with nodes}{\parg{pt,$r$}\parg{pt,pt}}{\tkzcname{tkzDrawArc[R with nodes](O,2 cm)(A,B)}} +\bottomrule +\end{tabular} +\end{NewMacroBox} + +Quelques exemples : + +\subsection{\tkzcname{tkzDrawArc} et \tkzname{towards}} +Il est inutile de mettre \tkzname{towards}. Dans ce premier exemple l'arc part de A et va sur B. L'arc qui va de B vers A est différent. On obtient le saillant en allant dans le sens direct du cercle trigonométrique. +\begin{tkzexample}[latex=6cm,small] +\begin{tikzpicture} + \tkzDefPoint(0,0){O} + \tkzDefPoint(2,-1){A} + \tkzDefPointBy[rotation= center O angle 90](A) + \tkzGetPoint{B} + \tkzDrawArc[color=blue,<->](O,A)(B) + \tkzDrawArc(O,B)(A) + \tkzDrawLines[add = 0 and .5](O,A O,B) + \tkzDrawPoints(O,A,B) + \tkzLabelPoints[below](O,A,B) +\end{tikzpicture} +\end{tkzexample} + + +\subsection{\tkzcname{tkzDrawArc} et \tkzname{towards}} +Dans celui-ci, l'arc part de A mais s'arrête sur la droite (OB). + +\begin{tkzexample}[latex=6cm,small] +\begin{tikzpicture}[scale=1.5] + \tkzDefPoint(0,0){O} + \tkzDefPoint(2,-1){A} + \tkzDefPoint(1,1){B} + \tkzDrawArc[color=blue,->](O,A)(B) + \tkzDrawArc[color=gray](O,B)(A) + \tkzDrawArc(O,B)(A) + \tkzDrawLines[add = 0 and .5](O,A O,B) + \tkzDrawPoints(O,A,B) + \tkzLabelPoints[below](O,A,B) +\end{tikzpicture} +\end{tkzexample} + +\subsection{\tkzcname{tkzDrawArc} et \tkzname{rotate}} +\begin{tkzexample}[latex=5cm,small] +\begin{tikzpicture} + \tkzDefPoint(0,0){O} + \tkzDefPoint(2,-2){A} + \tkzDefPoint(60:2){B} + \tkzDrawLines[add = 0 and .5](O,A O,B) + \tkzDrawArc[rotate,color=red](O,A)(180) + \tkzDrawPoints(O,A,B) + \tkzLabelPoints[below](O,A,B) +\end{tikzpicture} +\end{tkzexample} + + +\subsection{\tkzcname{tkzDrawArc} et \tkzname{R}} +\begin{tkzexample}[latex=5cm,small] +\begin{tikzpicture} + \tkzDefPoints{0/0/O} + \tikzset{compass style/.append style={<->}} + \tkzDrawArc[R,color=orange,double](O,3cm)(270,360) + \tkzDrawArc[R,color=blue,double](O,2cm)(0,270) + \tkzDrawPoint(O) + \tkzLabelPoint[below](O){$O$} +\end{tikzpicture} +\end{tkzexample} + +\subsection{\tkzcname{tkzDrawArc} et \tkzname{R with nodes}} +\begin{tkzexample}[latex=5cm,small] +\begin{tikzpicture} + \tkzDefPoint(0,0){O} + \tkzDefPoint(2,-1){A} + \tkzDefPoint(1,1){B} + \tkzCalcLength(B,A)\tkzGetLength{radius} + \tkzDrawArc[R with nodes](B,\radius pt)(A,O) +\end{tikzpicture} +\end{tkzexample} + +\subsection{\tkzcname{tkzDrawArc} et \tkzname{delta}} +Cette option permet un peu comme \tkzcname{tkzCompass} de placer un arc et de déborder de chaque côté. delta est une mesure en degré. + +\begin{tkzexample}[latex=7cm,small] +\begin{tikzpicture} + \tkzInit + \tkzDefPoint(0,0){A} + \tkzDefPoint(5,0){B} + \tkzDefPointBy[rotation= center A angle 60](B) + \tkzGetPoint{C} + \tkzSetUpLine[color=gray] + \tkzDefPointBy[symmetry= center C](A) + \tkzGetPoint{D} + \tkzDrawSegments(A,B A,D) + \tkzDrawLine(B,D) + \tkzSetUpCompass[color=orange] + \tkzDrawArc[delta=10](A,B)(C) + \tkzDrawArc[delta=10](B,C)(A) + \tkzDrawArc[delta=10](C,D)(D) + \tkzDrawPoints(A,B,C,D) + \tkzLabelPoints(A,B,C,D) + \tkzMarkRightAngle(D,B,A) +\end{tikzpicture} +\end{tkzexample} + + + \endinput + diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-base.tex b/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-base.tex new file mode 100644 index 00000000000..4f10a562930 --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-base.tex @@ -0,0 +1,61 @@ +\section{Summary of tkz-base} + +\subsection{Utility of \tkzname{tkz-base}} + +First of all, you don't have to deal with \TIKZ\ the size of the bounding box. Early versions of \tkzNamePack{tkz-euclide} did not control the size of the bounding box, now the size of the bounding box is limited. + + However, it is sometimes necessary to control the size of what will be displayed. + To do this, you need to have prepared the bounding box you are going to work in, this is the role of \tkzNamePack{tkz-base} and its main macro \tkzNameMacro{tkzInit}. It is recommended to leave the graphic unit equal to 1 cm. For some drawings, it is interesting to fix the extreme values (xmin,xmax,ymin and ymax) and to "clip" the definition rectangle in order to control the size of the figure as well as possible. + +The two macros in \tkzNamePack{tkz-base} that are useful for \tkzNamePack{tkz-euclide} are: +\begin{itemize} + \item \tkzcname{tkzInit} + \item \tkzcname{tkzClip} +\end{itemize} +\vspace{20pt} + +To this, I added macros directly linked to the bounding box. You can now view it, backup it, restore it (see the documentation of \tkzNamePack{tkz-base} section BB) + +\subsection{\tkzcname{tkzInit} et \tkzcname{tkzShowBB}} +The rectangle around the figure shows you the bounding box. +\begin{tkzexample}[latex=8cm,small] +\begin{tikzpicture} + \tkzInit[xmin=-1,xmax=3,ymin=-1, ymax=3] + \tkzGrid + \tkzShowBB[red,line width=2pt] +\end{tikzpicture} +\end{tkzexample} + +\subsection{\tkzcname{tkzClip}} +The role of this macro is to "clip" the initial rectangle so that only the paths contained in this rectangle are drawn. + +\begin{tkzexample}[latex=8cm,small] +\begin{tikzpicture} + \tkzInit[xmax=4, ymax=3] + \tkzAxeXY + \tkzGrid + \tkzClip + \draw[red] (-1,-1)--(5,2); +\end{tikzpicture} +\end{tkzexample} + +It is possible to add a bit of space +\begin{tkzltxexample}[] + \tkzClip[space=1] +\end{tkzltxexample} + +\subsection{\tkzcname{tkzClip} et l'option \tkzname{space}} +This option allows you to add some space around the "clipped" rectangle. +\begin{tkzexample}[latex=8cm,small] +\begin{tikzpicture} + \tkzInit[xmax=4, ymax=3] + \tkzAxeXY + \tkzGrid + \tkzClip[space=1] + \draw[red] (-1,-1)--(5,2); +\end{tikzpicture} +\end{tkzexample} +the dimensions of the "clipped" rectangle are \tkzname{xmin-1}, \tkzname{ymin-1}, \tkzname{xmax+1} et \tkzname{ymax+1}. + + +\endinput
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-circles.tex b/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-circles.tex new file mode 100644 index 00000000000..66bbea6c769 --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-circles.tex @@ -0,0 +1,652 @@ +\section{The Circles} + +Among the following macros, one will allow you to draw a circle, which is not a real feat. To do this, you will need to know the center of the circle and either the radius of the circle or a point on the circumference. It seemed to me that the most frequent use was to draw a circle with a given centre passing through a given point. This will be the default method, otherwise you will have to use the \tkzname{R} option. There are a large number of special circles, for example the circle circumscribed by a triangle. + +\begin{itemize} + \item I have created a first macro \tkzcname{tkzDefCircle} which allows, according to a particular circle, to retrieve its center and the measurement of the radius in cm. This recovery is done with the macros \tkzcname{tkzGetPoint} and \tkzcname{tkzGetLength}, + + \item then a macro \tkzcname{tkzDrawCircle} + + \item then a macro that allows you to color in a disc, but without drawing the circle \tkzcname{tkzFillCircle} + + \item sometimes, it is necessary for a drawing to be contained in a disk this is the role assigned to \tkzcname{tkzClipCircle}, + + + \item It finally remains to be able to give a label to designate a circle and if several possibilities are offered, we will see here \tkzcname{tkzLabelCircle}. +\end{itemize} + + +\subsection{Characteristics of a circle : \tkzcname{tkzDefCircle}} + +This macro allows you to retrieve the characteristics (center and radius) of certain circles. + +\begin{NewMacroBox}{tkzDefCircle}{\oarg{local options}\parg{A,B} ou \parg{A,B,C}} +\tkzHandBomb\ Attention the arguments are lists of two or three points. This macro is either used in partnership with \tkzcname{tkzGetPoint} and/or \tkzcname{tkzGetLength} to obtain the center and the radius of the circle, or by using \tkzname{tkzPointResult} and \tkzname{tkzLengthResult} if it is not necessary to keep the results. + +\medskip +\begin{tabular}{lll} +\toprule +arguments & exemple & explication \\ +\midrule +\TAline{\parg{pt1,pt2} or \parg{pt1,pt2,pt3}}{\parg{A,B}} {$[AB]$ is radius $A$ is the center} +\bottomrule +\end{tabular} + +\medskip +\begin{tabular}{lll} +\toprule +options & derror & definition \\ +\midrule +\TOline{through} {through}{circle characterized by two points defining a radius} +\TOline{diameter} {through}{circle characterized by two points defining a diameter} +\TOline{circum} {through}{circle circumscribed of a triangle} +\TOline{in} {through}{incircle a triangle} +\TOline{ex} {through}{excircle of a triangle} +\TOline{euler or nine}{through}{Euler's Circle} +\TOline{spieker} {through}{Spieker Circle} +\TOline{apollonius} {through}{circle of Apollonius} +\TOline{orthogonal} {through}{circle of given centre orthogonal to another circle} +\TOline{orthogonal through}{through}{circle orthogonal circle passing through 2 points} +\TOline{K} {1}{coefficient used for a circle of Apollonius} + \bottomrule +\end{tabular} + +{In the following examples, I draw the circles with a macro not yet presented, but this is not necessary. In some cases you may only need the center or the radius.} +\end{NewMacroBox} + + \subsubsection{Example with a random point and the option \tkzimp{through}} + +\begin{tkzexample}[latex=7 cm,small] + \begin{tikzpicture}[scale=1] + \tkzDefPoint(0,4){A} + \tkzDefPoint(2,2){B} + \tkzDefMidPoint(A,B) \tkzGetPoint{I} + \tkzDefRandPointOn[segment = I--B] + \tkzGetPoint{C} + \tkzDefCircle[through](A,C) + \tkzGetLength{rACpt} + \tkzpttocm(\rACpt){rACcm} + \tkzDrawCircle(A,C) + \tkzDrawPoints(A,B,C) + \tkzLabelPoints(A,B,C) + \tkzLabelCircle[draw,fill=orange, + text width=3cm,text centered, + font=\scriptsize](A,C)(-90)% + {La mesure du rayon est : + \rACpt pt soit \rACcm cm} + \end{tikzpicture} + \end{tkzexample} + + \subsubsection{Example with the option \tkzimp{diameter}} + It is simpler here to search directly for the middle of AB + \begin{tkzexample}[latex=7cm,small] + \begin{tikzpicture}[scale=1] + \tkzDefPoint(0,0){A} + \tkzDefPoint(2,2){B} + \tkzDefCircle[diameter](A,B) + \tkzGetPoint{O} + \tkzDrawCircle[blue,fill=blue!20](O,B) + \tkzDrawSegment(A,B) + \tkzDrawPoints(A,B,O) + \tkzLabelPoints(A,B,O) + \end{tikzpicture} + \end{tkzexample} + + \subsubsection{Circles inscribed and circumscribed for a given triangle} + You can also obtain the center of the inscribed circle and its projection on one side of the triangle with \tkzcname{tkzGetFirstPoint{I}} et \tkzcname{tkzGetSecondPoint{Ib}}. + + +\begin{tkzexample}[latex=7cm,small] +\begin{tikzpicture}[scale=1] + \tkzDefPoint(2,2){A} + \tkzDefPoint(5,-2){B} + \tkzDefPoint(1,-2){C} + \tkzDefCircle[in](A,B,C) + \tkzGetPoint{I} \tkzGetLength{rIN} + \tkzDefCircle[circum](A,B,C) + \tkzGetPoint{K} \tkzGetLength{rCI} + \tkzDrawPoints(A,B,C,I,K) + \tkzDrawCircle[R,blue](I,\rIN pt) + \tkzDrawCircle[R,red](K,\rCI pt) + \tkzLabelPoints[below](B,C) + \tkzLabelPoints[above left](A,I,K) + \tkzDrawPolygon(A,B,C) +\end{tikzpicture} +\end{tkzexample} + + \subsubsection{Example with the option \tkzimp{ex}} +We want to define an excircle of a triangle relativement au point C + +\begin{tkzexample}[latex=8cm,small] +\begin{tikzpicture}[scale=.75] + \tkzDefPoints{ 0/0/A,4/0/B,0.8/4/C} + \tkzDefCircle[ex](B,C,A) + \tkzGetPoint{Jc} \tkzGetLength{rc} + \tkzDefPointBy[projection=onto A--C ](Jc) + \tkzGetPoint{Xc} + \tkzDefPointBy[projection=onto A--B ](Jc) + \tkzGetPoint{Yc} + \tkzGetPoint{I} + \tkzDrawPolygon[color=blue](A,B,C) + \tkzDrawCircle[R,color=lightgray](Jc,\rc pt) + % possible \tkzDrawCircle[ex](A,B,C) + \tkzDrawCircle[in,color=red](A,B,C) \tkzGetPoint{I} + \tkzDefPointBy[projection=onto A--C ](I) + \tkzGetPoint{F} + \tkzDefPointBy[projection=onto A--B ](I) + \tkzGetPoint{D} + \tkzDrawLines[add=0 and 2.2,dashed](C,A C,B) + \tkzDrawSegments[dashed](Jc,Xc I,D I,F Jc,Yc) + \tkzMarkRightAngles(A,F,I B,D,I Jc,Xc,A Jc,Yc,B) + \tkzDrawPoints(B,C,A,I,D,F,Xc,Jc,Yc) + \tkzLabelPoints(B,A,Jc,I,D,Xc,Yc) + \tkzLabelPoints[above left](C) + \tkzLabelPoints[left](F) +\end{tikzpicture} +\end{tkzexample} + + \subsubsection{Euler's circle for a given triangle} + +We verify that this circle passes through the middle of each side. +\begin{tkzexample}[latex=8cm,small] +\begin{tikzpicture}[scale=.75] + \tkzDefPoint(5,3.5){A} + \tkzDefPoint(0,0){B} \tkzDefPoint(7,0){C} + \tkzDefCircle[euler](A,B,C) + \tkzGetPoint{E} \tkzGetLength{rEuler} + \tkzDefSpcTriangle[medial](A,B,C){Ma,Mb,Mc} + \tkzDrawPoints(A,B,C,E,Ma,Mb,Mc) + \tkzDrawCircle[R,blue](E,\rEuler pt) + \tkzDrawPolygon(A,B,C) + \tkzLabelPoints[below](B,C) + \tkzLabelPoints[left](A,E) +\end{tikzpicture} +\end{tkzexample} + + \subsubsection{Coloured Apollonius circles for a given segment} + +\begin{tkzexample}[latex=9cm,small] +\begin{tikzpicture}[scale=0.75] + \tkzDefPoint(0,0){A} + \tkzDefPoint(4,0){B} + \tkzDefCircle[apollonius,K=2](A,B) + \tkzGetPoint{K1} + \tkzGetLength{rAp} + \tkzDrawCircle[R,color = blue!50!black, + fill=blue!20,opacity=.4](K1,\rAp pt) + \tkzDefCircle[apollonius,K=3](A,B) + \tkzGetPoint{K2} \tkzGetLength{rAp} + \tkzDrawCircle[R,color=red!50!black, + fill=red!20,opacity=.4](K2,\rAp pt) + \tkzLabelPoints[below](A,B,K1,K2) + \tkzDrawPoints(A,B,K1,K2) + \tkzDrawLine[add=.2 and 1](A,B) +\end{tikzpicture} +\end{tkzexample} + + \subsubsection{Circles exinscribed to a given triangle} + You can also get the center and the projection of it on one side of the triangle. + + with \tkzcname{tkzGetFirstPoint\{Jb\}} and \tkzcname{tkzGetSecondPoint\{Tb\}}. + +\begin{tkzexample}[latex=8cm,small] +\begin{tikzpicture}[scale=.6] + \tkzDefPoint(0,0){A} + \tkzDefPoint(3,0){B} + \tkzDefPoint(1,2.5){C} + \tkzDefCircle[ex](A,B,C) \tkzGetPoint{I} + \tkzGetLength{rI} + \tkzDefCircle[ex](C,A,B) \tkzGetPoint{J} + \tkzGetLength{rJ} + \tkzDefCircle[ex](B,C,A) \tkzGetPoint{K} + \tkzGetLength{rK} + \tkzDefCircle[in](B,C,A) \tkzGetPoint{O} + \tkzGetLength{rO} + \tkzDrawLines[add=1.5 and 1.5](A,B A,C B,C) + \tkzDrawPoints(I,J,K) + \tkzDrawPolygon(A,B,C) + \tkzDrawPolygon[dashed](I,J,K) + \tkzDrawCircle[R,blue!50!black](O,\rO) + \tkzDrawSegments[dashed](A,K B,J C,I) + \tkzDrawPoints(A,B,C) + \tkzDrawCircles[R](J,{\rJ} I,{\rI} K,{\rK}) + \tkzLabelPoints(A,B,C,I,J,K) +\end{tikzpicture} +\end{tkzexample} + + \subsubsection{Spieker circle} +The incircle of the medial triangle $M_AM_BM_C$ is the Spieker circle + +\begin{tkzexample}[latex=8cm, small] +\begin{tikzpicture}[scale=1] + \tkzDefPoints{ 0/0/A,4/0/B,0.8/4/C} + \tkzDefSpcTriangle[medial](A,B,C){Ma,Mb,Mc} + \tkzDefTriangleCenter[spieker](A,B,C) + \tkzGetPoint{Sp} + \tkzDrawPolygon[blue](A,B,C) + \tkzDrawPolygon[red](Ma,Mb,Mc) + \tkzDrawPoints[blue](B,C,A) + \tkzDrawPoints[red](Ma,Mb,Mc,Sp) + \tkzDrawCircle[in,red](Ma,Mb,Mc) + \tkzAutoLabelPoints[center=Sp,dist=.3](Ma,Mb,Mc) + \tkzLabelPoints[blue,right](Sp) + \tkzAutoLabelPoints[center=Sp](A,B,C) +\end{tikzpicture} +\end{tkzexample} + + + \subsubsection{Orthogonal circle passing through two given points} + +\begin{tkzexample}[latex=8cm,small] +\begin{tikzpicture}[scale=1] + \tkzDefPoint(0,0){O} + \tkzDefPoint(1,0){A} + \tkzDrawCircle(O,A) + \tkzDefPoint(-1.5,-1.5){z1} + \tkzDefPoint(1.5,-1.25){z2} + \tkzDefCircle[orthogonal through=z1 and z2](O,A) + \tkzGetPoint{c} + \tkzDrawCircle[thick,color=red](tkzPointResult,z1) + \tkzDrawPoints[fill=red,color=black, + size=4](O,A,z1,z2,c) + \tkzLabelPoints(O,A,z1,z2,c) +\end{tikzpicture} +\end{tkzexample} + +\subsubsection{Orthogonal circle of given center} + +\begin{tkzexample}[latex=7cm,small] +\begin{tikzpicture}[scale=.75] + \tkzDefPoints{0/0/O,1/0/A} + \tkzDefPoints{1.5/1.25/B,-2/-3/C} + \tkzDefCircle[orthogonal from=B](O,A) + \tkzGetPoints{z1}{z2} + \tkzDefCircle[orthogonal from=C](O,A) + \tkzGetPoints{t1}{t2} + \tkzDrawCircle(O,A) + \tkzDrawCircle[thick,color=red](B,z1) + \tkzDrawCircle[thick,color=red](C,t1) + \tkzDrawPoints(t1,t2,C) + \tkzDrawPoints(z1,z2,O,A,B) + \tkzLabelPoints(O,A,B,C) +\end{tikzpicture} +\end{tkzexample} + + +%<----------------------------------------------------------------------------> +% Tangente +%<----------------------------------------------------------------------------> +\subsection{Tangent to a circle} +Two constructions are proposed. The first one is the construction of a tangent to a circle at a given point of this circle and the second one is the construction of a tangent to a circle passing through a given point outside a disc. + +\begin{NewMacroBox}{tkzDefTangent}{\oarg{local options}\parg{pt1,pt2} ou \parg{pt1,dim}} +The parameter in brackets is the center of the circle or the center of the circle and a point on the circle or the center and the radius. + +\medskip +\begin{tabular}{lll} +\toprule +arguments & exemple & explication \\ +\midrule +\TAline{\parg{pt1,pt2 or \parg{pt1,dim}} }{\parg{A,B} or \parg{A,2cm}} {$[AB]$ is radius $A$ is the center} +\bottomrule +\end{tabular} + +\medskip +\begin{tabular}{lll} +\toprule +options & default & definition \\ +\midrule +\TOline{at=pt}{at}{tangent to a point on the circle} +\TOline{from=pt} {at}{tangent to a circle passing through a point} +\TOline{from with R=pt} {at}{idem, but the circle is defined by center = radius} +\bottomrule +\end{tabular} + +The tangent is not drawn. A second point of the tangent is given by \tkzname{tkzPointResult}. +\end{NewMacroBox} + + \subsubsection{Example of a tangent passing through a point on the circle } +\begin{tkzexample}[latex=7cm,small] +\begin{tikzpicture}[scale=.5] + \tkzDefPoint(0,0){O} + \tkzDefPoint(6,6){E} + \tkzDefRandPointOn[circle=center O radius 4cm] + \tkzGetPoint{A} + \tkzDrawSegment(O,A) + \tkzDrawCircle(O,A) + \tkzDefTangent[at=A](O) + \tkzGetPoint{h} + \tkzDrawLine[add = 4 and 3](A,h) + \tkzMarkRightAngle[fill=red!30](O,A,h) +\end{tikzpicture} +\end{tkzexample} + + \subsubsection{Example of tangents passing through an external point } + +\begin{tkzexample}[latex=6cm,small] +\begin{tikzpicture}[scale=0.75] + \tkzDefPoint(3,3){c} + \tkzDefPoint(6,3){a0} + \tkzRadius=1 cm + \tkzDrawCircle[R](c,\tkzRadius) + \foreach \an in {0,10,...,350}{ + \tkzDefPointBy[rotation=center c angle \an](a0) + \tkzGetPoint{a} + \tkzDefTangent[from with R = a](c,\tkzRadius) + \tkzGetPoints{e}{f} + \tkzDrawLines[color=magenta](a,f a,e) + \tkzDrawSegments(c,e c,f) + }% +\end{tikzpicture} +\end{tkzexample} + + \subsubsection{Example of Andrew Mertz } + +\begin{tkzexample}[latex=6cm,small] + \begin{tikzpicture}[scale=.5] + \tkzDefPoint(100:8){A}\tkzDefPoint(50:8){B} + \tkzDefPoint(0,0){C} \tkzDefPoint(0,4){R} + \tkzDrawCircle(C,R) + \tkzDefTangent[from = A](C,R) \tkzGetPoints{D}{E} + \tkzDefTangent[from = B](C,R) \tkzGetPoints{F}{G} + \tkzDrawSector[fill=blue!80!black,opacity=0.5](A,D)(E) + \tkzFillSector[color=red!80!black,opacity=0.5](B,F)(G) + \tkzInterCC(A,D)(B,F) \tkzGetSecondPoint{I} + \tkzDrawPoint[color=black](I) + \end{tikzpicture} +\end{tkzexample} +\url{http://www.texample.net/tikz/examples/} + +\section{Draw, Label The Circles} + +Among the following macros, one will allow you to draw a circle, which is not a real feat. To do this, you will need to know the center of the circle and either the radius of the circle or a point on the circumference. It seemed to me that the most frequent use was to draw a circle with a given centre passing through a given point. This will be the default method, otherwise you will have to use the \tkzname{R} option. + +\begin{itemize} + \item I created a first macro \tkzcname{tkzDrawCircle}, + + \item then a macro that allows you to color a disc, but without drawing the circle. \tkzcname{tkzFillCircle}, + + \item sometimes, it is necessary for a drawing to be contained in a disc is the role assigned to \tkzcname{tkzClipCircle}, + + + \item It finally remains to be able to give a label to designate a circle and if several possibilities are offered, we will see here \tkzcname{tkzLabelCircle}. +\end{itemize} + +\subsection{Draw a circle} +\begin{NewMacroBox}{tkzDrawCircle}{\oarg{local options}\parg{A,B}} +\tkzHandBomb\ Attention the arguments are lists of two points. The circles that can be drawn are the same as in the previous macro. An additional option \tkzname{R} to give directly a measure. + +\medskip +\begin{tabular}{lll} +\toprule +arguments & exemple & explication \\ +\midrule +\TAline{\parg{pt1,pt2 pt3,pt4 ...}}{\parg{A,B C,D}} {List of two points} +\bottomrule +\end{tabular} + +\medskip +\begin{tabular}{lll} +\toprule +options & default & definition \\ +\midrule +\TOline{through}{through}{circle with two points defining a radius} +\TOline{diameter}{through}{circle with two points defining a diameter} +\TOline{R} {through}{circle characterized by a point and the measurement of a radius} + \bottomrule +\end{tabular} + +\medskip +Of course, you have to add all the styles of \TIKZ for the tracings... +\end{NewMacroBox} + + \subsubsection{Circles and styles, draw a circle and color the disc} + We'll see that it's possible to colour in a disc while tracing the circle. + +\begin{tkzexample}[latex=7cm,small] +\begin{tikzpicture} + \tkzDefPoint(0,0){O} + \tkzDefPoint(3,0){A} + % cercle de centre O et passant par A + \tkzDrawCircle[color=blue,style=dashed](O,A) + % cercle de diamètre $[OA]$ + \tkzDrawCircle[diameter,color=red,% + line width=2pt,fill=red!40,% + opacity=.5](O,A) + % cercle de centre O et de rayon = exp(1) cm + \edef\rayon{\fpeval{exp(1)}} + \tkzDrawCircle[R,color=orange](O,\rayon cm) +\end{tikzpicture} +\end{tkzexample} + +\subsection{Drawing circles} +\begin{NewMacroBox}{tkzDrawCircles}{\oarg{local options}\parg{A,B C,D}} +\tkzHandBomb\ Attention, the arguments are lists of two points. The circles that can be drawn are the same as in the previous macro. An additional option \tkzname{R} to give directly a measure. + +\medskip +\begin{tabular}{lll} +\toprule +arguments & exemple & explication \\ +\midrule +\TAline{\parg{pt1,pt2 pt3,pt4 ...}}{\parg{A,B C,D}} {List of two points} +\bottomrule +\end{tabular} + +\medskip +\begin{tabular}{lll} +\toprule +options & default & definition \\ +\midrule +\TOline{through}{through}{circle with two points defining a radius} +\TOline{diameter}{through}{circle with two points defining a diameter} +\TOline{R} {through}{circle characterized by a point and the measurement of a radius} + \bottomrule +\end{tabular} + +\medskip +Of course, you have to add all the styles of \TIKZ for the tracings... +\end{NewMacroBox} + + \subsubsection{Circles defined by a triangle.} + +\begin{tkzexample}[latex=9cm,small] +\begin{tikzpicture} + \tkzDefPoint(0,0){A} + \tkzDefPoint(2,0){B} + \tkzDefPoint(3,2){C} + \tkzDrawPolygon(A,B,C) + \tkzDrawCircles(A,B B,C C,A) + \tkzDrawPoints(A,B,C) + \tkzLabelPoints(A,B,C) +\end{tikzpicture} +\end{tkzexample} + + \subsubsection{Concentric circles.} + +\begin{tkzexample}[latex=7cm,small] +\begin{tikzpicture} + \tkzDefPoint(0,0){A} + \tkzDrawCircles[R](A,1cm A,2cm A,3cm) + \tkzDrawPoint(A) + \tkzLabelPoints(A) +\end{tikzpicture} +\end{tkzexample} + + \subsubsection{Exinscribed circles.} + +\begin{tkzexample}[latex=7cm,small] +\begin{tikzpicture}[scale=1] +\tkzDefPoints{0/0/A,4/0/B,1/2.5/C} +\tkzDrawPolygon(A,B,C) +\tkzDefCircle[ex](B,C,A) +\tkzGetPoint{Jc} \tkzGetSecondPoint{Tc} +\tkzGetLength{rJc} +\tkzDrawCircle[R](Jc,{\rJc pt}) +\tkzDrawLines[add=0 and 1](C,A C,B) +\tkzDrawSegment(Jc,Tc) +\tkzMarkRightAngle(Jc,Tc,B) +\tkzDrawPoints(A,B,C,Jc,Tc) +\end{tikzpicture} +\end{tkzexample} + + \subsubsection{Cardioid} + Based on an idea by O. Reboux made with pst-eucl (Pstricks module) by D. Rodriguez. + + Its name comes from the Greek kardia (heart), in reference to its shape, and was given to it by Johan Castillon. Wikipedia + + \begin{tkzexample}[latex=7cm,small] + \begin{tikzpicture}[scale=.5] + \tkzDefPoint(0,0){O} + \tkzDefPoint(2,0){A} + \foreach \ang in {5,10,...,360}{% + \tkzDefPoint(\ang:2){M} + \tkzDrawCircle(M,A) + } + \end{tikzpicture} + \end{tkzexample} + +\subsection{Draw a semicircle} +\begin{NewMacroBox}{tkzDrawSemiCircle}{\oarg{local options}\parg{A,B} ou \parg{A,B,C}} +\tkzHandBomb\ Attention the arguments are lists of two or three points. This macro is either used in partnership with \tkzcname{tkzGetPoint} and/or \tkzcname{tkzGetLength} to obtain the center and the radius of the circle, or by using \\ \tkzname{tkzPointResult} and \tkzname{tkzLengthResult} if it is not necessary to keep the results. + + +\medskip +\begin{tabular}{lll} +\toprule +options & default & definition \\ +\midrule +\TOline{through} {through}{circle characterized by two points defining a radius} +\TOline{diameter} {through}{circle characterized by two points defining a diameter} + \bottomrule +\end{tabular} + + +\end{NewMacroBox} + + +\subsection{Colouring a disc} +This was possible with the previous macro, but disk tracing was mandatory, this is no longer the case. + +\begin{NewMacroBox}{tkzFillCircle}{\oarg{local options}\parg{A,B}} +\begin{tabular}{lll} +options & default & definition \\ +\midrule +\TOline{radius} {radius}{two points define a radius} +\TOline{R} {radius}{a point and the measurement of a radius } +\bottomrule +\end{tabular} + +\medskip +You don't need to put \tkzname{radius} because that's the default option. Of course, you have to add all the styles of \TIKZ for the plots. +\end{NewMacroBox} + + \subsubsection{Example from a sangaku} + +\begin{tkzexample}[latex=7cm,small] +\begin{tikzpicture} + \tkzInit[xmin=0,xmax = 6,ymin=0,ymax=6] + \tkzDefPoint(0,0){B} \tkzDefPoint(6,0){C}% + \tkzDefSquare(B,C) \tkzGetPoints{D}{A} + \tkzClipPolygon(B,C,D,A) + \tkzDefMidPoint(A,D) \tkzGetPoint{F} + \tkzDefMidPoint(B,C) \tkzGetPoint{E} + \tkzDefMidPoint(B,D) \tkzGetPoint{Q} + \tkzDefTangent[from = B](F,A) \tkzGetPoints{G}{H} + \tkzInterLL(F,G)(C,D) \tkzGetPoint{J} + \tkzInterLL(A,J)(F,E) \tkzGetPoint{K} + \tkzDefPointBy[projection=onto B--A](K) + \tkzGetPoint{M} + \tkzFillPolygon[color = green](A,B,C,D) + \tkzFillCircle[color = orange](B,A) + \tkzFillCircle[color = blue!50!black](M,A) + \tkzFillCircle[color = purple](E,B) + \tkzFillCircle[color = yellow](K,Q) +\end{tikzpicture} +\end{tkzexample} + + + +\newpage +\subsection{Clipping a disc} + +\begin{NewMacroBox}{tkzClipCircle}{\oarg{local options}\parg{A,B} or \parg{A,r}} + + +\medskip +\begin{tabular}{lll} +\toprule +arguments & exemple & explication \\ +\midrule +\TAline{\parg{A,B} or \parg{A,r}}{\parg{A,B} or \parg{A,2cm}} {AB radius or diameter } +\bottomrule +\end{tabular} + +\medskip +\begin{tabular}{lll} +options & default & definition \\ +\midrule +\TOline{radius} {radius}{circle characterized by two points defining a radius} +\TOline{R} {radius}{circle characterized by a point and the measurement of a radius } +\bottomrule +\end{tabular} + +\medskip +It is not necessary to put \tkzname{radius} because that is the default option. +\end{NewMacroBox} + + \subsubsection{Example} +\begin{tkzexample}[latex=6cm,small] + \begin{tikzpicture} + \tkzInit[xmax=5,ymax=5] + \tkzGrid \tkzClip + \tkzDefPoint(0,0){A} + \tkzDefPoint(2,2){O} + \tkzDefPoint(4,4){B} + \tkzDefPoint(6,6){C} + \tkzDrawPoints(O,A,B,C) + \tkzLabelPoints(O,A,B,C) + \tkzDrawCircle(O,A) + \tkzClipCircle(O,A) + \tkzDrawLine(A,C) + \tkzDrawCircle[fill=red!20,opacity=.5](C,O) +\end{tikzpicture} +\end{tkzexample} + + +\subsection{Giving a label to a circle} +\begin{NewMacroBox}{tkzLabelCircle}{\oarg{local options}\parg{A,B}\parg{angle}\marg{label}} +\begin{tabular}{lll} +\toprule + +options & default & definition \\ +\midrule +\TOline{radius} {radius}{circle characterized by two points defining a radius} +\TOline{R} {radius}{circle characterized by a point and the measurement of a radius } +\bottomrule +\end{tabular} + +\medskip +You don't need to put \tkzname{radius} because that's the default option. We can use the styles from \TIKZ. The label is created and therefore "passed" between braces. +\end{NewMacroBox} + +\subsubsection{Example} +\begin{tkzexample}[latex=5cm,small] +\begin{tikzpicture} + \tkzDefPoint(0,0){O} \tkzDefPoint(2,0){N} + \tkzDefPointBy[rotation=center O angle 50](N) + \tkzGetPoint{M} + \tkzDefPointBy[rotation=center O angle -20](N) + \tkzGetPoint{P} + \tkzDefPointBy[rotation=center O angle 125](N) + \tkzGetPoint{P'} + \tkzLabelCircle[above=4pt](O,N)(120){$\mathcal{C}$} + \tkzDrawCircle(O,M) + \tkzFillCircle[color=blue!20,opacity=.4](O,M) + \tkzLabelCircle[R,draw,fill=orange,% + text width=2cm,text centered](O,3 cm)(-60)% + {Le cercle\\ $\mathcal{C}$} + \tkzDrawPoints(M,P)\tkzLabelPoints[right](M,P) +\end{tikzpicture} +\end{tkzexample} + +\endinput diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-compass.tex b/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-compass.tex new file mode 100644 index 00000000000..0521c587228 --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-compass.tex @@ -0,0 +1,113 @@ +\section{Utilisation du compas} + +\subsection{Macro principale \tkzcname{tkzCompass}} +\begin{NewMacroBox}{tkzCompass}{\oarg{local options}\parg{A,B}} +Cette macro permet de laisser une trace de compas autrement dit un arc en un point désigné. Il faut indiquer le centre. Plusieurs options spécifiques vont modifier l'aspect de l'arc ainsi que les options de TikZ comme le style, la couleur, l'épaisseur du trait etc. + +\medskip +\begin{tabular}{lll} +\toprule +options & default & definition \\ +\midrule +\TOline{delta} {0}{Modifie l'angle de l'arc en l'augmentant symétriquement} +\TOline{length}{1}{Modifie la longueur} +\bottomrule +\end{tabular} +\end{NewMacroBox} + +\subsubsection{Option \tkzname{length}} +\begin{tkzexample}[latex=7cm,small] +\begin{tikzpicture} + \tkzDefPoint(1,1){A} + \tkzDefPoint(6,1){B} + \tkzInterCC[R](A,4cm)(B,3cm) + \tkzGetPoints{C}{D} + \tkzDrawPoint(C) + \tkzCompass[color=red,length=1.5](A,C) + \tkzCompass[color=red](B,C) + \tkzDrawSegments(A,B A,C B,C) +\end{tikzpicture} +\end{tkzexample} + +\subsubsection{Option \tkzname{delta}} +\begin{tkzexample}[latex=7cm,small] +\begin{tikzpicture} + \tkzDefPoint(0,0){A} + \tkzDefPoint(5,0){B} + \tkzInterCC[R](A,4cm)(B,3cm) + \tkzGetPoints{C}{D} + \tkzDrawPoints(A,B,C) + \tkzCompass[color=red,delta=20](A,C) + \tkzCompass[color=red,delta=20](B,C) + \tkzDrawPolygon(A,B,C) + \tkzMarkAngle(A,C,B) +\end{tikzpicture} +\end{tkzexample} + +\subsection{Multiples constructions \tkzcname{tkzCompasss}} +\begin{NewMacroBox}{tkzCompasss}{\oarg{local options}\parg{pt1,pt2 pt3,pt4,...}} +\tkzHandBomb\ Attention les arguments sont des listes de deux points. Cela permet d'économiser quelques lignes de codes. +\begin{tabular}{lll} +\toprule +options & default & definition \\ +\midrule +\TOline{delta} {0}{Modifie l'angle de l'arc en l'augmentant symétriquement} +\TOline{length}{1}{Modifie la longueur} +\end{tabular} +\end{NewMacroBox} + +\begin{tkzexample}[latex=7cm,small] +\begin{tikzpicture}[scale=.75] + \tkzDefPoint(2,2){A} \tkzDefPoint(5,-2){B} + \tkzDefPoint(3,4){C} \tkzDrawPoints(A,B) + \tkzDrawPoint[color=red,shape=cross out](C) + \tkzCompasss[color=orange](A,B A,C B,C C,B) + \tkzShowLine[mediator,color=red, + dashed,length = 2](A,B) + \tkzShowLine[parallel = through C, + color=blue,length=2](A,B) + \tkzDefLine[mediator](A,B) \tkzGetPoints{i}{j} + \tkzDefLine[parallel=through C](A,B) \tkzGetPoint{D} + \tkzDrawLines[add=.6 and .6](C,D A,C B,D) + \tkzDrawLines(i,j) \tkzDrawPoints(A,B,C,i,j,D) + \tkzLabelPoints(A,B,C,i,j,D) +\end{tikzpicture} +\end{tkzexample} + + +\subsection{Macro de configuration \tkzcname{tkzSetUpCompass}} + +\begin{NewMacroBox}{tkzSetUpCompass}{\oarg{local options}} +\begin{tabular}{lll} +options & default & definition \\ +\midrule +\TOline{line width} {0.4pt}{épaisseur du trait} +\TOline{color} {black!50}{couleur du trait} +\TOline{style} {solid}{style du trait solid, dashed,dotted,...} +\end{tabular} +\end{NewMacroBox} + +\begin{tkzltxexample}[] + \tkzSetUpCompass[color=blue,line width=.3 pt] +\end{tkzltxexample} + +\begin{tkzexample}[latex=7cm,small] +\begin{tikzpicture}[scale=.75, + showbi/.style={bisector,size=2,gap=3}] + \tkzSetUpCompass[color=blue,line width=.3 pt] + \tkzDefPoints{0/1/A, 8/3/B, 3/6/C} + \tkzDrawPolygon(A,B,C) + \tkzDefLine[bisector](B,A,C) \tkzGetPoint{a} + \tkzDefLine[bisector](C,B,A) \tkzGetPoint{b} + \tkzShowLine[showbi](B,A,C) + \tkzShowLine[showbi](C,B,A) + \tkzInterLL(A,a)(B,b) \tkzGetPoint{I} + \tkzDefPointBy[projection= onto A--B](I) + \tkzGetPoint{H} + \tkzDrawCircle[radius,color=gray](I,H) + \tkzDrawSegments[color=gray!50](I,H) + \tkzDrawLines[add=0 and -.2,color=blue!50 ](A,a B,b) + \tkzShowBB +\end{tikzpicture} +\end{tkzexample} +\endinput
