summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorKarl Berry <karl@freefriends.org>2020-03-03 22:41:44 +0000
committerKarl Berry <karl@freefriends.org>2020-03-03 22:41:44 +0000
commit8b67398a304b54846d01ad667cf1fbb6eb0245d2 (patch)
treec5e045c9d36b21c8dffece4499e2a47e5dd4df8e
parentf76a89d7f9fc8837ce20a63e3a29b2ba75823159 (diff)
asymptote 2.63 support files
git-svn-id: svn://tug.org/texlive/trunk@54036 c570f23f-e606-0410-a88d-b1316a301751
-rwxr-xr-xMaster/texmf-dist/asymptote/GUI/icons_rc.py3434
-rwxr-xr-xMaster/texmf-dist/asymptote/GUI/xasyVersion.py2
-rw-r--r--Master/texmf-dist/asymptote/asy-keywords.el6
-rw-r--r--Master/texmf-dist/asymptote/graph3.asy220
-rw-r--r--Master/texmf-dist/asymptote/palette.asy9
-rwxr-xr-xMaster/texmf-dist/asymptote/shaders/fragment.glsl20
-rwxr-xr-xMaster/texmf-dist/asymptote/shaders/vertex.glsl2
-rw-r--r--Master/texmf-dist/asymptote/solids.asy3
-rw-r--r--Master/texmf-dist/asymptote/three.asy146
-rw-r--r--Master/texmf-dist/asymptote/three_arrows.asy44
-rw-r--r--Master/texmf-dist/asymptote/three_light.asy4
-rw-r--r--Master/texmf-dist/asymptote/three_surface.asy485
-rw-r--r--Master/texmf-dist/asymptote/three_tube.asy490
-rw-r--r--Master/texmf-dist/asymptote/tube.asy36
-rw-r--r--Master/texmf-dist/asymptote/version.asy2
-rw-r--r--Master/texmf-dist/asymptote/webgl/asygl.js2
-rw-r--r--Master/texmf-dist/doc/asymptote/CAD.pdfbin167756 -> 167756 bytes
-rw-r--r--Master/texmf-dist/doc/asymptote/TeXShopAndAsymptote.pdfbin77112 -> 76904 bytes
-rw-r--r--Master/texmf-dist/doc/asymptote/asy-latex.pdfbin194590 -> 194590 bytes
-rw-r--r--Master/texmf-dist/doc/asymptote/asyRefCard.pdfbin121144 -> 121144 bytes
-rw-r--r--Master/texmf-dist/doc/asymptote/asymptote.pdfbin1293164 -> 1293632 bytes
-rw-r--r--Master/texmf-dist/doc/asymptote/examples/cylinder.asy19
-rw-r--r--Master/texmf-dist/doc/asymptote/examples/pipes.asy2
-rw-r--r--Master/texmf-dist/doc/asymptote/examples/randompath3.asy3
-rw-r--r--Master/texmf-dist/doc/asymptote/examples/sphere.asy4
-rw-r--r--Master/texmf-dist/doc/asymptote/examples/unitoctant.asy2
-rw-r--r--Master/texmf-dist/doc/asymptote/examples/vertexshading.asy5
-rw-r--r--Master/texmf-dist/doc/asymptote/examples/workcone.asy6
-rw-r--r--Master/texmf-dist/doc/info/asy-faq.info2
-rw-r--r--Master/texmf-dist/doc/info/asymptote.info457
-rw-r--r--Master/texmf-dist/doc/man/man1/asy.12
-rw-r--r--Master/texmf-dist/doc/man/man1/asy.man1.pdfbin29492 -> 29492 bytes
-rw-r--r--Master/texmf-dist/doc/man/man1/xasy.man1.pdfbin14774 -> 14774 bytes
-rwxr-xr-xMaster/tlpkg/asymptote/asy.exebin7562240 -> 7598080 bytes
-rwxr-xr-xMaster/tlpkg/asymptote64/asy.exebin7555072 -> 7587328 bytes
-rwxr-xr-xMaster/tlpkg/bin/tl-update-asy3
36 files changed, 2713 insertions, 2697 deletions
diff --git a/Master/texmf-dist/asymptote/GUI/icons_rc.py b/Master/texmf-dist/asymptote/GUI/icons_rc.py
index 7a7700b7e07..8694bd060bf 100755
--- a/Master/texmf-dist/asymptote/GUI/icons_rc.py
+++ b/Master/texmf-dist/asymptote/GUI/icons_rc.py
@@ -9,481 +9,86 @@
from PyQt5 import QtCore
qt_resource_data = b"\
-\x00\x00\x00\x6c\
-\x3c\
-\x73\x76\x67\x20\x78\x6d\x6c\x6e\x73\x3d\x22\x68\x74\x74\x70\x3a\
-\x2f\x2f\x77\x77\x77\x2e\x77\x33\x2e\x6f\x72\x67\x2f\x32\x30\x30\
-\x30\x2f\x73\x76\x67\x22\x20\x76\x69\x65\x77\x42\x6f\x78\x3d\x22\
-\x30\x20\x30\x20\x32\x30\x20\x32\x30\x22\x3e\x3c\x70\x61\x74\x68\
-\x20\x64\x3d\x22\x4d\x31\x38\x20\x31\x32\x76\x31\x48\x38\x76\x35\
-\x6c\x2d\x36\x2d\x36\x20\x36\x2d\x36\x76\x35\x68\x38\x56\x32\x68\
-\x32\x7a\x22\x2f\x3e\x3c\x2f\x73\x76\x67\x3e\
-\x00\x00\x04\x64\
-\x3c\
-\x3f\x78\x6d\x6c\x20\x76\x65\x72\x73\x69\x6f\x6e\x3d\x22\x31\x2e\
-\x30\x22\x20\x65\x6e\x63\x6f\x64\x69\x6e\x67\x3d\x22\x75\x74\x66\
-\x2d\x38\x22\x3f\x3e\x0d\x0a\x3c\x21\x2d\x2d\x20\x47\x65\x6e\x65\
-\x72\x61\x74\x6f\x72\x3a\x20\x41\x64\x6f\x62\x65\x20\x49\x6c\x6c\
-\x75\x73\x74\x72\x61\x74\x6f\x72\x20\x31\x36\x2e\x32\x2e\x31\x2c\
-\x20\x53\x56\x47\x20\x45\x78\x70\x6f\x72\x74\x20\x50\x6c\x75\x67\
-\x2d\x49\x6e\x20\x2e\x20\x53\x56\x47\x20\x56\x65\x72\x73\x69\x6f\
-\x6e\x3a\x20\x36\x2e\x30\x30\x20\x42\x75\x69\x6c\x64\x20\x30\x29\
-\x20\x20\x2d\x2d\x3e\x0d\x0a\x3c\x21\x44\x4f\x43\x54\x59\x50\x45\
-\x20\x73\x76\x67\x20\x50\x55\x42\x4c\x49\x43\x20\x22\x2d\x2f\x2f\
-\x57\x33\x43\x2f\x2f\x44\x54\x44\x20\x53\x56\x47\x20\x31\x2e\x31\
-\x2f\x2f\x45\x4e\x22\x20\x22\x68\x74\x74\x70\x3a\x2f\x2f\x77\x77\
-\x77\x2e\x77\x33\x2e\x6f\x72\x67\x2f\x47\x72\x61\x70\x68\x69\x63\
-\x73\x2f\x53\x56\x47\x2f\x31\x2e\x31\x2f\x44\x54\x44\x2f\x73\x76\
-\x67\x31\x31\x2e\x64\x74\x64\x22\x3e\x0d\x0a\x3c\x73\x76\x67\x20\
-\x76\x65\x72\x73\x69\x6f\x6e\x3d\x22\x31\x2e\x31\x22\x20\x69\x64\
-\x3d\x22\x4c\x61\x79\x65\x72\x5f\x31\x22\x20\x78\x6d\x6c\x6e\x73\
-\x3d\x22\x68\x74\x74\x70\x3a\x2f\x2f\x77\x77\x77\x2e\x77\x33\x2e\
-\x6f\x72\x67\x2f\x32\x30\x30\x30\x2f\x73\x76\x67\x22\x20\x78\x6d\
-\x6c\x6e\x73\x3a\x78\x6c\x69\x6e\x6b\x3d\x22\x68\x74\x74\x70\x3a\
-\x2f\x2f\x77\x77\x77\x2e\x77\x33\x2e\x6f\x72\x67\x2f\x31\x39\x39\
-\x39\x2f\x78\x6c\x69\x6e\x6b\x22\x20\x78\x3d\x22\x30\x70\x78\x22\
-\x20\x79\x3d\x22\x30\x70\x78\x22\x0d\x0a\x09\x20\x77\x69\x64\x74\
-\x68\x3d\x22\x35\x31\x32\x70\x78\x22\x20\x68\x65\x69\x67\x68\x74\
-\x3d\x22\x35\x31\x32\x70\x78\x22\x20\x76\x69\x65\x77\x42\x6f\x78\
-\x3d\x22\x30\x20\x30\x20\x35\x31\x32\x20\x35\x31\x32\x22\x20\x65\
-\x6e\x61\x62\x6c\x65\x2d\x62\x61\x63\x6b\x67\x72\x6f\x75\x6e\x64\
-\x3d\x22\x6e\x65\x77\x20\x30\x20\x30\x20\x35\x31\x32\x20\x35\x31\
-\x32\x22\x20\x78\x6d\x6c\x3a\x73\x70\x61\x63\x65\x3d\x22\x70\x72\
-\x65\x73\x65\x72\x76\x65\x22\x3e\x0d\x0a\x3c\x67\x20\x69\x64\x3d\
-\x22\x49\x63\x6f\x6e\x22\x3e\x0d\x0a\x09\x3c\x67\x3e\x0d\x0a\x09\
-\x09\x3c\x70\x61\x74\x68\x20\x64\x3d\x22\x4d\x32\x35\x36\x2c\x31\
-\x37\x36\x63\x2d\x34\x34\x2e\x30\x30\x34\x2c\x30\x2d\x38\x30\x2e\
-\x30\x30\x31\x2c\x33\x36\x2d\x38\x30\x2e\x30\x30\x31\x2c\x38\x30\
-\x63\x30\x2c\x34\x34\x2e\x30\x30\x34\x2c\x33\x35\x2e\x39\x39\x37\
-\x2c\x38\x30\x2c\x38\x30\x2e\x30\x30\x31\x2c\x38\x30\x63\x34\x34\
-\x2e\x30\x30\x35\x2c\x30\x2c\x37\x39\x2e\x39\x39\x39\x2d\x33\x35\
-\x2e\x39\x39\x36\x2c\x37\x39\x2e\x39\x39\x39\x2d\x38\x30\x0d\x0a\
-\x09\x09\x09\x43\x33\x33\x35\x2e\x39\x39\x39\x2c\x32\x31\x32\x2c\
-\x33\x30\x30\x2e\x30\x30\x35\x2c\x31\x37\x36\x2c\x32\x35\x36\x2c\
-\x31\x37\x36\x7a\x20\x4d\x34\x34\x36\x2e\x39\x33\x38\x2c\x32\x33\
-\x34\x2e\x36\x36\x37\x63\x2d\x39\x2e\x36\x30\x35\x2d\x38\x38\x2e\
-\x35\x33\x31\x2d\x38\x31\x2e\x30\x37\x34\x2d\x31\x36\x30\x2d\x31\
-\x36\x39\x2e\x36\x30\x35\x2d\x31\x36\x39\x2e\x35\x39\x39\x56\x33\
-\x32\x68\x2d\x34\x32\x2e\x36\x36\x36\x76\x33\x33\x2e\x30\x36\x37\
-\x0d\x0a\x09\x09\x09\x63\x2d\x38\x38\x2e\x35\x33\x31\x2c\x39\x2e\
-\x35\x39\x39\x2d\x31\x36\x30\x2c\x38\x31\x2e\x30\x36\x38\x2d\x31\
-\x36\x39\x2e\x36\x30\x34\x2c\x31\x36\x39\x2e\x35\x39\x39\x48\x33\
-\x32\x76\x34\x32\x2e\x36\x36\x37\x68\x33\x33\x2e\x30\x36\x32\x63\
-\x39\x2e\x36\x30\x34\x2c\x38\x38\x2e\x35\x33\x31\x2c\x38\x31\x2e\
-\x30\x37\x32\x2c\x31\x36\x30\x2c\x31\x36\x39\x2e\x36\x30\x34\x2c\
-\x31\x36\x39\x2e\x36\x30\x34\x56\x34\x38\x30\x68\x34\x32\x2e\x36\
-\x36\x36\x76\x2d\x33\x33\x2e\x30\x36\x32\x0d\x0a\x09\x09\x09\x63\
-\x38\x38\x2e\x35\x33\x31\x2d\x39\x2e\x36\x30\x34\x2c\x31\x36\x30\
-\x2d\x38\x31\x2e\x30\x37\x33\x2c\x31\x36\x39\x2e\x36\x30\x35\x2d\
-\x31\x36\x39\x2e\x36\x30\x34\x48\x34\x38\x30\x76\x2d\x34\x32\x2e\
-\x36\x36\x37\x48\x34\x34\x36\x2e\x39\x33\x38\x7a\x20\x4d\x32\x35\
-\x36\x2c\x34\x30\x35\x2e\x33\x33\x33\x63\x2d\x38\x32\x2e\x31\x33\
-\x37\x2c\x30\x2d\x31\x34\x39\x2e\x33\x33\x34\x2d\x36\x37\x2e\x31\
-\x39\x38\x2d\x31\x34\x39\x2e\x33\x33\x34\x2d\x31\x34\x39\x2e\x33\
-\x33\x33\x0d\x0a\x09\x09\x09\x63\x30\x2d\x38\x32\x2e\x31\x33\x36\
-\x2c\x36\x37\x2e\x31\x39\x37\x2d\x31\x34\x39\x2e\x33\x33\x33\x2c\
-\x31\x34\x39\x2e\x33\x33\x34\x2d\x31\x34\x39\x2e\x33\x33\x33\x63\
-\x38\x32\x2e\x31\x33\x35\x2c\x30\x2c\x31\x34\x39\x2e\x33\x33\x32\
-\x2c\x36\x37\x2e\x31\x39\x38\x2c\x31\x34\x39\x2e\x33\x33\x32\x2c\
-\x31\x34\x39\x2e\x33\x33\x33\x43\x34\x30\x35\x2e\x33\x33\x32\x2c\
-\x33\x33\x38\x2e\x31\x33\x35\x2c\x33\x33\x38\x2e\x31\x33\x35\x2c\
-\x34\x30\x35\x2e\x33\x33\x33\x2c\x32\x35\x36\x2c\x34\x30\x35\x2e\
-\x33\x33\x33\x7a\x0d\x0a\x09\x09\x09\x22\x2f\x3e\x0d\x0a\x09\x3c\
-\x2f\x67\x3e\x0d\x0a\x3c\x2f\x67\x3e\x0d\x0a\x3c\x2f\x73\x76\x67\
-\x3e\x0d\x0a\
-\x00\x00\x02\xa2\
-\x3c\
-\x3f\x78\x6d\x6c\x20\x76\x65\x72\x73\x69\x6f\x6e\x3d\x22\x31\x2e\
-\x30\x22\x20\x65\x6e\x63\x6f\x64\x69\x6e\x67\x3d\x22\x75\x74\x66\
-\x2d\x38\x22\x3f\x3e\x0d\x0a\x3c\x21\x2d\x2d\x20\x47\x65\x6e\x65\
-\x72\x61\x74\x6f\x72\x3a\x20\x41\x64\x6f\x62\x65\x20\x49\x6c\x6c\
-\x75\x73\x74\x72\x61\x74\x6f\x72\x20\x31\x36\x2e\x32\x2e\x31\x2c\
-\x20\x53\x56\x47\x20\x45\x78\x70\x6f\x72\x74\x20\x50\x6c\x75\x67\
-\x2d\x49\x6e\x20\x2e\x20\x53\x56\x47\x20\x56\x65\x72\x73\x69\x6f\
-\x6e\x3a\x20\x36\x2e\x30\x30\x20\x42\x75\x69\x6c\x64\x20\x30\x29\
-\x20\x20\x2d\x2d\x3e\x0d\x0a\x3c\x21\x44\x4f\x43\x54\x59\x50\x45\
-\x20\x73\x76\x67\x20\x50\x55\x42\x4c\x49\x43\x20\x22\x2d\x2f\x2f\
-\x57\x33\x43\x2f\x2f\x44\x54\x44\x20\x53\x56\x47\x20\x31\x2e\x31\
-\x2f\x2f\x45\x4e\x22\x20\x22\x68\x74\x74\x70\x3a\x2f\x2f\x77\x77\
-\x77\x2e\x77\x33\x2e\x6f\x72\x67\x2f\x47\x72\x61\x70\x68\x69\x63\
-\x73\x2f\x53\x56\x47\x2f\x31\x2e\x31\x2f\x44\x54\x44\x2f\x73\x76\
-\x67\x31\x31\x2e\x64\x74\x64\x22\x3e\x0d\x0a\x3c\x73\x76\x67\x20\
-\x76\x65\x72\x73\x69\x6f\x6e\x3d\x22\x31\x2e\x31\x22\x20\x69\x64\
-\x3d\x22\x4c\x61\x79\x65\x72\x5f\x31\x22\x20\x78\x6d\x6c\x6e\x73\
-\x3d\x22\x68\x74\x74\x70\x3a\x2f\x2f\x77\x77\x77\x2e\x77\x33\x2e\
-\x6f\x72\x67\x2f\x32\x30\x30\x30\x2f\x73\x76\x67\x22\x20\x78\x6d\
-\x6c\x6e\x73\x3a\x78\x6c\x69\x6e\x6b\x3d\x22\x68\x74\x74\x70\x3a\
-\x2f\x2f\x77\x77\x77\x2e\x77\x33\x2e\x6f\x72\x67\x2f\x31\x39\x39\
-\x39\x2f\x78\x6c\x69\x6e\x6b\x22\x20\x78\x3d\x22\x30\x70\x78\x22\
-\x20\x79\x3d\x22\x30\x70\x78\x22\x0d\x0a\x09\x20\x77\x69\x64\x74\
-\x68\x3d\x22\x35\x31\x32\x70\x78\x22\x20\x68\x65\x69\x67\x68\x74\
-\x3d\x22\x35\x31\x32\x70\x78\x22\x20\x76\x69\x65\x77\x42\x6f\x78\
-\x3d\x22\x30\x20\x30\x20\x35\x31\x32\x20\x35\x31\x32\x22\x20\x65\
-\x6e\x61\x62\x6c\x65\x2d\x62\x61\x63\x6b\x67\x72\x6f\x75\x6e\x64\
-\x3d\x22\x6e\x65\x77\x20\x30\x20\x30\x20\x35\x31\x32\x20\x35\x31\
-\x32\x22\x20\x78\x6d\x6c\x3a\x73\x70\x61\x63\x65\x3d\x22\x70\x72\
-\x65\x73\x65\x72\x76\x65\x22\x3e\x0d\x0a\x3c\x67\x3e\x0d\x0a\x09\
-\x3c\x70\x61\x74\x68\x20\x64\x3d\x22\x4d\x31\x32\x38\x2c\x34\x30\
-\x35\x2e\x34\x32\x39\x43\x31\x32\x38\x2c\x34\x32\x38\x2e\x38\x34\
-\x36\x2c\x31\x34\x37\x2e\x31\x39\x38\x2c\x34\x34\x38\x2c\x31\x37\
-\x30\x2e\x36\x36\x37\x2c\x34\x34\x38\x68\x31\x37\x30\x2e\x36\x36\
-\x37\x43\x33\x36\x34\x2e\x38\x30\x32\x2c\x34\x34\x38\x2c\x33\x38\
-\x34\x2c\x34\x32\x38\x2e\x38\x34\x36\x2c\x33\x38\x34\x2c\x34\x30\
-\x35\x2e\x34\x32\x39\x56\x31\x36\x30\x48\x31\x32\x38\x56\x34\x30\
-\x35\x2e\x34\x32\x39\x7a\x20\x4d\x34\x31\x36\x2c\x39\x36\x0d\x0a\
-\x09\x09\x68\x2d\x38\x30\x6c\x2d\x32\x36\x2e\x37\x38\x35\x2d\x33\