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-config.tex b/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-config.tex new file mode 100644 index 00000000000..7c5c13b33c9 --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-config.tex @@ -0,0 +1,204 @@ +\section{Customization} + +\subsection{\tkzcname{tkzSetUpLine}} \label{tkzsetupline} +It is a macro that allows you to define the style of all the lines. +It is a macro that allows you to define the style of all the lines. + +\begin{NewMacroBox}{tkzSetUpLine}{\oarg{local options}} +\begin{tabular}{lll} +options & default & definition \\ +\midrule +\TOline{color}{black}{colour of the construction arcs} +\TOline{line width}{0.4pt}{thickness of the construction arcs} +\TOline{style}{solid}{style des arcs de cercle de construction} +\TOline{add}{.2 and .2}{changing the length of a segment} +\end{tabular} +\end{NewMacroBox} + +\subsubsection{Example 1 change line width} +\begin{tkzexample}[latex=8cm,small] +\begin{tikzpicture} +\begin{scope}[rotate=-90] + \tkzDefPoint(10,6){C} + \tkzDefPoint( 0,6){A} + \tkzDefPoint(10,0){B} + \tkzDefPointBy[projection = onto B--A](C) + \tkzGetPoint{H} + \tkzDrawPolygon(A,B,C) + \tkzMarkRightAngle[size=.4,fill=blue!20](B,C,A) + \tkzMarkRightAngle[size=.4,fill=red!20](B,H,C) + \tkzDrawSegment[color=red](C,H) +\end{scope} + \tkzSetUpLine[color=blue,line width=1pt] + \tkzLabelSegment[below](C,B){$a$} + \tkzLabelSegment[right](A,C){$b$} + \tkzLabelSegment[left](A,B){$c$} + \tkzLabelSegment[color=red](C,H){$h$} + \tkzDrawPoints(A,B,C) + \tkzLabelPoints[above left](H) + \tkzLabelPoints(B,C) + \tkzLabelPoints[above](A) +\end{tikzpicture} +\end{tkzexample} + + + + +\subsubsection{Example 2 change style of line} + +\begin{tkzexample}[latex=7cm,small] +\begin{tikzpicture}[scale=.6] + \tkzDefPoint(1,0){A} \tkzDefPoint(4,0){B} + \tkzDefPoint(1,1){C} \tkzDefPoint(5,1){D} + \tkzDefPoint(1,2){E} \tkzDefPoint(6,2){F} + \tkzDefPoint(0,4){A'}\tkzDefPoint(3,4){B'} + \tkzDrawSegments(A,B C,D E,F) + \tkzDrawLine(A',B') + \tkzSetUpLine[style=dashed,color=gray] + \tkzCompass(A',B') + \tkzCalcLength[cm](C,D) \tkzGetLength{rCD} + \tkzDrawCircle[R](A',\rCD cm) + \tkzCalcLength[cm](E,F) \tkzGetLength{rEF} + \tkzDrawCircle[R](B',\rEF cm) + \tkzInterCC[R](A',\rCD cm)(B',\rEF cm) + \tkzGetPoints{I}{J} + \tkzSetUpLine[color=red] \tkzDrawLine(A',B') + \tkzDrawSegments(A',I B',I) + \tkzDrawPoints(A,B,C,D,E,F,A',B',I,J) + \tkzLabelPoints(A,B,C,D,E,F,A',B',I,J) +\end{tikzpicture} +\end{tkzexample} + + +\subsubsection{Example 3 extend lines} +\begin{tkzexample}[latex=7cm,small] + \begin{tikzpicture} + \tkzSetUpLine[add=.5 and .5] + \tkzDefPoints{0/0/A,4/0/B,1/3/C} + \tkzDrawLines(A,B B,C A,C) + \end{tikzpicture} +\end{tkzexample} + + +\subsection{\tkzcname{tkzSetUpPoint}} + + + \begin{NewMacroBox}{tkzSetUpCompass}{\oarg{local options}} + \begin{tabular}{lll} + options & default & definition \\ + \midrule + \TOline{color}{black}{ point color} + \TOline{size}{3pt}{point size} + \TOline{fill}{black!50}{Inside point color} + \TOline{shape}{circle}{point shape circle or cross} + \end{tabular} + \end{NewMacroBox} + +\subsubsection{use of\tkzcname{tkzSetUpPoint}} +\begin{tkzexample}[latex=8cm,small] +\begin{tikzpicture} + \tkzSetUpPoint[shape = cross out,color=blue] + \tkzInit[xmax=100,xstep=20,ymax=.5] + \tkzDefPoint(20,1){A} + \tkzDefPoint(80,0){B} + \tkzDrawLine(A,B) + \tkzDrawPoints(A,B) +\end{tikzpicture} +\end{tkzexample} + +\subsubsection{use of\tkzcname{tkzSetUpPoint} inside a group} +\begin{tkzexample}[latex=8cm,small] + \begin{tikzpicture} + \tkzInit[ymin=-0.5,ymax=3,xmin=-0.5,xmax=7] + \tkzDefPoint(0,0){A} + \tkzDefPoint(02.25,04.25){B} + \tkzDefPoint(4,0){C} + \tkzDefPoint(3,2){D} + \tkzDrawSegments(A,B A,C A,D) + {\tkzSetUpPoint[shape=cross out, + fill= teal!50, + size=4,color=teal] + \tkzDrawPoints(A,B)} + \tkzSetUpPoint[fill= teal!50,size=4, + color=teal] + \tkzDrawPoints(C,D) + \tkzLabelPoints(A,B,C,D) + \end{tikzpicture} +\end{tkzexample} + + + +\subsection{\tkzcname{tkzSetUpCompass}} + +\begin{NewMacroBox}{tkzSetUpCompass}{\oarg{local options}} +\begin{tabular}{lll} +options & default & definition \\ +\midrule +\TOline{color}{black}{color of construction arcs} +\TOline{line width}{0.4pt}{thickness of construction arcs} +\TOline{style}{solid}{style of the building arcs} +\end{tabular} +\end{NewMacroBox} + +\subsubsection{use of\tkzcname{tkzSetUpCompass} with bisector} + + +\begin{tkzexample}[latex=7cm,small] + \begin{tikzpicture}[scale=0.75] + \tkzDefPoints{0/1/A, 8/3/B, 3/6/C} + \tkzDrawPolygon(A,B,C) + \tkzSetUpCompass[color=red,line width=.2 pt] + \tkzDefLine[bisector](A,C,B) \tkzGetPoint{c} + \tkzDefLine[bisector](B,A,C) \tkzGetPoint{a} + \tkzDefLine[bisector](C,B,A) \tkzGetPoint{b} + \tkzShowLine[bisector,size=2,gap=3](A,C,B) + \tkzShowLine[bisector,size=2,gap=3](B,A,C) + \tkzShowLine[bisector,size=1,gap=2](C,B,A) + \tkzDrawLines[add=0 and 0 ](B,b C,c) + \tkzDrawLine[add=0 and -.4 ](A,a) + \tkzLabelPoints(A,B) \tkzLabelPoints[above](C) + \end{tikzpicture} + \end{tkzexample} + +\subsubsection{Another example of of\tkzcname{tkzSetUpCompass}} + +\begin{tkzexample}[latex=7cm,small] + \begin{tikzpicture}[scale=1,rotate=90] + \tkzDefPoints{0/1/A, 8/3/B, 3/6/C} + \tkzDrawPolygon(A,B,C) + \tkzSetUpCompass[color=brown, + line width=.3 pt,style=tkzdotted] + \tkzDefLine[bisector](B,A,C) \tkzGetPoint{a} + \tkzDefLine[bisector](C,B,A) \tkzGetPoint{b} + \tkzInterLL(A,a)(B,b) \tkzGetPoint{I} + \tkzDefPointBy[projection= onto A--B](I) + \tkzGetPoint{H} + \tkzMarkRightAngle(I,H,A) + \tkzDrawCircle[radius,color=red](I,H) + \tkzDrawSegments[color=red](I,H) + \tkzDrawLines[add=0 and -.5,,color=red](A,a) + \tkzDrawLines[add=0 and 0,color=red](B,b) + \tkzShowLine[bisector,size=2,gap=3](B,A,C) + \tkzShowLine[bisector,size=1,gap=3](C,B,A) + \tkzLabelPoints(A,B,C) + \end{tikzpicture} +\end{tkzexample} + +\subsection{Own style} +You can set the normal style with |tkzSetUpPoint| and your own style + +\begin{tkzexample}[vbox,small] +\tkzSetUpPoint[color=blue!50!white, fill=gray!20!red!50!white] +\tikzset{/tikz/mystyle/.style={ + color=blue!20!black, + fill=blue!20}} + \begin{tikzpicture} + \tkzDefPoint(0,0){O} + \tkzDefPoint(0,1){A} + \tkzDrawPoints(O) % general style + \tkzDrawPoints[mystyle,size=4](A) % my style + \tkzLabelPoints(O,A) + \end{tikzpicture} +\end{tkzexample} + +\endinput
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-exemples.tex b/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-exemples.tex new file mode 100644 index 00000000000..4a380e355f2 --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-exemples.tex @@ -0,0 +1,550 @@ +\section{Des exemples} +\subsection{Quelques exemples intéressants} + +\subsubsection{Triangles isocèles semblables} + +Ce qui suit provient de l'excellent site \textbf{Descartes et les Mathématiques}. Je n'ai pas modifié le texte et je ne suis l'auteur que de la programmation des figures. + +\url{http://debart.pagesperso-orange.fr/seconde/triangle.html} + +Bibliographie : Géométrie au Bac - Tangente, hors série no 8 - Exercice 11, page 11 + +Élisabeth Busser et Gilles Cohen : 200 nouveaux problèmes du Monde - POLE 2007 + +Affaire de logique n° 364 - Le Monde 17 février 2004 + + +Deux énoncés ont été proposés, l'un par la revue \emph{Tangente}, et l'autre par le journal \emph{Le Monde}. + +\vspace*{2cm} +\emph{Rédaction de la revue Tangente} : \textcolor{orange}{On construit deux triangles isocèles semblables AXB et BYC de sommets principaux X et Y, tels que A, B et C soient alignés et que ces triangles soient « indirect ». Soit $\alpha$ l'angle au sommet $\widehat{AXB}$ = $\widehat{BYC}$. On construit ensuite un troisième triangle isocèle XZY semblable aux deux premiers, de sommet principal Z et « indirect ».\\ +On demande de démontrer que le point Z appartient à la droite (AC).} + +\vspace*{2cm} +\emph{Rédaction du Monde} : \textcolor{orange}{On construit deux triangles isocèles semblables AXB et BYC de sommets principaux X et Y, tels que A, B et C soient alignés et que ces triangles soient « indirect ». Soit $\alpha$ l'angle au sommet $\widehat{AXB}$ = $\widehat{BYC}$. Le point Z du segment [AC] est équidistant des deux sommets X et Y.\\ +Sous quel angle voit-il ces deux sommets ?} + +\vspace*{2cm} Les constructions et leurs codes associés sont sur les deux pages suivantes, mais vous pouvez chercher avant de regarder. La programmation respecte (il me semble ...), mon raisonnement dans les deux cas. +\newpage + + \subsubsection{version revue "Tangente"} +\begin{tkzexample}[] +\begin{tikzpicture}[scale=.8,rotate=60] + \tkzDefPoint(6,0){X} \tkzDefPoint(3,3){Y} + \tkzDefShiftPoint[X](-110:6){A} \tkzDefShiftPoint[X](-70:6){B} + \tkzDefShiftPoint[Y](-110:4.2){A'} \tkzDefShiftPoint[Y](-70:4.2){B'} + \tkzDefPointBy[translation= from A' to B ](Y) \tkzGetPoint{Y} + \tkzDefPointBy[translation= from A' to B ](B') \tkzGetPoint{C} + \tkzInterLL(A,B)(X,Y) \tkzGetPoint{O} + \tkzDefMidPoint(X,Y) \tkzGetPoint{I} + \tkzDefPointWith[orthogonal](I,Y) + \tkzInterLL(I,tkzPointResult)(A,B) \tkzGetPoint{Z} + \tkzDefCircle[circum](X,Y,B) \tkzGetPoint{O} + \tkzDrawCircle(O,X) + \tkzDrawLines[add = 0 and 1.5](A,C) \tkzDrawLines[add = 0 and 3](X,Y) + \tkzDrawSegments(A,X B,X B,Y C,Y) \tkzDrawSegments[color=red](X,Z Y,Z) + \tkzDrawPoints(A,B,C,X,Y,O,Z) + \tkzLabelPoints(A,B,C,Z) \tkzLabelPoints[above right](X,Y,O) +\end{tikzpicture} +\end{tkzexample} +\newpage +\subsubsection{version "Le Monde"} + +\begin{tkzexample}[] +\begin{tikzpicture}[scale=1.25] + \tkzDefPoint(0,0){A} + \tkzDefPoint(3,0){B} + \tkzDefPoint(9,0){C} + \tkzDefPoint(1.5,2){X} + \tkzDefPoint(6,4){Y} + \tkzDefCircle[circum](X,Y,B) \tkzGetPoint{O} + \tkzDefMidPoint(X,Y) \tkzGetPoint{I} + \tkzDefPointWith[orthogonal](I,Y) \tkzGetPoint{i} + \tkzDrawLines[add = 2 and 1,color=orange](I,i) + \tkzInterLL(I,i)(A,B) \tkzGetPoint{Z} + \tkzInterLC(I,i)(O,B) \tkzGetSecondPoint{M} + \tkzDefPointWith[orthogonal](B,Z) \tkzGetPoint{b} + \tkzDrawCircle(O,B) + \tkzDrawLines[add = 0 and 2,color=orange](B,b) + \tkzDrawSegments(A,X B,X B,Y C,Y A,C X,Y) + \tkzDrawSegments[color=red](X,Z Y,Z) + \tkzDrawPoints(A,B,C,X,Y,Z,M,I) + \tkzLabelPoints(A,B,C,Z) + \tkzLabelPoints[above right](X,Y,M,I) +\end{tikzpicture} +\end{tkzexample} + +\subsubsection{Hauteurs d'un triangle} + +Ce qui suit provient encore de l'excellent site \textbf{Descartes et les Mathématiques}. + +\url{http://debart.pagesperso-orange.fr/geoplan/geometrie_triangle.html} + +Les trois hauteurs d'un triangle sont concourantes au même point H. + +\begin{tkzexample}[latex=7cm] +\begin{tikzpicture}[scale=.8] + \tkzDefPoint(0,0){C} + \tkzDefPoint(7,0){B} + \tkzDefPoint(5,6){A} + \tkzDrawPolygon(A,B,C) + \tkzDefMidPoint(C,B) + \tkzGetPoint{I} + \tkzDrawArc(I,B)(C) + \tkzInterLC(A,C)(I,B) + \tkzGetSecondPoint{B'} + \tkzInterLC(A,B)(I,B) + \tkzGetFirstPoint{C'} + \tkzInterLL(B,B')(C,C') + \tkzGetPoint{H} + \tkzInterLL(A,H)(C,B) + \tkzGetPoint{A'} + \tkzDefCircle[circum](A,B',C') + \tkzGetPoint{O} + \tkzDrawCircle[color=red](O,A) + \tkzDrawSegments[color=orange](B,B' C,C' A,A') + \tkzMarkRightAngles(C,B',B B,C',C C,A',A) + \tkzDrawPoints(A,B,C,A',B',C',H) + \tkzLabelPoints(A,B,C,A',B',C',H) +\end{tikzpicture} +\end{tkzexample} + +\subsubsection{Hauteurs - autre construction} + +\begin{tkzexample}[latex=7cm] +\begin{tikzpicture}[scale=.75] + \tkzDefPoint(0,0){A} + \tkzDefPoint(8,0){B} + \tkzDefPoint(3.5,10){C} + \tkzDefMidPoint(A,B) + \tkzGetPoint{O} + \tkzDefPointBy[projection=onto A--B](C) + \tkzGetPoint{P} + \tkzInterLC(C,A)(O,A) + \tkzGetSecondPoint{M} + \tkzInterLC(C,B)(O,A) + \tkzGetFirstPoint{N} + \tkzInterLL(B,M)(A,N) + \tkzGetPoint{I} + \tkzDrawCircle[diameter](A,B) + \tkzDrawSegments(C,A C,B A,B B,M A,N) + \tkzMarkRightAngles[fill=brown!20](A,M,B A,N,B A,P,C) + \tkzDrawSegment[style=dashed,color=orange](C,P) + \tkzLabelPoints(O,A,B,P) + \tkzLabelPoint[left](M){$M$} + \tkzLabelPoint[right](N){$N$} + \tkzLabelPoint[above](C){$C$} + \tkzLabelPoint[above right](I){$I$} + \tkzDrawPoints[color=red](M,N,P,I) + \tkzDrawPoints[color=brown](O,A,B,C) +\end{tikzpicture} +\end{tkzexample} + +\newpage +\subsection{Different authors} + +\subsubsection{ Square root of the integers } +How to get $1$, $\sqrt{2}$, $\sqrt{3}$ with a rule and a compass. + +\begin{tkzexample}[latex=7cm,small] +\begin{tikzpicture}[scale=1.5] + \tkzDefPoint(0,0){O} + \tkzDefPoint(1,0){a0} + \tkzDrawSegment[blue](O,a0) + \foreach \i [count=\j] in {0,...,10}{% + \tkzDefPointWith[orthogonal normed](a\i,O) + \tkzGetPoint{a\j} + \tkzDrawPolySeg[color=blue](a\i,a\j,O)} + \end{tikzpicture} +\end{tkzexample} + + +\subsubsection{Circle and tangent} +We have a point A $(8,2)$, a circle with center A and radius=3cm and a line + $\delta$ $y=4$. The line intercepts the circle at B. We want to draw the tangent at the circle in B. + + +\begin{tkzexample}[] +\begin{tikzpicture} + \edef\alphaR{\fpeval{asin(2/3)}} + \edef\xB{8-3*cos(\alphaR)} + \tkzDrawX[noticks,label=$(d)$] + \tkzDefPoint["$A$" above right](8,2){A} + \tkzDefPoint[color=red,"$O$" above right](0,0){O} + \tkzDefPoint["$B$" above left](\xB,4){B} + \tkzDefLine[orthogonal=through B](A,B) \tkzGetPoint{b} + \tkzDefPoint(1,0){i} + \tkzInterLL(B,b)(O,i) \tkzGetPoint{B'} + \tkzDrawSegment[line width=1pt](A,B) + \tkzHLine[color=red,style=dashed]{4} + \tkzText[above](12,4){$\delta$} + \tkzDrawCircle[R,color=blue,line width=.8pt](A,3 cm) + \tkzDrawPoint(B') + \tkzDrawLine(B,B') + \end{tikzpicture} +\end{tkzexample} + + +\subsubsection{About right triangle} + +We have a segment $[AB]$ and we want to determine a point $C$ such as $AC=8 cm$ and $ABC$ is a right triangle in $B$. + +\begin{tkzexample}[latex=7cm] +\begin{tikzpicture} + \tkzDefPoint["$A$" left](2,1){A} + \tkzDefPoint(6,4){B} + \tkzDrawSegment(A,B) + \tkzDrawPoint[color=red](A) + \tkzDrawPoint[color=red](B) + \tkzDefPointWith[orthogonal,K=-1](B,A) + \tkzDrawLine[add = .5 and .5](B,tkzPointResult) + \tkzInterLC[R](B,tkzPointResult)(A,8 cm) + \tkzGetPoints{C}{J} + \tkzDrawPoint[color=red](C) + \tkzCompass(A,C) + \tkzMarkRightAngle(A,B,C) + \tkzDrawLine[color=gray,style=dashed](A,C) +\end{tikzpicture} +\end{tkzexample} + + +\subsubsection{Archimedes} + +This is an ancient problem proved by the great Greek mathematician Archimedes . +The figure below shows a semicircle, with diameter $AB$. A tangent line is drawn and touches the semicircle at $B$. An other tangent line at a point, $C$, on the semicircle is drawn. We project the point $C$ on the segment$[AB]$ on a point $D$ . The two tangent lines intersect at the point $T$. + +Prove that the line $(AT)$ bisects $(CD)$ + +\begin{tkzexample}[] +\begin{tikzpicture}[scale=1.25] + \tkzDefPoint(0,0){A}\tkzDefPoint(6,0){D} + \tkzDefPoint(8,0){B}\tkzDefPoint(4,0){I} + \tkzDefLine[orthogonal=through D](A,D) + \tkzInterLC[R](D,tkzPointResult)(I,4 cm) \tkzGetFirstPoint{C} + \tkzDefLine[orthogonal=through C](I,C) \tkzGetPoint{c} + \tkzDefLine[orthogonal=through B](A,B) \tkzGetPoint{b} + \tkzInterLL(C,c)(B,b) \tkzGetPoint{T} + \tkzInterLL(A,T)(C,D) \tkzGetPoint{P} + \tkzDrawArc(I,B)(A) + \tkzDrawSegments(A,B A,T C,D I,C) \tkzDrawSegment[color=orange](I,C) + \tkzDrawLine[add = 1 and 0](C,T) \tkzDrawLine[add = 0 and 1](B,T) + \tkzMarkRightAngle(I,C,T) + \tkzDrawPoints(A,B,I,D,C,T) + \tkzLabelPoints(A,B,I,D) \tkzLabelPoints[above right](C,T) + \tkzMarkSegment[pos=.25,mark=s|](C,D) \tkzMarkSegment[pos=.75,mark=s|](C,D) +\end{tikzpicture} +\end{tkzexample} + +\subsubsection{Exemple : Dimitris Kapeta} + +You need in this example to use \tkzname{mkpos=.2} with \tkzcname{tkzMarkAngle} because the measure of $ \widehat{CAM}$ is too small. +Another possiblity is to use \tkzcname{tkzFillAngle}. + + +\begin{tkzexample}[] +\begin{tikzpicture}[scale=1.25] + \tkzDefPoint(0,0){O} + \tkzDefPoint(2.5,0){N} + \tkzDefPoint(-4.2,0.5){M} + \tkzDefPointBy[rotation=center O angle 30](N) + \tkzGetPoint{B} + \tkzDefPointBy[rotation=center O angle -50](N) + \tkzGetPoint{A} + \tkzInterLC(M,B)(O,N) \tkzGetFirstPoint{C} + \tkzInterLC(M,A)(O,N) \tkzGetSecondPoint{A'} + \tkzMarkAngle[mkpos=.2, size=0.5](A,C,B) + \tkzMarkAngle[mkpos=.2, size=0.5](A,M,C) + \tkzDrawSegments(A,C M,A M,B) + \tkzDrawCircle(O,N) + \tkzLabelCircle[above left](O,N)(120){$\mathcal{C}$} + \tkzMarkAngle[mkpos=.2, size=1.2](C,A,M) + \tkzDrawPoints(O, A, B, M, B, C) + \tkzLabelPoints[right](O,A,B) + \tkzLabelPoints[above left](M,C) + \tkzLabelPoint[below left](A'){$A'$} +\end{tikzpicture} +\end{tkzexample} + + +\subsubsection{Example : John Kitzmiller } + +Prove $\bigtriangleup LKJ$ is equilateral + + +\begin{tkzexample}[vbox,small] +\begin{tikzpicture}[scale=2] + \tkzDefPoint[label=below left:A](0,0){A} + \tkzDefPoint[label=below right:B](6,0){B} + \tkzDefTriangle[equilateral](A,B) \tkzGetPoint{C} + \tkzMarkSegments[mark=|](A,B A,C B,C) + \tkzDefBarycentricPoint(A=1,B=2) \tkzGetPoint{C'} + \tkzDefBarycentricPoint(A=2,C=1) \tkzGetPoint{B'} + \tkzDefBarycentricPoint(C=2,B=1) \tkzGetPoint{A'} + \tkzInterLL(A,A')(C,C') \tkzGetPoint{J} + \tkzInterLL(C,C')(B,B') \tkzGetPoint{K} + \tkzInterLL(B,B')(A,A') \tkzGetPoint{L} + \tkzLabelPoint[above](C){C} + \tkzDrawPolygon(A,B,C) \tkzDrawSegments(A,J B,L C,K) + \tkzMarkAngles[fill= orange,size=1cm,opacity=.3](J,A,C K,C,B L,B,A) + \tkzLabelPoint[right](J){J} + \tkzLabelPoint[below](K){K} + \tkzLabelPoint[above left](L){L} + \tkzMarkAngles[fill=orange, opacity=.3,thick,size=1,](A,C,J C,B,K B,A,L) + \tkzMarkAngles[fill=green, size=1, opacity=.5](A,C,J C,B,K B,A,L) + \tkzFillPolygon[color=yellow, opacity=.2](J,A,C) + \tkzFillPolygon[color=yellow, opacity=.2](K,B,C) + \tkzFillPolygon[color=yellow, opacity=.2](L,A,B) + \tkzDrawSegments[line width=3pt,color=cyan,opacity=0.4](A,J C,K B,L) + \tkzDrawSegments[line width=3pt,color=red,opacity=0.4](A,L B,K C,J) + \tkzMarkSegments[mark=o](J,K K,L L,J) +\end{tikzpicture} +\end{tkzexample} + +\subsubsection{Exemple : John Kitzmiller } +Prove $\dfrac{AC}{CE}=\dfrac{BD}{DF} \qquad$ + +Another interesting example from John, you can see how to use some extra options like \tkzname{decoration} and \tkzname{postaction} from \TIKZ\ with \tkzname{tkz-euclide}. + +\begin{tkzexample}[vbox,small] +\begin{tikzpicture}[scale=2,decoration={markings, + mark=at position 3cm with {\arrow[scale=2]{>}}}] + \tkzDefPoints{0/0/E, 6/0/F, 0/1.8/P, 6/1.8/Q, 0/3/R, 6/3/S} + \tkzDrawLines[postaction={decorate}](E,F P,Q R,S) + \tkzDefPoints{3.5/3/A, 5/3/B} + \tkzDrawSegments(E,A F,B) + \tkzInterLL(E,A)(P,Q) \tkzGetPoint{C} + \tkzInterLL(B,F)(P,Q) \tkzGetPoint{D} + \tkzLabelPoints[above right](A,B) + \tkzLabelPoints[below](E,F) + \tkzLabelPoints[above left](C) + \tkzDrawSegments[style=dashed](A,F) + \tkzInterLL(A,F)(P,Q) \tkzGetPoint{G} + \tkzLabelPoints[above right](D,G) + \tkzDrawSegments[color=teal, line width=3pt, opacity=0.4](A,C A,G) + \tkzDrawSegments[color=magenta, line width=3pt, opacity=0.4](C,E G,F) + \tkzDrawSegments[color=teal, line width=3pt, opacity=0.4](B,D) + \tkzDrawSegments[color=magenta, line width=3pt, opacity=0.4](D,F) +\end{tikzpicture} +\end{tkzexample} + +\subsubsection{Exemple : John Kitzmiller } +Prove $\dfrac{BC}{CD}=\dfrac{AB}{AD} \qquad$ (Angle Bisector) + +\begin{tkzexample}[vbox,small] +\begin{tikzpicture}[scale=2] + \tkzDefPoints{0/0/B, 5/0/D} \tkzDefPoint(70:3){A} + \tkzDrawPolygon(B,D,A) + \tkzDefLine[bisector](B,A,D) \tkzGetPoint{a} + \tkzInterLL(A,a)(B,D) \tkzGetPoint{C} + \tkzDefLine[parallel=through B](A,C) \tkzGetPoint{b} + \tkzInterLL(A,D)(B,b) \tkzGetPoint{P} + \begin{scope}[decoration={markings, + mark=at position .5 with {\arrow[scale=2]{>}}}] + \tkzDrawSegments[postaction={decorate},dashed](C,A P,B) + \end{scope} + \tkzDrawSegment(A,C) \tkzDrawSegment[style=dashed](A,P) + \tkzLabelPoints[below](B,C,D) \tkzLabelPoints[above](A,P) + \tkzDrawSegments[color=magenta, line width=3pt, opacity=0.4](B,C P,A) + \tkzDrawSegments[color=teal, line width=3pt, opacity=0.4](C,D A,D) + \tkzDrawSegments[color=magenta, line width=3pt, opacity=0.4](A,B) + \tkzMarkAngles[size=0.7](B,A,C C,A,D) + \tkzMarkAngles[size=0.7, fill=green, opacity=0.5](B,A,C A,B,P) + \tkzMarkAngles[size=0.7, fill=yellow, opacity=0.3](B,P,A C,A,D) + \tkzMarkAngles[size=0.7, fill=green, opacity=0.6](B,A,C A,B,P B,P,A C,A,D) + \tkzLabelAngle[pos=1](B,A,C){1} \tkzLabelAngle[pos=1](C,A,D){2} + \tkzLabelAngle[pos=1](A,B,P){3} \tkzLabelAngle[pos=1](B,P,A){4} + \tkzMarkSegments[mark=|](A,B A,P) +\end{tikzpicture} +\end{tkzexample} + + +\subsubsection{Exemple : author John Kitzmiller } +Prove $\overline{AG}\cong\overline{EF} \qquad$ (Detour) + +\begin{tkzexample}[vbox,small] +\begin{tikzpicture}[scale=2] + \tkzDefPoint(0,3){A} \tkzDefPoint(6,3){E} \tkzDefPoint(1.35,3){B} + \tkzDefPoint(4.65,3){D} \tkzDefPoint(1,1){G} \tkzDefPoint(5,5){F} + \tkzDefMidPoint(A,E) \tkzGetPoint{C} + \tkzFillPolygon[yellow, opacity=0.4](B,G,C) + \tkzFillPolygon[yellow, opacity=0.4](D,F,C) + \tkzFillPolygon[blue, opacity=0.3](A,B,G) + \tkzFillPolygon[blue, opacity=0.3](E,D,F) + \tkzMarkAngles[size=0.6,fill=green](B,G,A D,F,E) + \tkzMarkAngles[size=0.6,fill=orange](B,C,G D,C,F) + \tkzMarkAngles[size=0.6,fill=yellow](G,B,C F,D,C) + \tkzMarkAngles[size=0.6,fill=red](A,B,G E,D,F) + \tkzMarkSegments[mark=|](B,C D,C) \tkzMarkSegments[mark=s||](G,C F,C) + \tkzMarkSegments[mark=o](A,G E,F) \tkzMarkSegments[mark=s](B,G D,F) + \tkzDrawSegment[color=red](A,E) + \tkzDrawSegment[color=blue](F,G) + \tkzDrawSegments(A,G G,B E,F F,D) + \tkzLabelPoints[below](C,D,E,G) \tkzLabelPoints[above](A,B,F) +\end{tikzpicture} +\end{tkzexample} + +\subsubsection{Example from Indonesia} + +\begin{tkzexample}[vbox,small] +\begin{tikzpicture}[scale=3] + \tkzDefPoints{0/0/A,2/0/B} + \tkzDefSquare(A,B) \tkzGetPoints{C}{D} + \tkzDefPointBy[rotation=center D angle 45](C)\tkzGetPoint{G} + \tkzDefSquare(G,D)\tkzGetPoints{E}{F} + \tkzInterLL(B,C)(E,F)\tkzGetPoint{H} + \tkzFillPolygon[gray!10](D,E,H,C,D) + \tkzDrawPolygon(A,...,D)\tkzDrawPolygon(D,...,G) + \tkzDrawSegment(B,E) + \tkzMarkSegments[mark=|,size=3pt,color=gray](A,B B,C C,D D,A E,F F,G G,D D,E) + \tkzMarkSegments[mark=||,size=3pt,color=gray](B,E E,H) + \tkzLabelPoints[left](A,D) + \tkzLabelPoints[right](B,C,F,H) + \tkzLabelPoints[above](G)\tkzLabelPoints[below](E) + \tkzMarkRightAngles(D,A,B D,G,F) +\end{tikzpicture} +\end{tkzexample} + +\subsubsection{Another example from Indonesia} +\begin{tkzexample}[vbox,small] + \begin{tikzpicture}[pol/.style={fill=brown!40,opacity=.5}, + seg/.style={tkzdotted,color=gray}, + hidden pt/.style={fill=gray!40}, + mra/.style={color=gray!70,tkzdotted,/tkzrightangle/size=.2}, + scale=3] + \tkzSetUpPoint[size=2] + \tkzDefPoints{0/0/A,2.5/0/B,1.33/0.75/D,0/2.5/E,2.5/2.5/F} + \tkzDefLine[parallel=through D](A,B) \tkzGetPoint{I1} + \tkzDefLine[parallel=through B](A,D) \tkzGetPoint{I2} + \tkzInterLL(D,I1)(B,I2) \tkzGetPoint{C} + \tkzDefLine[parallel=through E](A,D) \tkzGetPoint{I3} + \tkzDefLine[parallel=through D](A,E) \tkzGetPoint{I4} + \tkzInterLL(E,I3)(D,I4) \tkzGetPoint{H} + \tkzDefLine[parallel=through F](E,H) \tkzGetPoint{I5} + \tkzDefLine[parallel=through H](E,F) \tkzGetPoint{I6} + \tkzInterLL(F,I5)(H,I6) \tkzGetPoint{G} + \tkzDefMidPoint(G,H) \tkzGetPoint{P} + \tkzDefMidPoint(G,C) \tkzGetPoint{Q} + \tkzDefMidPoint(B,C) \tkzGetPoint{R} + \tkzDefMidPoint(A,B) \tkzGetPoint{S} + \tkzDefMidPoint(A,E) \tkzGetPoint{T} + \tkzDefMidPoint(E,H) \tkzGetPoint{U} + \tkzDefMidPoint(A,D) \tkzGetPoint{M} + \tkzDefMidPoint(D,C) \tkzGetPoint{N} + \tkzInterLL(B,D)(S,R) \tkzGetPoint{L} + \tkzInterLL(H,F)(U,P) \tkzGetPoint{K} + \tkzDefLine[parallel=through K](D,H) \tkzGetPoint{I7} + \tkzInterLL(K,I7)(B,D) \tkzGetPoint{O} + + \tkzFillPolygon[pol](P,Q,R,S,T,U) + \tkzDrawSegments[seg](K,O K,L P,Q R,S T,U + C,D H,D A,D M,N B,D) + \tkzDrawSegments(E,H B,C G,F G,H G,C Q,R S,T U,P H,F) + \tkzDrawPolygon(A,B,F,E) + \tkzDrawPoints(A,B,C,E,F,G,H,P,Q,R,S,T,U,K) + \tkzDrawPoints[hidden pt](M,N,O,D) + \tkzMarkRightAngle[mra](L,O,K) + \tkzMarkSegments[mark=|,size=1pt,thick,color=gray](A,S B,S B,R C,R + Q,C Q,G G,P H,P + E,U H,U E,T A,T) + + \tkzLabelAngle[pos=.3](K,L,O){$\alpha$} + \tkzLabelPoints[below](O,A,S,B) + \tkzLabelPoints[above](H,P,G) + \tkzLabelPoints[left](T,E) + \tkzLabelPoints[right](C,Q) + \tkzLabelPoints[above left](U,D,M) + \tkzLabelPoints[above right](L,N) + \tkzLabelPoints[below right](F,R) + \tkzLabelPoints[below left](K) + \end{tikzpicture} +\end{tkzexample} + + +\subsubsection{Three circles} + +\begin{tkzexample}[vbox,small] +\begin{tikzpicture}[scale=1.5] + \tkzDefPoints{0/0/A,8/0/B,0/4/a,8/4/b,8/8/c} + \tkzDefTriangle[equilateral](A,B) \tkzGetPoint{C} + \tkzDrawPolygon(A,B,C) + \tkzDefSquare(A,B) \tkzGetPoints{D}{E} + \tkzClipBB + \tkzDefMidPoint(A,B) \tkzGetPoint{M} + \tkzDefMidPoint(B,C) \tkzGetPoint{N} + \tkzDefMidPoint(A,C) \tkzGetPoint{P} + \tkzDrawSemiCircle[gray,dashed](M,B) + \tkzDrawSemiCircle[gray,dashed](A,M) + \tkzDrawSemiCircle[gray,dashed](A,B) + \tkzDrawCircle[gray,dashed](B,A) + \tkzInterLL(A,N)(M,a) \tkzGetPoint{Ia} + \tkzDefPointBy[projection = onto A--B](Ia) + \tkzGetPoint{ha} + \tkzDrawCircle[gray](Ia,ha) + \tkzInterLL(B,P)(M,b) \tkzGetPoint{Ib} + \tkzDefPointBy[projection = onto A--B](Ib) + \tkzGetPoint{hb} + \tkzDrawCircle[gray](Ib,hb) + \tkzInterLL(A,c)(M,C) \tkzGetPoint{Ic} + \tkzDefPointBy[projection = onto A--C](Ic) + \tkzGetPoint{hc} + \tkzDrawCircle[gray](Ic,hc) + \tkzInterLL(A,Ia)(B,Ib) \tkzGetPoint{G} + \tkzDrawCircle[gray,dashed](G,Ia) + \tkzDrawPolySeg(A,E,D,B) + \tkzDrawPoints(A,B,C) + \tkzDrawPoints(G,Ia,Ib,Ic) + \tkzDrawSegments[gray,dashed](C,M A,N B,P M,a M,b A,a a,b b,B A,D Ia,ha) +\end{tikzpicture} +\end{tkzexample} + +\subsubsection{"The" Circle of APOLLONIUS} + +\begin{tkzexample}[vbox,small] + \begin{tikzpicture}[scale=.5] + \tkzDefPoints{0/0/A,6/0/B,0.8/4/C} + \tkzDefTriangleCenter[euler](A,B,C) \tkzGetPoint{N} + \tkzDefTriangleCenter[circum](A,B,C) \tkzGetPoint{O} + \tkzDefTriangleCenter[lemoine](A,B,C) \tkzGetPoint{K} + \tkzDefTriangleCenter[spieker](A,B,C) \tkzGetPoint{Sp} + \tkzDefExCircle(A,B,C) \tkzGetPoint{Jb} + \tkzDefExCircle(C,A,B) \tkzGetPoint{Ja} + \tkzDefExCircle(B,C,A) \tkzGetPoint{Jc} + \tkzDefPointBy[projection=onto B--C ](Jc) \tkzGetPoint{Xc} + \tkzDefPointBy[projection=onto B--C ](Jb) \tkzGetPoint{Xb} + \tkzDefPointBy[projection=onto A--B ](Ja) \tkzGetPoint{Za} + \tkzDefPointBy[projection=onto A--B ](Jb) \tkzGetPoint{Zb} + \tkzDefLine[parallel=through Xc](A,C) \tkzGetPoint{X'c} + \tkzDefLine[parallel=through Xb](A,B) \tkzGetPoint{X'b} + \tkzDefLine[parallel=through Za](C,A) \tkzGetPoint{Z'a} + \tkzDefLine[parallel=through Zb](C,B) \tkzGetPoint{Z'b} + \tkzInterLL(Xc,X'c)(A,B) \tkzGetPoint{B'} + \tkzInterLL(Xb,X'b)(A,C) \tkzGetPoint{C'} + \tkzInterLL(Za,Z'a)(C,B) \tkzGetPoint{A''} + \tkzInterLL(Zb,Z'b)(C,A) \tkzGetPoint{B''} + \tkzDefPointBy[reflection= over Jc--Jb](B') \tkzGetPoint{Ca} + \tkzDefPointBy[reflection= over Jc--Jb](C') \tkzGetPoint{Ba} + \tkzDefPointBy[reflection= over Ja--Jb](A'')\tkzGetPoint{Bc} + \tkzDefPointBy[reflection= over Ja--Jb](B'')\tkzGetPoint{Ac} + \tkzDefCircle[circum](Ac,Ca,Ba) \tkzGetPoint{Q} + \tkzDrawCircle[circum](Ac,Ca,Ba) + \tkzDefPointWith[linear,K=1.1](Q,Ac) \tkzGetPoint{nAc} + \tkzClipCircle[through](Q,nAc) + \tkzDrawLines[add=1.5 and 1.5,dashed](A,B B,C A,C) + \tkzDrawPolygon[color=blue](A,B,C) + \tkzDrawPolygon[dashed,color=blue](Ja,Jb,Jc) + \tkzDrawCircles[ex](A,B,C B,C,A C,A,B) + \tkzDrawLines[add=0 and 0,dashed](Ca,Bc B,Za A,Ba B',C') + \tkzDrawLine[add=1 and 1,dashed](Xb,Xc) + \tkzDrawLine[add=7 and 3,blue](O,K) + \tkzDrawLine[add=8 and 15,red](N,Sp) + \tkzDrawLines[add=10 and 10](K,O N,Sp) + \tkzDrawSegments(Ba,Ca Bc,Ac) + \tkzDrawPoints(A,B,C,N,Ja,Jb,Jc,Xb,Xc,B',C',Za,Zb,Ba,Ca,Bc,Ac,Q,Sp,K,O) + \tkzLabelPoints(A,B,C,N,Ja,Jb,Jc,Xb,Xc,B',C',Za,Zb,Ba,Ca,Bc,Ac,Q,Sp) + \tkzLabelPoints[above](K,O) + \end{tikzpicture} +\end{tkzexample} + + + +\endinput diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-installation.tex b/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-installation.tex new file mode 100644 index 00000000000..a7ea9374430 --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-installation.tex @@ -0,0 +1,57 @@ + \section{Installation} + +\tkzNamePack{tkz-euclide} and \tkzNamePack{tkz-base} are now on the server of the \tkzname{CTAN}\footnote{\tkzNamePack{tkz-base} and \tkzNamePack{tkz-euclide} are part of \NameDist{TeXLive} and \tkzname{tlmgr} allows you to install them. These packages are also part of \NameDist{MikTeX} under \NameSys{Windows}}. If you want to test a beta version, just put the following files in a texmf folder that your system can find. +You will have to check several points : + +\begin{itemize}\setlength{\itemsep}{5pt} +\item The \tkzNamePack{tkz-base} and \tkzNamePack{tkz-euclide} folders must be located on a path recognized by \tkzname{latex}. +\item The \tkzNamePack{xfp} {footnote{\tkzNamePack{xfp}} replaces \tkzNamePack{fp}}, \tkzNamePack{numprint} , \tkzNamePack{tikz 3.00} must be installed as they are mandatory, for the proper functioning of \tkzNamePack{tkz-euclide}. +\item This documentation and all examples were obtained with \tkzname{lualatex-dev} but \tkzname{pdflatex} should be suitable. +\end{itemize} + +\subsection{List of folder files \tkzname{tkzbase} et \tkzname{tkzeuclide}} + +In the folder \tkzname{base} : + +\begin{itemize} +\item \tkzname{tkz-base.cfg} +\item \tkzname{tkz-base.sty} +\item \tkzname{tkz-lib-marks.tex} +\item \tkzname{tkz-obj-axes.tex} +\item \tkzname{tkz-obj-grids.tex} +\item \tkzname{tkz-obj-marks.tex} +\item \tkzname{tkz-obj-points.tex} +\item \tkzname{tkz-obj-rep.tex} +\item \tkzname{tkz-tools-arith.tex} +\item \tkzname{tkz-tools-base.tex} +\item \tkzname{tkz-tools-BB.tex} +\item \tkzname{tkz-tools-math.tex} +\item \tkzname{tkz-tools-misc.tex} +\item \tkzname{tkz-tools-modules.tex} +\item \tkzname{tkz-tools-print.tex} +\item \tkzname{tkz-tools-text.tex} +\item \tkzname{tkz-tools-utilities.tex} +\end{itemize} + +In the \tkzname{euclide} : + +\begin{itemize} +\item \tkzname{tkz-euclide.sty} +\item \tkzname{tkz-obj-eu-angles.tex} +\item \tkzname{tkz-obj-eu-arcs.tex} +\item \tkzname{tkz-obj-eu-circles.tex} +\item \tkzname{tkz-obj-eu-compass.tex} +\item \tkzname{tkz-obj-eu-draw-circles.tex} +\item \tkzname{tkz-obj-eu-draw-lines.tex} +\item \tkzname{tkz-obj-eu-draw-polygons.tex} +\item \tkzname{tkz-obj-eu-lines.tex} +\item \tkzname{tkz-obj-eu-points-by.tex} +\item \tkzname{tkz-obj-eu-points-rnd.tex} +\item \tkzname{tkz-obj-eu-points-with.tex} +\item \tkzname{tkz-obj-eu-points.tex} +\item \tkzname{tkz-obj-eu-polygons.tex} +\item \tkzname{tkz-obj-eu-protractor.tex} +\item \tkzname{tkz-obj-eu-sectors.tex} +\end{itemize} +\tkzHandBomb\ Now \tkzname{tkz-euclide} loads all the files. +\endinput diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-intersec.tex b/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-intersec.tex new file mode 100644 index 00000000000..70492509f7f --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-intersec.tex @@ -0,0 +1,390 @@ +\section{Intersections} + +It is possible to determine the coordinates of the points of intersection between two straight lines, a straight line and a circle, and two circles. + +The associated commands have no optional arguments and the user must determine the existence of the intersection points himself. + +\subsection{Intersection de deux droites} + + \begin{NewMacroBox}{tkzInterLL}{\parg{$A,B$}\parg{$C,D$}} +Defines the intersection point \tkzname{tkzPointResult} of the two lines $(AB)$ and $(CD)$. The known points are given in pairs (two per line) in brackets, and the resulting point can be retrieved with the macro \tkzcname{tkzDefPoint}. + +\end{NewMacroBox} + +\medskip +\subsubsection{Example of intersection between two straight lines} + +\begin{tkzexample}[latex=7cm,small] +\begin{tikzpicture}[rotate=-45,scale=.75] + \tkzDefPoint(2,1){A} + \tkzDefPoint(6,5){B} + \tkzDefPoint(3,6){C} + \tkzDefPoint(5,2){D} + \tkzDrawLines(A,B C,D) + \tkzInterLL(A,B)(C,D) + \tkzGetPoint{I} + \tkzDrawPoints[color=blue](A,B,C,D) + \tkzDrawPoint[color=red](I) +\end{tikzpicture} +\end{tkzexample} + +\subsection{Intersection of a straight line and a circle} % (fold) +\label{sub:intersection_d_une_droite_et_d_un_cercle} + +As before, the line is defined by a couple of points. The circle + is also defined by a couple: +\begin{itemize} +\item $(O,C)$ which is a pair of points, the first is the centre and the second is any point on the circle. +\item $(O,r)$ The $r$ measure is the shelf measure. It is expressed soint en \emph{cm}, that is to say in \emph{pt}. +\end{itemize} + +\begin{NewMacroBox}{tkzInterLC}{\oarg{options}\parg{$A,B$}\parg{$O,C$} or \parg{$O,r$} or \parg{$O,C,D$}} +So the arguments are two couples. + +\medskip +\begin{tabular}{lll} +\toprule +options & default & definition \\ +\midrule +\TOline{N} {N} { (O,C) determines the circle} +\TOline{R} {N} { (O, 1 cm) ou (O, 120 pt)} +\TOline{with nodes}{N} { (O,C,D) CD is a radius} +\bottomrule +\end{tabular} + +\medskip +The macro defines the intersection points $I$ and $J$ of the line $(AB)$ and the center circle $O$ with radius $r$ if they exist; otherwise, an error will be reported in the .log file. +\end{NewMacroBox} + +\subsubsection{Simple example of a line-circle intersection} + +In the following example, the drawing of the circle uses two points and the intersection of the straight line and the circle uses two pairs of points + +\begin{tkzexample}[latex=7cm,small] +\begin{tikzpicture}[scale=.75] + \tkzInit[xmax=5,ymax=4] + \tkzDefPoint(1,1){O} + \tkzDefPoint(0,4){A} + \tkzDefPoint(5,0){B} + \tkzDefPoint(3,3){C} + \tkzInterLC(A,B)(O,C) \tkzGetPoints{D}{E} + \tkzDrawCircle(O,C) + \tkzDrawPoints[color=blue](O,A,B,C) + \tkzDrawPoints[color=red](D,E) + \tkzDrawLine(A,B) + \tkzLabelPoints[above right](O,A,B,C,D,E) +\end{tikzpicture} +\end{tkzexample} + +\subsubsection{More complex example of a line-circle intersection} +\url{http://gogeometry.com/problem/p190_tangent_circle} + +\begin{tkzexample}[latex=7cm,small] +\begin{tikzpicture}[scale=.75] + \tkzDefPoint(0,0){A} + \tkzDefPoint(8,0){B} + \tkzDefMidPoint(A,B) + \tkzGetPoint{O} + \tkzDrawCircle(O,B) + \tkzDefMidPoint(O,B) + \tkzGetPoint{O'} + \tkzDrawCircle(O',B) + \tkzDefTangent[from=A](O',B) + \tkzGetSecondPoint{E} + \tkzInterLC(A,E)(O,B) + \tkzGetSecondPoint{D} + \tkzDefPointBy[projection=onto A--B](D) + \tkzGetPoint{F} + \tkzMarkRightAngle(D,F,B) + \tkzDrawSegments(A,D A,B D,F) + \tkzDrawSegments[color=red,line width=1pt, + opacity=.4](A,O F,B) + \tkzDrawPoints(A,B,O,O',E,D) + \tkzLabelPoints(A,B,O,O',E,D) +\end{tikzpicture} +\end{tkzexample} + + +\newpage +\subsubsection{Circle defined by a center and a measure, and special cases} +Let's look at some special cases like straight lines tangent to the circle. + +\begin{tkzexample}[latex=7cm,small] +\begin{tikzpicture}[scale=.5] + \tkzDefPoint(0,8){A} \tkzDefPoint(8,0){B} + \tkzDefPoint(8,8){C} \tkzDefPoint(4,4){I} + \tkzDefPoint(2,7){E} \tkzDefPoint(6,4){F} + \tkzDrawCircle[R](I,4 cm) + \tkzInterLC[R](A,C)(I,4 cm) \tkzGetPoints{I1}{I2} + \tkzInterLC[R](B,C)(I,4 cm) \tkzGetPoints{J1}{J2} + \tkzInterLC[R](A,B)(I,4 cm) \tkzGetPoints{K1}{K2} + \tkzDrawPoints[color=red](I1,J1,K1,K2) + \tkzDrawLines(A,B B,C A,C) + \tkzInterLC[R](E,F)(I,4 cm) \tkzGetPoints{I2}{J2} + \tkzDrawPoints[color=blue](E,F) + \tkzDrawPoints[color=red](I2,J2) + \tkzDrawLine(I2,J2) +\end{tikzpicture} +\end{tkzexample} + +\subsubsection{More complex example} +\tkzHandBomb\ Be careful with the syntax. First of all, calculations for the points can be done during the passage of the arguments, but the syntax of \tkzname{xfp} must be respected. You can see that I use the term \tkzname{pi} because \NamePack{xfp} works in radians!. Furthermore, when calculations require the use of parentheses, they must be inserted in a group... \TEX \{ \dots \}. + +\begin{tkzexample}[latex=7cm,small] +\begin{tikzpicture}[scale=1.25] + \tkzDefPoint(0,1){J} + \tkzDefPoint(0,0){O} + \tkzDrawArc[R,line width=1pt,color=red](J,2.5 cm)(180,0) + \foreach \i in {0,-5,-10,...,-85,-90}{ + \tkzDefPoint({2.5*cosd(\i)},{1+2.5*sind(\i)}){P} + \tkzDrawSegment[color=orange](J,P) + \tkzInterLC[R](P,J)(O,1 cm) + \tkzGetPoints{M}{N} + \tkzDrawPoints[red](N) + } + \foreach \i in {-90,-95,...,-175,-180}{ + \tkzDefPoint({2.5*cosd(\i)},{1+2.5*sind(\i)}){P} + \tkzDrawSegment[color=orange](J,P) + \tkzInterLC[R](P,J)(O,1 cm) + \tkzGetPoints{M}{N} + \tkzDrawPoints[red](M) + } +\end{tikzpicture} +\end{tkzexample} + +\subsubsection{Calculation of radius dimension} + With \tkzname{pgfmath} and \tkzcname{pgfmathsetmacro} + +The radius measurement may be the result of a calculation that is not done within the intersection macro, but before. +A length can be calculated in several ways. It is possible of course, + to use the module \tkzname{pgfmath} and the macro \tkzcname{pgfmathsetmacro}. In some cases, the results obtained are not precise enough, so the following calculation $0.0002 \div 0.0001$ gives $1.98$ with pgfmath while xfp will give $2$. + +\subsubsection{Calculation of radius dimension 1} +With \tkzname{xfp} and \tkzcname{fpeval} + +\begin{tkzexample}[latex=7cm,small] + \begin{tikzpicture} + \tkzDefPoint(2,2){A} + \tkzDefPoint(5,4){B} + \tkzDefPoint(4,4){O} + \edef\tkzLen{\fpeval{0.0002/0.0001}} + \tkzDrawCircle[R](O,\tkzLen cm) + \tkzInterLC[R](A,B)(O, \tkzLen cm) + \tkzGetPoints{I}{J} + \tkzDrawPoints[color=blue](A,B) + \tkzDrawPoints[color=red](I,J) + \tkzDrawLine(I,J) +\end{tikzpicture} + \end{tkzexample} + +\subsubsection{Calculation of radius dimension 2} + With \TEX\ and \tkzcname{tkzLength}. + + This dimension was created with \tkzcname{newdimen}. 2 cm has been transformed into points. It is of course possible to use \TEX to calculate. + +\begin{tkzexample}[latex=7cm,small] +\begin{tikzpicture} + \tkzDefPoints{2/2/A,5/4/B,4/4/0} + \tkzLength=2cm + \tkzDrawCircle[R](O,\tkzLength) + \tkzInterLC[R](A,B)(O,\tkzLength) + \tkzGetPoints{I}{J} + \tkzDrawPoints[color=blue](A,B) + \tkzDrawPoints[color=red](I,J) + \tkzDrawLine(I,J) +\end{tikzpicture} +\end{tkzexample} + +\subsubsection{Squares in half a disc} +A Sangaku look! It is a question of proving that one can inscribe in a half-disc, two squares, and to determine the length of their respective sides according to the radius. + +\begin{tkzexample}[latex=6cm,small] +\begin{tikzpicture}[scale=.75] + \tkzDefPoints{0/0/A,8/0/B,4/0/I} + \tkzDefSquare(A,B) \tkzGetPoints{C}{D} + \tkzInterLC(I,C)(I,B)\tkzGetPoints{E'}{E} + \tkzInterLC(I,D)(I,B)\tkzGetPoints{F'}{F} + \tkzDefPointsBy[projection = onto A--B](E,F){H,G} + \tkzDefPointsBy[symmetry = center H](I){J} + \tkzDefSquare(H,J)\tkzGetPoints{K}{L} + \tkzDrawSector[fill=brown!30](I,B)(A) + \tkzFillPolygon[color=red!40](H,E,F,G) + \tkzFillPolygon[color=blue!40](H,J,K,L) + \tkzDrawPolySeg[color=red](H,E,F,G) + \tkzDrawPolySeg[color=red](J,K,L) + \tkzDrawPoints(E,G,H,F,J,K,L) +\end{tikzpicture} +\end{tkzexample} + +\subsubsection{Option "with nodes"} +\begin{tkzexample}[latex=8cm,small] +\begin{tikzpicture}[scale=.75] +\tkzDefPoints{0/0/A,4/0/B,1/1/D,2/0/E} +\tkzDefTriangle[equilateral](A,B) +\tkzGetPoint{C} +\tkzDrawCircle(C,A) +\tkzInterLC[with nodes](D,E)(C,A,B) +\tkzGetPoints{F}{G} +\tkzDrawPolygon(A,B,C) +\tkzDrawPoints(A,...,G) +\tkzDrawLine(F,G) +\end{tikzpicture} +\end{tkzexample} + +\clearpage \newpage +\subsection{Intersection of two circles} + +The most frequent case is that of two circles defined by their center and a point, but as before the option \tkzname{R} allows to use the radius measurements. + +\begin{NewMacroBox}{tkzInterCC}{\oarg{options}\parg{$O,A/r$}\parg{$O',A'/r'$}\marg{$I$}\marg{$J$}} + +\medskip +\begin{tabular}{lll} +\toprule +options & defect & definition \\ +\midrule +\TOline{N} {N} {OA and O'A' are radii, O and O' are the centres} +\TOline{R} {N} {$r$ et $r'$ shave dimensions and measure the radii} +\TOline{with nodes} {N} {$r$ et $r'$ are dimensions and measure the radii} +\end{tabular} + +\medskip + +This macro defines the intersection point(s) $I$ and $J$ of the two center circles $O$ and $O'$. If the two circles do not have a common point then the macro ends with an error that is not handled. \\ +It is also possible to use directly \tkzcname{tkzInterCCN} and \tkzcname{tkzInterCCR}. +\end{NewMacroBox} + + +\subsubsection{Construction of an equilateral triangle} + +\begin{tkzexample}[latex=7cm,small] +\begin{tikzpicture}[trim left=-1cm,scale=.5] + \tkzDefPoint(1,1){A} + \tkzDefPoint(5,1){B} + \tkzInterCC(A,B)(B,A)\tkzGetPoints{C}{D} + \tkzDrawPoint[color=black](C) + \tkzDrawCircle[dashed](A,B) + \tkzDrawCircle[dashed](B,A) + \tkzCompass[color=red](A,C) + \tkzCompass[color=red](B,C) + \tkzDrawPolygon(A,B,C) + \tkzMarkSegments[mark=s|](A,C B,C) + \tkzLabelPoints[](A,B) + \tkzLabelPoint[above](C){$C$} +\end{tikzpicture} +\end{tkzexample} + +\subsubsection{Example a mediator} + +\begin{tkzexample}[latex=7cm,small] +\begin{tikzpicture}[scale=.5] + \tkzDefPoint(0,0){A} + \tkzDefPoint(2,2){B} + \tkzDrawCircle[color=blue](B,A) + \tkzDrawCircle[color=blue](A,B) + \tkzInterCC(B,A)(A,B)\tkzGetPoints{M}{N} + \tkzDrawLine(A,B) + \tkzDrawPoints(M,N) + \tkzDrawLine[color=red](M,N) +\end{tikzpicture} +\end{tkzexample} + +\subsubsection{An isosceles triangle.} + +\begin{tkzexample}[latex=7cm,small] +\begin{tikzpicture}[rotate=120,scale=.75] + \tkzDefPoint(1,2){A} + \tkzDefPoint(4,0){B} + \tkzInterCC[R](A,4cm)(B,4cm) + \tkzGetPoints{C}{D} + \tkzDrawCircle[R,dashed](A,4 cm) + \tkzDrawCircle[R,dashed](B,4 cm) + \tkzCompass[color=red](A,C) + \tkzCompass[color=red](B,C) + \tkzDrawPolygon(A,B,C) + \tkzDrawPoints[color=blue](A,B,C) + \tkzMarkSegments[mark=s|](A,C B,C) + \tkzLabelPoints[](A,B) + \tkzLabelPoint[above](C){$C$} +\end{tikzpicture} +\end{tkzexample} + + +\subsubsection{Segment trisection} + The idea here is to divide a segment with a ruler and a compass into three segments of equal length. + +\begin{tkzexample}[latex=9cm,small] +\begin{tikzpicture}[scale=.8] + \tkzDefPoint(0,0){A} + \tkzDefPoint(3,2){B} + \tkzInterCC(A,B)(B,A) + \tkzGetPoints{C}{D} + \tkzInterCC(D,B)(B,A) + \tkzGetPoints{A}{E} + \tkzInterCC(D,B)(A,B) + \tkzGetPoints{F}{B} + \tkzInterLC(E,F)(F,A) + \tkzGetPoints{D}{G} + \tkzInterLL(A,G)(B,E) + \tkzGetPoint{O} + \tkzInterLL(O,D)(A,B) + \tkzGetPoint{J} + \tkzInterLL(O,F)(A,B) + \tkzGetPoint{I} + \tkzDrawCircle(D,A) + \tkzDrawCircle(A,B) + \tkzDrawCircle(B,A) + \tkzDrawCircle(F,A) + \tkzDrawSegments[color=red](O,G + O,B O,D O,F) + \tkzDrawPoints(A,B,D,E,F,G,I,J) + \tkzLabelPoints(A,B,D,E,F,G,I,J) + \tkzDrawSegments[blue](A,B B,D A,D% + A,F F,G E,G B,E) + \tkzMarkSegments[mark=s|](A,I I,J J,B) +\end{tikzpicture} +\end{tkzexample} + +\subsubsection{Angle trisection} + +\begin{tkzexample}[latex=7cm,small] +\begin{tikzpicture} + \tikzset{arc/.style={color=gray,style=dashed}} + \tkzDefPoints{0/0/a,0/5/I,5/0/J} + \tkzDrawArc[angles](O,I)(0,90) + \tkzDrawArc[angles,/tikz/arc](I,O)(90,180) + \tkzDrawArc[angles,/tikz/arc](J,O)(-90,0) + \tkzInterCC(O,I)(I,O)\tkzGetPoints{B}{C} + \tkzInterCC(O,I)(J,O)\tkzGetPoints{D}{A} + \tkzInterCC(I,O)(J,O)\tkzGetPoints{L}{K} + \tkzDrawPoints(A,B,K) + \foreach \point in {I,A,B,J,K}{% + \tkzDrawSegment(O,\point)} +\end{tikzpicture} +\end{tkzexample} + + +\subsubsection{with the option \tkzimp{with nodes}} +\begin{tkzexample}[latex=6cm,small] +\begin{tikzpicture}[scale=.5] + \tkzDefPoints{0/0/a,0/5/B,5/0/C} + \tkzDefPoint(54:5){F} + \tkzDrawCircle[color=gray](A,C) + \tkzInterCC[with nodes](A,A,C)(C,B,F) + \tkzGetPoints{a}{e} + \tkzInterCC(A,C)(a,e) \tkzGetFirstPoint{b} + \tkzInterCC(A,C)(b,a) \tkzGetFirstPoint{c} + \tkzInterCC(A,C)(c,b) \tkzGetFirstPoint{d} + \tkzDrawPoints(a,b,c,d,e) + \tkzDrawPolygon[color=red](a,b,c,d,e) + \foreach \vertex/\num in {a/36,b/108,c/180, + d/252,e/324}{% + \tkzDrawPoint(\vertex) + \tkzLabelPoint[label=\num:$\vertex$](\vertex){} + \tkzDrawSegment[color=gray,style=dashed](A,\vertex) + } +\end{tikzpicture} +\end{tkzexample} + + \endinput + diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-lines.tex b/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-lines.tex new file mode 100644 index 00000000000..6ae71f7cb5f --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-lines.tex @@ -0,0 +1,623 @@ +\section{The straight lines} + +It is of course essential to draw straight lines, but before this can be done, it is necessary to be able to define certain particular lines such as mediators, bisectors, parallels or even perpendiculars. The principle is to determine two points on the straight line. + + +\subsection{Definition of straight lines} + +\begin{NewMacroBox}{tkzDefLine}{\oarg{local options}\parg{pt1,pt2} ou \parg{pt1,pt2,pt3}} +The argument is a list of two or three points. Depending on the case, the macro defines one or two points necessary to obtain the line sought. Either the macro \tkzcname{tkzGetPoint} or the macro \tkzcname{tkzGetPoints} must be used. + +\medskip +\begin{tabular}{lll} +\toprule +options & default & definition \\ +\midrule +\TOline{mediator}{}{mediator. Two points are defined} +\TOline{perpendicular=through\ldots}{}{perpendicular to a straight line passing through a point} +\TOline{orthogonal=through\ldots}{}{see above } +\TOline{parallel=through\ldots}{}{parallel to a straight line passing through a point} +\TOline{bisector}{}{bisector of an angle defined by three points} +\TOline{bisector out}{}{Exterior Angle Bisector} +\TOline{tangent=at\ldots }{}{tangent to a circle at a given point} +\TOline{tangent=from\ldots}{}{tangent to a circle(O,A) passing through a given point} +\TOline{tangent=from with R\ldots}{}{tangent to a circle(O,r) passing through a given point} +\TOline{K}{1}{Coefficient for the perpendicular line} + \bottomrule +\end{tabular} +\end{NewMacroBox} + +\subsubsection{Example with \tkzname{mediator}} +\begin{tkzexample}[latex=5 cm,small] +\begin{tikzpicture}[rotate=25] + \tkzInit + \tkzDefPoints{-2/0/A,1/2/B} + \tkzDefLine[mediator](A,B) \tkzGetPoints{C}{D} + \tkzDefPointWith[linear,K=.75](C,D) \tkzGetPoint{D} + \tkzDefMidPoint(A,B) \tkzGetPoint{I} + \tkzFillPolygon[color=orange!30](A,C,B,D) + \tkzDrawSegments(A,B C,D) + \tkzMarkRightAngle(B,I,C) + \tkzDrawSegments(D,B D,A) + \tkzDrawSegments(C,B C,A) +\end{tikzpicture} +\end{tkzexample} + +\subsubsection{Example avec \tkzname{orthogonal} et \tkzname{parallel}} +\begin{tkzexample}[latex=5 cm,small] +\begin{tikzpicture} + \tkzDefPoints{-1.5/-0.25/A,1/-0.75/B,-0.7/1/C} + \tkzDrawLine(A,B) + \tkzLabelLine[pos=1.25,left](A,B){$(d_1)$} + \tkzDrawPoints(A,B,C) + \tkzDefLine[orthogonal=through C](B,A) \tkzGetPoint{c} + \tkzDrawLine(C,c) + \tkzLabelLine[pos=1.25,left](C,c){$(\delta)$} + \tkzInterLL(A,B)(C,c) \tkzGetPoint{I} + \tkzMarkRightAngle(C,I,B) + \tkzDefLine[parallel=through C](A,B) \tkzGetPoint{c'} + \tkzDrawLine(C,c') + \tkzLabelLine[pos=1.25,left](C,c'){$(d_2)$} + \tkzMarkRightAngle(I,C,c') +\end{tikzpicture} +\end{tkzexample} + + +\newpage +\subsubsection{An envelope} +Based on a figure from O. Reboux with pst-eucl by D Rodriguez. + +\begin{tkzexample}[vbox,small] +\begin{tikzpicture}[scale=1] + \tkzInit[xmin=-6,ymin=-6,xmax=6,ymax=6] + \tkzClip + \tkzDefPoint(0,0){O} + \tkzDefPoint(132:4){A} + \tkzDefPoint(5,0){B} + \foreach \ang in {5,10,...,360}{% + \tkzDefPoint(\ang:5){M} + \tkzDefLine[mediator](A,M) + \tkzDrawLine[color=magenta,add= 4 and 4](tkzFirstPointResult,tkzSecondPointResult)} +\end{tikzpicture} +\end{tkzexample} + +\subsubsection{A parable} +Based on a figure from O. Reboux with pst-eucl by D Rodriguez. +It is not necessary to name the two points that define the mediator. + +\begin{tkzexample}[vbox,small] +\begin{tikzpicture}[scale=1.25] + \tkzInit[xmin=-6,ymin=-6,xmax=6,ymax=6] + \tkzClip + \tkzDefPoint(0,0){O} + \tkzDefPoint(132:5){A} + \tkzDefPoint(4,0){B} + \foreach \ang in {5,10,...,360}{% + \tkzDefPoint(\ang:4){M} + \tkzDefLine[mediator](A,M) + \tkzDrawLine[color=magenta, + add= 4 and 4](tkzFirstPointResult,tkzSecondPointResult)} + \end{tikzpicture} +\end{tkzexample} + +\subsubsection{Drawing a tangent option \tkzimp{from with R} and \tkzimp{at}} + +\begin{tkzexample}[latex=7cm,small] + \begin{tikzpicture}[scale=.5] + \tkzDefPoint(0,0){O} + \tkzDefPoint(6,6){E} + \tkzDefRandPointOn[circle=center O radius 4cm] + \tkzGetPoint{A} + \tkzDefRandPointOn[circle=center O radius 4cm] + \tkzGetPoint{B} + \tkzDrawSegments(O,A O,B) + \tkzDrawCircle(O,A) + \tkzDefTangent[from with R=E](O,4cm) + \tkzGetSecondPoint{k} + \tkzDefTangent[at=A](O) + \tkzGetPoint{h} + \tkzDrawPoints(E) + \tkzDrawLine[add = .5 and .5](A,h) + \tkzDrawLine[add = .5 and .5](E,k) + \tkzMarkRightAngle[fill=red!30](O,A,h) + \end{tikzpicture} +\end{tkzexample} + + + +\subsubsection{Drawing a tangent option \tkzimp{from}} + +\begin{tkzexample}[latex=7cm,small] + \begin{tikzpicture}[scale=.5] + \tkzDefPoint(0,0){B} + \tkzDefPoint(0,8){A} + \tkzDefSquare(A,B) + \tkzGetPoints{C}{D} + \tkzDrawSquare(A,B) + \tkzClipPolygon(A,B,C,D) + \tkzDefPoint(4,8){F} + \tkzDefPoint(4,0){E} + \tkzDefPoint(4,4){Q} + \tkzFillPolygon[color = green](A,B,C,D) + \tkzDrawCircle[fill = orange](B,A) + \tkzDrawCircle[fill = purple](E,B) + \tkzDefTangent[from=B](F,A) + \tkzInterLL(F,tkzFirstPointResult)(C,D) + \tkzInterLL(A,tkzPointResult)(F,E) + \tkzDrawCircle[fill = yellow](tkzPointResult,Q) + \tkzDefPointBy[projection= onto B--A](tkzPointResult) + \tkzDrawCircle[fill = blue!50!black](tkzPointResult,A) +\end{tikzpicture} +\end{tkzexample} + + +\section{Drawing, naming the lines} + +The following macros are simply used to draw, name lines + + +\subsection{Draw a straight line} + +To draw a normal straight line, just give a couple of points. You can use the \tkzname{add} option to extend the line.( This option is due to \tkzimp{Mark Wibrow} ). + +In the special case of lines defined in a triangle, the number of arguments is a list of three points (the vertices of the triangle). The second point is where the line will come from. The first and last points determine the target segment. The old method has therefore been slightly modified. So for \tkzcname{tkzDrawMedian}, instead of |(A,B)(C)| you have to write |(B,C,A)| where C is the point that will be linked to the middle of the segment |[A,B]|. + + +\begin{tkzltxexample}[] + \tikzset{% + add/.style args={#1 and #2}{ + to path={% + ($(\tikztostart)!-#1!(\tikztotarget)$)--($(\tikztotarget)!-#2!(\tikztostart)$)% + \tikztonodes}}} +\end{tkzltxexample} + + \begin{NewMacroBox}{tkzDrawLine}{\oarg{local options}\parg{pt1,pt2} ou \parg{pt1,pt2,pt3} } +The arguments are a list of two points or three points. + +\begin{tabular}{lll} +\toprule +options & default & definition \\ +\midrule +\TOline{median}{none}{ [median](A,B,C) median from B} +\TOline{altitude}{none}{[altitude](C,A,B) altitude from A} +\TOline{bisector}{none}{[bisector](B,C,A) bisector from C } +\TOline{none}{none}{ draw the straight line A,B } +\TOline{add= nb1 and nb2}{.2 and .2}{Extends the segment} + \bottomrule +\end{tabular} + +\medskip +\tkzname{add} defines the length of the line passing through the points pt1 and pt2. Both numbers are percentages. The styles of \TIKZ\ are accessible for plots +\end{NewMacroBox} + +\subsubsection{Examples of right-hand plots with \tkzname{add}} + +\begin{tkzexample}[latex=5cm,small] +\begin{tikzpicture} + \tkzInit[xmin=-2,xmax=3,ymin=-2.25,ymax=2.25] + \tkzClip[space=.25] + \tkzDefPoint(0,0){A} \tkzDefPoint(2,0.5){B} + \tkzDefPoint(0,-1){C}\tkzDefPoint(2,-0.5){D} + \tkzDefPoint(0,1){E} \tkzDefPoint(2,1.5){F} + \tkzDefPoint(0,-2){G} \tkzDefPoint(2,-1.5){H} + \tkzDrawLine(A,B) \tkzDrawLine[add = 0 and .5](C,D) + \tkzDrawLine[add = 1 and 0](E,F) + \tkzDrawLine[add = 0 and 0](G,H) + \tkzDrawPoints(A,B,C,D,E,F,G,H) + \tkzLabelPoints(A,B,C,D,E,F,G,H) +\end{tikzpicture} +\end{tkzexample} + +\newpage +It is possible to draw several lines, but with the same options. +\begin{NewMacroBox}{tkzDrawLines}{\oarg{local options}\parg{pt1,pt2 pt3,pt4 ...}} +Arguments are a list of pairs of points separated by spaces. The styles of \TIKZ\ are available for the draws. +\end{NewMacroBox} + +\subsubsection{Example with \tkzcname{tkzDrawLines}} + +\begin{tkzexample}[latex=8cm,small] +\begin{tikzpicture} + \tkzDefPoint(0,0){A} + \tkzDefPoint(2,0){B} + \tkzDefPoint(1,2){C} + \tkzDefPoint(3,2){D} + \tkzDrawLines(A,B C,D A,C B,D) + \tkzLabelPoints(A,B,C,D) +\end{tikzpicture} +\end{tkzexample} + +\subsubsection{Example with the option \tkzname{add}} +\begin{tkzexample}[latex=8cm,small] +\begin{tikzpicture}[scale=.5] + \tkzDefPoint(0,0){O} + \tkzDefPoint(3,1){I} + \tkzDefPoint(1,4){J} + \tkzDefLine[bisector](I,O,J) + \tkzGetPoint{i} + \tkzDefLine[bisector out](I,O,J) + \tkzGetPoint{j} + \tkzDrawLines[add = 1 and .5,color=red](O,I O,J) + \tkzDrawLines[add = 1 and .5,color=blue](O,i O,j) +\end{tikzpicture} +\end{tkzexample} + +\subsubsection{Medians in a triangle} + +\begin{tkzexample}[latex=7 cm,small] +\begin{tikzpicture}[scale=1.25] + \tkzDefPoint(0,0){A} \tkzDefPoint(4,0){B} + \tkzDefPoint(1,3){C} \tkzDrawPolygon(A,B,C) + \tkzSetUpLine[color=blue] + \tkzDrawLine[median](B,C,A) + \tkzDrawLine[median](C,A,B) + \tkzDrawLine[median](A,B,C) +\end{tikzpicture} +\end{tkzexample} + +\subsubsection{Altitudes in a triangle} + +\begin{tkzexample}[latex=7 cm,small] +\begin{tikzpicture}[scale=1.25] + \tkzDefPoint(0,0){A} \tkzDefPoint(4,0){B} + \tkzDefPoint(1,3){C} \tkzDrawPolygon(A,B,C) + \tkzSetUpLine[color=magenta] + \tkzDrawLine[altitude](B,C,A) + \tkzDrawLine[altitude](C,A,B) + \tkzDrawLine[altitude](A,B,C) +\end{tikzpicture} +\end{tkzexample} + +\subsubsection{Bisectors in a triangle} +You have to give the angles in a straight line. + +\begin{tkzexample}[latex=7 cm,small] +\begin{tikzpicture}[scale=1.5] + \tkzDefPoint(0,0){A} \tkzDefPoint(4,0){B} + \tkzDefPoint(1,3){C} \tkzDrawPolygon(A,B,C) + \tkzSetUpLine[color=purple] + \tkzDrawLine[bisector](B,C,A) + \tkzDrawLine[bisector](C,A,B) + \tkzDrawLine[bisector](A,B,C) +\end{tikzpicture} +\end{tkzexample} + + +\subsection{Add labels on a straight line \tkzcname{tkzLabelLine}} + + \begin{NewMacroBox}{tkzLabelLine}{\oarg{local options}\parg{pt1,pt2}\marg{label}} + + \begin{tabular}{lll} + \toprule + arguments & default & definition \\ + \midrule + \TAline{label}{}{example \tkzcname{tkzLabelLine(A,B)\{$\delta$\}}} + \bottomrule + \end{tabular} + +\medskip +\begin{tabular}{lll} +\toprule +options & default & definition \\ +\midrule +\TOline{pos}{.5}{pos est une option de \TIKZ\ mais essentielle dans ce cas} + \bottomrule +\end{tabular} + +\medskip +As an option, and in addition to the \tkzname{pos}, you can use all styles of \TIKZ\ , especially the placement with \tkzname{above}, \tkzname{right}, \dots + + \end{NewMacroBox} + +\subsubsection{Example with \tkzcname{tkzLabelLine}} +An important option is \tkzname{pos}, it's the one that allows you to place the label along the right. The value of \tkzname{pos} can be greater than 1 or negative. + +\begin{tkzexample}[latex=6cm,small] +\begin{tikzpicture} + \tkzDefPoints{0/0/A,3/0/B,1/1/C} + \tkzDefLine[perpendicular=through C,K=-1](A,B) + \tkzGetPoint{c} + \tkzDrawLines(A,B C,c) + \tkzLabelLine[pos=1.25,blue,right](C,c){$(\delta)$} + \tkzLabelLine[pos=-0.25,red,left](C,c){encore $(\delta)$} +\end{tikzpicture} +\end{tkzexample} + +\section{Draw, Mark segments} + +There is, of course, a macro to simply draw a segment (it would be possible, as for a half line, to create a style with \tkzcname{add}) . + +\subsection{Draw a segment \tkzcname{tkzDrawSegment}} + + + \begin{NewMacroBox}{tkzDrawSegment}{\oarg{local options}\parg{pt1,pt2}} +The arguments are a list of two points. The styles of \TIKZ are available for the drawings + +\medskip +\begin{tabular}{lll} +argument & example & definition \\ +\midrule +\TAline{(pt1,pt2)}{(A,B)}{draw the segment $[A,B]$} +\bottomrule +\end{tabular} + +\medskip +\begin{tabular}{lll} +options & exemple & définition \\ +\midrule +\TOline{options de TikZ}{}{all TikZ options are valid.} +\TOline{add}{}{add = kl and kr ; allows the segment to be extended to the left and right} +\TOline{dim}{}{dim = label,dim,option ; allows you to add dimensions to a figure.} +\bottomrule +\end{tabular} + +This is of course equivalent to \tkzcname{draw (A)--(B);} +\end{NewMacroBox} + +\subsubsection{Example with point references} + +\begin{tkzexample}[latex=6cm,small] +\begin{tikzpicture}[scale=1.5] + \tkzDefPoint(0,0){A} + \tkzDefPoint(2,1){B} + \tkzDrawSegment[color=red,thin](A,B) + \tkzDrawPoints(A,B) + \tkzLabelPoints(A,B) +\end{tikzpicture} +\end{tkzexample} + +\subsubsection{Example of extending an option segment \tkzimp{add}} + +\begin{tkzexample}[latex=7cm,small] + \begin{tikzpicture} + \tkzDefPoints{0/0/A,6/0/B,0.8/4/C} + \tkzDefTriangleCenter[euler](A,B,C) + \tkzGetPoint{E} + \tkzDrawCircle[euler,red](A,B,C) + \tkzDrawLines[add=.5 and .5](A,B A,C B,C) + \tkzDrawPoints(A,B,C,E) + \tkzLabelPoints(A,B,C,E) + \end{tikzpicture} +\end{tkzexample} + +\subsubsection{Example of adding dimensions (technical figure) option \tkzimp{dim}} + \begin{tkzexample}[latex=7cm,small] + \begin{tikzpicture}[scale=2] + \pgfkeys{/pgf/number format/.cd,fixed,precision=2} + % Define the first two points + \tkzDefPoint(0,0){A} + \tkzDefPoint(3,0){B} + \tkzDefPoint(1,1){C} + % Draw the triangle and the points + \tkzDrawPolygon(A,B,C) + \tkzDrawPoints(A,B,C) + % Label the sides + \tkzCalcLength[cm](A,B)\tkzGetLength{ABl} + \tkzCalcLength[cm](B,C)\tkzGetLength{BCl} + \tkzCalcLength[cm](A,C)\tkzGetLength{ACl} + % add dim + \tkzDrawSegment[dim={\pgfmathprintnumber\BCl, + 6pt,transform shape}](C,B) + \tkzDrawSegment[dim={\pgfmathprintnumber\ACl, + 6pt,transform shape}](A,C) + \tkzDrawSegment[dim={\pgfmathprintnumber\ABl, + -6pt,transform shape}](A,B) + \end{tikzpicture} + \end{tkzexample} + +\bigskip +If the options are the same we can plot several segments with the same macro. + +\newpage +\subsection{Drawing segments \tkzcname{tkzDrawSegments}} + \hypertarget{tdss}{} + + \begin{NewMacroBox}{tkzDrawSegments}{\oarg{local options}\parg{pt1,pt2 pt3,pt4 ...}} +The arguments are a two-point couple list. The styles of \TIKZ are available for the plots +\end{NewMacroBox} + +\begin{tkzexample}[latex=6cm,small] +\begin{tikzpicture} + \tkzInit[xmin=-1,xmax=3,ymin=-1,ymax=2] + \tkzClip[space=1] + \tkzDefPoint(0,0){A} + \tkzDefPoint(2,1){B} + \tkzDefPoint(3,0){C} + \tkzDrawSegments(A,B B,C) + \tkzDrawPoints(A,B,C) + \tkzLabelPoints(A,C) + \tkzLabelPoints[above](B) +\end{tikzpicture} +\end{tkzexample} + +\subsubsection{Place an arrow on segment} +\begin{tkzexample}[latex=6cm,small] +\begin{tikzpicture} + \tikzset{ + arr/.style={postaction=decorate, + decoration={markings, + mark=at position .5 with {\arrow[thick]{#1}} + }}} + \tkzDefPoint(0,0){A} + \tkzDefPoint(4,0){B} + \tkzDrawSegments[arr=stealth](A,B) + \tkzDrawPoints(A,B) +\end{tikzpicture} +\end{tkzexample} + +\subsection{Mark a segment \tkzcname{tkzMarkSegment}} +\hypertarget{tms}{} + + \begin{NewMacroBox}{tkzMarkSegment}{\oarg{local options}\parg{pt1,pt2}} +The macro allows you to place a mark on a segment. + +\medskip +\begin{tabular}{lll} +\toprule +options & default & definition \\ +\midrule +\TOline{pos}{.5}{position of the mark} +\TOline{color}{black}{color of the mark} +\TOline{mark}{none}{choice of the mark} +\TOline{size}{4pt}{size of the mark} +\bottomrule +\end{tabular} + +Possible marks are those provided by \TIKZ, but other marks have been created based on an idea by Yves Combe. +\end{NewMacroBox} + +\subsubsection{Several marks } +\begin{tkzexample}[latex=6cm,small] +\begin{tikzpicture} + \tkzDefPoint(2,1){A} + \tkzDefPoint(6,4){B} + \tkzDrawSegment(A,B) + \tkzMarkSegment[color=brown,size=2pt, + pos=0.4, mark=z](A,B) + \tkzMarkSegment[color=blue, + pos=0.2, mark=oo](A,B) + \tkzMarkSegment[pos=0.8, + mark=s,color=red](A,B) +\end{tikzpicture} +\end{tkzexample} + +\subsubsection{Use of \tkzname{mark}} +\begin{tkzexample}[latex=6cm,small] +\begin{tikzpicture} + \tkzDefPoint(2,1){A} + \tkzDefPoint(6,4){B} + \tkzDrawSegment(A,B) + \tkzMarkSegment[color=gray, + pos=0.2,mark=s|](A,B) + \tkzMarkSegment[color=gray, + pos=0.4,mark=s||](A,B) + \tkzMarkSegment[color=brown, + pos=0.6,mark=||](A,B) + \tkzMarkSegment[color=red, + pos=0.8,mark=|||](A,B) +\end{tikzpicture} +\end{tkzexample} + + +\subsection{Marking segments \tkzcname{tkzMarkSegments}} +\hypertarget{tmss}{} + +\begin{NewMacroBox}{tkzMarkSegments}{\oarg{local options}\parg{pt1,pt2 pt3,pt4 ...}} +Arguments are a list of pairs of points separated by spaces. The styles of \TIKZ\ are available for plots. +\end{NewMacroBox} + +\subsubsection{Marques pour un triangle isocèle} +\begin{tkzexample}[latex=6cm,small] +\begin{tikzpicture}[scale=1] + \tkzDefPoints{0/0/O,2/2/A,4/0/B,6/2/C} + \tkzDrawSegments(O,A A,B) + \tkzDrawPoints(O,A,B) + \tkzDrawLine(O,B) + \tkzMarkSegments[mark=||,size=6pt](O,A A,B) +\end{tikzpicture} +\end{tkzexample} + +\subsection{Another marking} + +\begin{tkzexample}[latex=7cm,small] + \begin{tikzpicture}[scale=1] + \tkzDefPoint(0,0){A}\tkzDefPoint(3,2){B} + \tkzDefPoint(4,0){C}\tkzDefPoint(2.5,1){P} + \tkzDrawPolygon(A,B,C) + \tkzDefEquilateral(A,P) \tkzGetPoint{P'} + \tkzDefPointsBy[rotation=center A angle 60](P,B){P',C'} + \tkzDrawPolygon(A,P,P') + \tkzDrawPolySeg(P',C',A,P,B) + \tkzDrawSegment(C,P) + \tkzDrawPoints(A,B,C,C',P,P') + \tkzMarkSegments[mark=s|,size=6pt, + color=blue](A,P P,P' P',A) + \tkzMarkSegments[mark=||,color=orange](B,P P',C') + \tkzLabelPoints(A,C) \tkzLabelPoints[below](P) + \tkzLabelPoints[above right](P',C',B) +\end{tikzpicture} +\end{tkzexample} + +\newpage +\hypertarget{tls}{} + \begin{NewMacroBox}{tkzLabelSegment}{\oarg{local options}\parg{pt1,pt2}\marg{label}} +This macro allows you to place a label along a segment or a line. The options are those of \TIKZ\ for example \tkzname{pos} + +\medskip +\begin{tabular}{lll} +argument & example & definition \\ +\midrule +\TAline{label}{\tkzcname{tkzLabelSegment(A,B)\{$5$\}}}{label text} +\TAline{(pt1,pt2)}{(A,B)}{label along $[A,B]$} +\bottomrule +\end{tabular} + + +\medskip +\begin{tabular}{lll} +options & default & definition \\ +\midrule +\TOline{pos}{.5}{label's position} +\end{tabular} +\end{NewMacroBox} + + \subsubsection{Labels multiples} +\begin{tkzexample}[latex=7 cm,small] +\begin{tikzpicture} +\tkzInit +\tkzDefPoint(0,0){A} +\tkzDefPoint(6,0){B} +\tkzDrawSegment(A,B) +\tkzLabelSegment[above,pos=.8](A,B){$a$} +\tkzLabelSegment[below,pos=.2](A,B){$4$} +\end{tikzpicture} +\end{tkzexample} + +\subsubsection{Labels and right-angled triangle} + +\begin{tkzexample}[latex=7cm,small] +\begin{tikzpicture}[rotate=-60] +\tikzset{label seg style/.append style = {% + color = red, + }} +\tkzDefPoint(0,1){A} +\tkzDefPoint(2,4){C} +\tkzDefPointWith[orthogonal normed,K=7](C,A) +\tkzGetPoint{B} +\tkzDrawPolygon[green!60!black](A,B,C) +\tkzDrawLine[altitude,dashed,color=magenta](B,C,A) +\tkzGetPoint{P} +\tkzLabelPoint[left](A){$A$} +\tkzLabelPoint[right](B){$B$} +\tkzLabelPoint[above](C){$C$} +\tkzLabelPoint[below](P){$P$} +\tkzLabelSegment[](B,A){$c$} +\tkzLabelSegment[swap](B,C){$a$} +\tkzLabelSegment[swap](C,A){$b$} +\tkzMarkAngles[size=1cm, + color=cyan,mark=|](C,B,A A,C,P) +\tkzMarkAngle[size=0.75cm, + color=orange,mark=||](P,C,B) +\tkzMarkAngle[size=0.75cm, + color=orange,mark=||](B,A,C) +\tkzMarkRightAngles[german](A,C,B B,P,C) +\end{tikzpicture} +\end{tkzexample} + +\hypertarget{tlss}{} + \begin{NewMacroBox}{tkzLabelSegments}{\oarg{local options}\parg{pt1,pt2 pt3,pt4 ...}} +The arguments are a two-point couple list. The styles of \TIKZ\ are available for plotting. +\end{NewMacroBox} + +\subsubsection{Labels for an isosceles triangle} + +\begin{tkzexample}[latex=6cm,small] +\begin{tikzpicture}[scale=1] + \tkzDefPoints{0/0/O,2/2/A,4/0/B,6/2/C} + \tkzDrawSegments(O,A A,B) + \tkzDrawPoints(O,A,B) + \tkzDrawLine(O,B) + \tkzLabelSegments[color=red,above=4pt](O,A A,B){$a$} +\end{tikzpicture} +\end{tkzexample} +\endinput