-\x32\x48\x32\x30\x32\x2e\x37\x38\x36\x4c\x31\x37\x36\x2c\x39\x36\
-\x48\x39\x36\x76\x33\x32\x68\x33\x32\x30\x56\x39\x36\x7a\x22\x2f\
-\x3e\x0d\x0a\x3c\x2f\x67\x3e\x0d\x0a\x3c\x2f\x73\x76\x67\x3e\x0d\
-\x0a\
-\x00\x00\x02\x7d\
-\x3c\
-\x3f\x78\x6d\x6c\x20\x76\x65\x72\x73\x69\x6f\x6e\x3d\x22\x31\x2e\
-\x30\x22\x20\x65\x6e\x63\x6f\x64\x69\x6e\x67\x3d\x22\x75\x74\x66\
-\x2d\x38\x22\x3f\x3e\x0d\x0a\x3c\x21\x2d\x2d\x20\x47\x65\x6e\x65\
-\x72\x61\x74\x6f\x72\x3a\x20\x41\x64\x6f\x62\x65\x20\x49\x6c\x6c\
-\x75\x73\x74\x72\x61\x74\x6f\x72\x20\x31\x36\x2e\x32\x2e\x31\x2c\
-\x20\x53\x56\x47\x20\x45\x78\x70\x6f\x72\x74\x20\x50\x6c\x75\x67\
-\x2d\x49\x6e\x20\x2e\x20\x53\x56\x47\x20\x56\x65\x72\x73\x69\x6f\
-\x6e\x3a\x20\x36\x2e\x30\x30\x20\x42\x75\x69\x6c\x64\x20\x30\x29\
-\x20\x20\x2d\x2d\x3e\x0d\x0a\x3c\x21\x44\x4f\x43\x54\x59\x50\x45\
-\x20\x73\x76\x67\x20\x50\x55\x42\x4c\x49\x43\x20\x22\x2d\x2f\x2f\
-\x57\x33\x43\x2f\x2f\x44\x54\x44\x20\x53\x56\x47\x20\x31\x2e\x31\
-\x2f\x2f\x45\x4e\x22\x20\x22\x68\x74\x74\x70\x3a\x2f\x2f\x77\x77\
-\x77\x2e\x77\x33\x2e\x6f\x72\x67\x2f\x47\x72\x61\x70\x68\x69\x63\
-\x73\x2f\x53\x56\x47\x2f\x31\x2e\x31\x2f\x44\x54\x44\x2f\x73\x76\
-\x67\x31\x31\x2e\x64\x74\x64\x22\x3e\x0d\x0a\x3c\x73\x76\x67\x20\
-\x76\x65\x72\x73\x69\x6f\x6e\x3d\x22\x31\x2e\x31\x22\x20\x69\x64\
-\x3d\x22\x4c\x61\x79\x65\x72\x5f\x31\x22\x20\x78\x6d\x6c\x6e\x73\
-\x3d\x22\x68\x74\x74\x70\x3a\x2f\x2f\x77\x77\x77\x2e\x77\x33\x2e\
-\x6f\x72\x67\x2f\x32\x30\x30\x30\x2f\x73\x76\x67\x22\x20\x78\x6d\
-\x6c\x6e\x73\x3a\x78\x6c\x69\x6e\x6b\x3d\x22\x68\x74\x74\x70\x3a\
-\x2f\x2f\x77\x77\x77\x2e\x77\x33\x2e\x6f\x72\x67\x2f\x31\x39\x39\
-\x39\x2f\x78\x6c\x69\x6e\x6b\x22\x20\x78\x3d\x22\x30\x70\x78\x22\
-\x20\x79\x3d\x22\x30\x70\x78\x22\x0d\x0a\x09\x20\x77\x69\x64\x74\
-\x68\x3d\x22\x35\x31\x32\x70\x78\x22\x20\x68\x65\x69\x67\x68\x74\
-\x3d\x22\x35\x31\x32\x70\x78\x22\x20\x76\x69\x65\x77\x42\x6f\x78\
-\x3d\x22\x30\x20\x30\x20\x35\x31\x32\x20\x35\x31\x32\x22\x20\x65\
-\x6e\x61\x62\x6c\x65\x2d\x62\x61\x63\x6b\x67\x72\x6f\x75\x6e\x64\
-\x3d\x22\x6e\x65\x77\x20\x30\x20\x30\x20\x35\x31\x32\x20\x35\x31\
-\x32\x22\x20\x78\x6d\x6c\x3a\x73\x70\x61\x63\x65\x3d\x22\x70\x72\
-\x65\x73\x65\x72\x76\x65\x22\x3e\x0d\x0a\x3c\x67\x20\x69\x64\x3d\
-\x22\x49\x63\x6f\x6e\x5f\x38\x5f\x22\x3e\x0d\x0a\x09\x3c\x67\x3e\
-\x0d\x0a\x09\x09\x3c\x70\x61\x74\x68\x20\x64\x3d\x22\x4d\x38\x35\
-\x2c\x32\x37\x37\x2e\x33\x37\x35\x68\x32\x35\x39\x2e\x37\x30\x34\
-\x4c\x32\x32\x35\x2e\x30\x30\x32\x2c\x33\x39\x37\x2e\x30\x37\x37\
-\x4c\x32\x35\x36\x2c\x34\x32\x37\x6c\x31\x37\x31\x2d\x31\x37\x31\
-\x4c\x32\x35\x36\x2c\x38\x35\x6c\x2d\x32\x39\x2e\x39\x32\x32\x2c\
-\x32\x39\x2e\x39\x32\x34\x6c\x31\x31\x38\x2e\x36\x32\x36\x2c\x31\
-\x31\x39\x2e\x37\x30\x31\x48\x38\x35\x56\x32\x37\x37\x2e\x33\x37\
-\x35\x7a\x22\x2f\x3e\x0d\x0a\x09\x3c\x2f\x67\x3e\x0d\x0a\x3c\x2f\
-\x67\x3e\x0d\x0a\x3c\x2f\x73\x76\x67\x3e\x0d\x0a\
-\x00\x00\x03\x6c\
-\x3c\
-\x3f\x78\x6d\x6c\x20\x76\x65\x72\x73\x69\x6f\x6e\x3d\x22\x31\x2e\
-\x30\x22\x20\x65\x6e\x63\x6f\x64\x69\x6e\x67\x3d\x22\x75\x74\x66\
-\x2d\x38\x22\x3f\x3e\x0d\x0a\x3c\x21\x2d\x2d\x20\x47\x65\x6e\x65\
-\x72\x61\x74\x6f\x72\x3a\x20\x41\x64\x6f\x62\x65\x20\x49\x6c\x6c\
-\x75\x73\x74\x72\x61\x74\x6f\x72\x20\x31\x36\x2e\x32\x2e\x31\x2c\
-\x20\x53\x56\x47\x20\x45\x78\x70\x6f\x72\x74\x20\x50\x6c\x75\x67\
-\x2d\x49\x6e\x20\x2e\x20\x53\x56\x47\x20\x56\x65\x72\x73\x69\x6f\
-\x6e\x3a\x20\x36\x2e\x30\x30\x20\x42\x75\x69\x6c\x64\x20\x30\x29\
-\x20\x20\x2d\x2d\x3e\x0d\x0a\x3c\x21\x44\x4f\x43\x54\x59\x50\x45\
-\x20\x73\x76\x67\x20\x50\x55\x42\x4c\x49\x43\x20\x22\x2d\x2f\x2f\
-\x57\x33\x43\x2f\x2f\x44\x54\x44\x20\x53\x56\x47\x20\x31\x2e\x31\
-\x2f\x2f\x45\x4e\x22\x20\x22\x68\x74\x74\x70\x3a\x2f\x2f\x77\x77\
-\x77\x2e\x77\x33\x2e\x6f\x72\x67\x2f\x47\x72\x61\x70\x68\x69\x63\
-\x73\x2f\x53\x56\x47\x2f\x31\x2e\x31\x2f\x44\x54\x44\x2f\x73\x76\
-\x67\x31\x31\x2e\x64\x74\x64\x22\x3e\x0d\x0a\x3c\x73\x76\x67\x20\
-\x76\x65\x72\x73\x69\x6f\x6e\x3d\x22\x31\x2e\x31\x22\x20\x69\x64\
-\x3d\x22\x4c\x61\x79\x65\x72\x5f\x31\x22\x20\x78\x6d\x6c\x6e\x73\
-\x3d\x22\x68\x74\x74\x70\x3a\x2f\x2f\x77\x77\x77\x2e\x77\x33\x2e\
-\x6f\x72\x67\x2f\x32\x30\x30\x30\x2f\x73\x76\x67\x22\x20\x78\x6d\
-\x6c\x6e\x73\x3a\x78\x6c\x69\x6e\x6b\x3d\x22\x68\x74\x74\x70\x3a\
-\x2f\x2f\x77\x77\x77\x2e\x77\x33\x2e\x6f\x72\x67\x2f\x31\x39\x39\
-\x39\x2f\x78\x6c\x69\x6e\x6b\x22\x20\x78\x3d\x22\x30\x70\x78\x22\
-\x20\x79\x3d\x22\x30\x70\x78\x22\x0d\x0a\x09\x20\x77\x69\x64\x74\
-\x68\x3d\x22\x35\x31\x32\x70\x78\x22\x20\x68\x65\x69\x67\x68\x74\
-\x3d\x22\x35\x31\x32\x70\x78\x22\x20\x76\x69\x65\x77\x42\x6f\x78\
-\x3d\x22\x30\x20\x30\x20\x35\x31\x32\x20\x35\x31\x32\x22\x20\x65\
-\x6e\x61\x62\x6c\x65\x2d\x62\x61\x63\x6b\x67\x72\x6f\x75\x6e\x64\
-\x3d\x22\x6e\x65\x77\x20\x30\x20\x30\x20\x35\x31\x32\x20\x35\x31\
-\x32\x22\x20\x78\x6d\x6c\x3a\x73\x70\x61\x63\x65\x3d\x22\x70\x72\
-\x65\x73\x65\x72\x76\x65\x22\x3e\x0d\x0a\x3c\x67\x3e\x0d\x0a\x09\
-\x0d\x0a\x09\x09\x3c\x72\x65\x63\x74\x20\x78\x3d\x22\x31\x37\x38\
-\x2e\x38\x34\x36\x22\x20\x79\x3d\x22\x39\x32\x2e\x30\x38\x37\x22\
-\x20\x74\x72\x61\x6e\x73\x66\x6f\x72\x6d\x3d\x22\x6d\x61\x74\x72\
-\x69\x78\x28\x2d\x30\x2e\x37\x30\x37\x31\x20\x2d\x30\x2e\x37\x30\
-\x37\x31\x20\x30\x2e\x37\x30\x37\x31\x20\x2d\x30\x2e\x37\x30\x37\
-\x31\x20\x32\x32\x34\x2e\x33\x34\x37\x36\x20\x36\x33\x31\x2e\x31\
-\x34\x39\x38\x29\x22\x20\x77\x69\x64\x74\x68\x3d\x22\x31\x32\x38\
-\x2e\x30\x38\x35\x22\x20\x68\x65\x69\x67\x68\x74\x3d\x22\x33\x35\