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-main.tex b/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-main.tex new file mode 100644 index 00000000000..49e8abe71f1 --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-main.tex @@ -0,0 +1,165 @@ +% !TEX TS-program = lualatex +% encoding : utf8 +% doc de tkz-euclide.sty +% Created by Alain Matthes on 2020-01-02. +% Copyright (C) 2020 Alain Matthes +% +% This file may be distributed and/or modified +% +% 1. under the LaTeX Project Public License , either version 1.3 +% of this license or (at your option) any later version and/or +% 2. under the GNU Public License. +% +% See the file doc/generic/pgf/licenses/LICENSE for more details.% +% See http://www.latex-project.org/lppl.txt for details. + +% TKZdoc-euclide-main is the french doc of tkz-euclide +\documentclass[DIV = 14, + fontsize = 10, + headinclude = false, + index = totoc, + footinclude = false, + twoside, + headings = small + ]{tkz-doc} +\usepackage{etoc} +\gdef\tkznameofpack{tkz-euclide} +\gdef\tkzversionofpack{3.02c} +\gdef\tkzdateofpack{2020/02/06} +\gdef\tkznameofdoc{doc-tkz-euclide} +\gdef\tkzversionofdoc{3.02c} +\gdef\tkzdateofdoc{2020/02/06} +\gdef\tkzauthorofpack{Alain Matthes} +\gdef\tkzadressofauthor{} +\gdef\tkznamecollection{AlterMundus} +\gdef\tkzurlauthor{} +\gdef\tkzengine{lualatex} +\gdef\tkzurlauthorcom{http://altermundus.fr} +% -- Packages --------------------------------------------------- +\usepackage[dvipsnames,svgnames]{xcolor} +\usepackage{calc} +\usepackage{tkz-euclide} +\usepackage[colorlinks]{hyperref} +\hypersetup{ + linkcolor=BrickRed, + citecolor=Green, + filecolor=Mulberry, + urlcolor=NavyBlue, + menucolor=BrickRed, + runcolor=Mulberry, + linkbordercolor=BrickRed, + citebordercolor=Green, + filebordercolor=Mulberry, + urlbordercolor=NavyBlue, + menubordercolor=BrickRed, + runbordercolor=Mulberry, + pdfsubject={Euclidean Geometry}, + pdfauthor={\tkzauthorofpack}, + pdftitle={\tkznameofpack}, + pdfcreator={\tkzengine} +} +\usepackage{tkzexample} +\usepackage{mathtools} +\usepackage{unicode-math} +\usepackage{fourier-otf} +\setmainfont[Ligatures=TeX]{TeX Gyre Pagella} +\setmathfont{TeX Gyre Pagella Math} +\usepackage{datetime,multicol,lscape} +\usepackage[english]{babel} +\usepackage[autolanguage]{numprint} +\usepackage{ulem} +\usepackage{microtype} +\usepackage{array,multirow,multido,booktabs} +\usepackage{shortvrb,fancyvrb} +\renewcommand{\labelitemi}{\lefthand} +\AtBeginDocument{\MakeShortVerb{\|}} % link to shortvrb +\pdfcompresslevel=9 +\setlength\parindent{0pt} +\RequirePackage{makeidx} +%\@twocolumnfalse +\makeindex +% \def\tkzref{\arabic{section}-\arabic{subsection}-\arabic{subsubsection}} +% \renewenvironment{tkzexample}[1][]{% +% \tkz@killienc \VerbatimOut{tkzeuclide-\tkzref.tex}% +% }{% +% \endVerbatimOut +% } +%<---------------------------------------------------------------------------> +\begin{document} + +\author{\tkzauthorofpack} +\title{\tkznameofpack} +\date{\today} +\clearpage +\thispagestyle{empty} +\maketitle + +\clearpage +\tkzSetUpColors[background=white,text=darkgray] + +\let\rmfamily\ttfamily +\nameoffile{\tkznameofpack} +\defoffile{\lefthand\ +The \tkzname{\tkznameofpack} is a set of convenient macros for drawing in a plane ( fundamental two-dimensional object) with a Cartesian coordinate system. It handles the more classic situations in Euclidean Geometry. \tkzname{\tkznameofpack} is built on top of PGF and its associated front-end \TIKZ\ and is a (La)TeX-friendly drawing package. The aim is to provide a high-level user interface to build graphics relatively simply. It uses a Cartesian coordinate system orthogonal provided by the \tkzimp{tkz-base} package as well as tools to define the unique coordinates of points and to manipulate them. The idea is to allow you to follow step by step a construction that would be done by hand as naturally as possible.\\ +Now the package needs the version 3.0 of \TIKZ. English is not my native language so there might be some errors. +} + + + + +\presentation + +\vspace*{1cm} +\lefthand\ Firstly, I would like to thank \textbf{Till Tantau} for the beautiful LATEX package, namely \href{http://sourceforge.net/projects/pgf/}{Ti\emph{k}Z}. + +\vspace*{12pt} +\lefthand\ I received much valuable advices, remarks, corrections and examples from \tkzimp{Jean-Côme Charpentier} , \tkzimp{Josselin Noirel}, \tkzimp{Manuel Pégourié-Gonnard}, \tkzimp{Franck Pastor} , \tkzimp{David Arnold}, \tkzimp{Ulrike Fischer},\tkzimp{Stefan Kottwitz} \tkzimp{Christian Tellechea}, \tkzimp{Nicolas Kisselhoff},\tkzimp{David Arnold}, \tkzimp{Wolfgang Büchel}, \tkzimp{John Kitzmiller},\tkzimp{Dimitri Kapetas},\tkzimp{Gaétan Marris},\tkzimp{Mark Wibrow}, \tkzimp{Yve Combe} for his work on protractor, \tkzimp{Dimitri Kapetas}, \tkzimp{Gaétan Marris} and \tkzimp{Paul Gaborit} . + +\vspace*{12pt} +\lefthand\ I would also like to thank Eric Weisstein, Creator of MathWorld ~: +\href{http://mathworld.wolfram.com/about/author.html}{MathWorld} + +\vspace*{12pt} +\lefthand\ You can find some examples on my site~: +\href{http://altermundus.fr}{altermundus.fr} \hspace{2cm} under construction ! + +\vfill +Please report typos or any other comments to this documentation to ~: \href{mailto:al.ma@mac.com}{\textcolor{blue}{Alain Matthes}}. + +This file can be redistributed and/or modified under the terms of the LATEX +Project Public License Distributed from \href{http://www.ctan.org/}{CTAN}\ archives. + +\clearpage +\tableofcontents + +\clearpage \newpage + +\setlength{\parskip}{1ex plus 0.5ex minus 0.2ex} + +\include{TKZdoc-euclide-presentation} +\include{TKZdoc-euclide-installation} +\include{TKZdoc-euclide-news} +\include{TKZdoc-euclide-points} +\include{TKZdoc-euclide-pointby} +\include{TKZdoc-euclide-pointwith} +\include{TKZdoc-euclide-rnd} +\include{TKZdoc-euclide-lines} +\include{TKZdoc-euclide-triangles} +\include{TKZdoc-euclide-polygons} +\include{TKZdoc-euclide-circles} +\include{TKZdoc-euclide-intersec} +\include{TKZdoc-euclide-angles} +\include{TKZdoc-euclide-sectors} +\include{TKZdoc-euclide-arcs} +\include{TKZdoc-euclide-compass} +\include{TKZdoc-euclide-show} +\include{TKZdoc-euclide-rapporteur} +\include{TKZdoc-euclide-exemples} +\include{TKZdoc-euclide-config} +\include{TKZdoc-euclide-base} +\include{TKZdoc-euclide-FAQ} +\clearpage\newpage +\begin{multicols}{2} +\small\printindex +\end{multicols} +\end{document} diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-news.tex b/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-news.tex new file mode 100644 index 00000000000..b11a4622e08 --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-news.tex @@ -0,0 +1,42 @@ +\section{News and compatibility} + + +Some changes have been made to make the syntax more homogeneous and especially to distinguish the definition and search for coordinates from the rest, i.e. drawing, marking and labelling. +In the future, the definition macros being isolated, it will be easier to introduce a phase of coordinate calculations using \tkzimp{Lua}. + +An important novelty is the recent replacement of the \tkzNamePack{fp} package by \tkzNamePack{xfp}. This is to improve the calculations a little bit more and to make it easier to use. + + +Here are some of the changes. +\vspace{1cm} + \begin{itemize}\setlength{\itemsep}{10pt} +\item Improved code and bug fixes. +\item With \tkzimp{tkz-euclide} loads all objects, so there's no need to place. \tkzcname{usetkzobj{all}}. +\item The bounding box is now controlled in each macro (hopefully) to avoid the use of \tkzcname{tkzInit} followed by \tkzcname{tkzClip}. +\item Added macros for the bounding box: \tkzcname{tkzSaveBB} \tkzcname{tkzClipBB} and so on. +\item Logically most macros accept TikZ options. So I removed the "duplicate" options when possible; thus the "label options" option is removed. + +\item Random points are now in \tkzimp{tkz-euclide} and the macro \tkzcname{tkzGetRandPointOn} is replaced by \tkzcname{tkzDefRandPointOn}. For homogeneity reasons, the points must be retrieved with \tkzcname{tkzGetPoint}. + +\item The options \tkzimp{end} and \tkzimp{start} which allowed to give a label to a straight line are removed. You now have to use the macro \tkzcname{tkzLabelLine} + +\item Introduction of the libraries \NameLib{quotes} and \NameLib{angles} it allows to give a label to a point, even if I am not in favour of this practice. + +\item The notion of vector disappears to draw a vector just pass "->" as an option to \tkzcname{tkzDrawSegment}. +\item Many macros still exist, but are obsolete and will disappear: +\begin{itemize} + \item |\tkzDrawMedians| trace and create midpoints on the sides of a triangle. The creation and drawing separation is not respected so it is preferable to first create the coordinates of these points with |\tkzSpcTriangle[median]| and then to choose the ones you are going to draw with |\tkzDrawSegments| or |\tkzDrawLines|. + \item |\tkzDrawMedians(A,B)(C)| is now spelled |\tkzDrawMedians(A,C,B)|. This defines the median from $C$. + \item Another example |\tkzDrawTriangle[equilateral]| was handy but it is better to get the third point with |\tkzDefTriangle[equilateral]| and then draw with |\tkzDrawPolygon|. + + \item |\tkzDefRandPointOn| replaced by |\tkzGetRandPointOn| + \item now |\tkzTangent| is |\tkzDefTangent| + \item You can use |global path name| if you want find intersection but it's very slow like in TikZ. + +\end{itemize} + + +\item Appearance of the macro \tkzcname{usetkztool} which allows to load new "tools". +\end{itemize} + +\endinput
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-obj.tex b/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-obj.tex new file mode 100644 index 00000000000..413087202ae --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-obj.tex @@ -0,0 +1,29 @@ +\section{Utilisation des objets complémentaires} + +Ces objets complémentaires peuvent être des points, des segments, des droites. +Il est possible d'utiliser certains de ces objets sans charger complètement \tkzname{tkz-euclide} mais en utilisant la macro \tkzcname{usetkzobj}. Attention, il faut utiliser \tkzname{tkz-euclide} pour avoir la possibilité d'utiliser des outils comme les transformations ou encore les intersections. + +Voici la liste actuelle des objets et ceux qui sont chargés par défaut par \tkzname{tkz-base}. +\begin{NewMacroBox}{usetkzobj}{\marg{liste d'objets}} + +\begin{tabular}{lll} +options & & définition \\ +\midrule +\TAline{all} {absent} {tous les objets sont chargés} +\TAline{points}{présent}{définir, nommer, tracer des points } +\TAline{lines}{absent} {définir, nommer, tracer des droites} +\TAline{segments} {présent}{définir, nommer, tracer des segments} +\TAline{vectors} {absent}{définir, nommer, tracer des des vecteurs} +\TAline{circles} {absent}{définir, nommer, tracer des cercles} +\TAline{polygons}{absent}{définir, nommer, tracer des quadrilatères} +\TAline{arcs} {absent}{définir, nommer, tracer des arcs} +\TAline{sectors}{absent}{définir, nommer, tracer des secteurs} +\TAline{protractor}{absent}{tracer un rapporteur} +\TAline{marks}{présent}{définir, nommer, tracer des marques} +\end{tabular} + \end{NewMacroBox} + + +\subsubsection{\tkzcname{usetkzobj\{points,segments\}}} + +\endinput
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-pointby.tex b/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-pointby.tex new file mode 100644 index 00000000000..35046719d0c --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-pointby.tex @@ -0,0 +1,294 @@ +\section{Definition of points by transformation; \tkzcname{tkzDefPointBy} } +These transformations are: + +\begin{enumerate} + \item the translation; + \item l'homothety; + \item orthogonal reflection or symmetry; + \item central symmetry; + \item orthogonal projection; + \item rotation (degrees or radians); + \item inversion with respect to a circle +\end{enumerate} + +The choice of transformations is made through the options. There are two macros, one for the transformation of a single point \tkzcname{tkzDefPointBy} and the other for the transformation of a list of points \tkzcname{tkzDefPointsBy}. By default the image of $A$ is $A'$. For example, we'll write~: +\begin{tkzltxexample}[] +\tkzDefPointBy[translation= from A to A'](B) the result is in \tkzname{tkzPointResult}} +\end{tkzltxexample} + +\medskip +\begin{NewMacroBox}{tkzDefPointBy}{\oarg{local options}\parg{pt}} +The argument is a simple existing point and its image is stored in \tkzname{tkzPointResult}. If you want to keep this point then the macro \tkzcname{tkzGetPoint\{M\}} allows you to assign the name \tkzname{M} to the point. + +\begin{tabular}{lll} +\toprule +arguments & definition & examples \\ +\midrule +\TAline{pt} {existing point name} {$(A)$} +\bottomrule +\end{tabular} + +\begin{tabular}{lll} +options & & examples \\ +\midrule +\TOline{translation}{= from \#1 to \#2}{[translation=from A to B](E)} +\TOline{homothety} {= center \#1 ratio \#2}{[homothety=center A ratio .5](E)} +\TOline{reflection} {= over \#1--\#2}{[reflection=over A--B](E)} +\TOline{symmetry } {= center \#1}{[symmetry=center A](E)} +\TOline{projection }{= onto \#1--\#2}{[projection=onto A--B](E)} +\TOline{rotation } {= center \#1 angle \#2}{[rotation=center O angle 30](E)} +\TOline{rotation in rad}{= center \#1 angle \#2}{rotation=center O angle pi/3} +\TOline{inversion}{= center \#1 through \#2}{[inversion =center O through A](E)} +\bottomrule +\end{tabular} + +The image is only defined and not drawn. +\end{NewMacroBox} + +\subsection{Orthogonal reflection or symmetry } + +\subsubsection{Example of reflection} + +\begin{tkzexample}[vbox,small] +\begin{tikzpicture}[scale=1] + \tkzInit[ymin=-4,ymax=6,xmin=-7,xmax=3] + \tkzClip + \tkzDefPoints{1.5/-1.5/C,-4.5/2/D} + \tkzDefPoint(-4,-2){O} + \tkzDefPoint(-2,-2){A} + \foreach \i in {0,1,...,4}{% + \pgfmathparse{0+\i * 72} + \tkzDefPointBy[rotation=% + center O angle \pgfmathresult](A) + \tkzGetPoint{A\i} + \tkzDefPointBy[reflection = over C--D](A\i) + \tkzGetPoint{A\i'}} + \tkzDrawPolygon(A0, A2, A4, A1, A3) + \tkzDrawPolygon(A0', A2', A4', A1', A3') + \tkzDrawLine[add= .5 and .5](C,D) +\end{tikzpicture} +\end{tkzexample} + + +\subsection{Homothety} +\subsubsection{Example of homothety and projection} + +\begin{tkzexample}[vbox,small] +\begin{tikzpicture}[scale=1.25] + \tkzInit \tkzClip + \tkzDefPoint(0,1){A} \tkzDefPoint(6,3){B} \tkzDefPoint(3,6){C} + \tkzDrawLines[add= 0 and .3](A,B A,C) + \tkzDefLine[bisector](B,A,C) \tkzGetPoint{a} + \tkzDrawLine[add=0 and 0,color=magenta!50 ](A,a) + \tkzDefPointBy[homothety=center A ratio .5](a) \tkzGetPoint{a'} + \tkzDefPointBy[projection = onto A--B](a') \tkzGetPoint{k} + \tkzDrawSegment[blue](a',k) + \tkzDrawPoints(a,a',k,A) + \tkzDrawCircle(a',k) + \tkzLabelPoints(a,a',k,A) +\end{tikzpicture} +\end{tkzexample} + + +\subsection{The projection } +\subsubsection{Example of projection} + +\begin{tkzexample}[vbox,small] +\begin{tikzpicture}[scale=1.5] + \tkzInit[xmin=-3,xmax=5,ymax=4] \tkzClip[space=.5] + \tkzDefPoint(0,0){A} + \tkzDefPoint(0,4){B} + \tkzDrawTriangle[pythagore](B,A) \tkzGetPoint{C} + \tkzDefLine[bisector](B,C,A) \tkzGetPoint{c} + \tkzInterLL(C,c)(A,B) \tkzGetPoint{D} + \tkzDrawSegment(C,D) + \tkzDrawCircle(D,A) + \tkzDefPointBy[projection=onto B--C](D) \tkzGetPoint{G} + \tkzInterLC(C,D)(D,A) \tkzGetPoints{E}{F} + \tkzDrawPoints(A,C,F) \tkzLabelPoints(A,C,F) + \tkzDrawPoints(B,D,E,G) + \tkzLabelPoints[above right](B,D,E,G) + \end{tikzpicture} + \end{tkzexample} + + + +\newpage +\subsection{Symmetry } +\subsubsection{Example of symmetry} + +\begin{tkzexample}[vbox,small] +\begin{tikzpicture}[scale=1.5] + \tkzDefPoint(0,0){O} + \tkzDefPoint(2,-1){A} + \tkzDefPoint(2,2){B} + \tkzDefPointsBy[symmetry=center O](B,A){} + \tkzDrawLine(A,A') + \tkzDrawLine(B,B') + \tkzMarkAngle[mark=s,arc=lll, + size=2 cm,mkcolor=red](A,O,B) + \tkzLabelAngle[pos=1,circle,draw, + fill=blue!10](A,O,B){$60^{\circ}$} + \tkzDrawPoints(A,B,O,A',B') + \tkzLabelPoints(A,B,O,A',B') +\end{tikzpicture} +\end{tkzexample} + + +\newpage +\subsection{Rotation } +\subsubsection{Example of rotation} + + +\begin{tkzexample}[latex=8cm,small] + \begin{tikzpicture}[scale=1] + \tkzInit + \tkzDefPoint(0,0){A} + \tkzDefPoint(5,0){B} + \tkzDrawSegment(A,B) + \tkzDefPointBy[rotation=% + center A angle 60](B) + \tkzGetPoint{C} + \tkzDefPointBy[symmetry=% + center C](A) + \tkzGetPoint{D} + \tkzDrawSegment(A,tkzPointResult) + \tkzDrawLine(B,D) + \tkzDrawArc[delta=10](A,B)(C) + \tkzDrawArc[delta=10](B,C)(A) + \tkzDrawArc[delta=10](C,D)(D) + \tkzMarkRightAngle(D,B,A) +\end{tikzpicture} +\end{tkzexample} + + +\subsection{Rotation in radian } +\subsubsection{Example of rotation in radian} + +\begin{tkzexample}[latex=8cm,small] +\begin{tikzpicture} + \tkzDefPoint["$A$" left](1,5){A} + \tkzDefPoint["$B$" right](5,2){B} + \tkzDefPointBy[rotation in rad= center A angle pi/3](B) + \tkzGetPoint{C} + + \tkzDrawSegment(A,B) + \tkzDrawPoints(A,B,C) + \tkzCompass[color=red](A,C) + \tkzCompass[color=red](B,C) + + \tkzLabelPoints(C) +\end{tikzpicture} +\end{tkzexample} + + +\newpage +\subsection{Inversion with respect to a circle } +\subsubsection{Inversion of points} + + +\begin{tkzexample}[latex=8cm,small] +\begin{tikzpicture}[scale=1.5] + \tkzDefPoint(0,0){O} + \tkzDefPoint(1,0){A} + \tkzDrawCircle(O,A) + \tkzDefPoint(-1.5,-1.5){z1} + \tkzDefPoint(0.35,0){z2} + \tkzDrawPoints[color=black, + fill=red,size=4](O,z1,z2) + \tkzDefPointBy[inversion =% + center O through A](z1) + \tkzGetPoint{Z1} + \tkzDefPointBy[inversion =% + center O through A](z2) + \tkzGetPoint{Z2} + \tkzDrawPoints[color=black, + fill=red,size=4](Z1,Z2) + \tkzDrawSegments(z1,Z1 z2,Z2) + \tkzLabelPoints(O,A,z1,z2,Z1,Z2) +\end{tikzpicture} +\end{tkzexample} + + +\subsubsection{Point Inversion: Orthogonal Circles} + +\begin{tkzexample}[latex=8cm,small] +\begin{tikzpicture}[scale=1.5] + \tkzDefPoint(0,0){O} + \tkzDefPoint(1,0){A} + \tkzDrawCircle(O,A) + \tkzDefPoint(0.5,-0.25){z1} + \tkzDefPoint(-0.5,-0.5){z2} + \tkzDefPointBy[inversion = % + center O through A](z1) + \tkzGetPoint{Z1} + \tkzCircumCenter(z1,z2,Z1) + \tkzGetPoint{c} + \tkzDrawCircle(c,Z1) + \tkzDrawPoints[color=black, + fill=red,size=4](O,z1,z2,Z1,O,A) +\end{tikzpicture} +\end{tkzexample} + +\newpage +\section{Transformation of multiple points; \tkzcname{tkzDefPointsBy} } + +Variant of the previous macro for defining multiple images. +You must give the names of the images as arguments, or indicate that the names of the images are formed from the names of the antecedents, leaving the argument empty. + +\begin{tkzltxexample}[] +\tkzDefPointsBy[translation= from A to A'](B,C){} the images are B' and C'. +\tkzDefPointsBy[translation= from A to A'](B,C){D,E} the images are D and E +\tkzDefPointsBy[translation= from A to A'](B) the image is B'. +\end{tkzltxexample} + +\begin{NewMacroBox}{tkzDefPointsBy}{\oarg{local options}\parg{list of points}\marg{list of points}} +\begin{tabular}{lll} +\toprule +arguments & exemples & \\ +\midrule +\TAline{\parg{liste de pts}\marg{list of pts}}{(A,B)\{E,F\}}{E is the image of A and F is the image of B.} \\ +\bottomrule +\end{tabular} + +\medskip +If the list of images is empty then the name of the image is the name of the antecedent to which " ' " is added. + +\medskip +\begin{tabular}{lll} +\toprule +options & & exemples \\ +\midrule +\TOline{translation = from \#1 to \#2}{}{[translation=from A to B](E)\{\}} +\TOline{homothety = center \#1 ratio \#2}{}{[homothety=center A ratio .5](E)\{F\}} +\TOline{reflection = over \#1--\#2}{}{[reflection=over A--B](E)\{F\}} +\TOline{symmetry = center \#1}{}{[symmetry=center A](E)\{F\}} +\TOline{projection = onto \#1--\#2}{}{[projection=onto A--B](E)\{F\}} +\TOline{rotation = center \#1 angle \#2}{}{[rotation=center angle 30](E)\{F\}} +\TOline{rotation in rad = center \#1 angle \#2}{}{par exemple angle pi/3} +\bottomrule +\end{tabular} + +\medskip +The points are only defined and not drawn. +\end{NewMacroBox} + +\subsection{Example de translation} + +\begin{tkzexample}[latex=7cm,small] +\begin{tikzpicture} + \tkzDefPoint(0,0){A} \tkzDefPoint(4,2){A'} + \tkzDefPoint(3,0){B} \tkzDefPoint(1,2){C} + \tkzDefPointsBy[translation= from A to A'](B,C){} + \tkzDrawPolygon[color=blue](A,B,C) + \tkzDrawPolygon[color=red](A',B',C') + \tkzDrawPoints[color=blue](A,B,C) + \tkzDrawPoints[color=red](A',B',C') + \tkzLabelPoints(A,B,A',B') + \tkzLabelPoints[above](C,C') + \tkzDrawSegments[color = gray,->, + style=dashed](A,A' B,B' C,C') +\end{tikzpicture} +\end{tkzexample} + +\endinput diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-points.tex b/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-points.tex new file mode 100644 index 00000000000..9cea12304c8 --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-points.tex @@ -0,0 +1,870 @@ +\section{Definition of a point} + + Points can be specified in any of the following ways: +\begin{itemize} +\item Cartesian coordinates +\item Polar coordinates +\item Named points +\item Relative points +\end{itemize} + +Even if it's possible, I think it's a bad idea to work directly with coordinates. Preferable is to use named points. +A point is defined if it has a name linked to a unique pair of decimal numbers. + Let $(x,y)$ or $(a:d)$ i.e. ( $x$ abscissa, $y$ ordinate) or ($a$ angle : $d$ distance ). + This is possible because the plan has been provided with an orthonormed Cartesian coordinate system. The working axes are supposed to be (ortho)normed with unity equal to $1cm $ or something equivalent like $0.39370~in$. + Now by default if you use a grid or axes, the rectangle used is defined by the coordinate points~: $(0,0)$ et $(10,10)$. It's the macro \tkzcname{tkzInit} of the package \tkzNamePack{tkz-base} that creates this rectangle. Look at the following two codes and the result of their compilation: + +\begin{tkzexample}[latex=10cm,small] +\begin{tikzpicture} + \tkzGrid + \tkzDefPoint(0,0){O} + \tkzDrawPoint[red](O) + \tkzShowBB[line width=2pt, + orange] +\end{tikzpicture} +\end{tkzexample} + + +\begin{tkzexample}[latex=7cm,small] +\begin{tikzpicture} + \tkzDefPoint(0,0){O} + \tkzDefPoint(5,5){A} + \tkzDrawSegment[blue](O,A) + \tkzDrawPoints[red](O,A) + \tkzShowBB[line width=2pt,orange] +\end{tikzpicture} +\end{tkzexample} + + The Cartesian coordinate $(a,b)$ refers to the + point $a$ centimeters in the $x$-direction and $b$ centimeters in the + $y$-direction. + + A point in polar coordinates requires an angle $\alpha$, in degrees, + and distance from the origin, $d$. Unlike Cartesian coordinates, the + distance does not have a default dimensional unit, so one must be + supplied. The \tikz{} syntax for a point specified in polar + coordinates is $(\alpha:r\:dim)$, where {\em dim} is a dimensional + unit such as \texttt{cm}, \texttt{pt}, \texttt{in}, or any other + \TeX-based unit. Other than syntax and the required dimensional unit, + this follows usual mathematical usage. + + +\begin{minipage}[b]{0.5\textwidth} + Cartesian coordinates +\begin{tkzexample}[vbox,small] +\begin{tikzpicture}[scale=1] + \tkzInit[xmax=5,ymax=5] + \tkzDefPoints{0/0/O,1/0/I,0/1/J} + \tkzDrawXY[noticks,>=latex] + \tkzDefPoint(3,4){A} + \tkzDrawPoints(O,A) + \tkzLabelPoint(A){$A_1 (x_1,y_1)$} + \tkzShowPointCoord[xlabel=$x_1$,ylabel=$y_1$](A) + \tkzLabelPoints(O,I) + \tkzLabelPoints[left](J) + \tkzDrawPoints[shape=cross](I,J) +\end{tikzpicture} +\end{tkzexample}% +\end{minipage} +\begin{minipage}[b]{0.5\textwidth} + Polar coordinates +\begin{tkzexample}[vbox,small] +\begin{tikzpicture}[,scale=1] + \tkzInit[xmax=5,ymax=5] + \tkzDefPoints{0/0/O,1/0/I,0/1/J} + \tkzDefPoint(40:4){P} + \tkzDrawXY[noticks,>=triangle 45] + \tkzDrawSegment[dim={$r$, + 16pt,above=6pt}](O,P) + \tkzDrawPoints(O,P) + \tkzMarkAngle[mark=none,->](I,O,P) + \tkzFillAngle[fill=blue!20, + opacity=.5](I,O,P) + \tkzLabelAngle[pos=1.25](I,O,P){$\alpha$} + \tkzLabelPoint(P){$P (\alpha : r )$} + \tkzDrawPoints[shape=cross](I,J) + \tkzLabelPoints(O,I) + \tkzLabelPoints[left](J) +\end{tikzpicture} +\end{tkzexample} +\end{minipage}% + +The \tkzNameMacro{tkzDefPoint} macro is used to define a point by assigning coordinates to it. This macro is based on \tkzNameMacro{coordinate}, a macro of \TIKZ\ . It can use \TIKZ-specific options such as \IoptName{TikZ}{shift}. If calculations are required then the \tkzNamePack{xfp} package is chosen. We can use Cartesian or polar coordinates. + +\subsection{Defining a named point \tkzcname{tkzDefPoint}} + +\begin{NewMacroBox}{tkzDefPoint}{\oarg{local options}\parg{x,y}\marg{name} ou \parg{a:r}\marg{name}} + +\begin{tabular}{lll} +\toprule +arguments & défaut & définition \\ +\midrule +\TAline{(x,y)}{no default}{x et y sont deux dimensions, par défaut en cm.} +\TAline{(a:d)}{no default}{a est un angle en degré, d une dimension} +\TAline{\{name\}}{no default}{Nom attribué au point : $A$, $T_a$ ,$P1$ etc ...} +\bottomrule +\end{tabular} + +\medskip +{Les arguments obligatoires de cette macro sont deux dimensions exprimées avec des décimaux, dans le premier cas ce sont deux mesures de longueur, dans le second ce sont une mesure de longueur et la mesure d'un angle en degré} + +\medskip +\begin{tabular}{lll} +\toprule +options & default & definition \\ +\midrule +\TOline{label} {no default} {permet de placer un label à une distance prédéfinie} +\TOline{shift} {no default} {Ajoute (x,y) ou (a:d) à toutes les coordonnées} + \bottomrule +\end{tabular} + +\end{NewMacroBox} + + \subsubsection{Cartesian coordinates } + + \begin{tkzexample}[latex=7cm,small] + \begin{tikzpicture} + \tkzInit[xmax=5,ymax=5] + \tkzDefPoint(0,0){A} + \tkzDefPoint(4,0){B} + \tkzDefPoint(0,3){C} + \tkzDrawPolygon(A,B,C) + \tkzDrawPoints(A,B,C) + \end{tikzpicture} + \end{tkzexample} + + \subsubsection{Calculations with \tkzNamePack{xfp}} + + \begin{tkzexample}[latex=7cm,small] +\begin{tikzpicture}[scale=1] + \tkzInit[xmax=4,ymax=4] + \tkzGrid + \tkzDefPoint(-1+2,sqrt(4)){O} + \tkzDefPoint({3*ln(exp(1))},{exp(1)}){A} + \tkzDefPoint({4*sin(pi/6)},{4*cos(pi/6)}){B} + \tkzDrawPoints[color=blue](O,B,A) +\end{tikzpicture} +\end{tkzexample} + + +\subsubsection{Polar coordinates } + +\begin{tkzexample}[latex=7cm,small] + \begin{tikzpicture} + \foreach \an [count=\i] in {0,60,...,300} + { \tkzDefPoint(\an:3){A_\i}} + \tkzDrawPolygon(A_1,A_...,A_6) + \tkzDrawPoints(A_1,A_...,A_6) + \end{tikzpicture} +\end{tkzexample} + +\subsubsection{Calculations and coordinates} +You must follow the syntax of \tkzNamePack{fxp} here. It is always possible to go through \tkzNamePack{pgfmath} but in this case, the coordinates must be calculated before using the macro \tkzcname{tkzDefPoint}. + +\begin{tkzexample}[latex=6cm,small] + \begin{tikzpicture}[scale=.5] + \foreach \an [count=\i] in {0,2,...,358} + { \tkzDefPoint(\an:sqrt(sqrt(\an mm))){A_\i}} + \tkzDrawPoints(A_1,A_...,A_180) + \end{tikzpicture} +\end{tkzexample} + + +\subsubsection{Relative points} + +First, we can use the \tkzNameEnv{scope} environment from \TIKZ\ .. +In the following example, we have a way to define an equilateral triangle. + +\begin{tkzexample}[latex=7cm,small] +\begin{tikzpicture}[scale=1] + \tkzSetUpLine[color=blue!60] + \begin{scope}[rotate=30] + \tkzDefPoint(2,3){A} + \begin{scope}[shift=(A)] + \tkzDefPoint(90:5){B} + \tkzDefPoint(30:5){C} + \end{scope} + \end{scope} + \tkzDrawPolygon(A,B,C) +\tkzLabelPoints[above](B,C) +\tkzLabelPoints[below](A) +\tkzDrawPoints(A,B,C) +\end{tikzpicture} +\end{tkzexample} + +%<---------------------------------------------------------------------------> +\subsection{Point relative to another : \tkzcname{tkzDefShiftPoint}} +\begin{NewMacroBox}{tkzDefShiftPoint}{\oarg{Point}\parg{x,y}\marg{name} ou \parg{a:d}\marg{name}} +\begin{tabular}{lll} +arguments & default & definition \\ +\midrule +\TAline{(x,y)}{no default}{x and y are two dimensions, by default in cm.} +\TAline{(a:d)}{no default}{a is an angle in degrees, d is a dimension} + +\midrule +options & default & definition \\ + +\midrule +\TOline{[pt]} {no default} {\tkzcname{tkzDefShiftPoint}[A](0:4)\{B\}} +\bottomrule +\end{tabular} + +\end{NewMacroBox} + +\subsubsection{Isosceles triangle with \tkzcname{tkzDefShiftPoint}} +This macro allows you to place one point relative to another. This is equivalent to a translation. Here is how to construct an isosceles triangle with main vertex A and angle at vertex of $30^{\circ} $. + +\begin{tkzexample}[latex=7cm,small] +\begin{tikzpicture}[rotate=-30] + \tkzDefPoint(2,3){A} + \tkzDefShiftPoint[A](0:4){B} + \tkzDefShiftPoint[A](30:4){C} + \tkzDrawSegments(A,B B,C C,A) + \tkzMarkSegments[mark=|, + color=red](A,B A,C) + \tkzDrawPoints(A,B,C) + \tkzLabelPoints(B,C) + \tkzLabelPoints[above left](A) +\end{tikzpicture} +\end{tkzexample} + + + +\subsubsection{Equilateral triangle} +Let's see how to get an equilateral triangle (there is much simpler) + + +\begin{tkzexample}[latex=7cm,small] +\begin{tikzpicture}[scale=1] + \tkzDefPoint(2,3){A} + \tkzDefShiftPoint[A](30:4){B} + \tkzDefShiftPoint[A](-30:4){C} + \tkzDrawPolygon(A,B,C) + \tkzDrawPoints(A,B,C) + \tkzLabelPoints(B,C) + \tkzLabelPoints[above left](A) +\end{tikzpicture} +\end{tkzexample} + +\subsubsection{Parallelogram} +There's a simpler way +\begin{tkzexample}[latex=7cm,small] +\begin{tikzpicture} + \tkzDefPoint(0,0){A} + \tkzDefPoint(60:3){B} + \tkzDefShiftPointCoord[B](30:4){C} + \tkzDefShiftPointCoord[A](30:4){D} + \tkzDrawPolygon(A,...,D) + \tkzDrawPoints(A,...,D) +\end{tikzpicture} +\end{tkzexample} + +%<---------------------------------------------------------------------------> + +\subsection{Definition of multiple points : \tkzcname{tkzDefPoints}} + +\begin{NewMacroBox}{tkzDefPoints}{\oarg{local options}\marg{$x_1/y_1/n_1,x_2/y_2/n_2$, ...}} +$x_i$ et $y_i$ are the coordinates of a referenced point $n_i$ + +\begin{tabular}{lll} +\toprule +arguments & default & example \\ +\midrule +\TAline{$x_i/y_i/n_i$}{}{\tkzcname{tkzDefPoints\{0/0/O,2/2/A\}}} +\end{tabular} + +\medskip +\begin{tabular}{lll} +\toprule +options & default & definition \\ +\midrule +\TOline{label} {no default} {allows you to place a label at a predefined distance} +\TOline{shift} {no default} {Adds (x,y) or (a:d) to all coordinates} + \bottomrule +\end{tabular} + +\end{NewMacroBox} + +\subsection{Create a triangle} + +\begin{tkzexample}[latex=6cm,small] +\begin{tikzpicture}[scale=1] + \tkzDefPoints{0/0/A,4/0/B,4/3/C} + \tkzDrawPolygon(A,B,C) + \tkzDrawPoints(A,B,C) +\end{tikzpicture} +\end{tkzexample} + +\subsection{Create a square} +Note here the syntax for drawing the polygon. +\begin{tkzexample}[latex=6cm,small] +\begin{tikzpicture}[scale=1] + \tkzDefPoints{0/0/A,2/0/B,2/2/C,0/2/D} + \tkzDrawPolygon(A,...,D) + \tkzDrawPoints(A,B,C,D) +\end{tikzpicture} +\end{tkzexample} + +\newpage +\section{Special points} +The introduction of the dots was done in \tkzname{tkz-base}, the most important macro being \tkzcname{tkzDefPoint}. Here are some special points. + +%<---------------------------------------------------------------------------> +\subsection{Middle of a segment \tkzcname{tkzDefMidPoint}} +It is a question of determining the middle of a segment. + +\begin{NewMacroBox}{tkzDefMidPoint}{\parg{pt1,pt2}} +The result is in \tkzname{tkzPointResult}. We can access it with \tkzcname{tkzGetPoint}. + + \medskip +\begin{tabular}{lll} +\toprule +arguments & default & definition \\ +\midrule +\TAline{(pt1,pt2)}{no default}{pt1 and pt2 are two points} +\end{tabular} +\end{NewMacroBox} + +\subsubsection{Use of \tkzcname{tkzDefMidPoint}} +Review the use of \tkzcname{tkzDefPoint} in \NamePack{tkz-base}. +\begin{tkzexample}[latex=7cm,small] +\begin{tikzpicture}[scale=1] + \tkzDefPoint(2,3){A} + \tkzDefPoint(4,0){B} + \tkzDefMidPoint(A,B) \tkzGetPoint{C} + \tkzDrawSegment(A,B) + \tkzDrawPoints(A,B,C) + \tkzLabelPoints[right](A,B,C) +\end{tikzpicture} +\end{tkzexample} + +\subsection{Barycentric coordinates } + +$pt_1$, $pt_2$, \dots, $pt_n$ being $n$ points, they define $n$ vectors $\overrightarrow{v_1}$, $\overrightarrow{v_2}$, \dots, $\overrightarrow{v_n}$ with the origin of the referential as the common endpoint. $\alpha_1$, $\alpha_2$, +\dots $\alpha_n$ is $n$ numbers, the vector obtained by : +\begin{align*} + \frac{\alpha_1 \overrightarrow{v_1} + \alpha_2 \overrightarrow{v_2} + \cdots + \alpha_n \overrightarrow{v_n}}{\alpha_1 + + \alpha_2 + \cdots + \alpha_n} +\end{align*} +defines a single point. + +\begin{NewMacroBox}{tkzDefBarycentricPoint}{\parg{pt1=$\alpha_1$,pt2=$\alpha_2$,\ldots}} +\begin{tabular}{lll} +arguments & default & definition \\ +\midrule +\TAline{(pt1=$\alpha_1$,pt2=$\alpha_2$,\ldots)}{no default}{Each point has a assigned weight} +\bottomrule +\end{tabular} + +\medskip +You need at least two points. +\end{NewMacroBox} + + +\subsubsection{Using \tkzcname{tkzDefBarycentricPoint} with two points} +In the following example, we obtain the barycentre of points A and B with coefficients 1 and 2, in other words: +\[ + \overrightarrow{AI}= \frac{2}{3}\overrightarrow{AB} +\] + +\begin{tkzexample}[latex=7cm,small] +\begin{tikzpicture} + \tkzDefPoint(2,3){A} + \tkzDefShiftPointCoord[2,3](30:4){B} + \tkzDefBarycentricPoint(A=1,B=2) + \tkzGetPoint{I} + \tkzDrawPoints(A,B,I) + \tkzDrawLine(A,B) + \tkzLabelPoints(A,B,I) +\end{tikzpicture} +\end{tkzexample} + +\subsubsection{Using \tkzcname{tkzDefBarycentricPoint} with three points} + +This time M is simply the centre of gravity of the triangle. For reasons of simplification and homogeneity, there is also \tkzcname{tkzCentroid} +\begin{tkzexample}[latex=7cm,small] +\begin{tikzpicture}[scale=.8] + \tkzDefPoint(2,1){A} + \tkzDefPoint(5,3){B} + \tkzDefPoint(0,6){C} + \tkzDefBarycentricPoint(A=1,B=1,C=1) + \tkzGetPoint{M} + \tkzDefMidPoint(A,B) \tkzGetPoint{C'} + \tkzDefMidPoint(A,C) \tkzGetPoint{B'} + \tkzDefMidPoint(C,B) \tkzGetPoint{A'} + \tkzDrawPolygon(A,B,C) + \tkzDrawPoints(A',B',C') + \tkzDrawPoints(A,B,C,M) + \tkzDrawLines[add=0 and 1](A,M B,M C,M) + \tkzLabelPoint(M){$M$} + \tkzAutoLabelPoints[center=M](A,B,C) + \tkzAutoLabelPoints[center=M,above right](A',B',C') +\end{tikzpicture} +\end{tkzexample} + +\subsection{Internal Similitude Center} +The centres of the two homotheties in which two circles correspond are called external and internal centres of similitude. + +\begin{tkzexample}[latex=6cm,small] +\begin{tikzpicture}[scale=.75,rotate=-30] + \tkzDefPoint(0,0){O} + \tkzDefPoint(4,-5){A} + \tkzDefIntSimilitudeCenter(O,3)(A,1) + \tkzGetPoint{I} + \tkzExtSimilitudeCenter(O,3)(A,1) + \tkzGetPoint{J} + \tkzDefTangent[from with R= I](O,3 cm) + \tkzGetPoints{D}{E} + \tkzDefTangent[from with R= I](A,1 cm) + \tkzGetPoints{D'}{E'} + \tkzDefTangent[from with R= J](O,3 cm) + \tkzGetPoints{F}{G} + \tkzDefTangent[from with R= J](A,1 cm) + \tkzGetPoints{F'}{G'} + \tkzDrawCircle[R,fill=red!50,opacity=.3](O,3 cm) + \tkzDrawCircle[R,fill=blue!50,opacity=.3](A,1 cm) + \tkzDrawSegments[add = .5 and .5,color=red](D,D' E,E') + \tkzDrawSegments[add= 0 and 0.25,color=blue](J,F J,G) + \tkzDrawPoints(O,A,I,J,D,E,F,G,D',E',F',G') + \tkzLabelPoints[font=\scriptsize](O,A,I,J,D,E,F,G,D',E',F',G') +\end{tikzpicture} +\end{tkzexample} + +\clearpage \newpage +\section{Special points relating to a triangle} + +\subsection{Triangle center : \tkzcname{tkzDefTriangleCenter}} + +This macro allows you to define the center of a triangle. + + +\begin{NewMacroBox}{tkzDefTriangleCenter}{\oarg{local options}\parg{A,B,C}} +\tkzHandBomb\ Be careful, the arguments are lists of three points. This macro is used in conjunction with \tkzcname{tkzGetPoint} to get the center you are looking for. You can use \tkzname{tkzPointResult} if it is not necessary to keep the results. + +\medskip +\begin{tabular}{lll} +\toprule +arguments & default & definition \\ + +\midrule +\TAline{(pt1,pt2,pt3)}{no default}{three points} +\midrule +options & default & definition \\ +\midrule +\TOline{ortho} {circum}{Intersection of the altitudes of a triangle} +\TOline{centroid} {circum}{centre of gravity. Intersection of the medians } +\TOline{circum}{circum}{circle center circumscribed} +\TOline{in} {circum}{centre du cercle inscrit dans à un triangle } +\TOline{ex} {circum}{center of a circle exinscribed to a triangle } +\TOline{euler}{circum}{centre of Euler's circle } +\TOline{symmedian} {circum}{Lemoine's point or symmedian centre or Grebe's point } +\TOline{spieker} {circum}{Spieker Circle Center} +\TOline{nagel}{circum}{Nagel Centre} +\TOline{mittenpunkt} {circum}{or else MiddlePoint center} +\TOline{feuerbach}{circum}{Feuerbach Point} + +\end{tabular} +\end{NewMacroBox} + +\subsubsection{\IoptName{tkzDefTriangleCenter}{ortho}} + The intersection H of the three altitudes of a triangle is called the orthocenter. + + +\begin{tkzexample}[latex=5cm,small] +\begin{tikzpicture} + \tkzDefPoint(0,0){A} + \tkzDefPoint(5,1){B} + \tkzDefPoint(1,4){C} + \tkzClipPolygon(A,B,C) + \tkzDefTriangleCenter[ortho](B,C,A) + \tkzGetPoint{H} + \tkzDefSpcTriangle[orthic,name=H](A,B,C){a,b,c} + \tkzDrawPolygon[color=blue](A,B,C) + \tkzDrawPoints(A,B,C,H) + \tkzDrawLines[add=0 and 1](A,Ha B,Hb C,Hc) + \tkzLabelPoint(H){$H$} + \tkzAutoLabelPoints[center=H](A,B,C) + \tkzMarkRightAngles(A,Ha,B B,Hb,C C,Hc,A) +\end{tikzpicture} +\end{tkzexample} + +\subsubsection{\IoptName{tkzDefTriangleCenter}{centroid}} + +\begin{tkzexample}[latex=5cm,small] +\begin{tikzpicture}[scale=.75] + \tkzDefPoints{-1/1/A,5/1/B} + \tkzDefEquilateral(A,B) + \tkzGetPoint{C} + \tkzDefTriangleCenter[centroid](A,B,C) + \tkzGetPoint{G} + \tkzDrawPolygon[color=brown](A,B,C) + \tkzDrawPoints(A,B,C,G) + \tkzDrawLines[add = 0 and 2/3](A,G B,G C,G) +\end{tikzpicture} +\end{tkzexample} + +\subsubsection{\IoptName{tkzDefTriangleCenter}{circum}} + +\begin{tkzexample}[latex=6cm,small] + \begin{tikzpicture} + \tkzDefPoints{0/1/A,3/2/B,1/4/C} + \tkzDefTriangleCenter[circum](A,B,C) + \tkzGetPoint{G} + \tkzDrawPolygon[color=brown](A,B,C) + \tkzDrawCircle(G,A) + \tkzDrawPoints(A,B,C,G) + \end{tikzpicture} +\end{tkzexample} + + +\subsubsection{\IoptName{tkzDefTriangleCenter}{in}} + In geometry, the incircle or inscribed circle of a triangle is the largest circle contained in the triangle; it touches (is tangent to) the three sides. The center of the incircle is a triangle center called the triangle's incenter. + The center of the incircle, called the incenter, can be found as the intersection of the three internal angle bisectors. The center of an excircle is the intersection of the internal bisector of one angle (at vertex A, for example) and the external bisectors of the other two. The center of this excircle is called the excenter relative to the vertex A, or the excenter of A.[3] Because the internal bisector of an angle is perpendicular to its external bisector, it follows that the center of the incircle together with the three excircle centers form an orthocentric system.(\url{https://en.wikipedia.org/wiki/Incircle_and_excircles_of_a_triangle}) + + \medskip + We get the centre of the inscribed circle of the triangle. The result is of course in \tkzname{tkzPointResult}. We can retrieve it with \tkzcname{tkzGetPoint}. + +\begin{tkzexample}[latex=6cm,small] +\begin{tikzpicture} + \tkzDefPoints{0/1/A,3/2/B,1/4/C} + \tkzDefTriangleCenter[in](A,B,C)\tkzGetPoint{I} + \tkzDefPointBy[projection=onto A--C](I) + \tkzGetPoint{Ib} + \tkzDrawPolygon[color=blue](A,B,C) + \tkzDrawPoints(A,B,C,I) + \tkzDrawLines[add = 0 and 2/3](A,I B,I C,I) + \tkzDrawCircle(I,Ib) +\end{tikzpicture} +\end{tkzexample} + +\subsubsection{\IoptName{tkzDefTriangleCenter}{ex}} + + +An excircle or escribed circle of the triangle is a circle lying outside the triangle, tangent to one of its sides and tangent to the extensions of the other two. Every triangle has three distinct excircles, each tangent to one of the triangle's sides. +(\url{https://en.wikipedia.org/wiki/Incircle_and_excircles_of_a_triangle}) + + + We get the centre of an inscribed circle of the triangle. The result is of course in \tkzname{tkzPointResult}. We can retrieve it with \tkzcname{tkzGetPoint}. + +\begin{tkzexample}[latex=8cm,small] +\begin{tikzpicture}[scale=.5] + \tkzDefPoints{0/1/A,3/2/B,1/4/C} + \tkzDefCircle[ex](B,C,A) + \tkzGetFirstPoint{J_c} + \tkzGetSecondPoint{Tc} + \tkzDrawPolygon[color=blue](A,B,C) + \tkzDrawPoints(A,B,C,J_c) + \tkzDrawCircle[red](J_c,Tc) + \tkzDrawLines[add=1.5 and 0](A,C B,C) + \tkzLabelPoints(J_c) +\end{tikzpicture} +\end{tkzexample} + +\subsubsection{Utilisation de \IoptName{tkzDefTriangleCenter}{euler} } +This macro allows to obtain the center of the circle of the nine points or euler's circle or Feuerbach's circle. +The nine-point circle, also called Euler's circle or the Feuerbach circle, is the circle that passes through the perpendicular feet $H_A$, $H_B$, and $H_C$ dropped from the vertices of any reference triangle ABC on the sides opposite them. Euler showed in 1765 that it also passes through the midpoints $M_A$, $M_B$, $M_C$ of the sides of ABC. By Feuerbach's theorem, the nine-point circle also passes through the midpoints $E_A$, $E_B$, and $E_C$ of the segments that join the vertices and the orthocenter H. These points are commonly referred to as the Euler points. (\url{http://mathworld.wolfram.com/Nine-PointCircle.html}) + +\begin{tkzexample}[latex=7cm,small] +\begin{tikzpicture}[scale=1] + \tkzDefPoints{0/0/A,6/0/B,0.8/4/C} + \tkzDefSpcTriangle[medial, + name=M](A,B,C){_A,_B,_C} + \tkzDefTriangleCenter[euler](A,B,C) + \tkzGetPoint{N} % I= N nine points + \tkzDefTriangleCenter[ortho](A,B,C) + \tkzGetPoint{H} + \tkzDefMidPoint(A,H) \tkzGetPoint{E_A} + \tkzDefMidPoint(C,H) \tkzGetPoint{E_C} + \tkzDefMidPoint(B,H) \tkzGetPoint{E_B} + \tkzDefSpcTriangle[ortho,name=H](A,B,C){_A,_B,_C} + \tkzDrawPolygon[color=blue](A,B,C) + \tkzDrawCircle(N,E_A) + \tkzDrawSegments[blue](A,H_A B,H_B C,H_C) + \tkzDrawPoints(A,B,C,N,H) + \tkzDrawPoints[red](M_A,M_B,M_C) + \tkzDrawPoints[blue]( H_A,H_B,H_C) + \tkzDrawPoints[green](E_A,E_B,E_C) + \tkzAutoLabelPoints[center=N, + font=\scriptsize](A,B,C,% + M_A,M_B,M_C,% + H_A,H_B,H_C,% + E_A,E_B,E_C) + \tkzLabelPoints[font=\scriptsize](H,N) + \tkzMarkSegments[mark=s|,size=3pt, + color=blue,line width=1pt](B,E_B E_B,H) +\end{tikzpicture} +\end{tkzexample} + + +\subsubsection{Using option \IoptName{tkzDefTriangleCenter}{symmedian}} + +\begin{tkzexample}[latex=6cm,small] +\begin{tikzpicture} + \tkzDefPoint(0,0){A} + \tkzDefPoint(5,0){B} + \tkzDefPoint(1,4){C} + \tkzDefTriangleCenter[symmedian](A,B,C)\tkzGetPoint{K} + \tkzDefTriangleCenter[median](A,B,C)\tkzGetPoint{G} + \tkzDefTriangleCenter[in](A,B,C)\tkzGetPoint{I} + \tkzDefSpcTriangle[centroid,name=M](A,B,C){a,b,c} + \tkzDefSpcTriangle[incentral,name=I](A,B,C){a,b,c} + \tkzDrawPolygon[color=blue](A,B,C) + \tkzDrawPoints(A,B,C,K) + \tkzDrawLines[add = 0 and 2/3,blue](A,K B,K C,K) + \tkzDrawSegments[red,dashed](A,Ma B,Mb C,Mc) + \tkzDrawSegments[orange,dashed](A,Ia B,Ib C,Ic) + \tkzDrawLine(G,I) +\end{tikzpicture} +\end{tkzexample} + +\subsubsection{Using option \IoptName{tkzDefTriangleCenter}{nagel}} + +Let$ Ta$ be the point at which the $Ja$ excircle meets the side BC of a triangle $ABC$, and define Tband Tc similarly. Then the lines $ATa$, $BTb$, and $CTc$ concur in the Nagel point $Na$. +\href{http://mathworld.wolfram.com/NagelPoint.html}{Weisstein, Eric W. "Nagel point." From MathWorld--A Wolfram Web Resource. } + + +\begin{tkzexample}[latex=8cm,small] + \begin{tikzpicture}[scale=.5] + \tkzDefPoints{0/0/A,6/0/B,4/6/C} + \tkzDefSpcTriangle[ex](A,B,C){Ja,Jb,Jc} + \tkzDefSpcTriangle[extouch](A,B,C){Ta,Tb,Tc} + \tkzDrawPoints(Ja,Jb,Jc,Ta,Tb,Tc) + \tkzLabelPoints(Ja,Jb,Jc,Ta,Tb,Tc) + \tkzDrawPolygon[blue](A,B,C) + \tkzDefTriangleCenter[nagel](A,B,C) \tkzGetPoint{Na} + \tkzDrawPoints[blue](B,C,A) + \tkzDrawPoints[red](Na) + \tkzLabelPoints[blue](B,C,A) + \tkzLabelPoints[red](Na) + \tkzDrawLines[add=0 and 1](A,Ta B,Tb C,Tc) + \tkzShowBB\tkzClipBB + \tkzDrawLines[add=1 and 1,dashed](A,B B,C C,A) + \tkzDrawCircles[ex,gray](A,B,C C,A,B B,C,A) + \tkzDrawSegments[dashed](Ja,Ta Jb,Tb Jc,Tc) + \tkzMarkRightAngles[fill=gray!20](Ja,Ta,C Jb,Tb,A Jc,Tc,B) + \end{tikzpicture} +\end{tkzexample} + + +\subsubsection{Option Triangle "mittenpunkt"} +\begin{tkzexample}[latex=8cm,small] +\begin{tikzpicture}[scale=.5] + \tkzDefPoints{0/0/A,6/0/B,4/6/C} + \tkzDefSpcTriangle[centroid](A,B,C){Ma,Mb,Mc} + \tkzDefSpcTriangle[ex](A,B,C){Ja,Jb,Jc} + \tkzDefSpcTriangle[extouch](A,B,C){Ta,Tb,Tc} + \tkzDefTriangleCenter[mittenpunkt](A,B,C) + \tkzGetPoint{Mi} + \tkzDrawPoints(Ma,Mb,Mc,Ja,Jb,Jc) + \tkzClipBB + \tkzDrawPolygon[blue](A,B,C) + \tkzDrawLines[add=0 and 1](Ja,Ma + Jb,Mb Jc,Mc) + \tkzDrawLines[add=1 and 1](A,B A,C B,C) + \tkzDrawCircles[gray](Ja,Ta Jb,Tb Jc,Tc) + \tkzDrawPoints[blue](B,C,A) + \tkzDrawPoints[red](Mi) + \tkzLabelPoints[red](Mi) + \tkzLabelPoints[left](Mb) + \tkzLabelPoints(Ma,Mc,Jb,Jc) + \tkzLabelPoints[above left](Ja,Jc) + \tkzShowBB +\end{tikzpicture} +\end{tkzexample} +%<---------------------------------------------------------------------------> +%<---------------------------------------------------------------------------> +\clearpage \newpage +\section{Draw a point} +\subsubsection{Drawing points \tkzcname{tkzDrawPoint}} \hypertarget{tdrp}{} + +\begin{NewMacroBox}{tkzDrawPoint}{\oarg{local options}\parg{name}} +\begin{tabular}{lll} +arguments & default & definition \\ +\midrule +\TAline{name of point} {no default} {Only one point name is accepted} +\bottomrule +\end{tabular} + +\medskip +The argument is required. The disc takes the color of the circle, but lighter. It is possible to change everything. The point is a node and therefore it is invariant if the drawing is modified by scaling. + +\medskip +\begin{tabular}{lll} +\toprule +options & default & definition \\ +\midrule +\TOline{shape} {circle}{Possible \tkzname{cross} ou \tkzname{cross out}} +\TOline{size} {6}{$6 \times$ \tkzcname{pgflinewidth}} +\TOline{color} {black}{the default color can be changed } +\bottomrule +\end{tabular} + +\medskip +{We can create other forms such as \tkzname{cross}} +\end{NewMacroBox} + +\subsubsection{Example of point drawings} +Note that \tkzname{scale} does not affect the shape of the dots. Which is normal. Most of the time, we are satisfied with a single point shape that we can define from the beginning, either with a macro or by modifying a configuration file. + + +\begin{tkzexample}[latex=5cm,small] + \begin{tikzpicture}[scale=.5] + \tkzDefPoint(1,3){A} + \tkzDefPoint(4,1){B} + \tkzDefPoint(0,0){O} + \tkzDrawPoint[color=red](A) + \tkzDrawPoint[fill=blue!20,draw=blue](B) + \tkzDrawPoint[color=green](O) + \end{tikzpicture} +\end{tkzexample} + +It is possible to draw several points at once but this macro is a little slower than the previous one. Moreover, we have to make do with the same options for all the points. + +\hypertarget{tdrps}{} +\begin{NewMacroBox}{tkzDrawPoints}{\oarg{local options}\parg{liste}} +\begin{tabular}{lll} +arguments & default & definition \\ +\midrule +\TAline{points list}{no default}{example \tkzcname{tkzDrawPoints(A,B,C)}} +\bottomrule +\end{tabular} + +\medskip +\begin{tabular}{lll} +\toprule +options & default & definition \\ +\midrule +\TOline{shape} {circle}{Possible \tkzname{cross} ou \tkzname{cross out}} +\TOline{size} {6}{$6 \times$ \tkzcname{pgflinewidth}} +\TOline{color} {black}{the default color can be changed } +\bottomrule +\end{tabular} + +\medskip +\tkzHandBomb\ Beware of the final "s", an oversight leads to cascading errors if you try to draw multiple points. The options are the same as for the previous macro. +\end{NewMacroBox} + +\subsubsection{First example} + +\begin{tkzexample}[latex=7cm,small] +\begin{tikzpicture} + \tkzDefPoint(1,3){A} + \tkzDefPoint(4,1){B} + \tkzDefPoint(0,0){C} + \tkzDrawPoints[size=6,color=red, + fill=red!50](A,B,C) +\end{tikzpicture} +\end{tkzexample} + +\subsubsection{Second example} + +\begin{tkzexample}[latex=7cm,small] +\begin{tikzpicture}[scale=.5] + \tkzDefPoint(2,3){A} \tkzDefPoint(5,-1){B} + \tkzDefPoint[label=below:$\mathcal{C}$, + shift={(2,3)}](-30:5.5){E} + \begin{scope}[shift=(A)] + \tkzDefPoint(30:5){C} + \end{scope} + \tkzCalcLength[cm](A,B)\tkzGetLength{rAB} + \tkzDrawCircle[R](A,\rAB cm) + \tkzDrawSegment(A,B) + \tkzDrawPoints(A,B,C) + \tkzLabelPoints(B,C) + \tkzLabelPoints[above](A) +\end{tikzpicture} +\end{tkzexample} + +\section{Point on line or circle} +\subsection{Point on a line} + +\begin{NewMacroBox}{tkzDefPointOnLine}{\oarg{local options}\parg{A,B}} +\begin{tabular}{lll} +arguments & default & definition \\ +\midrule +\TAline{pt1,pt2} {no default} {Two points to define a line} +\bottomrule +\end{tabular} + +\medskip +\begin{tabular}{lll} +\toprule +options & default & definition \\ +\midrule +\TOline{pos=nb} {}{nb is a decimal } +\bottomrule +\end{tabular} + +\medskip + +\end{NewMacroBox} + +\subsubsection{Use of option \tkzname{pos} 1} +\begin{tkzexample}[latex=9cm,small] + \begin{tikzpicture} + \tkzDefPoints{0/0/A,4/0/B} + \tkzDrawLine[red](A,B) + \tkzDefPointOnLine[pos=1.2](A,B) + \tkzGetPoint{P} + \tkzDefPointOnLine[pos=-0.2](A,B) + \tkzGetPoint{R} + \tkzDefPointOnLine[pos=0.5](A,B) + \tkzGetPoint{S} + \tkzDrawPoints(A,B,P) + \tkzLabelPoints(A,B) + \tkzLabelPoint[above](P){pos=$1.2$} + \tkzLabelPoint[above](R){pos=$-.2$} + \tkzLabelPoint[above](S){pos=$.5$} + \tkzDrawPoints(A,B,P,R,S) + \tkzLabelPoints(A,B) + \end{tikzpicture} +\end{tkzexample} + +\subsection{Point on a circle} + +\begin{NewMacroBox}{tkzDefPointOnCircle}{\oarg{local options}\parg{A,B}} +\begin{tabular}{lll} +arguments & default & definition \\ +\midrule +\TAline{pt1,pt2} {no default} {Two points to define a line} +\bottomrule +\end{tabular} + +\medskip +\begin{tabular}{lll} +\toprule +options & default & definition \\ +\midrule +\TOline{angle} {0}{angle formed with the abscissa axis} +\TOline{center} {tkzPointResult}{circle center} +\TOline{radius} {|\tkzLengthResult pt|}{radius circle} +\bottomrule +\end{tabular} + + +\end{NewMacroBox} + +\begin{tkzexample}[latex=7cm,small] +\begin{tikzpicture} + \tkzDefPoints{0/0/A,4/0/B,0.8/3/C} + \tkzDefPointOnCircle[angle=90,center=B, + radius=1 cm] + \tkzGetPoint{I} + \tkzDrawCircle[R,teal](B,1cm) + \tkzDrawPoint[teal](I) + \tkzDefCircle[circum](A,B,C) + \tkzGetPoint{G} \tkzGetLength{rG} + \tkzDefPointOnCircle[angle=30,center=G, + radius=\rG pt] + \tkzGetPoint{J} + \tkzDrawPoints(A,B,C) + \tkzDrawCircle(G,J) + \tkzDrawPoint(G) + \tkzDrawPoint[red](J) +\end{tikzpicture} +\end{tkzexample} + + +\endinput + + diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-pointwith.tex b/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-pointwith.tex new file mode 100644 index 00000000000..98c1ef0c6dc --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-pointwith.tex @@ -0,0 +1,270 @@ +\section{Defining points using a vector} + +\subsection{\tkzcname{tkzDefPointWith}} +There are several possibilities to create points that meet certain vector conditions. +This can be done with \tkzcname{tkzDefPointWith}. The general principle is as follows, two points are passed as arguments, i.e. a vector. The different options allow to obtain a new point forming with the first point ( with some exceptions) a collinear vector or a vector orthogonal to the first vector. Then the length is either proportional to that of the first one, or proportional to the unit. Since this point is only used temporarily, it does not have to be named immediately. The result is in \tkzcname{tkzPointResult}. The macro \tkzNameMacro{tkzGetPoint} allows you to retrieve the point and name it differently. + + There are options to define the distance between the given point and the obtained point. +In the general case this distance is the distance between the 2 points given as arguments if the option is of the "normed" type then the distance between the given point and the obtained point is 1 cm. Then the $K$ option allows to obtain multiples. + +\begin{NewMacroBox}{tkzDefPointWith}{\parg{pt1,pt2}} + It is in fact the definition of a point meeting vectorial conditions. + +\medskip + +\begin{tabular}{lll} +\toprule +arguments & definition & explication \\ +\midrule +\TAline{(pt1,pt2)} {point couple}{the result is a point in \tkzcname{tkzPointResult} } \\ + +\bottomrule +\end{tabular} + +\medskip +In what follows, it is assumed that the point is recovered by \tkzNameMacro{tkzGetPoint\{C\}} + +\begin{tabular}{lll} +\toprule +options & exemple & explication \\ +\midrule +\TOline{orthogonal}{[orthogonal](A,B)}{$AC=AB$ et $\overrightarrow{AC} \perp \overrightarrow{AB}$} +\TOline{orthogonal normed}{[orthogonal normed](A,B)}{$AC=1$ et $\overrightarrow{AC} \perp \overrightarrow{AB}$} +\TOline{linear}{[linear](A,B)}{$\overrightarrow{AC}=K \times \overrightarrow{AB}$} +\TOline{linear normed}{[linear normed](A,B)}{$AC=K$ et $\overrightarrow{AC}=k\times \overrightarrow{AB}$ } +\TOline{colinear= at \#1}{[colinear= at C](A,B)}{$\overrightarrow{CD}= \overrightarrow{AB}$ } +\TOline{colinear normed= at \#1}{[colinear normed= at C](A,B)}{$\overrightarrow{CD}= \overrightarrow{AB}$ } +\TOline{K}{[linear](A,B),K=2}{$\overrightarrow{AC}=2\times \overrightarrow{AB}$} + \bottomrule +\end{tabular} + +\end{NewMacroBox} + +\subsubsection{\tkzcname{tkzDefPointWith} et \tkzname{colinear at}} + $(\overrightarrow{AB}=\overrightarrow{CD})$ +\begin{tkzexample}[latex=6cm,small] +\begin{tikzpicture}[scale=1.2, + vect/.style={->,shorten >=3pt,>=latex'}] + \tkzDefPoint(2,3){A} \tkzDefPoint(4,2){B} + \tkzDefPoint(0,1){C} + \tkzDefPointWith[colinear=at C](A,B) + \tkzGetPoint{D} + \tkzDrawPoints[color=red](A,B,C,D) + \tkzLabelPoints[above right=3pt](A,B,C,D) + \tkzDrawSegments[vect](A,B C,D) +\end{tikzpicture} +\end{tkzexample} + + +\subsubsection{colinear at} + +\begin{tkzexample}[latex=7cm,small] +\begin{tikzpicture}[vect/.style={->, + shorten >=3pt,>=latex'}] + \tkzDefPoint(0,0){A} + \tkzDefPoint(5,0){B} + \tkzDefPoint(1,2){C} + \tkzDefPointWith[colinear=at C](A,B) + \tkzGetPoint{G} + \tkzDefPointWith[colinear=at C,K=0.5](A,B) + \tkzGetPoint{H} + \tkzLabelPoints(A,B,C,G,H) + \tkzDrawPoints(A,B,C,G,H) + \tkzDrawSegments[vect](A,B C,H) +\end{tikzpicture} +\end{tkzexample} + +\subsubsection{colinear $K=\frac{\sqrt{2}}{2}$} + +\begin{tkzexample}[latex=6cm,small] +\begin{tikzpicture}[vect/.style={->, + shorten >=3pt,>=latex'}] + \tkzDefPoint(1,1){A} + \tkzDefPoint(4,2){B} + \tkzDefPoint(2,2){CU} + \tkzDefPointWith[colinear=at C,K=sqrt(2)/2](A,B) + \tkzGetPoint{D} + \tkzDrawPoints[color=red](A,B,C,D) + \tkzDrawSegments[vect](A,B C,D) +\end{tikzpicture} +\end{tkzexample} + +\subsubsection{\tkzcname{tkzDefPointWith} et \tkzname{orthogonal}} +$K=-1$ afin que $(\overrightarrow{AC},\overrightarrow{AB})$ détermine un angle positif. AB=AC puisque $|K|=1$ +\begin{tkzexample}[latex=6cm,small] +\begin{tikzpicture}[scale=1.2, + vect/.style={->,shorten >=3pt,>=latex'}] + \tkzDefPoint(2,3){A} + \tkzDefPoint(4,2){B} + \tkzDefPointWith[orthogonal,K=-1](A,B) + \tkzGetPoint{C} + \tkzDrawPoints[color=red](A,B,C) + \tkzLabelPoints[right=3pt](A,B,C) + \tkzDrawSegments[vect](A,B A,C) + \tkzMarkRightAngle(B,A,C) +\end{tikzpicture} +\end{tkzexample} + + + +\subsubsection{ orthogonal simple} +\begin{tkzexample}[latex=7cm,small] +\begin{tikzpicture}[scale=.75] + \tkzDefPoint(1,2){O} + \tkzDefPoint(2,5){I} + \tkzDefPointWith[orthogonal](O,I) + \tkzGetPoint{J} + \tkzDefPointWith[orthogonal,K=-1](O,I) + \tkzGetPoint{K} + \tkzDrawSegment(O,I) + \tkzDrawSegments[->](O,J O,K) + \tkzMarkRightAngles(I,O,J I,O,K) + \tkzDrawPoints(O,I,J,K) + \tkzLabelPoints(O,I,J,K) +\end{tikzpicture} +\end{tkzexample} + +\subsubsection{advanced orthogonal} +\begin{tkzexample}[latex=7cm,small] +\begin{tikzpicture}[scale=.75] + \tkzDefPoints{0/0/A,6/0/B} + \tkzDefMidPoint(A,B) + \tkzGetPoint{I} + \tkzDefPointWith[orthogonal,K=-.75](B,A) + \tkzGetPoint{C} + \tkzInterLC(B,C)(B,I) + \tkzGetPoints{D}{F} + \tkzDuplicateSegment(B,F)(A,F) + \tkzGetPoint{E} + \tkzDrawArc[delta=10](F,E)(B) + \tkzInterLC(A,B)(A,E) + \tkzGetPoints{N}{M} + \tkzDrawArc[delta=10](A,M)(E) + \tkzDrawLines(A,B B,C A,F) + \tkzCompass(B,F) + \tkzDrawPoints(A,B,C,F,M,E) + \tkzLabelPoints(A,B,C,F,M,E) +\end{tikzpicture} +\end{tkzexample} + +\subsubsection{segment colinear and orthogonal} +\begin{tkzexample}[latex=7cm,small] +\begin{tikzpicture}[scale=1.2, + vect/.style={->,shorten >=3pt,>=latex'}] + \tkzDefPoint(2,1){A} + \tkzDefPoint(6,2){B} + \tkzDefPointWith[orthogonal,K=.5](A,B) + \tkzGetPoint{C} + \tkzDefPointWith[colinear=at C,K=.5](A,B) + \tkzGetPoint{D} + \tkzMarkRightAngle[fill=gray!20](B,A,C) + \tkzDrawSegments[vect](A,B A,C C,D) + \tkzDrawPoints(A,...,D) +\end{tikzpicture} +\end{tkzexample} + +\subsubsection{\tkzcname{tkzDefPointWith} \tkzname{orthogonal normed}, K=1} +AC=1 + +\begin{tkzexample}[latex=7cm,small] +\begin{tikzpicture}[scale=1.2, + vect/.style={->,shorten >=3pt,>=latex'}] + \tkzDefPoint(2,3){A} \tkzDefPoint(4,2){B} + \tkzDefPointWith[orthogonal normed](A,B) + \tkzGetPoint{C} + \tkzDrawPoints[color=red](A,B,C) + \tkzDrawSegments[vect](A,B A,C) + \tkzMarkRightAngle[fill=gray!20](B,A,C) +\end{tikzpicture} +\end{tkzexample} + +\subsubsection{\tkzcname{tkzDefPointWith} et \tkzname{orthogonal normed} K=2} +$K=2$ donc AC=2. + +\begin{tkzexample}[latex=7cm,small] +\begin{tikzpicture}[scale=1.2, + vect/.style={->,shorten >=3pt,>=latex'}] + \tkzDefPoint(2,3){A} \tkzDefPoint(5,1){B} + \tkzDefPointWith[orthogonal normed,K=2](A,B) + \tkzGetPoint{C} + \tkzDrawPoints[color=red](A,B,C) + \tkzDrawCircle[R](A,2cm) + \tkzDrawSegments[vect](A,B A,C) + \tkzMarkRightAngle[fill=gray!20](B,A,C) + \tkzLabelPoints[above=3pt](A,B,C) +\end{tikzpicture} +\end{tkzexample} + +\subsubsection{\tkzcname{tkzDefPointWith} \tkzname{linear} } + Ici $K=0.5$ +This amounts to applying a homothety or a multiplication of a vector by a real. Here is the middle of $[AB]$. + +\begin{tkzexample}[latex=7cm,small] +\begin{tikzpicture}[scale=1.2] + \tkzDefPoint(1,3){A} \tkzDefPoint(4,2){B} + \tkzDefPointWith[linear,K=0.5](A,B) + \tkzGetPoint{C} + \tkzDrawPoints[color=red](A,B,C) + \tkzDrawSegment(A,B) + \tkzLabelPoints[above right=3pt](A,B,C) +\end{tikzpicture} +\end{tkzexample} + +\subsubsection{\tkzcname{tkzDefPointWith} \tkzname{linear normed}} +In the following example AC=1 and C belongs to $(AB)$. + +\begin{tkzexample}[latex=7cm,small] +\begin{tikzpicture}[scale=1.2] + \tkzDefPoint(1,3){A} \tkzDefPoint(4,2){B} + \tkzDefPointWith[linear normed](A,B) + \tkzGetPoint{C} + \tkzDrawPoints[color=red](A,B,C) + \tkzDrawSegment(A,B) + \tkzLabelSegment(A,C){$1$} + \tkzLabelPoints[above right=3pt](A,B,C) +\end{tikzpicture} +\end{tkzexample} + + + +%<--------------------------------------------------------------------------–> +% tkzGetVectxy +%<--------------------------------------------------------------------------–> + + +\subsection{\tkzcname{tkzGetVectxy} } +Retrieving the coordinates of a vector + +\begin{NewMacroBox}{tkzGetVectxy}{\parg{$A,B$}\var{text}} +Allows to obtain the coordinates of a vector + +\medskip +\begin{tabular}{lll} +\toprule +arguments & example & explication \\ + +\midrule + +\TAline{(point)\{name of macro\}} {\tkzcname{tkzGetVectxy}(A,B)\{V\}}{\tkzcname{Vx},\tkzcname{Vy} : coordinates of $\overrightarrow{AB}$} +\end{tabular} +\end{NewMacroBox} + +\subsubsection{Coordinate transfer with \tkzcname{tkzGetVectxy}} + +\begin{tkzexample}[latex=7cm,small] +\begin{tikzpicture} + \tkzDefPoint(0,0){O} + \tkzDefPoint(1,1){A} + \tkzDefPoint(4,2){B} + \tkzGetVectxy(A,B){v} + \tkzDefPoint(\vx,\vy){V} + \tkzDrawSegment[->,color=red](O,V) + \tkzDrawSegment[->,color=blue](A,B) + \tkzDrawPoints(A,B,O) + \tkzLabelPoints(A,B,O,V) +\end{tikzpicture} +\end{tkzexample} + + + +\endinput
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-polygons.tex b/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-polygons.tex new file mode 100644 index 00000000000..fe50b39e2cf --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-polygons.tex @@ -0,0 +1,351 @@ +\section{Definition of polygons} + +\subsection{Defining the points of a square} \label{def_square} + We have seen the definitions of some triangles. Let us look at the definitions of some quadrilaterals and regular polygons. + + \begin{NewMacroBox}{tkzDefSquare}{\parg{pt1,pt2}} + +The square is defined in the forward direction. From two points, two more points are obtained such that the four taken in order form a square. The square is defined in the forward direction. The results are in \tkzname{tkzFirstPointResult} and \tkzname{tkzSecondPointResult}.\\ +We can rename them with \tkzcname{tkzGetPoints} + +\medskip +\begin{tabular}{lll} +\toprule +Arguments & example & explication \\ +\midrule +\TAline{\parg{pt1,pt2}}{\tkzcname{tkzDefSquare}\parg{A,B}}{The square is defined in the direct direction} +\bottomrule + \end{tabular} +\end{NewMacroBox} + +\subsubsection{Using \tkzcname{tkzDefSquare} with two points} + +Note the inversion of the first two points and the result. + +\begin{tkzexample}[latex=4cm,small] +\begin{tikzpicture}[scale=.5] + \tkzDefPoint(0,0){A} \tkzDefPoint(3,0){B} + \tkzDefSquare(A,B) + \tkzDrawPolygon[color=red](A,B,tkzFirstPointResult,% + tkzSecondPointResult) + \tkzDefSquare(B,A) + \tkzDrawPolygon[color=blue](B,A,tkzFirstPointResult,% + tkzSecondPointResult) +\end{tikzpicture} +\end{tkzexample} + + We may only need one point to draw an isosceles right-angled triangle so we use \tkzcname{tkzGetFirstPoint} or \tkzcname{tkzGetSecondPoint} + +\subsubsection{Use of \tkzcname{tkzDefSquare} to obtain an isosceles right-angled triangle} +\begin{tkzexample}[latex=7cm,small] +\begin{tikzpicture}[scale=1] + \tkzDefPoint(0,0){A} + \tkzDefPoint(3,0){B} + \tkzDefSquare(A,B) \tkzGetFirstPoint{C} + \tkzDrawPolygon[color=blue,fill=blue!30](A,B,C) +\end{tikzpicture} +\end{tkzexample} + +\subsubsection{Pythagorean Theorem and \tkzcname{tkzDefSquare} } +\begin{tkzexample}[latex=8cm,small] +\begin{tikzpicture}[scale=.5] +\tkzInit +\tkzDefPoint(0,0){C} +\tkzDefPoint(4,0){A} +\tkzDefPoint(0,3){B} +\tkzDefSquare(B,A)\tkzGetPoints{E}{F} +\tkzDefSquare(A,C)\tkzGetPoints{G}{H} +\tkzDefSquare(C,B)\tkzGetPoints{I}{J} +\tkzFillPolygon[fill = red!50 ](A,C,G,H) +\tkzFillPolygon[fill = blue!50 ](C,B,I,J) +\tkzFillPolygon[fill = purple!50](B,A,E,F) +\tkzFillPolygon[fill = orange,opacity=.5](A,B,C) +\tkzDrawPolygon[line width = 1pt](A,B,C) +\tkzDrawPolygon[line width = 1pt](A,C,G,H) +\tkzDrawPolygon[line width = 1pt](C,B,I,J) +\tkzDrawPolygon[line width = 1pt](B,A,E,F) +\tkzLabelSegment[](A,C){$a$} +\tkzLabelSegment[](C,B){$b$} +\tkzLabelSegment[swap](A,B){$c$} +\end{tikzpicture} +\end{tkzexample} + +\subsection{Definition of parallelogram} + +\subsection{Defining the points of a parallelogram} +It is a matter of completing three points in order to obtain a parallelogram. + \begin{NewMacroBox}{tkzDefParallelogram}{\parg{pt1,pt2,pt3}} +From three points, another point is obtained such that the four taken in order form a parallelogram. The result is in \tkzname{tkzPointResult}. \\ +We can rename it with the name \tkzcname{tkzGetPoint}... + +\begin{tabular}{lll} +\toprule +arguments & default & definition \\ +\midrule +\TAline{\parg{pt1,pt2,pt3}}{no default}{Three points are necessary} +\bottomrule +\end{tabular} +\end{NewMacroBox} + +\subsubsection{Example of a parallelogram definition} + +\begin{tkzexample}[latex=7 cm,small] +\begin{tikzpicture}[scale=1] + \tkzDefPoints{0/0/A,3/0/B,4/2/C} + \tkzDefParallelogram(A,B,C) + \tkzGetPoint{D} + \tkzDrawPolygon(A,B,C,D) + \tkzLabelPoints(A,B) + \tkzLabelPoints[above right](C,D) + \tkzDrawPoints(A,...,D) +\end{tikzpicture} +\end{tkzexample} + + + +\subsubsection{Simple example} +Explanation of the definition of a parallelogram +\begin{tkzexample}[latex=7 cm,small] +\begin{tikzpicture}[scale=1] + \tkzDefPoints{0/0/A,3/0/B,4/2/C} + \tkzDefPointWith[colinear= at C](B,A) + \tkzGetPoint{D} + \tkzDrawPolygon(A,B,C,D) + \tkzLabelPoints(A,B) + \tkzLabelPoints[above right](C,D) + \tkzDrawPoints(A,...,D) +\end{tikzpicture} +\end{tkzexample} + +\subsubsection{Construction of the golden rectangle } + +\begin{tkzexample}[latex=8cm,small] +\begin{tikzpicture}[scale=.5] + \tkzInit[xmax=14,ymax=10] + \tkzClip[space=1] + \tkzDefPoint(0,0){A} + \tkzDefPoint(8,0){B} + \tkzDefMidPoint(A,B)\tkzGetPoint{I} + \tkzDefSquare(A,B)\tkzGetPoints{C}{D} + \tkzDrawSquare(A,B) + \tkzInterLC(A,B)(I,C)\tkzGetPoints{G}{E} + \tkzDrawArc[style=dashed,color=gray](I,E)(D) + \tkzDefPointWith[colinear= at C](E,B) + \tkzGetPoint{F} + \tkzDrawPoints(C,D,E,F) + \tkzLabelPoints(A,B,C,D,E,F) + \tkzDrawSegments[style=dashed,color=gray]% +(E,F C,F B,E) +\end{tikzpicture} +\end{tkzexample} + + + + +\subsection{Drawing a square} + + \begin{NewMacroBox}{tkzDrawSquare}{\oarg{local options}\parg{pt1,pt2}} +The macro draws a square but not the vertices. It is possible to color the inside. The order of the points is that of the direct direction of the trigonometric circle. + +\medskip +\begin{tabular}{lll} +\toprule +arguments & example & explication \\ +\midrule +\TAline{\parg{pt1,pt2}}{|\tkzcname{tkzDrawSquare}|\parg{A,B}}{|\tkzcname{tkzGetPoints\{C\}\{D\}}|} +\bottomrule + \end{tabular} + +\medskip + \begin{tabular}{lll} + options & example & explication \\ + \midrule + \TOline{Options TikZ}{|red,line width=1pt|}{} + \bottomrule + \end{tabular} +\end{NewMacroBox} + +\subsubsection{The idea is to inscribe two squares in a semi-circle.} + +\begin{tkzexample}[latex=6 cm,small] +\begin{tikzpicture}[scale=.75] + \tkzInit[ymax=8,xmax=8] + \tkzClip[space=.25] \tkzDefPoint(0,0){A} + \tkzDefPoint(8,0){B} \tkzDefPoint(4,0){I} + \tkzDefSquare(A,B) \tkzGetPoints{C}{D} + \tkzInterLC(I,C)(I,B) \tkzGetPoints{E'}{E} + \tkzInterLC(I,D)(I,B) \tkzGetPoints{F'}{F} + \tkzDefPointsBy[projection=onto A--B](E,F){H,G} + \tkzDefPointsBy[symmetry = center H](I){J} + \tkzDefSquare(H,J) \tkzGetPoints{K}{L} + \tkzDrawSector[fill=yellow](I,B)(A) + \tkzFillPolygon[color=red!40](H,E,F,G) + \tkzFillPolygon[color=blue!40](H,J,K,L) + \tkzDrawPolySeg[color=red](H,E,F,G) + \tkzDrawPolySeg[color=red](J,K,L) + \tkzDrawPoints(E,G,H,F,J,K,L) +\end{tikzpicture} +\end{tkzexample} + +\subsection{The golden rectangle} + \begin{NewMacroBox}{tkzDefGoldRectangle}{\parg{point,point}} +The macro determines a rectangle whose size ratio is the number $\Phi$. The created points are in \tkzname{tkzFirstPointResult} and \tkzname{tkzSecondPointResult}. They can be obtained with the macro \tkzcname{tkzGetPoints}. The following macro is used to draw the rectangle. + +\begin{tabular}{lll} +\toprule +arguments & example & explication \\ +\midrule +\TAline{\parg{pt1,pt2}}{\parg{A,B}}{Si C et D sont créés alors $AB/BC=\Phi$} + \end{tabular} +\end{NewMacroBox} + + \begin{NewMacroBox}{tkzDrawGoldRectangle}{\oarg{local options}\parg{point,point}} +\begin{tabular}{lll} +arguments & example & explication \\ +\midrule +\TAline{\parg{pt1,pt2}}{\parg{A,B}}{Draws the golden rectangle based on the segment $[AB]$} + \end{tabular} + +\medskip + \begin{tabular}{lll} + options & example & explication \\ + \midrule + \TOline{Options TikZ}{|red,line width=1pt|}{} + \bottomrule + \end{tabular} + +\end{NewMacroBox} + +% +\subsubsection{Golden Rectangles} + +\begin{tkzexample}[latex=6 cm,small] +\begin{tikzpicture}[scale=.6] + \tkzDefPoint(0,0){A} \tkzDefPoint(8,0){B} + \tkzDefGoldRectangle(A,B) \tkzGetPoints{C}{D} + \tkzDefGoldRectangle(B,C) \tkzGetPoints{E}{F} + \tkzDrawPolygon[color=red,fill=red!20](A,B,C,D) + \tkzDrawPolygon[color=blue,fill=blue!20](B,C,E,F) +\end{tikzpicture} +\end{tkzexample} + +\subsection{Drawing a polygon} + + \begin{NewMacroBox}{tkzDrawPolygon}{\oarg{local options}\parg{liste de points}} +Just give a list of points and the macro plots the polygon using the \TIKZ\ options present. + +\begin{tabular}{lll} +\toprule +arguments & example & explication \\ +\midrule +\TAline{\parg{pt1,pt2,pt3,...}}{|\BS tkzDrawPolygon[gray,dashed](A,B,C)|}{Drawing a triangle} + \end{tabular} + +\medskip +\begin{tabular}{lll} +\toprule +options & default & example \\ +\midrule +\TOline{Options TikZ}{...}{|\BS tkzDrawPolygon[red,line width=2pt](A,B,C)|} + \end{tabular} +\end{NewMacroBox} + +\subsubsection{Draw a polygon 1} + +\begin{tkzexample}[latex=7cm, small] +\begin{tikzpicture} [rotate=18,scale=1.5] + \tkzDefPoint(0,0){A} + \tkzDefPoint(2.25,0.2){B} + \tkzDefPoint(2.5,2.75){C} + \tkzDefPoint(-0.75,2){D} + \tkzDrawPolygon[fill=black!50!blue!20!](A,B,C,D) + \tkzDrawSegments[style=dashed](A,C B,D) +\end{tikzpicture}\end{tkzexample} + + +\subsection{Clip a polygon} + \begin{NewMacroBox}{tkzClipPolygon}{\oarg{local options}\parg{points list}} +This macro makes it possible to contain the different plots in the designated polygon. + +\medskip +\begin{tabular}{lll} +\toprule +options & example & explication \\ +\midrule +\TAline{\parg{pt1,pt2}}{\parg{A,B}}{} +%\bottomrule + \end{tabular} +\end{NewMacroBox} +\subsubsection{Simple Example} +\begin{tkzexample}[latex=7 cm,small] +\begin{tikzpicture}[scale=1.25] + \tkzInit[xmin=0,xmax=4,ymin=0,ymax=3] + \tkzClip[space=.5] + \tkzDefPoint(0,0){A} \tkzDefPoint(4,0){B} + \tkzDefPoint(1,3){C} \tkzDrawPolygon(A,B,C) + \tkzDefPoint(0,2){D} \tkzDefPoint(2,0){E} + \tkzDrawPoints(D,E) \tkzLabelPoints(D,E) + \tkzClipPolygon(A,B,C) + \tkzDrawLine[color=red](D,E) +\end{tikzpicture} +\end{tkzexample} + +\subsubsection{Example Sangaku in a square} +\begin{tkzexample}[latex=7cm, small] +\begin{tikzpicture}[scale=.75] + \tkzDefPoint(0,0){A} \tkzDefPoint(8,0){B} + \tkzDefSquare(A,B) \tkzGetPoints{C}{D} + \tkzDrawPolygon(B,C,D,A) + \tkzClipPolygon(B,C,D,A) + \tkzDefPoint(4,8){F} + \tkzDefTriangle[equilateral](C,D) + \tkzGetPoint{I} + \tkzDrawPoint(I) + \tkzDefPointBy[projection=onto B--C](I) + \tkzGetPoint{J} + \tkzInterLL(D,B)(I,J) \tkzGetPoint{K} + \tkzDefPointBy[symmetry=center K](B) + \tkzGetPoint{M} + \tkzDrawCircle(M,I) + \tkzCalcLength(M,I) \tkzGetLength{dMI} + \tkzFillPolygon[color = orange](A,B,C,D) + \tkzFillCircle[R,color = yellow](M,\dMI pt) + \tkzFillCircle[R,color = blue!50!black](F,4 cm)% +\end{tikzpicture} +\end{tkzexample} + +\subsection{Color a polygon} + \begin{NewMacroBox}{tkzFillPolygon}{\oarg{local options}\parg{points list}} +You can color by drawing the polygon, but in this case you color the inside of the polygon without drawing it. + +\medskip +\begin{tabular}{lll} +\toprule +options & example & explication \\ +\midrule +\TAline{\parg{pt1,pt2,\dots}}{\parg{A,B,\dots}}{} +%\bottomrule + \end{tabular} +\end{NewMacroBox} + +\subsubsection{Color a polygon} +\begin{tkzexample}[latex=7cm, small] +\begin{tikzpicture}[scale=0.7] +\tkzInit[xmin=-3,xmax=6,ymin=-1,ymax=6] +\tkzDrawX[noticks] +\tkzDrawY[noticks] +\tkzDefPoint(0,0){O} \tkzDefPoint(4,2){A} +\tkzDefPoint(-2,6){B} +\tkzPointShowCoord[xlabel=$x$,ylabel=$y$](A) +\tkzPointShowCoord[xlabel=$x'$,ylabel=$y'$,% + ystyle={right=2pt}](B) +\tkzDrawSegments[->](O,A O,B) +\tkzLabelSegment[above=3pt](O,A){$\vec{u}$} +\tkzLabelSegment[above=3pt](O,B){$\vec{v}$} +\tkzMarkAngle[fill= yellow,size=1.8cm,% + opacity=.5](A,O,B) +\tkzFillPolygon[red!30,opacity=0.25](A,B,O) +\tkzLabelAngle[pos = 1.5](A,O,B){$\alpha$} +\end{tikzpicture} +\end{tkzexample} +\endinput