-\x34\x2e\x30\x34\x39\x22\x2f\x3e\x0d\x0a\x09\x3c\x70\x61\x74\x68\
-\x20\x64\x3d\x22\x4d\x34\x37\x31\x2e\x37\x32\x33\x2c\x38\x38\x2e\
-\x33\x39\x33\x6c\x2d\x34\x38\x2e\x31\x31\x35\x2d\x34\x38\x2e\x31\
-\x31\x34\x63\x2d\x31\x31\x2e\x37\x32\x33\x2d\x31\x31\x2e\x37\x32\
-\x34\x2d\x33\x31\x2e\x35\x35\x38\x2d\x31\x30\x2e\x38\x39\x36\x2d\
-\x34\x34\x2e\x33\x30\x34\x2c\x31\x2e\x38\x35\x6c\x2d\x34\x35\x2e\
-\x32\x30\x32\x2c\x34\x35\x2e\x32\x30\x33\x6c\x39\x30\x2e\x35\x36\
-\x39\x2c\x39\x30\x2e\x35\x36\x38\x6c\x34\x35\x2e\x32\x30\x32\x2d\
-\x34\x35\x2e\x32\x30\x32\x0d\x0a\x09\x09\x43\x34\x38\x32\x2e\x36\
-\x31\x36\x2c\x31\x31\x39\x2e\x39\x35\x32\x2c\x34\x38\x33\x2e\x34\
-\x34\x35\x2c\x31\x30\x30\x2e\x31\x31\x36\x2c\x34\x37\x31\x2e\x37\
-\x32\x33\x2c\x38\x38\x2e\x33\x39\x33\x7a\x22\x2f\x3e\x0d\x0a\x09\
-\x3c\x70\x6f\x6c\x79\x67\x6f\x6e\x20\x70\x6f\x69\x6e\x74\x73\x3d\
-\x22\x36\x34\x2e\x30\x32\x31\x2c\x33\x36\x33\x2e\x32\x35\x32\x20\
-\x33\x32\x2c\x34\x38\x30\x20\x31\x34\x38\x2e\x37\x33\x37\x2c\x34\
-\x34\x37\x2e\x39\x37\x39\x20\x09\x22\x2f\x3e\x0d\x0a\x3c\x2f\x67\
-\x3e\x0d\x0a\x3c\x2f\x73\x76\x67\x3e\x0d\x0a\
-\x00\x00\x05\x27\
-\x3c\
-\x3f\x78\x6d\x6c\x20\x76\x65\x72\x73\x69\x6f\x6e\x3d\x22\x31\x2e\
-\x30\x22\x20\x65\x6e\x63\x6f\x64\x69\x6e\x67\x3d\x22\x75\x74\x66\
-\x2d\x38\x22\x3f\x3e\x0d\x0a\x3c\x21\x2d\x2d\x20\x47\x65\x6e\x65\
-\x72\x61\x74\x6f\x72\x3a\x20\x41\x64\x6f\x62\x65\x20\x49\x6c\x6c\
-\x75\x73\x74\x72\x61\x74\x6f\x72\x20\x31\x36\x2e\x32\x2e\x31\x2c\
-\x20\x53\x56\x47\x20\x45\x78\x70\x6f\x72\x74\x20\x50\x6c\x75\x67\
-\x2d\x49\x6e\x20\x2e\x20\x53\x56\x47\x20\x56\x65\x72\x73\x69\x6f\
-\x6e\x3a\x20\x36\x2e\x30\x30\x20\x42\x75\x69\x6c\x64\x20\x30\x29\
-\x20\x20\x2d\x2d\x3e\x0d\x0a\x3c\x21\x44\x4f\x43\x54\x59\x50\x45\
-\x20\x73\x76\x67\x20\x50\x55\x42\x4c\x49\x43\x20\x22\x2d\x2f\x2f\
-\x57\x33\x43\x2f\x2f\x44\x54\x44\x20\x53\x56\x47\x20\x31\x2e\x31\
-\x2f\x2f\x45\x4e\x22\x20\x22\x68\x74\x74\x70\x3a\x2f\x2f\x77\x77\
-\x77\x2e\x77\x33\x2e\x6f\x72\x67\x2f\x47\x72\x61\x70\x68\x69\x63\
-\x73\x2f\x53\x56\x47\x2f\x31\x2e\x31\x2f\x44\x54\x44\x2f\x73\x76\
-\x67\x31\x31\x2e\x64\x74\x64\x22\x3e\x0d\x0a\x3c\x73\x76\x67\x20\
-\x76\x65\x72\x73\x69\x6f\x6e\x3d\x22\x31\x2e\x31\x22\x20\x69\x64\
-\x3d\x22\x4c\x61\x79\x65\x72\x5f\x31\x22\x20\x78\x6d\x6c\x6e\x73\
-\x3d\x22\x68\x74\x74\x70\x3a\x2f\x2f\x77\x77\x77\x2e\x77\x33\x2e\
-\x6f\x72\x67\x2f\x32\x30\x30\x30\x2f\x73\x76\x67\x22\x20\x78\x6d\
-\x6c\x6e\x73\x3a\x78\x6c\x69\x6e\x6b\x3d\x22\x68\x74\x74\x70\x3a\
-\x2f\x2f\x77\x77\x77\x2e\x77\x33\x2e\x6f\x72\x67\x2f\x31\x39\x39\
-\x39\x2f\x78\x6c\x69\x6e\x6b\x22\x20\x78\x3d\x22\x30\x70\x78\x22\
-\x20\x79\x3d\x22\x30\x70\x78\x22\x0d\x0a\x09\x20\x77\x69\x64\x74\
-\x68\x3d\x22\x35\x31\x32\x70\x78\x22\x20\x68\x65\x69\x67\x68\x74\
-\x3d\x22\x35\x31\x32\x70\x78\x22\x20\x76\x69\x65\x77\x42\x6f\x78\
-\x3d\x22\x30\x20\x30\x20\x35\x31\x32\x20\x35\x31\x32\x22\x20\x65\
-\x6e\x61\x62\x6c\x65\x2d\x62\x61\x63\x6b\x67\x72\x6f\x75\x6e\x64\
-\x3d\x22\x6e\x65\x77\x20\x30\x20\x30\x20\x35\x31\x32\x20\x35\x31\
-\x32\x22\x20\x78\x6d\x6c\x3a\x73\x70\x61\x63\x65\x3d\x22\x70\x72\
-\x65\x73\x65\x72\x76\x65\x22\x3e\x0d\x0a\x3c\x67\x20\x69\x64\x3d\
-\x22\x49\x63\x6f\x6e\x5f\x31\x32\x5f\x22\x3e\x0d\x0a\x09\x3c\x67\
-\x3e\x0d\x0a\x09\x09\x3c\x70\x61\x74\x68\x20\x64\x3d\x22\x4d\x32\
-\x35\x36\x2c\x36\x34\x43\x31\x35\x30\x2e\x34\x30\x31\x2c\x36\x34\
-\x2c\x36\x34\x2c\x31\x35\x30\x2e\x34\x30\x31\x2c\x36\x34\x2c\x32\
-\x35\x36\x63\x30\x2c\x31\x30\x35\x2e\x36\x30\x34\x2c\x38\x36\x2e\
-\x34\x30\x31\x2c\x31\x39\x32\x2c\x31\x39\x32\x2c\x31\x39\x32\x63\
-\x31\x38\x2e\x31\x33\x36\x2c\x30\x2c\x33\x32\x2d\x31\x33\x2e\x38\
-\x36\x34\x2c\x33\x32\x2d\x33\x32\x0d\x0a\x09\x09\x09\x63\x30\x2d\
-\x38\x2e\x35\x33\x31\x2d\x33\x2e\x31\x39\x38\x2d\x31\x36\x2d\x38\
-\x2e\x35\x33\x31\x2d\x32\x31\x2e\x33\x33\x33\x63\x2d\x35\x2e\x33\
-\x33\x33\x2d\x35\x2e\x33\x33\x34\x2d\x38\x2e\x35\x33\x31\x2d\x31\
-\x32\x2e\x38\x30\x33\x2d\x38\x2e\x35\x33\x31\x2d\x32\x31\x2e\x33\
-\x33\x34\x63\x30\x2d\x31\x38\x2e\x31\x33\x35\x2c\x31\x33\x2e\x38\
-\x36\x34\x2d\x33\x32\x2c\x33\x32\x2d\x33\x32\x68\x33\x38\x2e\x33\
-\x39\x36\x0d\x0a\x09\x09\x09\x63\x35\x38\x2e\x36\x36\x37\x2c\x30\
-\x2c\x31\x30\x36\x2e\x36\x36\x37\x2d\x34\x38\x2c\x31\x30\x36\x2e\
-\x36\x36\x37\x2d\x31\x30\x36\x2e\x36\x36\x36\x43\x34\x34\x38\x2c\
-\x31\x34\x30\x2e\x38\x30\x32\x2c\x33\x36\x31\x2e\x36\x30\x34\x2c\
-\x36\x34\x2c\x32\x35\x36\x2c\x36\x34\x7a\x20\x4d\x31\x33\x38\x2e\
-\x36\x36\x37\x2c\x32\x35\x36\x63\x2d\x31\x38\x2e\x31\x33\x36\x2c\
-\x30\x2d\x33\x32\x2d\x31\x33\x2e\x38\x36\x34\x2d\x33\x32\x2d\x33\
-\x32\x73\x31\x33\x2e\x38\x36\x34\x2d\x33\x32\x2c\x33\x32\x2d\x33\
-\x32\x0d\x0a\x09\x09\x09\x63\x31\x38\x2e\x31\x33\x35\x2c\x30\x2c\
-\x33\x32\x2c\x31\x33\x2e\x38\x36\x34\x2c\x33\x32\x2c\x33\x32\x53\
-\x31\x35\x36\x2e\x38\x30\x32\x2c\x32\x35\x36\x2c\x31\x33\x38\x2e\
-\x36\x36\x37\x2c\x32\x35\x36\x7a\x20\x4d\x32\x30\x32\x2e\x36\x36\
-\x37\x2c\x31\x37\x30\x2e\x36\x36\x37\x63\x2d\x31\x38\x2e\x31\x33\
-\x36\x2c\x30\x2d\x33\x32\x2d\x31\x33\x2e\x38\x36\x35\x2d\x33\x32\
-\x2d\x33\x32\x63\x30\x2d\x31\x38\x2e\x31\x33\x36\x2c\x31\x33\x2e\
-\x38\x36\x34\x2d\x33\x32\x2c\x33\x32\x2d\x33\x32\x0d\x0a\x09\x09\
-\x09\x63\x31\x38\x2e\x31\x33\x35\x2c\x30\x2c\x33\x32\x2c\x31\x33\
-\x2e\x38\x36\x34\x2c\x33\x32\x2c\x33\x32\x43\x32\x33\x34\x2e\x36\
-\x36\x37\x2c\x31\x35\x36\x2e\x38\x30\x32\x2c\x32\x32\x30\x2e\x38\
-\x30\x32\x2c\x31\x37\x30\x2e\x36\x36\x37\x2c\x32\x30\x32\x2e\x36\