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-presentation.tex b/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-presentation.tex new file mode 100644 index 00000000000..d3a282366d1 --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-presentation.tex @@ -0,0 +1,561 @@ +\section{Presentation and Overview} + +\subsection{Why tkz-euclide ?} +My initial goal was to provide myself and other mathematics teachers with a tool to quickly create Euclidean geometry figures without investing too much effort in learning a new programming language. +Of course, tkz-euclide is for math teachers who use latex and makes it possible to easily create correct drawings by means of LaTeX. + +It appeared that the simplest method was to reproduce the one used to obtain construction by hand. +To describe a construction, you must of course define the objects but also the actions that you perform. It seemed to me that a syntax close to the language of mathematicians and their students would be more easily understandable; moreover, it also seemed to me that this syntax should be close to that of LaTeX. +The objects of course are points, segments, lines, triangles, polygons and circles. As for actions, I considered five to be sufficient, namely: define, create, draw, mark and label. + +The syntax is perhaps too verbose but it is, I believe, easily accessible. +As a result, the students like teachers were able to easily access this tool + +\subsection{tkz-euclide vs TikZ} + +I love programming with TikZ and without TikZ I would never have had the idea to create tkz-euclide but never forget that behind it there is TikZ and that it is always possible to insert code from TikZ. tkz-euclide doesn't prevent you from using TikZ. +That said, I don't think mixing syntax is a good thing. + +There is no need to compare TikZ and tkz-euclide. The latter is not addressed to the same audience as Tikz. The first one allows you to do a lot of things, the second one only does geometry drawings. The first one can do everything the second one does, but the second one will more easily do what you want. + +\subsection{How it works} + +\subsubsection{Example Part I gold triangle} +\begin{center} +\begin{tikzpicture} + +\tkzDefPoint(0,0){C} % possible \tkzDefPoint[label=below:$C$](0,0){C} but don't do this +\tkzDefPoint(2,6){B} +% We get D and E with a rotation +\tkzDefPointBy[rotation= center B angle 36](C) \tkzGetPoint{D} +\tkzDefPointBy[rotation= center B angle 72](C) \tkzGetPoint{E} +% Toget A we use an intersection of lines +\tkzInterLL(B,E)(C,D) \tkzGetPoint{A} +\tkzInterLL(C,E)(B,D) \tkzGetPoint{H} +% drawing +\tkzDrawArc[delta=10](B,C)(E) +\tkzDrawPolygon(C,B,D) +\tkzDrawSegments(D,A B,A C,E) +% angles +\tkzMarkAngles(C,B,D E,A,D) %this is to draw the arcs +\tkzLabelAngles[pos=1.5](C,B,D E,A,D){$\alpha$} +\tkzMarkRightAngle(B,H,C) +\tkzDrawPoints(A,...,E) +% Label only now +\tkzLabelPoints[below left](C,A) +\tkzLabelPoints[below right](D) +\tkzLabelPoints[above](B,E) +\end{tikzpicture} +\end{center} + +Let's analyze the figure +\begin{enumerate} + \item CBD and DBE are isosceles triangles; BC=BE and BD is a bisector of the angle CBE.From this we deduce that the CBD and DBE angles are equal and have the same measure $\alpha$. + \[\widehat{BAC} +\widehat{ABC} + \widehat{BCA}=180^\circ \text{in the triangle} BAC\] + \[3\alpha + \widehat{BCA}=180^\circ \text{in the triangle} CBD\] + then + \[\alpha + 2\widehat{BCA}=180^\circ \] soit + \[\widehat{BCA}=90^\circ -\alpha/2 \] + finally \[\widehat{CBD}=\alpha=36^\circ \] + the triangle CBD is a "gold" triangle +\end{enumerate} + +How construct a gold triangle or an angle of $36^\circ$ ? + +\begin{itemize} + \item We place the fixed points $C$ and $D$.|\tkzDefPoint(0,0){C}| and |\tkzDefPoint(4,0){D}|. + \item We construct a square $CDef$ and we construct the midpoint $m$ of $Cf$. + We can do all of this with a compass and a rule. + \item Then we trace an arc with center m through e. This arc cross the line $Cf$ at $n$ + \item Now the two arcs with center $C$ et $D$ and radius $Cn$ define the point $B$. +\end{itemize} + + +\begin{minipage}{.4\textwidth} + \begin{tikzpicture} + \tkzDefPoint(0,0){C} + \tkzDefPoint(4,0){D} + \tkzDefSquare(C,D) + \tkzGetPoints{e}{f} + \tkzDefMidPoint(C,f) + \tkzGetPoint{m} + \tkzInterLC(C,f)(m,e) + \tkzGetSecondPoint{n} + \tkzInterCC[with nodes](C,C,n)(D,C,n) + \tkzGetFirstPoint{B} + \tkzDrawSegment[brown,dashed](f,n) + \pgfinterruptboundingbox + \tkzDrawPolygon[brown,dashed](C,D,e,f) + \tkzDrawArc[brown,dashed](m,e)(n) + \tkzCompass[brown,dashed,delta=20](C,B) + \tkzCompass[brown,dashed,delta=20](D,B) + \endpgfinterruptboundingbox + \tkzDrawPoints(C,D,B) + \tkzDrawPolygon(B,...,D) + \end{tikzpicture} +\end{minipage} +\begin{minipage}{.6\textwidth} + \begin{tkzexample}[code only,small] + \begin{tikzpicture} + \tkzDefPoint(0,0){C} + \tkzDefPoint(4,0){D} + \tkzDefSquare(C,D) + \tkzGetPoints{e}{f} + \tkzDefMidPoint(C,f) + \tkzGetPoint{m} + \tkzInterLC(C,f)(m,e) + \tkzGetSecondPoint{n} + \tkzInterCC[with nodes](C,C,n)(D,C,n) + \tkzGetFirstPoint{B} + \tkzDrawSegment[brown,dashed](f,n) + \pgfinterruptboundingbox + \tkzDrawPolygon[brown,dashed](C,D,e,f) + \tkzDrawArc[brown,dashed](m,e)(n) + \tkzCompass[brown,dashed,delta=20](C,B) + \tkzCompass[brown,dashed,delta=20](D,B) + \endpgfinterruptboundingbox + \tkzDrawPoints(C,D,B) + \tkzDrawPolygon(B,...,D) + \end{tikzpicture} + \end{tkzexample} +\end{minipage} + + +After building the golden triangle $BCD$, we build the point $A$ by noticing that $BD=DA$. Then we get the point $E$ and finally the point $F$. This is done with already intersections of defined objects (line and circle). + + +\begin{center} + \begin{tikzpicture} + \tkzDefPoint(0,0){C} + \tkzDefPoint(4,0){D} + \tkzDefSquare(C,D) + \tkzGetPoints{e}{f} + \tkzDefMidPoint(C,f) + \tkzGetPoint{m} + \tkzInterLC(C,f)(m,e) + \tkzGetSecondPoint{n} + \tkzInterCC[with nodes](C,C,n)(D,C,n) + \tkzGetFirstPoint{B} + \tkzInterLC(C,D)(D,B) \tkzGetSecondPoint{A} + \tkzInterLC(B,A)(B,D) \tkzGetSecondPoint{E} + \tkzInterLL(B,D)(C,E) \tkzGetPoint{F} + \tkzDrawPoints(C,D,B) + \tkzDrawPolygon(B,...,D) + \tkzDrawPolygon(B,C,D) + \tkzDrawSegments(D,A A,B C,E) + \tkzDrawArc[delta=10](B,C)(E) + \tkzDrawPoints(A,...,F) + \tkzMarkRightAngle[fill=blue!20](B,F,C) + \tkzFillAngles[fill=blue!10](C,B,D E,A,D) + \tkzMarkAngles(C,B,D E,A,D) + \tkzLabelAngles[pos=1.5](C,B,D E,A,D){$\alpha$} + \tkzLabelPoints[below](A,C,D,E) + \tkzLabelPoints[above right](B,F) + \end{tikzpicture} +\end{center} + + + +\begin{tkzexample}[code only,small] + \begin{tikzpicture} + \tkzDefPoint(0,0){C} + \tkzDefPoint(4,0){D} + \tkzDefSquare(C,D) + \tkzGetPoints{e}{f} + \tkzDefMidPoint(C,f) + \tkzGetPoint{m} + \tkzInterLC(C,f)(m,e) + \tkzGetSecondPoint{n} + \tkzInterCC[with nodes](C,C,n)(D,C,n) + \tkzGetFirstPoint{B} + \tkzInterLC(C,D)(D,B) \tkzGetSecondPoint{A} + \tkzInterLC(B,A)(B,D) \tkzGetSecondPoint{E} + \tkzInterLL(B,D)(C,E) \tkzGetPoint{F} + \tkzDrawPoints(C,D,B) + \tkzDrawPolygon(B,...,D) + \tkzDrawPolygon(B,C,D) + \tkzDrawSegments(D,A A,B C,E) + \tkzDrawArc[delta=10](B,C)(E) + \tkzDrawPoints(A,...,F) + \tkzMarkRightAngle[fill=blue!20](B,F,C) + \tkzFillAngles[fill=blue!10](C,B,D E,A,D) + \tkzMarkAngles(C,B,D E,A,D) + \tkzLabelAngles[pos=1.5](C,B,D E,A,D){$\alpha$} + \tkzLabelPoints[below](A,C,D,E) + \tkzLabelPoints[above right](B,F) + \end{tikzpicture} +\end{tkzexample} + +\subsubsection{Example Part II two others methods gold and euclide triangle} + +tkz-euclide knows how to define a "gold" or "euclide" triangle. We can define BCD and BCA comme des triangles d'or + + + \begin{center} + \begin{tkzexample}[code only,small] + \begin{tikzpicture} + \tkzDefPoint(0,0){C} + \tkzDefPoint(4,0){D} + \tkzDefTriangle[gold](C,D) + \tkzGetPoint{B} + \tkzDefTriangle[gold](B,C) + \tkzGetPoint{A} + \tkzInterLC(B,A)(B,D) \tkzGetSecondPoint{E} + \tkzInterLL(B,D)(C,E) \tkzGetPoint{F} + \tkzDrawPoints(C,D,B) + \tkzDrawPolygon(B,...,D) + \tkzDrawPolygon(B,C,D) + \tkzDrawSegments(D,A A,B C,E) + \tkzDrawArc[delta=10](B,C)(E) + \tkzDrawPoints(A,...,F) + \tkzMarkRightAngle[fill=blue!20](B,F,C) + \tkzFillAngles[fill=blue!10](C,B,D E,A,D) + \tkzMarkAngles(C,B,D E,A,D) + \tkzLabelAngles[pos=1.5](C,B,D E,A,D){$\alpha$} + \tkzLabelPoints[below](A,C,D,E) + \tkzLabelPoints[above right](B,F) + \end{tikzpicture} + \end{tkzexample} + \end{center} + +Voici une dernière méthode qui utilise des rotations + +\begin{center} + \begin{tkzexample}[code only,small] + \begin{tikzpicture} + \tkzDefPoint(0,0){C} % possible + % \tkzDefPoint[label=below:$C$](0,0){C} + % but don't do this + \tkzDefPoint(2,6){B} + % We get D and E with a rotation + \tkzDefPointBy[rotation= center B angle 36](C) \tkzGetPoint{D} + \tkzDefPointBy[rotation= center B angle 72](C) \tkzGetPoint{E} + % To get A we use an intersection of lines + \tkzInterLL(B,E)(C,D) \tkzGetPoint{A} + \tkzInterLL(C,E)(B,D) \tkzGetPoint{H} + % drawing + \tkzDrawArc[delta=10](B,C)(E) + \tkzDrawPolygon(C,B,D) + \tkzDrawSegments(D,A B,A C,E) + % angles + \tkzMarkAngles(C,B,D E,A,D) %this is to draw the arcs + \tkzLabelAngles[pos=1.5](C,B,D E,A,D){$\alpha$} + \tkzMarkRightAngle(B,H,C) + \tkzDrawPoints(A,...,E) + % Label only now + \tkzLabelPoints[below left](C,A) + \tkzLabelPoints[below right](D) + \tkzLabelPoints[above](B,E) + \end{tikzpicture} + \end{tkzexample} +\end{center} + + +\subsubsection{Complete but minimal example} + + +A unit of length being chosen, the example shows how to obtain a segment of length $\sqrt{a}$ from a segment of length $a$, using a ruler and a compass. + +$IB=a$, $AI=1$ + +\vspace{12pt} +\hypertarget{firstex}{} + +\begin{tikzpicture}[scale=1,ra/.style={fill=gray!20}] + % fixed points + \tkzDefPoint(0,0){A} + \tkzDefPoint(1,0){I} + % calculation + \tkzDefPointBy[homothety=center A ratio 10 ](I) \tkzGetPoint{B} + \tkzDefMidPoint(A,B) \tkzGetPoint{M} + \tkzDefPointWith[orthogonal](I,M) \tkzGetPoint{i} + \tkzInterLC(I,i)(M,B) \tkzGetSecondPoint{C} + \tkzDrawSegment[style=orange](I,C) + \tkzDrawArc(M,B)(A) + \tkzDrawSegment[dim={$1$,-16pt,}](A,I) + \tkzDrawSegment[dim={$a/2$,-10pt,}](I,M) + \tkzDrawSegment[dim={$a/2$,-16pt,}](M,B) + \tkzMarkRightAngle[ra](A,I,C) + \tkzDrawPoints(I,A,B,C,M) + \tkzLabelPoint[left](A){$A(0,0)$} + \tkzLabelPoints[above right](I,M) + \tkzLabelPoints[above left](C) + \tkzLabelPoint[right](B){$B(10,0)$} + \tkzLabelSegment[right=4pt](I,C){$IC=\sqrt{a}$} +\end{tikzpicture} + +\emph{Commentaires} + +\begin{itemize} +\item The Preamble + + + Let us first look at the preamble. If you need it, you have to load \tkzname{xcolor} before \tkzname{tkz-euclide}, that is, before \TIKZ\ . \TIKZ\ may cause problems with the active characters , but... + provides a library in its latest version that's supposed to solve these problems \NameLib{babel}. + +\begin{tkzltxexample}[] +\documentclass{standalone} % or another class + % \usepackage{xcolor} % before tikz or tkz-euclide if necessary +\usepackage{tkz-euclide} % no need to load TikZ + % \usetkzobj{all} is no longer necessary + % \usetikzlibrary{babel} if there are problems with the active characters +\end{tkzltxexample} + +The following code consists of several parts: + + \item Definition of fixed points: the first part includes the definitions of the points necessary for the construction, these are the fixed points. The macros \tkzcname{tkkzInit} and \tkzcname{tkkzClip} in most cases are not necessary. + +\begin{tkzltxexample}[] + \tkzDefPoint(0,0){O} + \tkzDefPoint(1,0){I} + \tkzDefPoint(10,0){B} +\end{tkzltxexample} + + \item The second part is dedicated to the creation of new points from the fixed points; + a $B$ point is placed at $10 cm$ from $A$. The middle of $[AB]$ is defined by $M$ and then the orthogonal line to the $(AB)$ line is searched for at the $I$ point. Then we look for the intersection of this line with the semi-circle of center $M$ passing through $A$. + +\begin{tkzltxexample}[] + \tkzDefPointBy[homothety=center A ratio 10 ](I) + \tkzGetPoint{B} + \tkzDefMidPoint(A,B) + \tkzGetPoint{M} + \tkzDefPointWith[orthogonal](I,M) + \tkzGetPoint{H} + \tkzInterLC(I,H)(M,A) + \tkzGetSecondPoint{B} + \end{tkzltxexample} + + + \item The third one includes the different drawings; + \begin{tkzltxexample}[] + \tkzDrawSegment[style=dashed](I,H) + \tkzDrawPoints(O,I,A,B,M) + \tkzDrawArc(M,A)(O) + \tkzDrawSegment[dim={$1$,-16pt,}](O,I) % voir la documentation pour l'usage de dim + \tkzDrawSegment[dim={$a/2$,-10pt,}](I,M) + \tkzDrawSegment[dim={$a/2$,-16pt,}](M,A) + \end{tkzltxexample} + +\item Marking: the fourth is devoted to marking; + + +\begin{tkzltxexample}[] + \tkzMarkRightAngle(A,I,B) + \end{tkzltxexample} + + \item Labelling: the latter only deals with the placement of labels. +\begin{tkzltxexample}[] + \tkzLabelPoint[left](O){$A(0,0)$} + \tkzLabelPoint[right](A){$B(10,0)$} + \tkzLabelSegment[right=4pt](I,B){$\sqrt{a^2}=a \ (a>0)$} +\end{tkzltxexample} + + +\item The full code: + + +\begin{tkzexample}[code only] + \begin{tikzpicture}[scale=1,ra/.style={fill=gray!20}] + % fixed points + \tkzDefPoint(0,0){A} + \tkzDefPoint(1,0){I} + % calculation + \tkzDefPointBy[homothety=center A ratio 10 ](I) \tkzGetPoint{B} + \tkzDefMidPoint(A,B) \tkzGetPoint{M} + \tkzDefPointWith[orthogonal](I,M) \tkzGetPoint{i} + \tkzInterLC(I,i)(M,B) \tkzGetSecondPoint{C} + + \tkzDrawSegment[style=orange](I,C) + \tkzDrawArc(M,B)(A) + \tkzDrawSegment[dim={$1$,-16pt,}](A,I) + \tkzDrawSegment[dim={$a/2$,-10pt,}](I,M) + \tkzDrawSegment[dim={$a/2$,-16pt,}](M,B) + \tkzMarkRightAngle[ra](A,I,C) + \tkzDrawPoints(I,A,B,C,M) + \tkzLabelPoint[left](A){$A(0,0)$} + \tkzLabelPoints[above right](I,M) + \tkzLabelPoints[above left](C) + \tkzLabelPoint[right](B){$B(10,0)$} + \tkzLabelSegment[right=4pt](I,C){$IC=\sqrt{a}$} + \end{tikzpicture} +\end{tkzexample} +\end{itemize} + +\newpage +\subsection{The Elements of tkz code} +In this paragraph, we start looking at the "rules" and "symbols" used to create a figure with tkz-euclide. + + The primitive objects are points. You can refer to a point at any time using the name given when defining it. (it is possible to assign a different name later on). + +\medskip +In general, tkz-euclide macros have a name beginning with tkz. There are four main categories starting with~: +|\tkzDef...| |\tkzDraw...| |\tkzMark...| et |\tkzLabel...| + +Among the first category, |\tkzDefPoint| allows you to define fixed points. It will be studied in detail later. Here we will see in detail the macro DefTriangle |\tkzDefTriangle|. + +This macro makes it possible to associate to a pair of points a third point in order to define a certain triangle |\tkzDefTriangle(A,B)|. The obtained point is referenced |tkzPointResult| and it is possible to choose another reference with |\tkzGetPoint{C}| for example. +Parentheses are used to pass arguments. In |(A,B)| $A$ and $B$ are the points with which a third will be defined. + +However, in |{C}| we use braces to retrieve the new point. +In order to choose a certain type of triangle among the following choices : + |equilateral|, |halftone|, |pythagoras|, |school|, |golden or sublime|, |euclide|, |gold|, |cheops|... + and |two angles| you just have to choose between hooks, for example~: + +|\tkzDefTriangle[euclide](A,B) \tkzGetPoint{C}| + +\begin{minipage}{0.5\textwidth} + \begin{tikzpicture}[scale=.75] + \tkzDefPoints{0/0/A,8/0/B} + \foreach \tr in {equilateral,half,pythagore,% + school,golden,euclide, gold,cheops} + {\tkzDefTriangle[\tr](A,B) \tkzGetPoint{C} + \tkzDrawPoint(C) + \tkzLabelPoint[right](C){\tr} + \tkzDrawSegments(A,C C,B)} + \tkzDrawPoints(A,B) + \tkzDrawSegments(A,B) + \end{tikzpicture} +\end{minipage} +\begin{minipage}{0.5\textwidth} + \begin{tkzexample}[code only,small] + \begin{tikzpicture}[scale=.75] + \tkzDefPoints{0/0/A,8/0/B} + \foreach \tr in {equilateral,half,pythagore,% + school,golden,euclide, gold,cheops} + {\tkzDefTriangle[\tr](A,B) \tkzGetPoint{C} + \tkzDrawPoint(C) + \tkzLabelPoint[right](C){\tr} + \tkzDrawSegments(A,C C,B)} + \tkzDrawPoints(A,B) + \tkzDrawSegments(A,B) + \end{tikzpicture} + \end{tkzexample} + +\end{minipage} + + +\subsection{Conventions} + +For this documentation, I used the geometric French and personal conventions for naming the points: +\begin{itemize} +\item $O$ is a center for a circle, a rotation, etc.; +\item $M$ defined a midpoint; +\item $H$ defined the foot of an altitude; +\item $P'$ is the image of $P$ by a transformation ; +\item $a$ defined an angle (degree), $r$ the length of a radius, $d$ a length (or dimension); +\item ($x_1$,$y_1$) coordinates of the point $A_1$, ($x_A$,$y_A$) coordinates of the point $A$; +\item $[AB]$ a line segment, $(AB)$ a line. +\end{itemize} + +\subsection{How to use the tkz-euclide package ?} +\subsubsection{Let's look at a classic example} +In order to show the right way, we will see how to build an equilateral triangle. Several possibilities are open to us, we are going to follow the steps of Euclid. + +\begin{itemize} +\item First of all you have to use a document class. The best choice to test your code is to create a single figure with the class \tkzname{standalone}\index{standalone}. +\begin{verbatim} +\documentclass{standalone} +\end{verbatim} +\item Then load the tkz-euclide package: +\begin{verbatim} +\usepackage{tkz-euclide} +\end{verbatim} + + You don't need to load \TIKZ\ because the tkz-euclide package works on top of TikZ and loads it. + \item {\color{red} \bomb \sout{|\BS usetkzobj{all}| }} + With the new version 3.02 you don't need this line anymore. All objects are now loaded. + \item Start the document and open a TikZ picture environment: +\begin{verbatim} +\begin{document} +\begin{tikzpicture} +\end{verbatim} + +\item Now we define two fixed points: +\begin{verbatim} +\tkzDefPoint(O,O){A} +\tkzDefPoint(5,2){B} +\end{verbatim} + +\item Two points define two circles, let's use these circles : + + circle with center $A$ through $B$ and circle with center $B$ through $A$. These two circles have two points in common. +\begin{verbatim} +\tkzInterCC(A,B)(B,A) +\end{verbatim} +we can get the points of intersection with +\begin{verbatim} +\tkzGetPoints{C}{D} +\end{verbatim} + +\item All the necessary points are obtained, we can move on to the final steps including the plots. +\begin{verbatim} +\tkzDrawPolygon(A,B,C)% The triangle +\end{verbatim} +\item Draw all points A,B,C and D : +\begin{verbatim} +\tkzDrawPoints(A,...,D) +\end{verbatim} + +\item The final step, we print labels to the points and use options for positioning:\\ +\begin{verbatim} +\tkzLabelPoints[below left](A) +\tkzLabelPoints(B,D) +\tkzLabelPoint (above] (C){$C$} +\end{verbatim} +\item We finally close both environments +\begin{verbatim} +\end{tikzpicture} +\end{document} +\end{verbatim} + +\item The complete code + +\begin{tkzexample}[latex=8cm,small] + \begin{tikzpicture}[scale=.5] + % fixed points + \tkzDefPoint(0,0){A} + \tkzDefPoint(5,2){B} + % calculus + \tkzInterCC(A,B)(B,A) + \tkzGetPoints{C}{D} + % drawings + \tkzDrawCircles[gray,dashed](A,B B,A) + \tkzDrawPolygon(A,B,C) + \tkzDrawPoints(A,...,D) + % marking + \tkzMarkSegments[mark=s||](A,B B,C C,A) + % labelling + \tkzLabelSegments[swap](A,B){$c$} + \tkzLabelPoints(A,B,D) + \tkzLabelPoints[above](C) +\end{tikzpicture} +\end{tkzexample} + + \end{itemize} + +\subsubsection{"Set, Calculate, Draw, Mark, Label"} +The title could have been : \texttt{Separation of Calculus and Drawings} + +When a document is prepared using the LaTeX system, the source code of the document can be divided into two parts: the document body and the preamble. +Under this methodology, publications can be structured, styled and typeset with minimal effort. +I propose a similar methodology for creating figures with tkz-euclide. + +The first part defines the fixed points, the second part allows the creation of new points. These are the two main parts. All that is left to do is to draw, mark and label. + + + + +\endinput + + + + + + + + + + + + + diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-rapporteur.tex b/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-rapporteur.tex new file mode 100644 index 00000000000..a528e9bb576 --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-rapporteur.tex @@ -0,0 +1,49 @@ +\section{Rapporteurs} + + +D'après une idée de Yves Combe., la macro suivante permet de dessiner un rapporteur. + + +\begin{NewMacroBox}{tkzProtractor}{\oarg{local options}\parg{$O,A$}} + +\medskip +\begin{tabular}{lll} +\toprule +options & défaut & définition \\ +\midrule +\TOline{lw} {0.4 pt} { épaisseur des lignes} +\TOline{scale} {1} { ratio : permet d'ajuster la taille du rapporteur} \TOline{return} {false} { sens indirect du cercle trigonométrique} +\end{tabular} +\end{NewMacroBox} + + +\subsection{Le rapporteur circulaire} + +Mesure dans le sens direct + +\begin{tkzexample}[latex=7cm,small] +\begin{tikzpicture}[scale=.5] +\tkzDefPoint(2,0){A}\tkzDefPoint(0,0){O} +\tkzDefShiftPoint[A](31:5){B} +\tkzDefShiftPoint[A](158:5){C} +\tkzDrawPoints(A,B,C) +\tkzDrawSegments[color = red, + line width = 1pt](A,B A,C) + \tkzProtractor[scale = 1](A,B) +\end{tikzpicture} +\end{tkzexample} + +\subsection{Le rapporteur circulaire, transparent et retourné} + +\begin{tkzexample}[latex=7cm,small] +\begin{tikzpicture}[scale=.5] + \tkzDefPoint(2,3){A} + \tkzDefShiftPoint[A](31:5){B} + \tkzDefShiftPoint[A](158:5){C} + \tkzDrawSegments[color=red,line width=1pt](A,B A,C) + \tkzProtractor[return](A,C) +\end{tikzpicture} +\end{tkzexample} + + +\endinput
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-rnd.tex b/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-rnd.tex new file mode 100644 index 00000000000..37e0fdb6bad --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-rnd.tex @@ -0,0 +1,177 @@ +\section{Random point definition} +%<---------------------------------------------------------------------------> +% points random +%<---------------------------------------------------------------------------> +At the moment there are four possibilities: +\begin{enumerate} + \item point in a rectangle, + \item on a segment, + \item on a straight line, + \item on a circle. +\end{enumerate} + +\subsection{Obtaining random points} +This is the new version that replaces \tkzcname{tkzGetRandPointOn} +\begin{NewMacroBox}{tkzDefRandPointOn}{\oarg{local options}} +{The result is a point with a random position that can be named with the macro \tkzcname{tkzGetPoint}. It is possible to use \tkzname{tkzPointResult} if it is not necessary to retain the results..} + + +\medskip +\begin{tabular}{lll} +\toprule +options & default & definition \\ +\midrule +\TOline{rectangle=pt1 and pt2} {}{[rectangle=A and B]} +\TOline{segment= pt1--pt2} {}{[segment=A--B]} +\TOline{line=pt1--pt2}{}{[line=A--B]} +\TOline{circle =center pt1 radius dim}{}{[circle = center A radius 2cm]} +\TOline{circle through=center pt1 through pt2}{}{[circle through= center A through B]} +\TOline{disk through=center pt1 through pt2}{}{[disk through=center A through B]} + \bottomrule +\end{tabular} + +\end{NewMacroBox} + +\subsection{Random point in a rectangle} + +\begin{tkzexample}[latex=7cm,small] +\begin{tikzpicture} + \tkzInit[xmax=5,ymax=5]\tkzGrid + \tkzDefPoints{0/0/A,2/2/B,5/5/C} + \tkzDefRandPointOn[rectangle = A and B] + \tkzGetPoint{a} + \tkzDefRandPointOn[rectangle = B and C] + \tkzGetPoint{d} + \tkzDrawLine(a,d) + \tkzDrawPoints(A,B,C,a,d) + \tkzLabelPoints(A,B,C,a,d) +\end{tikzpicture} +\end{tkzexample} + +\subsection{Random point on a segment} +\begin{tkzexample}[latex=7cm,small] +\begin{tikzpicture} + \tkzInit[xmax=5,ymax=5] \tkzGrid + \tkzDefPoints{0/0/A,2/2/B,3/3/C,5/5/D} + \tkzDefRandPointOn[segment = A--B]\tkzGetPoint{a} + \tkzDefRandPointOn[segment = C--D]\tkzGetPoint{d} + \tkzDrawPoints(A,B,C,D,a,d) + \tkzLabelPoints(A,B,C,D,a,d) +\end{tikzpicture} +\end{tkzexample} + +\subsection{Random point on a straight line} +\begin{tkzexample}[latex=7cm,small] +\begin{tikzpicture} + \tkzInit[xmax=5,ymax=5] \tkzGrid + \tkzDefPoints{0/0/A,2/2/B,3/3/C,5/5/D} + \tkzDefRandPointOn[line = A--B]\tkzGetPoint{a} + \tkzDefRandPointOn[line = C--D]\tkzGetPoint{d} + \tkzDrawPoints(A,B,C,D,a,d) + \tkzLabelPoints(A,B,C,D,a,d) +\end{tikzpicture} +\end{tkzexample} + + +\subsubsection{Example of random points} +\begin{tkzexample}[latex=7cm,small] +\begin{tikzpicture} + \tkzDefPoints{0/0/A,2/2/B,-1/-1/C} + \tkzDefCircle[through=](A,C) + \tkzGetLength{rAC} + \tkzDrawCircle(A,C) + \tkzDrawCircle(A,B) + \tkzDefRandPointOn[rectangle=A and B] + \tkzGetPoint{a} + \tkzDefRandPointOn[segment=A--B] + \tkzGetPoint{b} + \tkzDefRandPointOn[circle=center A radius \rAC pt] + \tkzGetPoint{d} + \tkzDefRandPointOn[circle through= center A through B] + \tkzGetPoint{c} + \tkzDefRandPointOn[disk through=center A through B] + \tkzGetPoint{e} + \tkzLabelPoints[above right=3pt](A,B,C,a,b,...,e) + \tkzDrawPoints[](A,B,C,a,b,...,e) + \tkzDrawRectangle(A,B) +\end{tikzpicture} +\end{tkzexample} + +\subsection{Random point on a circle} +\begin{tkzexample}[latex=7cm,small] +\begin{tikzpicture} + \tkzInit[xmax=5,ymax=5] \tkzGrid + \tkzDefPoints{3/2/A,1/1/B} + \tkzCalcLength[cm](A,B) \tkzGetLength{rAB} + \tkzDrawCircle[R](A,\rAB cm) + \tkzDefRandPointOn[circle = center A radius + \rAB cm]\tkzGetPoint{a} + \tkzDrawSegment(A,a) + \tkzDrawPoints(A,B,a) + \tkzLabelPoints(A,B,a) +\end{tikzpicture} +\end{tkzexample} + +\subsubsection{Random example and circle of Apollonius} +\begin{tkzexample}[latex=7cm,small] +\begin{tikzpicture}[scale=1] + \tkzDefPoints{0/0/A,3/0/B} + \def\coeffK{2} + \tkzApolloniusCenter[K=\coeffK](A,B) + \tkzGetPoint{P} + \tkzDefApolloniusPoint[K=\coeffK](A,B) + \tkzGetPoint{M} + \tkzDefApolloniusRadius[K=\coeffK](A,B) + \tkzDrawCircle[R,color = blue!50!black, + fill=blue!20, + opacity=.4](tkzPointResult,\tkzLengthResult pt) + \tkzDefRandPointOn[circle through= center P through M] + \tkzGetPoint{N} + \tkzDrawPoints(A,B,P,M,N) + \tkzLabelPoints(A,B,P,M,N) + \tkzDrawSegments[red](N,A N,B) + \tkzDrawPoints(A,B) + \tkzDrawSegments[red](A,B) + \tkzLabelCircle[R,draw,fill=green!10,% + text width=3cm,% + text centered](P,\tkzLengthResult pt-20pt)(-120)% + { $MA/MB=\coeffK$\\$NA/NB=\coeffK$} +\end{tikzpicture} +\end{tkzexample} + + + +\subsection{Middle of a compass segment} + To conclude this section, here is a more complex example. It involves determining the middle of a segment, using only a compass. + +\begin{tkzexample}[latex=7cm,small] +\begin{tikzpicture}[scale=.75] + \tkzDefPoint(0,0){A} + \tkzDefRandPointOn[circle= center A radius 4cm] + \tkzGetPoint{B} + \tkzDrawPoints(A,B) + \tkzDefPointBy[rotation= center A angle 180](B) + \tkzGetPoint{C} + \tkzInterCC[R](A,4 cm)(B,4 cm) + \tkzGetPoints{I}{I'} + \tkzInterCC[R](A,4 cm)(I,4 cm) + \tkzGetPoints{J}{B} + \tkzInterCC(B,A)(C,B) + \tkzGetPoints{D}{E} + \tkzInterCC(D,B)(E,B) + \tkzGetPoints{M}{M'} + \tikzset{arc/.style={color=brown,style=dashed,delta=10}} + \tkzDrawArc[arc](C,D)(E) + \tkzDrawArc[arc](B,E)(D) + \tkzDrawCircle[color=brown,line width=.2pt](A,B) + \tkzDrawArc[arc](D,B)(M) + \tkzDrawArc[arc](E,M)(B) + \tkzCompasss[color=red,style=solid](B,I I,J J,C) + \tkzDrawPoints(B,C,D,E,M) + \tkzLabelPoints(A,B,M) + \end{tikzpicture} + \end{tkzexample} + +\endinput + +
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-sectors.tex b/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-sectors.tex new file mode 100644 index 00000000000..e615d1c0a09 --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-sectors.tex @@ -0,0 +1,241 @@ +\section{Les secteurs} + +\subsection{\tkzcname{tkzDrawSector}} +\begin{NewMacroBox}{tkzDrawSector}{\oarg{local options}\parg{O,\dots}\parg{\dots}} +\tkzHandBomb\ Attention les arguments varient en fonction des options. + +\medskip +\begin{tabular}{lll} +\toprule +options & default & definition \\ +\midrule +\TOline{towards}{towards}{O est le centre et l'arc par de A vers (OB)} +\TOline{rotate} {towards}{l'arc part de A et l'angle détermine sa longueur } +\TOline{R}{towards}{On donne le rayon et deux angles} +\TOline{R with nodes}{towards}{On donne le rayon et deux points} +\bottomrule +\end{tabular} + +\medskip +Il faut ajouter bien sûr tous les styles de \TIKZ\ pour les tracés + +\medskip + +\begin{tabular}{lll} +\toprule +options & arguments & exemple \\ +\midrule +\TOline{towards}{\parg{pt,pt}\parg{pt}}{\tkzcname{tkzDrawSector(O,A)(B)}} +\TOline{rotate} {\parg{pt,pt}\parg{an}}{\tkzcname{tkzDrawSector[rotate,color=red](O,A)(90)}} +\TOline{R}{\parg{pt,$r$}\parg{an,an}}{\tkzcname{tkzDrawSector[R,color=blue](O,2 cm)(30,90)}} +\TOline{R with nodes}{\parg{pt,$r$}\parg{pt,pt}}{\tkzcname{tkzDrawSector[R with nodes](O,2 cm)(A,B)}} +\bottomrule +\end{tabular} +\end{NewMacroBox} + +Quelques exemples : + +\subsubsection{\tkzcname{tkzDrawSector} et \tkzname{towards}} +Il est inutile de mettre \tkzname{towards}. Il est possible d'utiliser \tkzimp{fill} en option. + +\begin{tkzexample}[latex=7cm,small] +\begin{tikzpicture}[scale=1] + \tkzDefPoint(0,0){O} + \tkzDefPoint(-30:3){A} + \tkzDefPointBy[rotation = center O angle -60](A) + \tkzDrawSector[fill=red!50](O,A)(tkzPointResult) + \begin{scope}[shift={(-60:1cm)}] + \tkzDefPoint(0,0){O} + \tkzDefPoint(-30:3){A} + \tkzDefPointBy[rotation = center O angle -60](A) + \tkzDrawSector[fill=blue!50](O,tkzPointResult)(A) + \end{scope} +\end{tikzpicture} +\end{tkzexample} + +\subsubsection{\tkzcname{tkzDrawSector} et \tkzname{rotate}} + +\begin{tkzexample}[latex=7cm,small] +\begin{tikzpicture}[scale=2] + \tkzDefPoint(0,0){O} + \tkzDefPoint(2,2){A} + \tkzDrawSector[rotate,draw=red!50!black,% + fill=red!20](O,A)(30) + \tkzDrawSector[rotate,draw=blue!50!black,% + fill=blue!20](O,A)(-30) +\end{tikzpicture} +\end{tkzexample} + +\subsubsection{\tkzcname{tkzDrawSector} et \tkzname{R}} +\begin{tkzexample}[latex=7cm,small] +\begin{tikzpicture}[scale=1.25] + \tkzDefPoint(0,0){O} + \tkzDefPoint(2,-1){A} + \tkzDrawSector[R,draw=white,% + fill=red!50](O,2cm)(30,90) + \tkzDrawSector[R,draw=white,% + fill=red!60](O,2cm)(90,180) + \tkzDrawSector[R,draw=white,% + fill=red!70](O,2cm)(180,270) + \tkzDrawSector[R,draw=white,% + fill=red!90](O,2cm)(270,360) +\end{tikzpicture} +\end{tkzexample} + +\subsubsection{\tkzcname{tkzDrawSector} et \tkzname{R}} +\begin{tkzexample}[latex=7cm,small] +\begin{tikzpicture}[scale=1.25] + \tkzDefPoint(0,0){O} + \tkzDefPoint(4,-2){A} + \tkzDefPoint(4,1){B} + \tkzDefPoint(3,3){C} + \tkzDrawSector[R with nodes,% + fill=blue!20](O,1 cm)(B,C) + \tkzDrawSector[R with nodes,% + fill=red!20](O,1.25 cm)(A,B) +\tkzDrawSegments(O,A O,B O,C) +\tkzDrawPoints(O,A,B,C) +\tkzLabelPoints(A,B,C) +\tkzLabelPoints[left](O) +\end{tikzpicture} +\end{tkzexample} + +\subsubsection{\tkzcname{tkzDrawSector} et \tkzname{R with nodes}} +\begin{tkzexample}[latex=7cm,small] +\begin{tikzpicture} [scale=.5] + \tkzDefPoint(-1,-2){A} + \tkzDefPoint(1,3){B} + \tkzDefRegPolygon[side,sides=6](A,B) + \tkzGetPoint{O} + \tkzDrawPolygon[fill=black!10, + draw=blue](P1,P...,P6) + \tkzLabelRegPolygon[sep=1.05](O){A,...,F} + \tkzDrawCircle[dashed](O,A) + \tkzLabelSegment[above,sloped, + midway](A,B){\(A B = 16m\)} + \foreach \i [count=\xi from 1] in {2,...,6,1} + {% + \tkzDefMidPoint(P\xi,P\i) + \path (O) to [pos=1.1] node {\xi} (tkzPointResult) ; + } + \tkzDefRandPointOn[segment = P3--P5] + \tkzGetPoint{S} + \tkzDrawSegments[thick,dashed,red](A,S S,B) + \tkzDrawPoints(P1,P...,P6,S) + \tkzLabelPoint[left,above](S){$S$} + \tkzDrawSector[R with nodes,fill=red!20](S,2 cm)(A,B) + \tkzLabelAngle[pos=1.5](A,S,B){$\alpha$} +\end{tikzpicture} +\end{tkzexample} + +\subsection{\tkzcname{tkzFillSector}} +\begin{NewMacroBox}{tkzFillSector}{\oarg{local options}\parg{O,\dots}\parg{\dots}} +\tkzHandBomb\ Attention les arguments varient en fonction des options. + +\medskip + +\begin{tabular}{lll} +\toprule +options & default & definition \\ +\midrule +\TOline{towards}{towards}{O est le centre et l'arc par de A vers (OB)} +\TOline{rotate} {towards}{l'arc part de A et l'angle détermine sa longueur } +\TOline{R}{towards}{On donne le rayon et deux angles} +\TOline{R with nodes}{towards}{On donne le rayon et deux points} +\bottomrule +\end{tabular} + +\medskip +Il faut ajouter bien sûr tous les styles de \TIKZ pour les tracés + +\medskip +\begin{tabular}{lll} +\toprule +options & arguments & exemple \\ +\midrule +\TOline{towards}{\parg{pt,pt}\parg{pt}}{\tkzcname{tkzFillSector(O,A)(B)}} +\TOline{rotate} {\parg{pt,pt}\parg{an}}{\tkzcname{tkzFillSector[rotate,color=red](O,A)(90)}} +\TOline{R}{\parg{pt,$r$}\parg{an,an}}{\tkzcname{tkzFillSector[R,color=blue](O,2 cm)(30,90)}} +\TOline{R with nodes}{\parg{pt,$r$}\parg{pt,pt}}{\tkzcname{tkzFillSector[R with nodes](O,2 cm)(A,B)}} +\bottomrule +\end{tabular} +\end{NewMacroBox} + +\subsubsection{\tkzcname{tkzFillSector} et \tkzname{towards}} +Il est inutile de mettre \tkzname{towards} et vous remarquerez que les contours ne sont pas tracés,seule la surface est colorée. +\begin{tkzexample}[latex=5.75cm,small] +\begin{tikzpicture}[scale=.6] + \tkzDefPoint(0,0){O} + \tkzDefPoint(-30:3){A} + \tkzDefPointBy[rotation = center O angle -60](A) + \tkzFillSector[fill=red!50](O,A)(tkzPointResult) + \begin{scope}[shift={(-60:1cm)}] + \tkzDefPoint(0,0){O} + \tkzDefPoint(-30:3){A} + \tkzDefPointBy[rotation = center O angle -60](A) + \tkzFillSector[color=blue!50](O,tkzPointResult)(A) + \end{scope} +\end{tikzpicture} +\end{tkzexample} + + +\subsubsection{\tkzcname{tkzFillSector} et \tkzname{rotate}} +\begin{tkzexample}[latex=5.75cm,small] +\begin{tikzpicture}[scale=1.5] + \tkzDefPoint(0,0){O} \tkzDefPoint(2,2){A} + \tkzFillSector[rotate,color=red!20](O,A)(30) + \tkzFillSector[rotate,color=blue!20](O,A)(-30) +\end{tikzpicture} +\end{tkzexample} + +\newpage +\subsection{\tkzcname{tkzClipSector}} +\begin{NewMacroBox}{tkzClipSector}{\oarg{local options}\parg{O,\dots}\parg{\dots}} +\tkzHandBomb\ Attention les arguments varient en fonction des options. + +\medskip + +\begin{tabular}{lll} +\toprule +options & default & definition \\ +\midrule +\TOline{towards}{towards}{O est le centre et le secteur part de A vers (OB)} +\TOline{rotate} {towards}{le secteur part de A et l'angle détermine son amplitude } +\TOline{R}{towards}{On donne le rayon et deux angles} +\bottomrule +\end{tabular} + +\medskip +Il faut ajouter bien sûr tous les styles de \TIKZ\ pour les tracés + +\medskip +\begin{tabular}{lll} +\toprule +options & arguments & exemple \\ +\midrule +\TOline{towards}{\parg{pt,pt}\parg{pt}}{\tkzcname{tkzClipSector(O,A)(B)}} +\TOline{rotate} {\parg{pt,pt}\parg{angle}}{\tkzcname{tkzClipSector[rotate](O,A)(90)}} +\TOline{R}{\parg{pt,$r$}\parg{angle 1,angle 2}}{\tkzcname{tkzClipSector[R](O,2 cm)(30,90)}} +\bottomrule +\end{tabular} +\end{NewMacroBox} + +\subsubsection{\tkzcname{tkzClipSector}} +\begin{tkzexample}[latex=7cm,small] +\begin{tikzpicture}[scale=1.5] + \tkzDefPoint(0,0){O} + \tkzDefPoint(2,-1){A} + \tkzDefPoint(1,1){B} + \tkzDrawSector[color=blue,dashed](O,A)(B) + \tkzDrawSector[color=blue](O,B)(A) + \tkzClipBB + \begin{scope} + \tkzClipSector(O,B)(A) + \draw[fill=gray!20] (-1,0) rectangle (3,3); + \end{scope} + \tkzDrawPoints(A,B,O) +\end{tikzpicture} +\end{tkzexample} + +\endinput + diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-show.tex b/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-show.tex new file mode 100644 index 00000000000..0d45ff22309 --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-show.tex @@ -0,0 +1,218 @@ +\section{The Show} + +\subsection{Montrer les constructions de certaines lignes \tkzcname{tkzShowLine}} + + \begin{NewMacroBox}{tkzShowLine}{\oarg{local options}\parg{pt1,pt2} ou \parg{pt1,pt2,pt3}} +Ces constructions concernent les médiatrices, les droites perpendiculaires ou parallèles passant par un point donné et les bissectrices. Les arguments sont donc des listes de deux ou bien de trois points. Plusieurs options permettent l'ajustement des constructions. L'idée de cette macro revient à \tkzimp{Yves Combe} + + +\medskip +\begin{tabular}{lll} +\toprule +options & default & definition \\ +\midrule +\TOline{mediator}{mediator}{affiche les constructions d'une médiatrice} +\TOline{perpendicular}{mediator}{constructions pour une perpendiculaire} +\TOline{orthogonal}{mediator}{idem} +\TOline{bisector}{mediator}{constructions pour une bissectrice} +\TOline{K}{1}{cercle inscrit dans à un triangle } +\TOline{length}{1}{ en cm, longueur d'un arc} +\TOline{ratio} {.5}{rapport entre les longueurs des arcs} +\TOline{gap}{2}{placement le point de construction} +\TOline{size}{1}{rayon d'un arc (voir bissectrice)} + \bottomrule +\end{tabular} + +Il faut ajouter bien sûr tous les styles de \TIKZ\ pour les tracés +\end{NewMacroBox} + +\subsubsection{Exemple de \tkzcname{tkzShowLine} et \tkzname{parallel}} + +\begin{tkzexample}[latex=7cm,small] +\begin{tikzpicture} + \tkzDefPoints{-1.5/-0.25/A,1/-0.75/B,-1.5/2/C} + \tkzDrawLine(A,B) + \tkzDefLine[parallel=through C](A,B) \tkzGetPoint{c} + \tkzShowLine[parallel=through C](A,B) + \tkzDrawLine(C,c) \tkzDrawPoints(A,B,C,c) +\end{tikzpicture} +\end{tkzexample} + +\subsubsection{Exemple de \tkzcname{tkzShowLine} et \tkzname{perpendicular}} + +\begin{tkzexample}[latex=5cm,small] +\begin{tikzpicture} +\tkzDefPoints{0/0/A, 3/2/B, 2/2/C} +\tkzDefLine[perpendicular=through C,K=-.5](A,B) \tkzGetPoint{c} +\tkzShowLine[perpendicular=through C,K=-.5,gap=3](A,B) +\tkzDefPointBy[projection=onto A--B](c)\tkzGetPoint{h} +\tkzMarkRightAngle[fill=lightgray](A,h,C) +\tkzDrawLines[add=1 and 1](A,B C,c) +\tkzDrawPoints(A,B,C,h,c) +\end{tikzpicture} +\end{tkzexample} + +\subsubsection{Exemple de \tkzcname{tkzShowLine} et \tkzname{bisector}} + +\begin{tkzexample}[latex=7 cm,small] +\begin{tikzpicture}[scale=1.25] + \tkzDefPoints{0/0/A, 4/2/B, 1/4/C} + \tkzDrawPolygon(A,B,C) + \tkzSetUpCompass[color=brown,line width=.1 pt] + \tkzDefLine[bisector](B,A,C) \tkzGetPoint{a} + \tkzDefLine[bisector](C,B,A) \tkzGetPoint{b} + \tkzInterLL(A,a)(B,b) \tkzGetPoint{I} + \tkzDefPointBy[projection = onto A--B](I) + \tkzGetPoint{H} + \tkzShowLine[bisector,size=2,gap=3,blue](B,A,C) + \tkzShowLine[bisector,size=2,gap=3,blue](C,B,A) + \tkzDrawCircle[radius,color=blue,% + line width=.2pt](I,H) + \tkzDrawSegments[color=red!50](I,tkzPointResult) + \tkzDrawLines[add=0 and -0.3,color=red!50](A,a B,b) +\end{tikzpicture} +\end{tkzexample} + +\subsubsection{Exemple de \tkzcname{tkzShowLine} et \tkzname{mediator}} +\begin{tkzexample}[latex=7 cm,small] +\begin{tikzpicture} +\tkzDefPoint(2,2){A} +\tkzDefPoint(5,4){B} +\tkzDrawPoints(A,B) +\tkzShowLine[mediator,color=orange,length=1](A,B) +\tkzGetPoints{i}{j} +\tkzDrawLines[add=-0.1 and -0.1](i,j) +\tkzDrawLines(A,B) +\tkzLabelPoints[below =3pt](A,B) +\end{tikzpicture} +\end{tkzexample} + +\subsection{Constructions de certaines transformations \addbs{tkzShowTransformation}} + + \begin{NewMacroBox}{tkzShowTransformation}{\oarg{local options}\parg{pt1,pt2} ou \parg{pt1,pt2,pt3}} +Ces constructions concernent les symétries orthogonales, les symétries centrales, les projections orthogonales et les translations. Plusieurs options permettent l'ajustement des constructions. L'idée de cette macro revient à \tkzimp{Yves Combe} + + +\medskip +\begin{tabular}{lll} +\toprule +options & default & definition \\ +\midrule +\TOline{reflection= over pt1--pt2}{reflection}{constructions d'une symétrie orthogonale} +\TOline{symmetry=center pt}{reflection}{constructions d'une symétrie centrale} +\TOline{projection=onto pt1--pt2}{reflection}{constructions d'une projection} +\TOline{translation=from pt1 to pt2}{reflection}{constructions d'une translation} +\TOline{K}{1}{cercle inscrit dans à un triangle } +\TOline{length}{1}{longueur d'un arc} +\TOline{ratio} {.5}{rapport entre les longueurs des arcs} +\TOline{gap}{2}{placement le point de construction} +\TOline{size}{1}{rayon d'un arc (voir bissectrice)} +\end{tabular} +\end{NewMacroBox} + +\subsubsection{Exemple d'utilisation de \tkzcname{tkzShowTransformation}} + + +\begin{tkzexample}[latex=6cm,small] +\begin{tikzpicture}[scale=.6] + \tkzDefPoint(0,0){O} \tkzDefPoint(2,-2){A} + \tkzDefPoint(70:4){B} \tkzDrawPoints(A,O,B) + \tkzLabelPoints(A,O,B) + \tkzDrawLine[add= 2 and 2](O,A) + \tkzDefPointBy[translation=from O to A](B) + \tkzGetPoint{C} + \tkzDrawPoint[color=orange](C) \tkzLabelPoints(C) + \tkzShowTransformation[translation=from O to A,% + length=2](B) + \tkzDrawSegments[->,color=orange](O,A B,C) + \tkzDefPointBy[reflection=over O--A](B) \tkzGetPoint{E} + \tkzDrawSegment[blue](B,E) + \tkzDrawPoint[color=blue](E)\tkzLabelPoints(E) + \tkzShowTransformation[reflection=over O--A,size=2](B) + \tkzDefPointBy[symmetry=center O](B) \tkzGetPoint{F} + \tkzDrawSegment[color=green](B,F) + \tkzDrawPoint[color=green](F)\tkzLabelPoints(F) + \tkzShowTransformation[symmetry=center O,% + length=2](B) + \tkzDefPointBy[projection=onto O--A](C) + \tkzGetPoint{H} + \tkzDrawSegments[color=magenta](C,H) + \tkzDrawPoint[color=magenta](H)\tkzLabelPoints(H) + \tkzShowTransformation[projection=onto O--A,% + color=red,size=3,gap=-2](C) +\end{tikzpicture} +\end{tkzexample} + +\subsubsection{Autre exemple d'utilisation de \tkzcname{tkzShowTransformation}} + +Vous retouverez cette figure, mais sans les traits de construction +\begin{tkzexample}[latex=7cm,small] +\begin{tikzpicture}[scale=.6] + \tkzDefPoints{0/0/A,8/0/B,3.5/10/I} + \tkzDefMidPoint(A,B) \tkzGetPoint{O} + \tkzDefPointBy[projection=onto A--B](I) + \tkzGetPoint{J} + \tkzInterLC(I,A)(O,A) \tkzGetPoints{M'}{M} + \tkzInterLC(I,B)(O,A) \tkzGetPoints{N}{N'} + \tkzDrawSemiCircle[diameter](A,B) + \tkzDrawSegments(I,A I,B A,B B,M A,N) + \tkzMarkRightAngles(A,M,B A,N,B) + \tkzDrawSegment[style=dashed,color=blue](I,J) + \tkzShowTransformation[projection=onto A--B, + color=red,size=3,gap=-3](I) + \tkzDrawPoints[color=red](M,N) + \tkzDrawPoints[color=blue](O,A,B,I) + \tkzLabelPoints(O) + \tkzLabelPoints[above right](N,I) + \tkzLabelPoints[below left](M,A) +\end{tikzpicture} +\end{tkzexample} + +%<---------------------------------------------------------------------------> +\section{Différents points} +%<---------------------------------------------------------------------------> + +\subsection{\tkzcname{tkzDefEquiPoints}} +Cette macro permet d'obtenir deux points d'une droite équidistants d'un point donné. + +\begin{NewMacroBox}{tkzDefEquiPoints}{\oarg{local options}\parg{pt1,pt2}} +\begin{tabular}{lll} +arguments & défaut & définition \\ +\midrule +\TAline{(pt1,pt2)}{no default}{liste non ordonnée de deux points} +\bottomrule +\end{tabular} + +\medskip +\begin{tabular}{lll} +\toprule \\ +options & default & definition \\ +\midrule +\TOline{dist} {2 cm} {moitié de la distance entre les deux points} +\TOline{from=pt} {no default} {point de référence} +\TOline{show} {false} {si true affiche les traces de compas} +\TOline{/compass/delta} {0} {taille des traces de compas } + +\end{tabular} +\end{NewMacroBox} + + +\subsubsection{Utilisation de \tkzcname{tkzDefEquiPoints} avec des options} + +\begin{tkzexample}[latex=7cm,small] +\begin{tikzpicture} + \tkzSetUpCompass[color=purple,line width=1pt] + \tkzDefPoint(0,1){A} + \tkzDefPoint(5,2){B} + \tkzDefPoint(3,4){C} + \tkzDefEquiPoints[from=C,dist=1,show, + /tkzcompass/delta=20](A,B) + \tkzGetPoints{E}{H} + \tkzDrawLines[color=blue](C,E C,H A,B) + \tkzDrawPoints[color=blue](A,B,C) + \tkzDrawPoints[color=red](E,H) + \tkzLabelPoints(E,H) + \tkzLabelPoints[color=blue](A,B,C) +\end{tikzpicture} +\end{tkzexample} +\endinput
\ No newline at end of file diff --git a/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-triangles.tex b/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-triangles.tex new file mode 100644 index 00000000000..13cf231e458 --- /dev/null +++ b/Master/texmf-dist/doc/latex/tkz-euclide/latex/TKZdoc-euclide-triangles.tex @@ -0,0 +1,380 @@ +\section{Les triangles} + +\subsection{Définition des triangles \tkzcname{tkzDefTriangle}} +Les macros suivantes vont permettre de définir ou de construire un triangle à partir \tkzname{au moins} de deux points. + + Pour le moment, il est possible de définir les triangles suivants : + \begin{itemize} +\item \tkzname{two angles} détermine un triangle connaissant deux angles, +\item \tkzname{equilateral} détermine un triangle équilatéral, +\item \tkzname{half} détermine un triangle rectangle tel que le rapport des mesures des deux côtés adjacents à l'angle droit soit égal à $2$, +\item \tkzname{pythagore} détermine un triangle rectangle dont les mesures des côtés sont proportionnelles à 3, 4 et 5, +\item \tkzname{school} détermine un triangle rectangle dont les angles sont 30, 60 et 90 degrés, +\item \tkzname{golden} détermine un triangle rectangle tel que le rapport des mesures des deux côtés adjacents à l'angle droit soit égal $\Phi=1,618034$, J'ai choisi comme dénomination « triangle doré » car il rpovient du rectangle d'or et j'ai conservé la dénomination « triangle d'or » ou encore « triangle d'Euclide » pour le triangle isocèle dont les angles à la base sont de 72 degrés, + +\item \tkzname{gold} ou \tkzname{euclide} pour le triangle d'or, + +\item \tkzname{cheops} détermine un troisième point tel que le triangle soit isocèle dont les mesures des côtés sont proportionnelles à $2$, $\Phi$ et $\Phi$. +\end{itemize} + +\begin{NewMacroBox}{tkzDefTriangle}{\oarg{local options}\parg{A,B}} +les points sont ordonnés car le triangle est construit en suivant le sens direct du cercle trigonométrique. Cette macro est soit utilisée en partenariat avec \tkzcname{tkzGetPoint} soit en utilisant \tkzname{tkzPointResult} s'il n'est pas nécessaire de conserver le nom. + + +\medskip +\begin{tabular}{lll} +\toprule +options & default & definition \\ +\midrule +\TOline{two angles= \#1 and \#2}{no defaut}{triangle connaissant deux angles} +\TOline{equilateral} {no defaut}{triangle équilatéral } +\TOline{pythagore}{no defaut}{proportionnel au triangle de pythagore 3-4-5} +\TOline{school} {no defaut}{ angles de 30, 60 et 90 degrés } +\TOline{gold}{no defaut}{ angles de 72, 72 et 36 degrés, $A$ est le sommet } +\TOline{euclide} {no defaut}{identique au précédent mais $[AB]$ est la base} +\TOline{golden} {no defaut}{rectangle en B et $AB/AC = \Phi$} +\TOline{cheops} {no defaut}{AC=BC, AC et BC sont proportionnels à $2$ et $\Phi$.} +\end{tabular} + +\medskip +\tkzcname{tkzGetPoint} permet de stocker le point sinon \tkzname{tkzPointResult} permet une utilisation immédiate. +\end{NewMacroBox} + +\subsubsection{triangle doré (golden)} +\begin{tkzexample}[latex=6 cm,small] +\begin{tikzpicture}[scale=.8] +\tkzInit[xmax=5,ymax=3] \tkzClip[space=.5] + \tkzDefPoint(0,0){A} \tkzDefPoint(4,0){B} + \tkzDefTriangle[golden](A,B)\tkzGetPoint{C} + \tkzDrawPolygon(A,B,C) \tkzDrawPoints(A,B,C) + \tkzLabelPoints(A,B) \tkzDrawBisector(A,C,B) + \tkzLabelPoints[above](C) +\end{tikzpicture} +\end{tkzexample} + +\subsubsection{triangle équilatéral}\label{def_equilateral} +\begin{tkzexample}[latex=7 cm,small] +\begin{tikzpicture} + \tkzDefPoint(0,0){A} + \tkzDefPoint(4,0){B} + \tkzDefTriangle[equilateral](A,B) + \tkzGetPoint{C} + \tkzDrawPolygon(A,B,C) + \tkzDefTriangle[equilateral](B,A) + \tkzGetPoint{D} + \tkzDrawPolygon(B,A,D) + \tkzDrawPoints(A,B,C,D) + \tkzLabelPoints(A,B,C,D) +\end{tikzpicture} +\end{tkzexample} + +\subsubsection{triangle d'or (euclide)} +\begin{tkzexample}[latex=7 cm,small] +\begin{tikzpicture} + \tkzDefPoint(0,0){A} \tkzDefPoint(4,0){B} + \tkzDefTriangle[euclide](A,B)\tkzGetPoint{C} + \tkzDrawPolygon(A,B,C) + \tkzDrawPoints(A,B,C) + \tkzLabelPoints(A,B) + \tkzLabelPoints[above](C) + \tkzDrawBisector(A,C,B) +\end{tikzpicture} +\end{tkzexample} + +\newpage +\subsection{Tracé des triangles} + \begin{NewMacroBox}{tkzDrawTriangle}{\oarg{local options}\parg{A,B}} +Macro semblable à la macro précédente mais les côtés sont tracés. + +\medskip +\begin{tabular}{lll} +\toprule +options & default & definition \\ +\midrule +\TOline{two angles= \#1 and \#2}{no defaut}{triangle connaissant deux angles} +\TOline{equilateral} {no defaut}{triangle équilatéral } +\TOline{pythagore}{no defaut}{proportionnel au triangle de pythagore 3-4-5} +\TOline{school} {no defaut}{les angles sont 30, 60 et 90 degrés } +\TOline{gold}{no defaut}{les angles sont 72, 72 et 36 degrés, $A$ est le sommet } +\TOline{euclide} {no defaut}{identique au précédent mais $[AB]$ est la base} +\TOline{golden} {no defaut}{rectangle en B et $AB/AC = \Phi$} +\TOline{cheops} {no defaut}{isocèle en C et $AC/AB = \frac{\Phi}{2}$} +\bottomrule + \end{tabular} + +\medskip +Dans toutes ses définitions, les dimensions du triangle dépendent des deux points de départ. +\end{NewMacroBox} + + +\subsubsection{triangle de Pythagore} +Ce triangle a des côtés dont les longueurs sont proportionnelles à 3, 4 et 5. + +\begin{tkzexample}[latex=6 cm,small] +\begin{tikzpicture} + \tkzDefPoint(0,0){A} + \tkzDefPoint(4,0){B} + \tkzDrawTriangle[pythagore,fill=blue!30](A,B) + \tkzMarkRightAngles(A,B,tkzPointResult) +\end{tikzpicture} +\end{tkzexample} + + + \subsubsection{triangle 30 60 90 (school)} + Les angles font 30, 60 et 90 degrés. + +\begin{tkzexample}[latex=6 cm,small] +\begin{tikzpicture} +\tkzInit[ymin=-2.5,ymax=0,xmin=-5,xmax=0] +\tkzClip[space=.5] +\begin{scope}[rotate=-180] + \tkzDefPoint(0,0){A} \tkzDefPoint(4,0){B} + \tkzDrawTriangle[school,fill=red!30](A,B) + \tkzMarkRightAngles(B,A,tkzPointResult) +\end{scope} +\end{tikzpicture} +\end{tkzexample} + + +\section{Triangles spécifiques avec \tkzcname{tkzDefSpcTriangle}} + +Les centres de certains triangles ont été définis dans la section "points", ici il s'agit de déterminer les trois sommets de triangles spécifiques. + +\begin{NewMacroBox}{tkzDefSpcTriangle}{\oarg{local options}\parg{A,B,C}} +The order of the points is important! + + +\medskip +\begin{tabular}{lll} +\toprule +options & default & definition \\ +\midrule +\TOline{in or incentral}{centroid}{triangle connaissant deux angles} +\TOline{ex or excentral} {centroid}{triangle équilatéral } +\TOline{extouch}{centroid}{proportionnel au triangle de pythagore 3-4-5} +\TOline{intouch or contact} {centroid}{ angles de 30, 60 et 90 degrés } +\TOline{centroid or medial}{centroid}{ angles de 72, 72 et 36 degrés, $A$ est le sommet } +\TOline{orthic} {centroid}{identique au précédent mais $[AB]$ est la base} +\TOline{feuerbach} {centroid}{rectangle en B et $AB/AC = \Phi$} +\TOline{euler} {centroid}{AC=BC, AC et BC sont proportionnels à $2$ et $\Phi$.} +\TOline{tangential} {centroid}{AC=BC, AC et BC sont proportionnels à $2$ et $\Phi$.} +\TOline{name} {no defaut}{AC=BC, AC et BC sont proportionnels à $2$ et $\Phi$.} +\midrule +\end{tabular} + +\medskip +\tkzcname{tkzGetPoint} permet de stocker le point sinon \tkzname{tkzPointResult} permet une utilisation immédiate. +\end{NewMacroBox} + +\subsubsection{\tkzcname{tkzDefSpcTriangle} option "medial" ou "centroid"} +The geometric centroid of the polygon vertices of a triangle is the point $G$ (sometimes also denoted $M$) which is also the intersection of the triangle's three triangle medians. The point is therefore sometimes called the median point. The centroid is always in the interior of the triangle.\\ +\href{http://mathworld.wolfram.com/TriangleCentroid.html}{Weisstein, Eric W. "Centroid triangle" From MathWorld--A Wolfram Web Resource.} + +In the following example, we obtain the Euler circle which passes through the previously defined points. + +\begin{tkzexample}[latex=7cm,small] +\begin{tikzpicture}[rotate=90,scale=.75] + \tkzDefPoints{0/0/A,6/0/B,0.8/4/C} + \tkzDefTriangleCenter[centroid](A,B,C) + \tkzGetPoint{M} + \tkzDefSpcTriangle[medial,name=M](A,B,C){_A,_B,_C} + \tkzDrawPolygon[color=blue](A,B,C) + \tkzDrawSegments[dashed,red](A,M_A B,M_B C,M_C) + \tkzDrawPolygon[color=red](M_A,M_B,M_C) + \tkzDrawPoints(A,B,C,M) + \tkzDrawPoints[red](M_A,M_B,M_C) +\tkzAutoLabelPoints[center=M,font=\scriptsize]% +(A,B,C,M_A,M_B,M_C) + \tkzLabelPoints[font=\scriptsize](M) +\end{tikzpicture} +\end{tkzexample} + +\subsubsection{Option : "in" ou "incentral"} +The Incentral triangle is the triangle whose vertices are determined by +the intersections of the reference triangle’s angle bisectors with the +respective opposite sides.\\ +\href{http://mathworld.wolfram.com/ContactTriangle.html}{Weisstein, Eric W. "Incentral triangle" From MathWorld--A Wolfram Web Resource.} + + +\begin{tkzexample}[latex=7cm,small] +\begin{tikzpicture}[scale=1] + \tkzDefPoints{ 0/0/A,5/0/B,1/3/C} + \tkzDefSpcTriangle[in,name=I](A,B,C){a,b,c} + \tkzInCenter(A,B,C)\tkzGetPoint{I} + \tkzDrawPolygon[red](A,B,C) + \tkzDrawPolygon[blue](Ia,Ib,Ic) + \tkzDrawPoints(A,B,C,I,Ia,Ib,Ic) + \tkzDrawCircle[in](A,B,C) + \tkzDrawSegments[dashed](A,Ia B,Ib C,Ic) + \tkzAutoLabelPoints[center=I,blue,font=\scriptsize]% +(Ia,Ib,Ic) + \tkzAutoLabelPoints[center=I,red,font=\scriptsize]% +(A,B,C) +(A,B,C,Ia,Ib,Ic) +\end{tikzpicture} +\end{tkzexample} + +\subsubsection{Option : "ex" ou "Excentral"} +The excentral triangle of a triangle $ABC$ is the triangle $JaJbJc$ with vertices corresponding to the excenters of $ABC$. + +\begin{tkzexample}[latex=7cm,small] +\begin{tikzpicture}[scale=.6] + \tkzDefPoints{0/0/A,6/0/B,0.8/4/C} + \tkzDefSpcTriangle[excentral,name=J](A,B,C){a,b,c} + \tkzDefSpcTriangle[extouch,name=T](A,B,C){a,b,c} + \tkzDrawPolygon[blue](A,B,C) + \tkzDrawPolygon[red](Ja,Jb,Jc) + \tkzDrawPoints(A,B,C) + \tkzDrawPoints[red](Ja,Jb,Jc) + \tkzLabelPoints(A,B,C) + \tkzLabelPoints[red](Jb,Jc) + \tkzLabelPoints[red,above](Ja) + \tkzClipBB \tkzShowBB + \tkzDrawCircles[gray](Ja,Ta Jb,Tb Jc,Tc) +\end{tikzpicture} +\end{tkzexample} + + +\subsubsection{Option : "intouch"} +The contact triangle of a triangle ABC, also called the intouch triangle, is the triangle formed by the points of tangency of the incircle of $ABC$ with $ABC$.\\ +\href{http://mathworld.wolfram.com/ContactTriangle.html}{Weisstein, Eric W. "Contact triangle" From MathWorld--A Wolfram Web Resource.} + +We obtain the intersections of the bisectors with the sides. +\begin{tkzexample}[latex=7cm,small] +\begin{tikzpicture}[scale=.75] + \tkzDefPoints{0/0/A,6/0/B,0.8/4/C} + \tkzDefSpcTriangle[intouch,name=x](A,B,C){a,b,c} + \tkzInCenter(A,B,C)\tkzGetPoint{I} + \tkzDrawPolygon[red](A,B,C) + \tkzDrawPolygon[blue](xa,xb,xc) + \tkzDrawPoints[red](A,B,C) + \tkzDrawPoints[blue](xa,xb,xc) + \tkzDrawCircle[in](A,B,C) + \tkzAutoLabelPoints[center=I,blue,font=\scriptsize]% +(xa,xb,xc) + \tkzAutoLabelPoints[center=I,red,font=\scriptsize]% +(A,B,C) +\end{tikzpicture} +\end{tkzexample} + +\subsubsection{Option : "extouch"} +The extouch triangle $TaTbTc$ is the triangle formed by the points of tangency of a triangle $ABC$ with its excircles $Ja$, $Jb$, and $Jc$. The points $Ta$, $Tb$, and $Tc$ can also be constructed as the points which bisect the perimeter of $A_1A_2A_3$ starting at $A$, $B$, and $C$.\\ +\href{http://mathworld.wolfram.com/ExtouchTriangle.html}{Weisstein, Eric W. "Extouch triangle" From MathWorld--A Wolfram Web Resource.} + +We obtain the points of contact of the exinscribed circles as well as the triangle formed by the centres of the exinscribed circles. + +\begin{tkzexample}[latex=8cm,small] +\begin{tikzpicture}[scale=.7] +\tkzDefPoints{0/0/A,6/0/B,0.8/4/C} +\tkzDefSpcTriangle[excentral, + name=J](A,B,C){a,b,c} +\tkzDefSpcTriangle[extouch, + name=T](A,B,C){a,b,c} +\tkzDefTriangleCenter[nagel](A,B,C) +\tkzGetPoint{Na} +\tkzDefTriangleCenter[centroid](A,B,C) +\tkzGetPoint{G} +\tkzDrawPoints[blue](Ja,Jb,Jc) +\tkzClipBB \tkzShowBB +\tkzDrawCircles[gray](Ja,Ta Jb,Tb Jc,Tc) +\tkzDrawLines[add=1 and 1](A,B B,C C,A) +\tkzDrawSegments[gray](A,Ta B,Tb C,Tc) +\tkzDrawSegments[gray](Ja,Ta Jb,Tb Jc,Tc) +\tkzDrawPolygon[blue](A,B,C) +\tkzDrawPolygon[red](Ta,Tb,Tc) +\tkzDrawPoints(A,B,C,Na) +\tkzLabelPoints(Na) +\tkzAutoLabelPoints[center=Na,blue](A,B,C) +\tkzAutoLabelPoints[center=G,red, + dist=.4](Ta,Tb,Tc) +\tkzMarkRightAngles[fill=gray!15](Ja,Ta,B + Jb,Tb,C Jc,Tc,A) +\end{tikzpicture} +\end{tkzexample} + +\subsubsection{Option : "feuerbach"} +The Feuerbach triangle is the triangle formed by the three points of tangency of the nine-point circle with the excircles.\\ +\href{http://mathworld.wolfram.com/FeuerbachTriangle.html}{Weisstein, Eric W. "Feuerbach triangle" From MathWorld--A Wolfram Web Resource.} + + The points of tangency define the Feuerbach triangle. + + +\begin{tkzexample}[latex=8cm,small] +\begin{tikzpicture}[scale=1] + \tkzDefPoint(0,0){A} + \tkzDefPoint(3,0){B} + \tkzDefPoint(0.5,2.5){C} + \tkzDefCircle[euler](A,B,C) \tkzGetPoint{N} + \tkzDefSpcTriangle[feuerbach, + name=F](A,B,C){_a,_b,_c} + \tkzDefSpcTriangle[excentral, + name=J](A,B,C){_a,_b,_c} + \tkzDefSpcTriangle[extouch, + name=T](A,B,C){_a,_b,_c} + \tkzDrawPoints[blue](J_a,J_b,J_c,F_a,F_b,F_c,A,B,C) + \tkzClipBB \tkzShowBB + \tkzDrawCircle[purple](N,F_a) + \tkzDrawPolygon(A,B,C) + \tkzDrawPolygon[blue](F_a,F_b,F_c) + \tkzDrawCircles[gray](J_a,F_a J_b,F_b J_c,F_c) + \tkzAutoLabelPoints[center=N,dist=.3, + font=\scriptsize](A,B,C,F_a,F_b,F_c,J_a,J_b,J_c) +\end{tikzpicture} +\end{tkzexample} + +\subsubsection{Option Triangle "tangential"} +The tangential triangle is the triangle $T_AT_BT_C $formed by the lines tangent to the circumcircle of a given triangle ABC at its vertices. It is therefore antipedal triangle of ABC with respect to the circumcenter O.\\ +\href{http://mathworld.wolfram.com/TangentialTriangle.html}{Weisstein, Eric W. "Tangential Triangle." From MathWorld--A Wolfram Web Resource. } + + +\begin{tkzexample}[latex=8cm,small] +\begin{tikzpicture}[scale=.5,rotate=80] + \tkzDefPoints{0/0/A,6/0/B,1.8/4/C} + \tkzDefSpcTriangle[tangential, + name=T](A,B,C){a,b,c} + \tkzDrawPolygon[red](A,B,C) + \tkzDrawPolygon[blue](Ta,Tb,Tc) + \tkzDrawPoints[red](A,B,C) + \tkzDrawPoints[blue](Ta,Tb,Tc) + \tkzDefCircle[circum](A,B,C) + \tkzGetPoint{O} + \tkzDrawCircle(O,A) + \tkzLabelPoints[red](A,B,C) + \tkzLabelPoints[blue](Ta,Tb,Tc) +\end{tikzpicture} +\end{tkzexample} + + \subsubsection{Option Triangle "euler"} +The Euler triangle of a triangle ABC is the triangle $E_AE_BE_C$ whose vertices are the midpoints of the segments joining the orthocenter H with the respective vertices. The vertices of the triangle are known as the Euler points, and lie on the nine-point circle. + +\begin{tkzexample}[latex=7cm,small] +\begin{tikzpicture}[rotate=90,scale=1.25] + \tkzDefPoints{0/0/A,6/0/B,0.8/4/C} + \tkzDefSpcTriangle[medial, + name=M](A,B,C){_A,_B,_C} + \tkzDefTriangleCenter[euler](A,B,C) + \tkzGetPoint{N} % I= N nine points + \tkzDefTriangleCenter[ortho](A,B,C) + \tkzGetPoint{H} + \tkzDefMidPoint(A,H) \tkzGetPoint{E_A} + \tkzDefMidPoint(C,H) \tkzGetPoint{E_C} + \tkzDefMidPoint(B,H) \tkzGetPoint{E_B} + \tkzDefSpcTriangle[ortho,name=H](A,B,C){_A,_B,_C} + \tkzDrawPolygon[color=blue](A,B,C) + \tkzDrawCircle(N,E_A) + \tkzDrawSegments[blue](A,H_A B,H_B C,H_C) + \tkzDrawPoints(A,B,C,N,H) + \tkzDrawPoints[red](M_A,M_B,M_C) + \tkzDrawPoints[blue]( H_A,H_B,H_C) + \tkzDrawPoints[green](E_A,E_B,E_C) + \tkzAutoLabelPoints[center=N,font=\scriptsize]% +(A,B,C,M_A,M_B,M_C,H_A,H_B,H_C,E_A,E_B,E_C) +\tkzLabelPoints[font=\scriptsize](H,N) +\tkzMarkSegments[mark=s|,size=3pt, + color=blue,line width=1pt](B,E_B E_B,H) + \tkzDrawPolygon[color=red](M_A,M_B,M_C) +\end{tikzpicture} +\end{tkzexample} + + +\endinput
\ No newline at end of file diff --git a/Master/texmf-dist/tex/latex/tkz-euclide/tkz-euclide.sty b/Master/texmf-dist/tex/latex/tkz-euclide/tkz-euclide.sty index 9a611c9943f..5c86e5c0af9 100644 --- a/Master/texmf-dist/tex/latex/tkz-euclide/tkz-euclide.sty +++ b/Master/texmf-dist/tex/latex/tkz-euclide/tkz-euclide.sty @@ -1,17 +1,24 @@ % tkz-euclide.sty -% Copyright 2011 by Alain Matthes +% Copyright 2020 by Alain Matthes % % This file may be distributed and/or modified % % 1. under the LaTeX Project Public License and/or % 2. under the GNU Public License. %<------------------------------------------------------------–> -\def\fileversion{3.01c} -\def\filedate{2020/01/23} -\typeout{2020/01/23 3.01c tkz-euclide.sty} +\def\fileversion{3.02c} +\def\filedate{2020/01/24} +\typeout{2020/01/24 3.02c tkz-euclide.sty} \NeedsTeXFormat{LaTeX2e} -\ProvidesPackage{tkz-euclide}[2020/01/23 3.01c for euclidan geometry ] +\ProvidesPackage{tkz-euclide}[2020/01/24 3.02c for euclidan geometry ] \RequirePackage{tkz-base} +\makeatletter +\@ifpackagelater{tkz-base}{2020/01/24}{% + % Package is new enough +}{% + \PackageError{tkz-euclide}{Package tkz-base is too old , you need a recent version}% +} +\makeatother \DeclareOption*{}%% Ne rien faire quand une option est inconnue \ProcessOptions %<----------------------------------------------------------–> diff --git a/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-angles.tex b/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-angles.tex index caa19116be5..bce07ea8a97 100644 --- a/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-angles.tex +++ b/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-angles.tex @@ -1,11 +1,11 @@ % tkz-tool-eu-angles.tex -% Copyright 2011 by Alain Matthes +% Copyright 2020 by Alain Matthes % This file may be distributed and/or modified % 1. under the LaTeX Project Public License and/or % 2. under the GNU Public License. -\def\fileversion{3.01c} -\def\filedate{2020/01/23} -\typeout{2020/01/23 3.01c tkz-tool-eu-angles.tex} +\def\fileversion{3.02c} +\def\filedate{2020/01/24} +\typeout{2020/01/24 3.02c tkz-tool-eu-angles.tex} \makeatletter %<--------------------------------------------------------------------------–> \newdimen\tkz@arcsize% from julian julian@d-and-j.net @@ -17,13 +17,13 @@ %<--------------------------------------------------------------------------–> \def\tkzDrawArcRAN[#1](#2,#3)(#4,#5){% \begingroup - \draw[shift = {(#2)},/drawarc/.cd,#1] (#4:#3) arc (#4:#5:#3); + \draw[shift = {(#2)},/tkzdrawarc/.cd,#1] (#4:#3) arc (#4:#5:#3); \endgroup } %<--------------- tkzPathArcRAN ---------------------------------- \def\tkzPathArcRAN[#1](#2,#3)(#4,#5){% \begingroup - \path[shift = {(#2)},/drawarc/.cd,#1] (#4:#3) arc (#4:#5:#3); + \path[shift = {(#2)},/tkzdrawarc/.cd,#1] (#4:#3) arc (#4:#5:#3); \endgroup } %<--------------------------------------------------------------------------–> @@ -179,8 +179,8 @@ \pgfkeys{/tkzlabelangle/.cd, dist/.store in = \tkzlabeldist, angle/.store in = \tkzlabelangle, - dist = 1, - angle = {}, + dist = 1, + angle = {}, /tkzlabelangle/.search also={/tikz} } \def\tkzLabelAngle{\pgfutil@ifnextchar[{\tkz@LabelAngle}{\tkz@LabelAngle[]}} diff --git a/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-arcs.tex b/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-arcs.tex index 7c0584c8f05..c8ef72c3e6f 100644 --- a/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-arcs.tex +++ b/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-arcs.tex @@ -1,11 +1,11 @@ % tkz-obj-eu-arcs.tex -% Copyright 2011 by Alain Matthes +% Copyright 2020 by Alain Matthes % This file may be distributed and/or modified % 1. under the LaTeX Project Public License and/or % 2. under the GNU Public License. -\def\fileversion{3.01c} -\def\filedate{2020/01/23} -\typeout{2020/01/23 3.01c tkz-obj-eu-arcs.tex} +\def\fileversion{3.02c} +\def\filedate{2020/01/24} +\typeout{2020/01/24 3.02c tkz-obj-eu-arcs.tex} \makeatletter %<------------------------------ Arcs -------------------------------------– % options : delta @@ -14,7 +14,7 @@ % \pgfkeys{/tikz/.cd,delta/.code={\def\tkz@delta{#1}}} \gdef\tkz@numa{0} -\pgfkeys{/drawarc/.cd, +\pgfkeys{/tkzdrawarc/.cd, type/.is choice, type/towards/.code = \def\tkz@numa{0}, type/rotate/.code = \def\tkz@numa{1}, @@ -36,12 +36,12 @@ type/.default = towards, delta/.store in = \tkz@delta, delta = 0, - /drawarc/.search also = {/tikz} + /tkzdrawarc/.search also = {/tikz} } \def\tkzDrawArc{\pgfutil@ifnextchar[{\tkz@DrawArc}{\tkz@DrawArc[]}} \def\tkz@DrawArc[#1](#2,#3)(#4){% \begingroup -\pgfqkeys{/drawarc}{#1} +\pgfqkeys{/tkzdrawarc}{#1} \ifcase\tkz@numa% \tkzDrawArcTowards[#1](#2,#3)(#4) \or% 1 @@ -131,7 +131,7 @@ \edef\tkz@FirstAngle{\pgfmathresult}% \pgfmathadd{\tkz@SecondAngle}{\tkz@delta} \edef\tkz@SecondAngle{\pgfmathresult} - \draw[shift = {(#2)},compass style,/drawarc/.cd,#1]% + \draw[shift = {(#2)},compass style,/tkzdrawarc/.cd,#1]% (\tkz@FirstAngle:#3) arc (\tkz@FirstAngle:\tkz@SecondAngle:#3); \endgroup } diff --git a/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-circles.tex b/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-circles.tex index aa1b259d8a8..9a3a726658b 100644 --- a/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-circles.tex +++ b/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-circles.tex @@ -1,12 +1,12 @@ % tkz-obj-eu-circles.tex -% Copyright 2011 by Alain Matthes +% Copyright 2020 by Alain Matthes % This file may be distributed and/or modified % % 1. under the LaTeX Project Public License and/or % 2. under the GNU Public License. -\def\fileversion{3.01c} -\def\filedate{2020/01/23} -\typeout{2020/01/23 3.01c tkz-obj-eu-circles.tex} +\def\fileversion{3.02c} +\def\filedate{2020/01/24} +\typeout{2020/01/24 3.02c tkz-obj-eu-circles.tex} \makeatletter %<--------------------------------------------------------------------------–> % tkzCircle center and one point @@ -16,30 +16,30 @@ % no need to define a circle with R tikz uses this method. % through instead of radius \def\tkz@numc{0} -\pgfkeys{/tkzDefCircle/.cd, +\pgfkeys{/tkzcircle/.cd, through/.code = \def\tkz@numc{0}, radius/.code = \def\tkz@numc{0}, diameter/.code = \def\tkz@numc{1}, circum/.code = \def\tkz@numc{2}, in/.code = \def\tkz@numc{3}, - ex/.code = \def\tkz@numc{4},% new + ex/.code = \def\tkz@numc{4}, euler/.code = \def\tkz@numc{5}, nine/.code = \def\tkz@numc{5}, apollonius/.code = \def\tkz@numc{6}, - orthogonal from/.code args = {#1}{\def\tkz@ptfrom{#1}, + orthogonal from/.code args = {#1}{\def\tkz@ptfrom{#1} \def\tkz@numc{7}}, orthogonal through/.code args = {#1 and #2}{\def\tkz@ptone{#1} \def\tkz@pttwo{#2} \def\tkz@numc{8}}, spieker/.code = \def\tkz@numc{9}, - K/.code = \def\tkz@koeff{#1},% apollonius + K/.code = \def\tkz@koeff{#1}, K = 1, through } \def\tkzDefCircle{\pgfutil@ifnextchar[{\tkz@DefCircle}{\tkz@DefCircle[]}} \def\tkz@DefCircle[#1](#2){% \begingroup -\pgfqkeys{/tkzDefCircle}{#1} +\pgfqkeys{/tkzcircle}{#1} \ifcase\tkz@numc% \tkzDefCircleThrough(#2)% \or% 1 @@ -63,7 +63,6 @@ \fi \endgroup } - %<--------------------------------------------------------------------------–> % Circum Circle %<--------------------------------------------------------------------------–> @@ -150,7 +149,7 @@ %<--------------------------------------------------------------------------–> % Apollonius radius %<--------------------------------------------------------------------------–> -\pgfkeys{/tkzApolloniusR/.cd, +\pgfkeys{/tkzapor/.cd, K/.code = \def\tkz@koeff{#1},% apollonius