-\x36\x37\x2c\x31\x37\x30\x2e\x36\x36\x37\x7a\x20\x4d\x33\x30\x39\
-\x2e\x33\x33\x33\x2c\x31\x37\x30\x2e\x36\x36\x37\x63\x2d\x31\x38\
-\x2e\x31\x33\x35\x2c\x30\x2d\x33\x32\x2d\x31\x33\x2e\x38\x36\x35\
-\x2d\x33\x32\x2d\x33\x32\x0d\x0a\x09\x09\x09\x63\x30\x2d\x31\x38\
-\x2e\x31\x33\x36\x2c\x31\x33\x2e\x38\x36\x35\x2d\x33\x32\x2c\x33\
-\x32\x2d\x33\x32\x63\x31\x38\x2e\x31\x33\x36\x2c\x30\x2c\x33\x32\
-\x2c\x31\x33\x2e\x38\x36\x34\x2c\x33\x32\x2c\x33\x32\x43\x33\x34\
-\x31\x2e\x33\x33\x33\x2c\x31\x35\x36\x2e\x38\x30\x32\x2c\x33\x32\
-\x37\x2e\x34\x36\x39\x2c\x31\x37\x30\x2e\x36\x36\x37\x2c\x33\x30\
-\x39\x2e\x33\x33\x33\x2c\x31\x37\x30\x2e\x36\x36\x37\x7a\x20\x4d\
-\x33\x37\x33\x2e\x33\x33\x33\x2c\x32\x35\x36\x0d\x0a\x09\x09\x09\
-\x63\x2d\x31\x38\x2e\x31\x33\x35\x2c\x30\x2d\x33\x32\x2d\x31\x33\
-\x2e\x38\x36\x34\x2d\x33\x32\x2d\x33\x32\x73\x31\x33\x2e\x38\x36\
-\x35\x2d\x33\x32\x2c\x33\x32\x2d\x33\x32\x63\x31\x38\x2e\x31\x33\
-\x36\x2c\x30\x2c\x33\x32\x2c\x31\x33\x2e\x38\x36\x34\x2c\x33\x32\
-\x2c\x33\x32\x53\x33\x39\x31\x2e\x34\x36\x39\x2c\x32\x35\x36\x2c\
-\x33\x37\x33\x2e\x33\x33\x33\x2c\x32\x35\x36\x7a\x22\x2f\x3e\x0d\
-\x0a\x09\x3c\x2f\x67\x3e\x0d\x0a\x3c\x2f\x67\x3e\x0d\x0a\x3c\x2f\
-\x73\x76\x67\x3e\x0d\x0a\
-\x00\x00\x02\x79\
-\x3c\
-\x3f\x78\x6d\x6c\x20\x76\x65\x72\x73\x69\x6f\x6e\x3d\x22\x31\x2e\
-\x30\x22\x20\x65\x6e\x63\x6f\x64\x69\x6e\x67\x3d\x22\x75\x74\x66\
-\x2d\x38\x22\x3f\x3e\x0d\x0a\x3c\x21\x2d\x2d\x20\x47\x65\x6e\x65\
-\x72\x61\x74\x6f\x72\x3a\x20\x41\x64\x6f\x62\x65\x20\x49\x6c\x6c\
-\x75\x73\x74\x72\x61\x74\x6f\x72\x20\x31\x36\x2e\x32\x2e\x31\x2c\
-\x20\x53\x56\x47\x20\x45\x78\x70\x6f\x72\x74\x20\x50\x6c\x75\x67\
-\x2d\x49\x6e\x20\x2e\x20\x53\x56\x47\x20\x56\x65\x72\x73\x69\x6f\
-\x6e\x3a\x20\x36\x2e\x30\x30\x20\x42\x75\x69\x6c\x64\x20\x30\x29\
-\x20\x20\x2d\x2d\x3e\x0d\x0a\x3c\x21\x44\x4f\x43\x54\x59\x50\x45\
-\x20\x73\x76\x67\x20\x50\x55\x42\x4c\x49\x43\x20\x22\x2d\x2f\x2f\
-\x57\x33\x43\x2f\x2f\x44\x54\x44\x20\x53\x56\x47\x20\x31\x2e\x31\
-\x2f\x2f\x45\x4e\x22\x20\x22\x68\x74\x74\x70\x3a\x2f\x2f\x77\x77\
-\x77\x2e\x77\x33\x2e\x6f\x72\x67\x2f\x47\x72\x61\x70\x68\x69\x63\
-\x73\x2f\x53\x56\x47\x2f\x31\x2e\x31\x2f\x44\x54\x44\x2f\x73\x76\
-\x67\x31\x31\x2e\x64\x74\x64\x22\x3e\x0d\x0a\x3c\x73\x76\x67\x20\
-\x76\x65\x72\x73\x69\x6f\x6e\x3d\x22\x31\x2e\x31\x22\x20\x69\x64\
-\x3d\x22\x4c\x61\x79\x65\x72\x5f\x31\x22\x20\x78\x6d\x6c\x6e\x73\
-\x3d\x22\x68\x74\x74\x70\x3a\x2f\x2f\x77\x77\x77\x2e\x77\x33\x2e\
-\x6f\x72\x67\x2f\x32\x30\x30\x30\x2f\x73\x76\x67\x22\x20\x78\x6d\
-\x6c\x6e\x73\x3a\x78\x6c\x69\x6e\x6b\x3d\x22\x68\x74\x74\x70\x3a\
-\x2f\x2f\x77\x77\x77\x2e\x77\x33\x2e\x6f\x72\x67\x2f\x31\x39\x39\
-\x39\x2f\x78\x6c\x69\x6e\x6b\x22\x20\x78\x3d\x22\x30\x70\x78\x22\
-\x20\x79\x3d\x22\x30\x70\x78\x22\x0d\x0a\x09\x20\x77\x69\x64\x74\
-\x68\x3d\x22\x35\x31\x32\x70\x78\x22\x20\x68\x65\x69\x67\x68\x74\
-\x3d\x22\x35\x31\x32\x70\x78\x22\x20\x76\x69\x65\x77\x42\x6f\x78\
-\x3d\x22\x30\x20\x30\x20\x35\x31\x32\x20\x35\x31\x32\x22\x20\x65\
-\x6e\x61\x62\x6c\x65\x2d\x62\x61\x63\x6b\x67\x72\x6f\x75\x6e\x64\
-\x3d\x22\x6e\x65\x77\x20\x30\x20\x30\x20\x35\x31\x32\x20\x35\x31\
-\x32\x22\x20\x78\x6d\x6c\x3a\x73\x70\x61\x63\x65\x3d\x22\x70\x72\
-\x65\x73\x65\x72\x76\x65\x22\x3e\x0d\x0a\x3c\x67\x20\x69\x64\x3d\
-\x22\x49\x63\x6f\x6e\x5f\x31\x5f\x22\x3e\x0d\x0a\x09\x3c\x67\x3e\
-\x0d\x0a\x09\x09\x3c\x67\x3e\x0d\x0a\x09\x09\x09\x3c\x70\x6f\x6c\
-\x79\x67\x6f\x6e\x20\x70\x6f\x69\x6e\x74\x73\x3d\x22\x31\x38\x36\
-\x2e\x33\x30\x31\x2c\x33\x33\x39\x2e\x38\x39\x33\x20\x39\x36\x2c\
-\x32\x34\x39\x2e\x34\x36\x31\x20\x36\x34\x2c\x32\x37\x39\x2e\x39\
-\x36\x38\x20\x31\x38\x36\x2e\x33\x30\x31\x2c\x34\x30\x32\x20\x34\
-\x34\x38\x2c\x31\x34\x30\x2e\x35\x30\x36\x20\x34\x31\x36\x2c\x31\
-\x31\x30\x20\x09\x09\x09\x22\x2f\x3e\x0d\x0a\x09\x09\x3c\x2f\x67\
-\x3e\x0d\x0a\x09\x3c\x2f\x67\x3e\x0d\x0a\x3c\x2f\x67\x3e\x0d\x0a\
-\x3c\x2f\x73\x76\x67\x3e\x0d\x0a\
-\x00\x00\x07\x80\
+\x00\x00\x04\xd5\
\x3c\
-\x3f\x78\x6d\x6c\x20\x76\x65\x72\x73\x69\x6f\x6e\x3d\x22\x31\x2e\
-\x30\x22\x20\x65\x6e\x63\x6f\x64\x69\x6e\x67\x3d\x22\x75\x74\x66\
-\x2d\x38\x22\x3f\x3e\x0d\x0a\x3c\x21\x2d\x2d\x20\x47\x65\x6e\x65\
-\x72\x61\x74\x6f\x72\x3a\x20\x41\x64\x6f\x62\x65\x20\x49\x6c\x6c\
-\x75\x73\x74\x72\x61\x74\x6f\x72\x20\x31\x36\x2e\x32\x2e\x31\x2c\
-\x20\x53\x56\x47\x20\x45\x78\x70\x6f\x72\x74\x20\x50\x6c\x75\x67\
-\x2d\x49\x6e\x20\x2e\x20\x53\x56\x47\x20\x56\x65\x72\x73\x69\x6f\
-\x6e\x3a\x20\x36\x2e\x30\x30\x20\x42\x75\x69\x6c\x64\x20\x30\x29\
-\x20\x20\x2d\x2d\x3e\x0d\x0a\x3c\x21\x44\x4f\x43\x54\x59\x50\x45\
-\x20\x73\x76\x67\x20\x50\x55\x42\x4c\x49\x43\x20\x22\x2d\x2f\x2f\
-\x57\x33\x43\x2f\x2f\x44\x54\x44\x20\x53\x56\x47\x20\x31\x2e\x31\
-\x2f\x2f\x45\x4e\x22\x20\x22\x68\x74\x74\x70\x3a\x2f\x2f\x77\x77\
-\x77\x2e\x77\x33\x2e\x6f\x72\x67\x2f\x47\x72\x61\x70\x68\x69\x63\
-\x73\x2f\x53\x56\x47\x2f\x31\x2e\x31\x2f\x44\x54\x44\x2f\x73\x76\
-\x67\x31\x31\x2e\x64\x74\x64\x22\x3e\x0d\x0a\x3c\x73\x76\x67\x20\
-\x76\x65\x72\x73\x69\x6f\x6e\x3d\x22\x31\x2e\x31\x22\x20\x69\x64\
-\x3d\x22\x4c\x61\x79\x65\x72\x5f\x31\x22\x20\x78\x6d\x6c\x6e\x73\
-\x3d\x22\x68\x74\x74\x70\x3a\x2f\x2f\x77\x77\x77\x2e\x77\x33\x2e\
-\x6f\x72\x67\x2f\x32\x30\x30\x30\x2f\x73\x76\x67\x22\x20\x78\x6d\
-\x6c\x6e\x73\x3a\x78\x6c\x69\x6e\x6b\x3d\x22\x68\x74\x74\x70\x3a\
-\x2f\x2f\x77\x77\x77\x2e\x77\x33\x2e\x6f\x72\x67\x2f\x31\x39\x39\
-\x39\x2f\x78\x6c\x69\x6e\x6b\x22\x20\x78\x3d\x22\x30\x70\x78\x22\
-\x20\x79\x3d\x22\x30\x70\x78\x22\x0d\x0a\x09\x20\x77\x69\x64\x74\
-\x68\x3d\x22\x35\x31\x32\x70\x78\x22\x20\x68\x65\x69\x67\x68\x74\
-\x3d\x22\x35\x31\x32\x70\x78\x22\x20\x76\x69\x65\x77\x42\x6f\x78\
-\x3d\x22\x30\x20\x30\x20\x35\x31\x32\x20\x35\x31\x32\x22\x20\x65\
-\x6e\x61\x62\x6c\x65\x2d\x62\x61\x63\x6b\x67\x72\x6f\x75\x6e\x64\
-\x3d\x22\x6e\x65\x77\x20\x30\x20\x30\x20\x35\x31\x32\x20\x35\x31\
-\x32\x22\x20\x78\x6d\x6c\x3a\x73\x70\x61\x63\x65\x3d\x22\x70\x72\
-\x65\x73\x65\x72\x76\x65\x22\x3e\x0d\x0a\x3c\x67\x3e\x0d\x0a\x09\
-\x3c\x70\x61\x74\x68\x20\x64\x3d\x22\x4d\x31\x39\x33\x2e\x34\x36\
-\x2c\x32\x34\x39\x2e\x30\x35\x36\x63\x33\x2e\x37\x32\x33\x2d\x30\
-\x2e\x36\x37\x2c\x37\x2e\x35\x38\x39\x2d\x31\x2e\x30\x34\x31\x2c\
-\x31\x31\x2e\x35\x38\x36\x2d\x31\x2e\x30\x34\x31\x4c\x32\x30\x31\
-\x2e\x39\x32\x34\x2c\x32\x34\x38\x68\x31\x30\x33\x2e\x38\x32\x33\
-\x63\x34\x2e\x35\x30\x33\x2c\x30\x2c\x38\x2e\x38\x30\x36\x2d\x30\
-\x2e\x36\x31\x37\x2c\x31\x32\x2e\x39\x30\x38\x2d\x31\x2e\x37\x35\
-\x34\x0d\x0a\x09\x09\x63\x31\x39\x2e\x33\x37\x2d\x35\x2e\x33\x36\
-\x33\x2c\x33\x33\x2e\x33\x34\x35\x2d\x32\x32\x2e\x35\x33\x37\x2c\
-\x33\x33\x2e\x33\x34\x35\x2d\x34\x33\x2e\x36\x36\x33\x76\x2d\x33\
-\x30\x2e\x38\x32\x32\x76\x2d\x35\x36\x2e\x34\x30\x32\x63\x30\x2d\
-\x32\x34\x2e\x38\x33\x32\x2d\x32\x31\x2e\x31\x35\x2d\x34\x33\x2e\
-\x34\x38\x34\x2d\x34\x36\x2e\x32\x38\x39\x2d\x34\x37\x2e\x36\x30\
-\x36\x0d\x0a\x09\x09\x63\x2d\x31\x35\x2e\x39\x33\x31\x2d\x32\x2e\
-\x36\x32\x34\x2d\x33\x39\x2e\x32\x35\x38\x2d\x33\x2e\x38\x32\x37\
-\x2d\x35\x35\x2e\x30\x38\x39\x2d\x33\x2e\x37\x34\x39\x63\x2d\x31\
-\x35\x2e\x38\x32\x39\x2c\x30\x2e\x30\x38\x36\x2d\x33\x30\x2e\x39\
-\x38\x31\x2c\x31\x2e\x34\x30\x34\x2d\x34\x34\x2e\x32\x37\x37\x2c\
-\x33\x2e\x37\x34\x39\x43\x31\x36\x37\x2e\x31\x34\x33\x2c\x37\x34\
-\x2e\x35\x37\x36\x2c\x31\x36\x30\x2c\x38\x38\x2e\x39\x32\x38\x2c\
-\x31\x36\x30\x2c\x31\x31\x35\x2e\x33\x35\x39\x56\x31\x34\x34\x68\
-\x39\x36\x0d\x0a\x09\x09\x76\x31\x36\x48\x31\x32\x38\x2e\x38\x32\
-\x63\x2d\x33\x35\x2e\x36\x32\x38\x2c\x30\x2d\x36\x34\x2e\x35\x33\
-\x38\x2c\x34\x32\x2e\x35\x37\x31\x2d\x36\x34\x2e\x38\x31\x33\x2c\
-\x39\x35\x2e\x32\x34\x32\x43\x36\x34\x2e\x30\x30\x35\x2c\x32\x35\
-\x35\x2e\x34\x39\x35\x2c\x36\x34\x2c\x32\x35\x35\x2e\x37\x34\x37\
-\x2c\x36\x34\x2c\x32\x35\x36\x63\x30\x2c\x39\x2e\x35\x32\x33\x2c\
-\x30\x2e\x39\x34\x2c\x31\x38\x2e\x37\x32\x2c\x32\x2e\x36\x38\x35\
-\x2c\x32\x37\x2e\x34\x30\x34\x0d\x0a\x09\x09\x43\x37\x34\x2e\x36\
-\x34\x38\x2c\x33\x32\x33\x2e\x30\x37\x2c\x39\x39\x2e\x34\x35\x31\
-\x2c\x33\x35\x32\x2c\x31\x32\x38\x2e\x38\x32\x2c\x33\x35\x32\x48\
-\x31\x34\x34\x76\x2d\x32\x2e\x36\x36\x32\x76\x2d\x34\x33\x2e\x32\
-\x37\x33\x43\x31\x34\x34\x2c\x32\x37\x39\x2e\x32\x33\x38\x2c\x31\
-\x36\x34\x2e\x31\x34\x36\x2c\x32\x35\x34\x2e\x33\x33\x32\x2c\x31\
-\x39\x33\x2e\x34\x36\x2c\x32\x34\x39\x2e\x30\x35\x36\x7a\x20\x4d\
-\x32\x30\x33\x2e\x36\x35\x36\x2c\x31\x32\x37\x2e\x30\x30\x32\x0d\
-\x0a\x09\x09\x63\x2d\x39\x2e\x35\x39\x32\x2c\x30\x2d\x31\x37\x2e\
-\x33\x38\x34\x2d\x37\x2e\x37\x38\x35\x2d\x31\x37\x2e\x33\x38\x34\
-\x2d\x31\x37\x2e\x34\x30\x33\x63\x30\x2d\x39\x2e\x36\x36\x34\x2c\
-\x37\x2e\x37\x37\x34\x2d\x31\x37\x2e\x35\x32\x2c\x31\x37\x2e\x33\
-\x38\x34\x2d\x31\x37\x2e\x35\x32\x63\x39\x2e\x35\x37\x34\x2c\x30\
-\x2c\x31\x37\x2e\x33\x39\x39\x2c\x37\x2e\x38\x35\x35\x2c\x31\x37\
-\x2e\x33\x39\x39\x2c\x31\x37\x2e\x35\x32\x0d\x0a\x09\x09\x43\x32\
-\x32\x31\x2e\x30\x35\x36\x2c\x31\x31\x39\x2e\x32\x31\x37\x2c\x32\
-\x31\x33\x2e\x32\x34\x36\x2c\x31\x32\x37\x2e\x30\x30\x32\x2c\x32\
-\x30\x33\x2e\x36\x35\x36\x2c\x31\x32\x37\x2e\x30\x30\x32\x7a\x22\
-\x2f\x3e\x0d\x0a\x09\x3c\x70\x61\x74\x68\x20\x64\x3d\x22\x4d\x34\
-\x34\x33\x2e\x39\x35\x31\x2c\x32\x32\x32\x2e\x35\x34\x33\x43\x34\
-\x33\x34\x2e\x37\x38\x2c\x31\x38\x36\x2e\x30\x32\x31\x2c\x34\x31\
-\x31\x2e\x30\x33\x33\x2c\x31\x36\x30\x2c\x33\x38\x33\x2e\x31\x38\
-\x2c\x31\x36\x30\x48\x33\x36\x38\x76\x32\x2e\x36\x32\x36\x76\x33\
-\x38\x2e\x30\x34\x36\x63\x30\x2c\x33\x33\x2e\x39\x31\x35\x2d\x32\
-\x32\x2e\x32\x38\x36\x2c\x35\x38\x2e\x34\x37\x34\x2d\x34\x39\x2e\
-\x34\x38\x39\x2c\x36\x32\x2e\x36\x38\x31\x0d\x0a\x09\x09\x63\x2d\
-\x32\x2e\x37\x33\x37\x2c\x30\x2e\x34\x32\x34\x2d\x35\x2e\x34\x38\
-\x33\x2c\x30\x2e\x36\x34\x36\x2d\x38\x2e\x33\x30\x31\x2c\x30\x2e\
-\x36\x34\x36\x48\x32\x30\x36\x2e\x33\x35\x31\x63\x2d\x34\x2e\x35\
-\x31\x38\x2c\x30\x2d\x38\x2e\x39\x30\x34\x2c\x30\x2e\x35\x38\x34\
-\x2d\x31\x33\x2e\x30\x34\x39\x2c\x31\x2e\x36\x37\x32\x43\x31\x37\
-\x34\x2e\x31\x38\x2c\x32\x37\x30\x2e\x36\x38\x39\x2c\x31\x36\x30\
-\x2c\x32\x38\x36\x2e\x36\x2c\x31\x36\x30\x2c\x33\x30\x37\x2e\x32\
-\x33\x36\x76\x33\x32\x2e\x39\x32\x32\x0d\x0a\x09\x09\x76\x35\x34\
-\x2e\x33\x30\x35\x63\x30\x2c\x32\x34\x2e\x38\x33\x32\x2c\x32\x34\
-\x2e\x39\x37\x37\x2c\x33\x39\x2e\x34\x32\x36\x2c\x34\x39\x2e\x34\
-\x38\x31\x2c\x34\x36\x2e\x35\x35\x31\x63\x32\x39\x2e\x33\x32\x37\
-\x2c\x38\x2e\x35\x33\x31\x2c\x36\x31\x2e\x32\x36\x37\x2c\x31\x30\
-\x2e\x30\x36\x38\x2c\x39\x36\x2e\x33\x36\x36\x2c\x30\x43\x33\x32\
-\x39\x2e\x31\x35\x2c\x34\x33\x34\x2e\x33\x35\x34\x2c\x33\x35\x32\
-\x2c\x34\x32\x30\x2e\x38\x39\x33\x2c\x33\x35\x32\x2c\x33\x39\x34\
-\x2e\x34\x36\x33\x56\x33\x36\x38\x0d\x0a\x09\x09\x68\x2d\x39\x36\
-\x76\x2d\x31\x36\x68\x31\x32\x37\x2e\x31\x38\x63\x32\x35\x2e\x32\
-\x34\x2c\x30\x2c\x34\x37\x2e\x31\x30\x37\x2d\x32\x31\x2e\x33\x36\
-\x35\x2c\x35\x37\x2e\x38\x31\x34\x2d\x35\x32\x2e\x35\x34\x39\x43\
-\x34\x34\x35\x2e\x34\x37\x34\x2c\x32\x38\x36\x2e\x34\x30\x34\x2c\