K = 1 } @@ -158,7 +157,7 @@ \tkz@DefApolloniusRadius}{\tkz@DefApolloniusRadius[]}} \def\tkz@DefApolloniusRadius[#1](#2,#3){% \begingroup - \pgfqkeys{/tkzApolloniusR}{#1} + \pgfqkeys{/tkzapor}{#1} \tkz@VecK[\tkz@koeff/(1+\tkz@koeff)](#2,#3) \pgfnodealias{apo@pta}{tkzPointResult} \tkz@VecK[\tkz@koeff/(\tkz@koeff-1)](#2,#3) @@ -171,28 +170,28 @@ % Apollonius point %<--------------------------------------------------------------------------–> -\pgfkeys{/tkzApolloniusP/.cd, - K/.code = \def\tkz@koeff{#1},% apollonius - K = 1 +\pgfkeys{/tkzapop/.cd, + K/.code = \def\tkz@koeff{#1},% apollonius + K = 1 } \def\tkzDefApolloniusPoint{\pgfutil@ifnextchar[{\tkz@DefApolloniusPoint}{\tkz@DefApolloniusPoint[]}} \def\tkz@DefApolloniusPoint[#1](#2,#3){% \begingroup - \pgfqkeys{/tkzApolloniusP}{#1} + \pgfqkeys{/tkzapop}{#1} \tkzDefBarycentricPoint(#2=1,#3=\tkz@koeff) \endgroup } %<--------------------------------------------------------------------------–> % Apollonius center %<--------------------------------------------------------------------------–> -\pgfkeys{/tkzApolloniusC/.cd, - K/.code = \def\tkz@koeff{#1},% apollonius - K = 1 +\pgfkeys{/tkzapoc/.cd, + K/.code = \def\tkz@koeff{#1},% apollonius + K = 1 } \def\tkzApolloniusCenter{\pgfutil@ifnextchar[{\tkz@ApolloniusCenter}{\tkz@ApolloniusCenter[]}} \def\tkz@ApolloniusCenter[#1](#2,#3){% \begingroup - \pgfqkeys{/tkzApolloniusC}{#1} + \pgfqkeys{/tkzapoc}{#1} \tkz@VecK[\tkz@koeff/(1+\tkz@koeff)](#2,#3) \pgfnodealias{tkzFirstPointResult}{tkzPointResult} \tkz@VecK[\tkz@koeff/(\tkz@koeff-1)](#2,#3) @@ -227,7 +226,7 @@ \pgfnodealias{tkz@spka}{tkzPointResult} \tkzDefMidPoint(#1,#2) \tkzUProjection(#1,#2)(tkzPointResult) - \tkzCalcLength(tkz@spka,tkzPointResult) + \tkzCalcLength(tkz@spka,tkzPointResult) \endgroup } %<--------------------------------------------------------------------------–> diff --git a/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-compass.tex b/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-compass.tex index e0f00f678da..dd1c46863a0 100644 --- a/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-compass.tex +++ b/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-compass.tex @@ -1,11 +1,11 @@ % tkz-obj-eu-compass.tex -% Copyright 2011 by Alain Matthes +% Copyright 2020 by Alain Matthes % This file may be distributed and/or modified % 1. under the LaTeX Project Public License and/or % 2. under the GNU Public License. -\def\fileversion{3.01c} -\def\filedate{2020/01/23} -\typeout{2020/01/23 3.01c tkz-obj-eu-compass.tex} +\def\fileversion{3.02c} +\def\filedate{2020/01/24} +\typeout{2020/01/24 3.02c tkz-obj-eu-compass.tex} \makeatletter %<--------------------------------------------------------------------------–> % Author Alain Matthes @@ -17,7 +17,7 @@ % Setup Compass %<--------------------------------------------------------------------------–> \pgfkeys{% - setupcompass/.cd, + tkzsucompass/.cd, line width/.code = {\global\edef\tkz@compass@lw{#1}}, color/.code = {\global\edef\tkz@compass@color{#1}}, style/.code = {\global\edef\tkz@compass@style{#1}}, @@ -29,12 +29,12 @@ %<--------------------------------------------------------------------------–> \def\tkz@SetUpCompass[#1]{% \pgfkeys{% - setupcompass/.cd, + tkzsucompass/.cd, line width = \tkz@euc@compasswidth, color = \tkz@euc@compasscolor, style = \tkz@euc@compassstyle } -\pgfqkeys{/setupcompass}{#1} +\pgfqkeys{/tkzsucompass}{#1} \tikzset{compass style/.style={color = \tkz@compass@color, line width = \tkz@compass@lw, style = \tkz@compass@style @@ -52,10 +52,10 @@ %<--------------------------------------------------------------------------–> \pgfkeys{ - /compass/delta/.code = {\def\tkz@delta{#1}}, - /compass/length/.code = {\def\tkz@length{#1}}, - /compass/ratio/.code = {\def\tkz@ratio{#1}}, - /compass/.unknown/.code = {\let\searchname=\pgfkeyscurrentname + /tkzcompass/delta/.code = {\def\tkz@delta{#1}}, + /tkzcompass/length/.code = {\def\tkz@length{#1}}, + /tkzcompass/ratio/.code = {\def\tkz@ratio{#1}}, + /tkzcompass/.unknown/.code = {\let\searchname=\pgfkeyscurrentname \pgfkeysalso{\searchname/.try=#1, /tikz/\searchname/.retry=#1}} } @@ -64,18 +64,18 @@ \def\tkz@Compass[#1](#2,#3){% \begingroup \pgfkeys{% - compass/.cd, + tkzcompass/.cd, length = 1, delta = 0, ratio = .5 } -\pgfkeys{compass/.cd,#1} +\pgfkeys{tkzcompass/.cd,#1} \tkzCalcLength(#2,#3)\tkzGetLength{tkz@tempLen} \ifnum\tkz@delta=0 % \pgfmathsetmacro{\tkz@delta}{min(deg(\tkz@length cm/ \tkz@tempLen pt),180)/2} \fi \tkzFindSlopeAngle(#2,#3)\tkzGetAngle{tkz@angle}% - \draw[shift ={(#2)},/compass/.cd,compass style,#1]% + \draw[shift ={(#2)},/tkzcompass/.cd,compass style,#1]% (\tkz@angle-\tkz@delta:\tkz@tempLen pt)% arc (\tkz@angle-\tkz@delta:\tkz@angle+\tkz@delta:\tkz@tempLen pt); %}; diff --git a/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-draw-circles.tex b/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-draw-circles.tex index 20a07f6fa64..f8a0a055582 100644 --- a/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-draw-circles.tex +++ b/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-draw-circles.tex @@ -1,12 +1,12 @@ % tkz-obj-eu-draw-circles.tex -% Copyright 2011 by Alain Matthes +% Copyright 2020 by Alain Matthes % This file may be distributed and/or modified % % 1. under the LaTeX Project Public License and/or % 2. under the GNU Public License. -\def\fileversion{3.01c} -\def\filedate{2020/01/23} -\typeout{2020/01/23 3.01c tkz-obj-eu-draw-circles.tex} +\def\fileversion{3.02c} +\def\filedate{2020/01/24} +\typeout{2020/01/24 3.02c tkz-obj-eu-draw-circles.tex} \makeatletter %for compatibility %<--------------------------------------------------------------------------–> @@ -37,7 +37,7 @@ } \def\tkz@numdc{0} -\pgfkeys{/DrawCircle/.cd, +\pgfkeys{/tkzdrawc/.cd, through/.code = \def\tkz@numdc{0}, R/.code = \def\tkz@numdc{1}, diameter/.code = \def\tkz@numdc{2}, @@ -55,7 +55,7 @@ K/.store in = \tkz@koeff,% apollonius through, K = 1, - /DrawCircle/.search also={/tikz} + /tkzdrawc/.search also={/tikz} } %<--------------------------------------------------------------------------–> %<--------------------------------------------------------------------------–> @@ -64,7 +64,7 @@ \def\tkzDrawCircle{\pgfutil@ifnextchar[{\tkz@DrawCircle}{\tkz@DrawCircle[]}} \def\tkz@DrawCircle[#1](#2){% \begingroup -\pgfqkeys{/DrawCircle}{#1} +\pgfqkeys{/tkzdrawc}{#1} \ifcase\tkz@numdc% \tkzDefCircleThrough(#2) \or% 1 @@ -86,7 +86,7 @@ \or% 8 \tkzDefOrthoThroughCircle(#2,\tkz@ptone,\tkz@pttwo) \fi - \draw[line style,/DrawCircle/.cd,#1] + \draw[line style,/tkzdrawc/.cd,#1] (tkzPointResult) circle (\tkzLengthResult pt); \endgroup } @@ -114,20 +114,20 @@ %<--------------------------------------------------------------------------–> % #2 #3 rayon \def\tkz@numdsc{0} -\pgfkeys{/@SemiCircle/.cd, +\pgfkeys{/tkzdrawsc/.cd, through/.code = \def\tkz@numdsc{0}, diameter/.code = \def\tkz@numdsc{1}, swap/.is if = tkz@sawp@sc, swap/.default = true, swap = false, through, - /@SemiCircle/.search also={/tikz} + /tkzdrawsc/.search also={/tikz} } \def\tkzDrawSemiCircle{\pgfutil@ifnextchar[{\tkz@DrawSemiCircle}{% \tkz@DrawSemiCircle[]}} \def\tkz@DrawSemiCircle[#1](#2){% \begingroup -\pgfqkeys{/@SemiCircle}{#1} +\pgfqkeys{/tkzdrawsc}{#1} \ifcase\tkz@numdsc% \tkzDrawSemiCircleThrough(#2) \or% @@ -202,7 +202,7 @@ } %<--------------------------- Clip Circle ---------------------------------–> \def\tkz@numcc{0} -\pgfkeys{/clipcircle/.cd, +\pgfkeys{/tkzclipc/.cd, through/.code = \def\tkz@numcc{0}, R/.code = \def\tkz@numcc{1}, through} @@ -210,7 +210,7 @@ \def\tkzClipCircle{\pgfutil@ifnextchar[{\tkz@ClipCircle}{\tkz@ClipCircle[]}} \def\tkz@ClipCircle[#1](#2,#3){% -\pgfqkeys{/clipcircle}{#1} +\pgfqkeys{/tkzclipc}{#1} \ifcase\tkz@numcc \tkzCalcLength(#2,#3) \clip (#2) circle (\tkzLengthResult pt); @@ -222,11 +222,11 @@ % attention radius circle is defined by center and a point on the circle % R defined by center and the value of the radius \def\tkz@numlc{0} -\pgfkeys{/labelcircle/.cd, +\pgfkeys{/tkzlabelc/.cd, through/.code = \def\tkz@numlc{0}, R/.code = \def\tkz@numlc{1}, through, - /labelcircle/.search also={/tikz} + /tkzlabelc/.search also={/tikz} } \def\tkzLabelCircle{\pgfutil@ifnextchar[{\tkz@LabelCircle}{% @@ -235,14 +235,14 @@ % #4 angle #5 the label \def\tkz@LabelCircle[#1](#2,#3)(#4)#5{% \begingroup -\pgfqkeys{/labelcircle}{#1} +\pgfqkeys{/tkzlabelc}{#1} \ifcase\tkz@numlc \tkzURotateAngle(#2,#4)(#3) - \node[/labelcircle/.cd,#1] at (tkzPointResult) {#5}; + \node[/tkzlabelc/.cd,#1] at (tkzPointResult) {#5}; \or% 1 \path (#2)--++(#3,0) coordinate (tkzPointResult); \tkzURotateAngle(#2,#4)(tkzPointResult) - \node[/labelcircle/.cd,#1] at (tkzPointResult) {#5}; + \node[/tkzlabelc/.cd,#1] at (tkzPointResult) {#5}; \fi \endgroup } diff --git a/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-draw-lines.tex b/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-draw-lines.tex index 76923e844b7..d837c35a1d7 100644 --- a/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-draw-lines.tex +++ b/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-draw-lines.tex @@ -1,20 +1,20 @@ % tkz-obj-eu-draw-lines.tex -% Copyright 2011 by Alain Matthes +% Copyright 2020 by Alain Matthes % This file may be distributed and/or modified % 1. under the LaTeX Project Public License and/or % 2. under the GNU Public License. -\def\fileversion{3.01c} -\def\filedate{2020/01/23} -\typeout{2020/01/23 3.01c tkz-obj-eu-draw-lines.tex} +\def\fileversion{3.02c} +\def\filedate{2020/01/24} +\typeout{2020/01/24 3.02c tkz-obj-eu-draw-lines.tex} \makeatletter \def\tkz@numdl{0} -\pgfkeys{/DrawLine/.cd, +\pgfkeys{/tkzdrawl/.cd, median/.code = \def\tkz@numdl{0}, altitude/.code = \def\tkz@numdl{1}, bisector/.code = \def\tkz@numdl{2}, none/.code = \def\tkz@numdl{3}, none, - /DrawLine/.search also={/tikz} + /tkzdrawl/.search also={/tikz} } %<--------------------------------------------------------------------------–> % Drawing a line > @@ -22,7 +22,7 @@ \def\tkzDrawLine{\pgfutil@ifnextchar[{\tkz@DrawLine}{\tkz@DrawLine[]}} \def\tkz@DrawLine[#1](#2){% \begingroup -\pgfqkeys{/DrawLine}{#1} +\pgfqkeys{/tkzdrawl}{#1} \ifcase\tkz@numdl% \tkzDrawMedian[#1](#2) \or% 1 @@ -42,7 +42,7 @@ \def\tkzDrawSLine{\pgfutil@ifnextchar[{\tkz@DrawSLine}{\tkz@DrawSLine[]}} \def\tkz@DrawSLine[#1](#2,#3){% \begingroup -\draw[#1] (#2) to (#3); +\draw[line style,#1] (#2) to (#3); \endgroup }% %<--------------------------------------------------------------------------–> @@ -52,7 +52,7 @@ \def\tkz@Median[#1](#2,#3,#4){% \begingroup \tkzDefMidPoint(#2,#4) - \tkzDrawSLine[add= 0 and 0,/DrawLine/.cd,#1](#3,tkzPointResult) + \tkzDrawSLine[add= 0 and 0,/tkzdrawl/.cd,#1](#3,tkzPointResult) \endgroup } %<--------------------------------------------------------------------------–> @@ -62,7 +62,7 @@ \def\tkz@Altitude[#1](#2,#3,#4){% \begingroup \tkzUProjection(#2,#4)(#3) - \tkzDrawSLine[add= 0 and 0,/DrawLine/.cd,#1](#3,tkzPointResult) + \tkzDrawSLine[add= 0 and 0,/tkzdrawl/.cd,#1](#3,tkzPointResult) \endgroup } %<--------------------------------------------------------------------------–> @@ -73,7 +73,7 @@ \begingroup \tkzDefBisectorLine(#2,#3,#4) \tkzInterLL(#2,#4)(#3,tkzPointResult) - \tkzDrawSLine[add= 0 and 0,/DrawLine/.cd,#1](#3,tkzPointResult) + \tkzDrawSLine[add= 0 and 0,/tkzdrawl/.cd,#1](#3,tkzPointResult) \endgroup } %<--------------------------------------------------------------------------–> @@ -169,7 +169,7 @@ median, name/.store in = \tkz@newpoint@name, name/.initial = {}, - name = {}, + name = {}, /DrawTLines/.search also={/tikz} } %<--------------------------------------------------------------------------–> @@ -220,12 +220,12 @@ % Setup Line %<--------------------------------------------------------------------------–> \pgfkeys{% - setupline/.cd, + tkzsuline/.cd, line width/.code = {\xdef\tkz@line@lw{#1}}, color/.code = {\xdef\tkz@line@color{#1}}, style/.code = {\xdef\tkz@line@style{#1}}, add/.code args = {#1 and #2} {\xdef\tkz@line@left{#1}% - \xdef\tkz@line@right{#2}% + \xdef\tkz@line@right{#2}% } } %<--------------------------------------------------------------------------–> @@ -233,12 +233,12 @@ \tkzActivOff\tkz@SetUpLine[]}} \def\tkz@SetUpLine[#1]{% \pgfkeys{% - setupline/.cd, + tkzsuline/.cd, line width = \tkz@euc@linewidth, color = \tkz@euc@linecolor, style = \tkz@euc@linestyle, add = {\tkz@euc@lineleft} and {\tkz@euc@lineright}} -\pgfqkeys{/setupline}{#1} +\pgfqkeys{/tkzsuline}{#1} %<--------------------------------------------------------------------------–> % Line style %<--------------------------------------------------------------------------–> @@ -252,14 +252,14 @@ %<--------------------------------------------------------------------------–> % draw segment (s) %<--------------------------------------------------------------------------–> -\pgfkeys{/@tkzsegoptions/.cd, - /@tkzsegoptions/.search also={/tikz}, +\pgfkeys{/tkzdraws/.cd, + /tkzdraws/.search also={/tikz}, } \def\tkzDrawSegment{\pgfutil@ifnextchar[{\tkz@DrawSegment}{% \tkz@DrawSegment[]}} \def\tkz@DrawSegment[#1](#2,#3){% \begingroup - \pgfqkeys{/@tkzsegoptions}{#1} + \pgfqkeys{/tkzdraws}{#1} \draw[line style,add=0 and 0,#1] (#2) to (#3); \endgroup }% diff --git a/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-draw-polygons.tex b/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-draw-polygons.tex index 49ce0c7021a..6b3764ccc35 100644 --- a/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-draw-polygons.tex +++ b/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-draw-polygons.tex @@ -1,11 +1,11 @@ % tkz-obj-eu-polygons.tex -% Copyright 2011 by Alain Matthes +% Copyright 2020 by Alain Matthes % This file may be distributed and/or modified % 1. under the LaTeX Project Public License and/or % 2. under the GNU Public License. -\def\fileversion{3.01c} -\def\filedate{2020/01/23} -\typeout{2020/01/23 3.01c tkz-obj-eu-polygons.tex} +\def\fileversion{3.02c} +\def\filedate{2020/01/24} +\typeout{2020/01/24 3.02c tkz-obj-eu-polygons.tex} \makeatletter %<--------------------------------------------------------------------------–> % Polygon diff --git a/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-lines.tex b/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-lines.tex index ee12e06d8aa..5246f68455a 100644 --- a/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-lines.tex +++ b/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-lines.tex @@ -1,11 +1,11 @@ % tkz-obj-eu-lines.tex -% Copyright 2011 by Alain Matthes +% Copyright 2020 by Alain Matthes % This file may be distributed and/or modified % 1. under the LaTeX Project Public License and/or % 2. under the GNU Public License. -\def\fileversion{3.01c} -\def\filedate{2020/01/23} -\typeout{2020/01/23 3.01c tkz-obj-eu-lines.tex} +\def\fileversion{3.02c} +\def\filedate{2020/01/24} +\typeout{2020/01/24 3.02c tkz-obj-eu-lines.tex} \makeatletter %<--------------------------------------------------------------------------–> % les lignes diff --git a/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-points-by.tex b/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-points-by.tex index bf8793ad093..2ab31570ac9 100644 --- a/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-points-by.tex +++ b/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-points-by.tex @@ -1,11 +1,11 @@ % tkz-tools-eu-points-by.tex -% Copyright 2011 by Alain Matthes +% Copyright 2020 by Alain Matthes % This file may be distributed and/or modified % 1. under the LaTeX Project Public License and/or % 2. under the GNU Public License. -\def\fileversion{3.01c} -\def\filedate{2020/01/23} -\typeout{2020/01/23 3.01c tkz-tools-eu-points-by.tex} +\def\fileversion{3.02c} +\def\filedate{2020/01/24} +\typeout{2020/01/24 3.02c tkz-tools-eu-points-by.tex} \makeatletter %<--------------------------------------------------------------------------–> % Transformations Géométriques diff --git a/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-points-rnd.tex b/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-points-rnd.tex index ca072cd66dd..d11902126dd 100644 --- a/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-points-rnd.tex +++ b/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-points-rnd.tex @@ -1,13 +1,13 @@ % tkz-obj-eu-points-rnd.tex -% Copyright 2011 by Alain Matthes +% Copyright 2020 by Alain Matthes % % This file may be distributed and/or modified % % 1. under the LaTeX Project Public License and/or % 2. under the GNU Public License. -\def\fileversion{3.01c} -\def\filedate{2020/01/23} -\typeout{2020/01/23 3.01c tkz-obj-eu-points-rnd.tex} +\def\fileversion{3.02c} +\def\filedate{2020/01/24} +\typeout{2020/01/24 3.02c tkz-obj-eu-points-rnd.tex} %<--------------------------------------------------------------------------–> \makeatletter %<-------------------------------------------------------------------------–> diff --git a/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-points-with.tex b/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-points-with.tex index d73a1ce8cb4..6e235de7b3d 100644 --- a/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-points-with.tex +++ b/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-points-with.tex @@ -1,11 +1,11 @@ % tkz-obj-eu-points-with.tex -% Copyright 2011 by Alain Matthes +% Copyright 2020 by Alain Matthes % This file may be distributed and/or modified % 1. under the LaTeX Project Public License and/or % 2. under the GNU Public License. -\def\fileversion{3.01c} -\def\filedate{2020/01/23} -\typeout{2020/01/23 3.01c tkz-obj-eu-points-with.tex} +\def\fileversion{3.02c} +\def\filedate{2020/01/24} +\typeout{2020/01/24 3.02c tkz-obj-eu-points-with.tex} \makeatletter %<--------------------------------------------------------------------------–> % Vectors diff --git a/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-points.tex b/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-points.tex index 62600426e73..774faae9219 100644 --- a/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-points.tex +++ b/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-points.tex @@ -1,11 +1,11 @@ % tkz-obj-eu-points.tex -% Copyright 2011 by Alain Matthes +% Copyright 2020 by Alain Matthes % This file may be distributed and/or modified % 1. under the LaTeX Project Public License and/or % 2. under the GNU Public License. -\def\fileversion{3.01c} -\def\filedate{2020/01/23} -\typeout{2020/01/23 3.01c tkz-obj-eu-points.tex} +\def\fileversion{3.02c} +\def\filedate{2020/01/24} +\typeout{2020/01/24 3.02c tkz-obj-eu-points.tex} \makeatletter %add ExCenter %<--------------------------------------------------------------------------–> @@ -354,15 +354,16 @@ %<--------------------------------------------------------------------------–> % Nagel center Na %<--------------------------------------------------------------------------–> -% INa = 3 IG. Nagel point +% INa = 3 IG. Nagel point % correction 02/02/20 \def\tkzNagelCenter(#1,#2,#3){% \begingroup \pgfinterruptboundingbox - \tkzInCenter(#1,#2,#3) - \pgfnodealias{tkz@ptin}{tkzPointResult} - \tkzCentroid(#1,#2,#3) - \pgfnodealias{tkz@cen}{tkzPointResult} - \tkz@VecCoLinear(tkz@ptin,tkz@cen,tkz@ptin) + \tkzDefExcentralTriangle(#1,#2,#3){tkz@a,tkz@b,tkz@c} + \tkzUProjection(#2,#3)(tkz@a) + \pgfnodealias{tkz@tgta}{tkzPointResult} + \tkzUProjection(#1,#2)(tkz@c) + \pgfnodealias{tkz@tgtc}{tkzPointResult} + \tkzInterLL(#1,tkz@tgta)(#3,tkz@tgtc) \endpgfinterruptboundingbox \endgroup } @@ -459,7 +460,31 @@ \pgfnodealias{\csname tkz@ppt3\endcsname\csname tkz@pt3\endcsname}{tkzPointResult} \endgroup } - - +%<--------------------------------------------------------------------------–> +% Point on circle +%<--------------------------------------------------------------------------–> +\pgfkeys{/tkzptcircle/.cd, + angle/.store in = \tkz@angle, + angle = 0 , + center/.store in = \tkz@center, + radius/.store in = \tkz@radius +} +\def\tkzDefPointOnCircle{\pgfutil@ifnextchar[{\tkz@DefPointOnCircle}{\tkz@DefPointOnCircle[]}} +\def\tkz@DefPointOnCircle[#1]{% +\begingroup +\pgfqkeys{/tkzptcircle}{#1} +\path (\tkz@center) --++(\tkz@angle:\tkz@radius) coordinate(tkzPointResult); +\endgroup +} +%<--------------------------------------------------------------------------–> +% Point on line +%<--------------------------------------------------------------------------–> +\def\tkzDefPointOnLine{\pgfutil@ifnextchar[{\tkz@DefPointOnLine}{\tkz@DefPointOnLine[]}} +\def\tkz@DefPointOnLine[#1](#2,#3){% +\begingroup +\path (#2) to [#1] coordinate (tkzPointResult) (#3); +\endgroup +} + \makeatother \endinput
\ No newline at end of file diff --git a/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-polygons.tex b/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-polygons.tex index 56d0b86fdf2..b9b29a666e3 100644 --- a/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-polygons.tex +++ b/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-polygons.tex @@ -1,11 +1,11 @@ % tkz-obj-eu-polygons.tex -% Copyright 2011 by Alain Matthes +% Copyright 2020 by Alain Matthes % This file may be distributed and/or modified % 1. under the LaTeX Project Public License and/or % 2. under the GNU Public License. -\def\fileversion{3.01c} -\def\filedate{2020/01/23} -\typeout{2020/01/23 3.01c tkz-obj-eu-polygons.tex} +\def\fileversion{3.02c} +\def\filedate{2020/01/24} +\typeout{2020/01/24 3.02c tkz-obj-eu-polygons.tex} \makeatletter %<--------------------------------------------------------------------------–> % Polygon diff --git a/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-protractor.tex b/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-protractor.tex index eaeca969fc1..b1426b206c3 100644 --- a/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-protractor.tex +++ b/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-protractor.tex @@ -1,11 +1,11 @@ % tkz-obj-eu-protractor.tex -% Copyright 2011 by Alain Matthes +% Copyright 2020 by Alain Matthes % This file may be distributed and/or modified % 1. under the LaTeX Project Public License and/or % 2. under the GNU Public License. -\def\fileversion{3.01c} -\def\filedate{2020/01/23} - \typeout{2020/01/23 3.01c tkz-obj-eu-protractor.tex} +\def\fileversion{3.02c} +\def\filedate{2020/01/24} + \typeout{2020/01/24 3.02c tkz-obj-eu-protractor.tex} \makeatletter %<--------------------------------------------------------------------------–> % !!! idea from Y. Combe !!! diff --git a/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-sectors.tex b/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-sectors.tex index 538a8f34f9b..24fc8456736 100644 --- a/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-sectors.tex +++ b/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-sectors.tex @@ -1,11 +1,11 @@ % tkz-obj-eu-sectors.tex -% Copyright 2011 by Alain Matthes +% Copyright 2020 by Alain Matthes % This file may be distributed and/or modified % 1. under the LaTeX Project Public License and/or % 2. under the GNU Public License. -\def\fileversion{3.01c} -\def\filedate{2020/01/23} -\typeout{2020/01/23 3.01c tkz-obj-eu-sectors.tex} +\def\fileversion{3.02c} +\def\filedate{2020/01/24} +\typeout{2020/01/24 3.02c tkz-obj-eu-sectors.tex} \makeatletter %<----------------------- Sectors ------------------------------–> \tikzset{sstyle/.style={#1}} diff --git a/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-show.tex b/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-show.tex index 457fbed257a..d1eb78b30e5 100644 --- a/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-show.tex +++ b/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-show.tex @@ -1,11 +1,11 @@ %tkz-obj-eu-show.tex -% Copyright 2011 by Alain Matthes +% Copyright 2020 by Alain Matthes % This file may be distributed and/or modified % 1. under the LaTeX Project Public License and/or % 2. under the GNU Public License. -\def\fileversion{3.01c} -\def\filedate{2020/01/23} -\typeout{2020/01/23 3.01c tkz-obj-eu-show.tex} +\def\fileversion{3.02c} +\def\filedate{2020/01/24} +\typeout{2020/01/24 3.02c tkz-obj-eu-show.tex} \makeatletter %<--------------------------------------------------------------------------–> % finding specific points in a triangle @@ -59,7 +59,7 @@ size/.code = \def\tkz@show@size{#1}, /show/.unknown/.code = {\let\searchname=\pgfkeyscurrentname \pgfkeysalso{\searchname/.try=#1, - /compass/\searchname/.retry=#1, + /tkzcompass/\searchname/.retry=#1, /tikz/\searchname/.retry=#1}% } } @@ -134,10 +134,12 @@ \def\tkzShowOrthLine{\pgfutil@ifnextchar[{\tkz@ShowOrthLine}{\tkz@ShowOrthLine[]}} \def\tkz@ShowOrthLine[#1](#2,#3)(#4){% \begingroup -\pgfkeys{show/.cd, ratio = .75, +\pgfkeys{show/.cd, + ratio = .75, length = 1, - gap = -1} % ???? -\pgfkeys{show/.cd,#1} %???? + gap = -1, + size = 1} +\pgfkeys{show/.cd,#1} \tkzVecKOrth(#2,#3) \pgfnodealias{tkz@OLtmp}{tkzPointResult} \tkz@VecKCoLinear[1](#2,tkz@OLtmp,#4) @@ -152,9 +154,9 @@ \pgfnodealias{PO@tmp2}{tkzPointResult} \tkz@VecKCoLinear[-1](#2,PO@tmp,tkzPOpoint) \pgfnodealias{PO@tmp1}{tkzPointResult} - \tkz@VecKCoLinear[2](tkzPOpoint,PO@tmp1,tkzPOpoint) + \tkz@VecKCoLinear[\tkz@show@size](tkzPOpoint,PO@tmp1,tkzPOpoint) \pgfnodealias{PO@1}{tkzPointResult} - \tkz@VecKCoLinear[2](tkzPOpoint,PO@tmp2,tkzPOpoint) + \tkz@VecKCoLinear[\tkz@show@size](tkzPOpoint,PO@tmp2,tkzPOpoint) \pgfnodealias{PO@2}{tkzPointResult} \ifdim\tkz@mathLen pt>10 pt\relax \tkz@VecKNorm[1](#4,tkzPOpoint) @@ -237,7 +239,7 @@ translation/.code args={from #1 to #2}{% size/.code = \def\tkz@show@size{#1}, /showtsf/.unknown/.code = {\let\searchname=\pgfkeyscurrentname \pgfkeysalso{\searchname/.try=#1, - /compass/\searchname/.retry=#1, + /tkzcompass/\searchname/.retry=#1, /tikz/\searchname/.retry=#1}} } %<--------------------------------------------------------------------------–> diff --git a/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-triangles.tex b/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-triangles.tex index 0abc2e8166d..5fe6b5d069f 100644 --- a/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-triangles.tex +++ b/Master/texmf-dist/tex/latex/tkz-euclide/tkz-obj-eu-triangles.tex @@ -3,9 +3,9 @@ % This file may be distributed and/or modified % 1. under the LaTeX Project Public License and/or % 2. under the GNU Public License. -\def\fileversion{3.01c} -\def\filedate{2020/01/23} -\typeout{2020/01/23 3.01c tkz-obj-eu-triangles.tex} +\def\fileversion{3.02c} +\def\filedate{2020/01/24} +\typeout{2020/01/24 3.02c tkz-obj-eu-triangles.tex} \makeatletter %<--------------------------------------------------------------------------–> % Triangle Equilateral @@ -95,13 +95,14 @@ pythagore/.code = \def\tkz@numtr{2}, school/.code = \def\tkz@numtr{3}, golden/.code = \def\tkz@numtr{4}, - sublime/.code = \def\tkz@numtr{4}, + sublime/.code = \def\tkz@numtr{4}, euclide/.code = \def\tkz@numtr{5}, gold/.code = \def\tkz@numtr{6}, cheops/.code = \def\tkz@numtr{7}, two angles/.code args = {#1 and #2} { \def\tkz@numtr{8}% - \def\tkz@alpha{#1}% - \def\tkz@beta{#2}} + \def\tkz@alpha{#1}% + \def\tkz@beta{#2}}, + equilateral } \def\tkzDefTriangle{\pgfutil@ifnextchar[{\tkz@DefTriangle}{\tkz@DefTriangle[]}} @@ -247,9 +248,6 @@ %<--------------------------------------------------------------------------– % InCentral %<--------------------------------------------------------------------------– -% The Incentral triangle is the triangle whose vertices are determined by -% theintersections of the reference triangle’s angle bisectors with the -% respective opposite sides. %<--------------------------------------------------------------------------–> \def\@DefIncentralTriangle(#1,#2,#3)(#4,#5){% \def\tkz@tmp{#5}% @@ -302,7 +300,6 @@ \let\tkzExcentralTriangle\tkzDefExcentralTriangle %<--------------------------------------------------------------------------–> % Intouch Triangle -% The contact triangle of a triangle ABC, also called the intouch triangle, is the triangle formed by the points of tangency of the incircle of ABC with ABC. %<--------------------------------------------------------------------------–> \def\@DefIntouchTriangle(#1,#2,#3)(#4,#5){% \def\tkz@tmp{#5}% @@ -328,7 +325,6 @@ \let\tkzDefContactTriangle\tkzDefIntouchTriangle %<--------------------------------------------------------------------------–> % Extouch Triangle -% The extouch triangle T_1T_2T_3 is the triangle formed by the points of tangency of a triangle A_1A_2A_3 with its excircles J_1, J_2, and J_3. %<--------------------------------------------------------------------------–> \def\tkzDefExtouchTriangle{\pgfutil@ifnextchar[{% \tkz@DefExtouchTriangle}{% @@ -349,10 +345,9 @@ \pgfnodealias{\tkz@pttr@name\csname tkz@point2\endcsname}{tkzPointResult} \endgroup } - %<--------------------------------------------------------------------------–> -% Feuerbach triangle The Feuerbach triangle is the triangle formed by the three points of tangency of the nine-point circle with the excircles - +% Feuerbach triangle +%<--------------------------------------------------------------------------–> \def\tkzDefFeuerbachTriangle{\pgfutil@ifnextchar[{% \tkz@DefFeuerbachTriangle}{\tkz@DefFeuerbachTriangle[]}} @@ -402,9 +397,7 @@ \let\tkzDefMedialTriangle\tkzDefCentroidTriangle \let\tkzDefMidpointTriangle\tkzDefCentroidTriangle %<--------------------------------------------------------------------------–> -% OrthicTriangle H Ha Hb Hc -%<--------------------------------------------------------------------------–> -% Orthic Triangle +% Orthic Triangle H Ha Hb Hc %<--------------------------------------------------------------------------–> \def\@DefOrthicTriangle(#1,#2,#3)(#4,#5){% \def\tkz@tmp{#5}% @@ -426,8 +419,8 @@ \let\tkzDefAltitudeTriangle\tkzDefOrthicTriangle %<--------------------------------------------------------------------------–> -% The Euler triangle of a triangle ABC is the triangle E_AE_BE_C whose vertices are the midpoints of the segments joining the orthocenter H with the respective vertices. The vertices of the triangle are known as the Euler points, and lie on the nine-point circle. - +% The Euler triangle +%<--------------------------------------------------------------------------–> \def\tkzDefEulerTriangle{\pgfutil@ifnextchar[{% \tkz@DefEulerTriangle}{\tkz@DefEulerTriangle[]}} \def\tkz@DefEulerTriangle[#1](#2,#3,#4)#5{% @@ -449,7 +442,7 @@ \endgroup } %<--------------------------------------------------------------------------–> -% +% TangentialTriangle %<--------------------------------------------------------------------------–> \def\tkzDefTangentialTriangle{\pgfutil@ifnextchar[{% \tkz@DefTangentialTriangle}{\tkz@DefTangentialTriangle[]}} @@ -478,10 +471,6 @@ %<--------------------------------------------------------------------------– % tkzDefSymmedianLine %<--------------------------------------------------------------------------– -% The Incentral triangle is the triangle whose vertices are determined by -% theintersections of the reference triangle’s angle bisectors with the -% respective opposite sides. -%<--------------------------------------------------------------------------–> \def\@DefSymmedianTriangle(#1,#2,#3)(#4,#5){% \def\tkz@tmp{#5}% \tkz@recuplast(#3) diff --git a/Master/texmf-dist/tex/latex/tkz-euclide/tkz-tools-angles.tex b/Master/texmf-dist/tex/latex/tkz-euclide/tkz-tools-angles.tex index 7385417e27a..85595fe4ca8 100644 --- a/Master/texmf-dist/tex/latex/tkz-euclide/tkz-tools-angles.tex +++ b/Master/texmf-dist/tex/latex/tkz-euclide/tkz-tools-angles.tex @@ -1,11 +1,11 @@ % tkz-tools-angles.tex -% Copyright 2011 by Alain Matthes +% Copyright 2020 by Alain Matthes % This file may be distributed and/or modified % 1. under the LaTeX Project Public License and/or % 2. under the GNU Public License. -\def\fileversion{3.01c} -\def\filedate{2020/01/23} -\typeout{2020/01/23 3.01c tkz-tools-angles.tex} +\def\fileversion{3.02c} +\def\filedate{2020/01/24} +\typeout{2020/01/24 3.02c tkz-tools-angles.tex} \makeatletter %<--------------------------------------------------------------------------–> %<--------------------------------------------------------------------------–> diff --git a/Master/texmf-dist/tex/latex/tkz-euclide/tkz-tools-intersections.tex b/Master/texmf-dist/tex/latex/tkz-euclide/tkz-tools-intersections.tex index 8937f914fa7..7bb8810796e 100644 --- a/Master/texmf-dist/tex/latex/tkz-euclide/tkz-tools-intersections.tex +++ b/Master/texmf-dist/tex/latex/tkz-euclide/tkz-tools-intersections.tex @@ -1,11 +1,11 @@ % tkz-tools-intersections.tex -% Copyright 2011 by Alain Matthes +% Copyright 2020 by Alain Matthes % This file may be distributed and/or modified % 1. under the LaTeX Project Public License and/or % 2. under the GNU Public License. -\def\fileversion{3.01c} -\def\filedate{2020/01/23} -\typeout{2020/01/23 3.01c tkz-tools-intersections.tex} +\def\fileversion{3.02c} +\def\filedate{2020/01/24} +\typeout{2020/01/24 3.02c tkz-tools-intersections.tex} \makeatletter %<--------------------------------------------------------------------------–> % intersection de deux lignes @@ -234,7 +234,8 @@ \pgfkeys{ /circlecircle/.cd, node/.code = {\global\def\tkz@numcc{0}}, - R/.code = {\global\def\tkz@numcc{1}} + R/.code = {\global\def\tkz@numcc{1}}, +with nodes/.code = {\global\def\tkz@numcc{2}} } %<--------------------------------------------------------------------------–> \def\tkzInterCC{\pgfutil@ifnextchar[{\tkz@InterCC}{\tkz@InterCC[]}} |