-\x34\x34\x38\x2c\x32\x37\x31\x2e\x36\x34\x31\x2c\x34\x34\x38\x2c\
-\x32\x35\x36\x0d\x0a\x09\x09\x43\x34\x34\x38\x2c\x32\x34\x34\x2e\
-\x32\x33\x32\x2c\x34\x34\x36\x2e\x35\x36\x37\x2c\x32\x33\x32\x2e\
-\x39\x36\x32\x2c\x34\x34\x33\x2e\x39\x35\x31\x2c\x32\x32\x32\x2e\
-\x35\x34\x33\x7a\x20\x4d\x33\x30\x37\x2e\x38\x36\x37\x2c\x33\x38\
-\x32\x2e\x38\x32\x63\x39\x2e\x35\x39\x2c\x30\x2c\x31\x37\x2e\x33\
-\x38\x31\x2c\x37\x2e\x37\x38\x35\x2c\x31\x37\x2e\x33\x38\x31\x2c\
-\x31\x37\x2e\x34\x0d\x0a\x09\x09\x63\x30\x2c\x39\x2e\x36\x35\x2d\
-\x37\x2e\x37\x39\x31\x2c\x31\x37\x2e\x35\x32\x31\x2d\x31\x37\x2e\
-\x33\x38\x31\x2c\x31\x37\x2e\x35\x32\x31\x63\x2d\x39\x2e\x35\x37\
-\x37\x2c\x30\x2d\x31\x37\x2e\x33\x39\x39\x2d\x37\x2e\x38\x37\x31\
-\x2d\x31\x37\x2e\x33\x39\x39\x2d\x31\x37\x2e\x35\x32\x31\x43\x32\
-\x39\x30\x2e\x34\x36\x38\x2c\x33\x39\x30\x2e\x35\x39\x2c\x32\x39\
-\x38\x2e\x32\x37\x34\x2c\x33\x38\x32\x2e\x38\x32\x2c\x33\x30\x37\
-\x2e\x38\x36\x37\x2c\x33\x38\x32\x2e\x38\x32\x7a\x22\x2f\x3e\x0d\
-\x0a\x3c\x2f\x67\x3e\x0d\x0a\x3c\x2f\x73\x76\x67\x3e\x0d\x0a\
+\x3f\x78\x6d\x6c\x20\x76\x65\x72\x73\x69\x6f\x6e\x3d\x27\x31\x2e\
+\x30\x27\x20\x65\x6e\x63\x6f\x64\x69\x6e\x67\x3d\x27\x55\x54\x46\
+\x2d\x38\x27\x3f\x3e\x0a\x3c\x21\x2d\x2d\x20\x54\x68\x69\x73\x20\
+\x66\x69\x6c\x65\x20\x77\x61\x73\x20\x67\x65\x6e\x65\x72\x61\x74\
+\x65\x64\x20\x62\x79\x20\x64\x76\x69\x73\x76\x67\x6d\x20\x32\x2e\
+\x38\x20\x2d\x2d\x3e\x0a\x3c\x73\x76\x67\x20\x76\x65\x72\x73\x69\
+\x6f\x6e\x3d\x27\x31\x2e\x31\x27\x20\x78\x6d\x6c\x6e\x73\x3d\x27\
+\x68\x74\x74\x70\x3a\x2f\x2f\x77\x77\x77\x2e\x77\x33\x2e\x6f\x72\
+\x67\x2f\x32\x30\x30\x30\x2f\x73\x76\x67\x27\x20\x78\x6d\x6c\x6e\
+\x73\x3a\x78\x6c\x69\x6e\x6b\x3d\x27\x68\x74\x74\x70\x3a\x2f\x2f\
+\x77\x77\x77\x2e\x77\x33\x2e\x6f\x72\x67\x2f\x31\x39\x39\x39\x2f\
+\x78\x6c\x69\x6e\x6b\x27\x20\x77\x69\x64\x74\x68\x3d\x27\x36\x33\
+\x2e\x39\x39\x39\x36\x70\x74\x27\x20\x68\x65\x69\x67\x68\x74\x3d\
+\x27\x36\x33\x2e\x39\x39\x39\x37\x70\x74\x27\x20\x76\x69\x65\x77\
+\x42\x6f\x78\x3d\x27\x35\x36\x2e\x34\x30\x39\x34\x20\x35\x33\x2e\
+\x38\x35\x38\x33\x20\x36\x33\x2e\x39\x39\x39\x36\x20\x36\x33\x2e\
+\x39\x39\x39\x37\x27\x3e\x0a\x3c\x67\x20\x69\x64\x3d\x27\x70\x61\
+\x67\x65\x31\x27\x3e\x0a\x3c\x67\x20\x74\x72\x61\x6e\x73\x66\x6f\
+\x72\x6d\x3d\x27\x6d\x61\x74\x72\x69\x78\x28\x30\x2e\x39\x39\x36\
+\x32\x36\x34\x20\x30\x20\x30\x20\x30\x2e\x39\x39\x36\x32\x36\x34\
+\x20\x35\x38\x2e\x34\x36\x36\x39\x20\x31\x31\x37\x2e\x38\x35\x38\
+\x29\x27\x3e\x0a\x3c\x70\x61\x74\x68\x20\x64\x3d\x27\x4d\x20\x33\
+\x2e\x39\x35\x37\x33\x35\x20\x2d\x33\x32\x2e\x31\x32\x43\x20\x32\
+\x2e\x32\x38\x39\x32\x32\x20\x2d\x33\x39\x2e\x33\x31\x31\x33\x20\
+\x36\x2e\x33\x36\x37\x30\x32\x20\x2d\x34\x36\x2e\x32\x33\x38\x36\
+\x20\x31\x31\x2e\x39\x30\x33\x36\x20\x2d\x35\x31\x2e\x33\x30\x33\
+\x39\x43\x20\x32\x39\x2e\x36\x36\x38\x37\x20\x2d\x36\x37\x2e\x35\
+\x35\x36\x38\x20\x35\x35\x2e\x32\x32\x39\x32\x20\x2d\x36\x30\x2e\
+\x36\x34\x32\x20\x35\x36\x2e\x31\x35\x32\x33\x20\x2d\x34\x32\x2e\
+\x35\x30\x32\x32\x43\x20\x35\x36\x2e\x36\x31\x33\x36\x20\x2d\x33\
+\x33\x2e\x34\x33\x38\x31\x20\x34\x39\x2e\x31\x31\x33\x32\x20\x2d\
+\x32\x36\x2e\x35\x39\x35\x39\x20\x34\x30\x2e\x36\x37\x39\x34\x20\
+\x2d\x32\x32\x2e\x35\x32\x38\x31\x43\x20\x32\x35\x2e\x33\x39\x39\
+\x35\x20\x2d\x31\x35\x2e\x31\x35\x38\x32\x20\x37\x2e\x31\x39\x39\
+\x33\x35\x20\x2d\x31\x38\x2e\x31\x34\x33\x36\x20\x33\x2e\x39\x35\
+\x37\x33\x35\x20\x2d\x33\x32\x2e\x31\x32\x5a\x27\x20\x66\x69\x6c\
+\x6c\x3d\x27\x6e\x6f\x6e\x65\x27\x20\x73\x74\x72\x6f\x6b\x65\x3d\
+\x27\x23\x30\x30\x30\x30\x30\x30\x27\x20\x73\x74\x72\x6f\x6b\x65\
+\x2d\x6c\x69\x6e\x65\x63\x61\x70\x3d\x27\x72\x6f\x75\x6e\x64\x27\
+\x20\x73\x74\x72\x6f\x6b\x65\x2d\x6c\x69\x6e\x65\x6a\x6f\x69\x6e\
+\x3d\x27\x72\x6f\x75\x6e\x64\x27\x20\x73\x74\x72\x6f\x6b\x65\x2d\
+\x6d\x69\x74\x65\x72\x6c\x69\x6d\x69\x74\x3d\x27\x31\x30\x2e\x30\
+\x33\x37\x35\x27\x20\x73\x74\x72\x6f\x6b\x65\x2d\x77\x69\x64\x74\
+\x68\x3d\x27\x32\x2e\x35\x30\x39\x33\x37\x27\x2f\x3e\x0a\x3c\x2f\
+\x67\x3e\x0a\x3c\x67\x20\x74\x72\x61\x6e\x73\x66\x6f\x72\x6d\x3d\
+\x27\x6d\x61\x74\x72\x69\x78\x28\x30\x2e\x39\x39\x36\x32\x36\x34\
+\x20\x30\x20\x30\x20\x30\x2e\x39\x39\x36\x32\x36\x34\x20\x35\x38\
+\x2e\x34\x36\x36\x39\x20\x31\x31\x37\x2e\x38\x35\x38\x29\x27\x3e\
+\x0a\x3c\x63\x69\x72\x63\x6c\x65\x20\x63\x78\x3d\x27\x33\x2e\x39\
+\x35\x37\x33\x35\x27\x20\x63\x79\x3d\x27\x2d\x33\x32\x2e\x31\x32\
+\x27\x20\x66\x69\x6c\x6c\x3d\x27\x23\x30\x30\x30\x30\x30\x30\x27\
+\x20\x72\x3d\x27\x36\x2e\x30\x32\x32\x35\x27\x2f\x3e\x0a\x3c\x2f\
+\x67\x3e\x0a\x3c\x67\x20\x74\x72\x61\x6e\x73\x66\x6f\x72\x6d\x3d\
+\x27\x6d\x61\x74\x72\x69\x78\x28\x30\x2e\x39\x39\x36\x32\x36\x34\
+\x20\x30\x20\x30\x20\x30\x2e\x39\x39\x36\x32\x36\x34\x20\x35\x38\
+\x2e\x34\x36\x36\x39\x20\x31\x31\x37\x2e\x38\x35\x38\x29\x27\x3e\
+\x0a\x3c\x63\x69\x72\x63\x6c\x65\x20\x63\x78\x3d\x27\x31\x31\x2e\
+\x39\x30\x33\x36\x27\x20\x63\x79\x3d\x27\x2d\x35\x31\x2e\x33\x30\
+\x33\x39\x27\x20\x66\x69\x6c\x6c\x3d\x27\x23\x30\x30\x30\x30\x30\
+\x30\x27\x20\x72\x3d\x27\x36\x2e\x30\x32\x32\x35\x27\x2f\x3e\x0a\
+\x3c\x2f\x67\x3e\x0a\x3c\x67\x20\x74\x72\x61\x6e\x73\x66\x6f\x72\
+\x6d\x3d\x27\x6d\x61\x74\x72\x69\x78\x28\x30\x2e\x39\x39\x36\x32\
+\x36\x34\x20\x30\x20\x30\x20\x30\x2e\x39\x39\x36\x32\x36\x34\x20\
+\x35\x38\x2e\x34\x36\x36\x39\x20\x31\x31\x37\x2e\x38\x35\x38\x29\
+\x27\x3e\x0a\x3c\x63\x69\x72\x63\x6c\x65\x20\x63\x78\x3d\x27\x35\
+\x36\x2e\x31\x35\x32\x33\x27\x20\x63\x79\x3d\x27\x2d\x34\x32\x2e\
+\x35\x30\x32\x32\x27\x20\x66\x69\x6c\x6c\x3d\x27\x23\x30\x30\x30\
+\x30\x30\x30\x27\x20\x72\x3d\x27\x36\x2e\x30\x32\x32\x35\x27\x2f\
+\x3e\x0a\x3c\x2f\x67\x3e\x0a\x3c\x67\x20\x74\x72\x61\x6e\x73\x66\
+\x6f\x72\x6d\x3d\x27\x6d\x61\x74\x72\x69\x78\x28\x30\x2e\x39\x39\
+\x36\x32\x36\x34\x20\x30\x20\x30\x20\x30\x2e\x39\x39\x36\x32\x36\
+\x34\x20\x35\x38\x2e\x34\x36\x36\x39\x20\x31\x31\x37\x2e\x38\x35\
+\x38\x29\x27\x3e\x0a\x3c\x63\x69\x72\x63\x6c\x65\x20\x63\x78\x3d\
+\x27\x34\x30\x2e\x36\x37\x39\x34\x27\x20\x63\x79\x3d\x27\x2d\x32\
+\x32\x2e\x35\x32\x38\x31\x27\x20\x66\x69\x6c\x6c\x3d\x27\x23\x30\
+\x30\x30\x30\x30\x30\x27\x20\x72\x3d\x27\x36\x2e\x30\x32\x32\x35\
+\x27\x2f\x3e\x0a\x3c\x2f\x67\x3e\x0a\x3c\x2f\x67\x3e\x0a\x3c\x2f\
+\x73\x76\x67\x3e\
\x00\x00\x03\xeb\
\x3c\
\x3f\x78\x6d\x6c\x20\x76\x65\x72\x73\x69\x6f\x6e\x3d\x22\x31\x2e\
@@ -645,50 +250,13 @@ qt_resource_data = b"\
\x2d\x77\x69\x64\x74\x68\x3d\x27\x33\x2e\x35\x31\x33\x31\x32\x27\
\x2f\x3e\x0a\x3c\x2f\x67\x3e\x0a\x3c\x2f\x67\x3e\x0a\x3c\x2f\x73\
\x76\x67\x3e\
-\x00\x00\x02\x21\
-\x00\
-\x00\x07\xaf\x78\x9c\xdd\x55\x4d\x6f\x9c\x30\x10\xbd\xf7\x57\x4c\
-\xd5\x83\xdb\x03\xc6\xdf\x86\x28\x24\x52\x57\xea\x29\xbd\x25\x97\
-\xde\x68\xf0\x82\x9b\x5d\x58\x01\x5d\xb6\xff\xbe\x66\xd7\x60\x4a\
-\xaa\xf4\x92\x43\x15\x90\x30\xf3\x18\xbf\x99\xe7\xf1\x98\xeb\xdb\
-\xd3\x7e\x07\x47\xd3\x76\xb6\xa9\x33\x44\x31\x41\x60\xea\xc7\xa6\
-\xb0\x75\x99\xa1\x87\xfb\x2f\x51\x82\x6e\x6f\xde\x5d\xbf\x8f\x22\
-\xb8\xaf\x6c\x07\x5b\xbb\x33\x30\xe4\x1d\x94\xa6\x36\x6d\xde\x9b\
-\x02\xbe\xff\x82\xe2\x68\xbb\x63\xb9\x07\x86\x13\x88\x22\xe7\xef\
-\xac\x25\x2b\x45\xe0\xe2\xd4\x5d\x86\xaa\xbe\x3f\x5c\xc5\xf1\x30\
-\x0c\x78\xe0\xb8\x69\xcb\x98\x11\x42\x62\xe7\xef\x5d\xae\x4e\x3b\
-\x5b\x3f\xfd\xcd\x91\xa6\x69\x1a\x9f\xbf\x22\x18\x6c\xd1\x57\x19\
-\x52\x1c\x3b\x50\x1d\x7a\x04\x95\xb1\x65\xd5\x4f\x90\x1e\xa1\xa3\
-\x35\xc3\xe7\xe6\x94\x21\xa9\xb0\x20\xa9\x00\xc9\x71\x22\x13\x0e\
-\x7e\x9a\x1f\x35\x72\x09\x97\x60\x8b\x0c\x1d\xf2\xd2\xd0\x8b\xd9\
-\xb7\x79\xdd\x6d\x9b\x76\x9f\xa1\x7d\xde\xb7\xf6\xf4\x91\x38\x67\
-\xc5\x94\x00\x32\xde\x93\x31\x71\x53\xaa\x47\xf2\x4f\xe3\xec\x43\
-\xde\x57\xe0\xe8\xbe\x42\x8a\xb9\xd0\x82\x41\xc4\x38\x26\x94\xde\
-\x05\xc0\xbf\x3c\x47\x36\xcf\x90\x7f\x03\x8b\x39\x12\x53\x29\x29\
-\x05\x9a\x62\x29\x38\x85\x88\x62\x2d\x95\x54\xc0\x19\xa6\x6c\x36\
-\x37\x20\x04\x56\xa9\x4a\x83\x83\x14\x38\x49\x99\x0a\x14\x33\x30\
-\xe7\xfa\x02\x32\x09\x9c\x01\xae\xb0\xd2\x42\x6e\x02\x22\x08\x4e\
-\x94\x4a\x42\x64\xf7\xc2\x94\x14\x53\x6a\xde\xdc\x84\xdc\x27\x87\
-\x59\xdd\x44\x31\x03\x3e\xca\xdd\x7a\xa5\xbf\xa1\x71\xab\xee\x32\
-\xf4\x41\x6f\xc7\x1b\xc5\xae\x2e\x71\xf9\x8a\xa5\x0d\x42\x53\xac\
-\x29\x49\x97\x42\xdd\xbe\x22\x9c\x2d\x84\x6a\xcc\x09\xd5\xb3\xd0\
-\x8b\xb9\x14\xea\x1d\x82\x50\x4f\x11\x84\x4e\x51\x02\x22\xb1\xa4\
-\x89\x0c\x24\x17\x76\x1f\xe3\x3c\x2c\xaa\x7c\x81\x43\xd2\x7e\xf2\
-\x5a\xc5\xbc\x6e\x75\x53\x1b\x04\x5d\xdf\x36\x4f\xc6\xad\x22\x39\
-\x5f\x13\x10\xb9\x2e\x34\x8f\xf9\x21\x43\x6d\xf3\xb3\x2e\xfe\x80\
-\x7f\x34\xb6\x5e\xe3\x7b\xdb\x9b\x76\x67\xdd\xe0\x4e\x03\x82\x09\
-\xd7\x72\xfe\xe6\x5b\x99\xbb\x7c\x38\x65\xaf\x5f\xa7\xf5\x0a\xbe\
-\xe1\x1e\xf4\x0a\xdf\x5c\x09\x5f\x68\x35\xc9\x30\x4b\xf4\xe2\x4c\
-\x51\x0c\x8b\x84\xcf\x67\x8a\x37\x17\xad\x36\x39\x84\x6a\x79\x8a\
-\xf5\x46\xf9\x6f\x96\xf1\xf2\x70\xbf\xc8\x9b\xdf\xf9\x80\xe2\xe1\
-\
-\x00\x00\x03\xe6\
+\x00\x00\x02\xb7\
\x3c\
\x3f\x78\x6d\x6c\x20\x76\x65\x72\x73\x69\x6f\x6e\x3d\x22\x31\x2e\
\x30\x22\x20\x65\x6e\x63\x6f\x64\x69\x6e\x67\x3d\x22\x75\x74\x66\
\x2d\x38\x22\x3f\x3e\x0d\x0a\x3c\x21\x2d\x2d\x20\x47\x65\x6e\x65\
\x72\x61\x74\x6f\x72\x3a\x20\x41\x64\x6f\x62\x65\x20\x49\x6c\x6c\
-\x75\x73\x74\x72\x61\x74\x6f\x72\x20\x31\x38\x2e\x31\x2e\x31\x2c\
+\x75\x73\x74\x72\x61\x74\x6f\x72\x20\x31\x36\x2e\x32\x2e\x31\x2c\
\x20\x53\x56\x47\x20\x45\x78\x70\x6f\x72\x74\x20\x50\x6c\x75\x67\
\x2d\x49\x6e\x20\x2e\x20\x53\x56\x47\x20\x56\x65\x72\x73\x69\x6f\
\x6e\x3a\x20\x36\x2e\x30\x30\x20\x42\x75\x69\x6c\x64\x20\x30\x29\
@@ -700,60 +268,257 @@ qt_resource_data = b"\
\x73\x2f\x53\x56\x47\x2f\x31\x2e\x31\x2f\x44\x54\x44\x2f\x73\x76\
\x67\x31\x31\x2e\x64\x74\x64\x22\x3e\x0d\x0a\x3c\x73\x76\x67\x20\
\x76\x65\x72\x73\x69\x6f\x6e\x3d\x22\x31\x2e\x31\x22\x20\x69\x64\
-\x3d\x22\x43\x68\x65\x76\x72\x6f\x6e\x5f\x63\x69\x72\x63\x6c\x65\
-\x64\x5f\x72\x69\x67\x68\x74\x22\x20\x78\x6d\x6c\x6e\x73\x3d\x22\
+\x3d\x22\x4c\x61\x79\x65\x72\x5f\x31\x22\x20\x78\x6d\x6c\x6e\x73\
+\x3d\x22\x68\x74\x74\x70\x3a\x2f\x2f\x77\x77\x77\x2e\x77\x33\x2e\
+\x6f\x72\x67\x2f\x32\x30\x30\x30\x2f\x73\x76\x67\x22\x20\x78\x6d\
+\x6c\x6e\x73\x3a\x78\x6c\x69\x6e\x6b\x3d\x22\x68\x74\x74\x70\x3a\
+\x2f\x2f\x77\x77\x77\x2e\x77\x33\x2e\x6f\x72\x67\x2f\x31\x39\x39\
+\x39\x2f\x78\x6c\x69\x6e\x6b\x22\x20\x78\x3d\x22\x30\x70\x78\x22\
+\x20\x79\x3d\x22\x30\x70\x78\x22\x0d\x0a\x09\x20\x77\x69\x64\x74\
+\x68\x3d\x22\x35\x31\x32\x70\x78\x22\x20\x68\x65\x69\x67\x68\x74\
+\x3d\x22\x35\x31\x32\x70\x78\x22\x20\x76\x69\x65\x77\x42\x6f\x78\
+\x3d\x22\x30\x20\x30\x20\x35\x31\x32\x20\x35\x31\x32\x22\x20\x65\
+\x6e\x61\x62\x6c\x65\x2d\x62\x61\x63\x6b\x67\x72\x6f\x75\x6e\x64\
+\x3d\x22\x6e\x65\x77\x20\x30\x20\x30\x20\x35\x31\x32\x20\x35\x31\
+\x32\x22\x20\x78\x6d\x6c\x3a\x73\x70\x61\x63\x65\x3d\x22\x70\x72\
+\x65\x73\x65\x72\x76\x65\x22\x3e\x0d\x0a\x3c\x67\x20\x69\x64\x3d\
+\x22\x49\x63\x6f\x6e\x5f\x35\x5f\x22\x3e\x0d\x0a\x09\x3c\x67\x3e\
+\x0d\x0a\x09\x09\x3c\x70\x6f\x6c\x79\x67\x6f\x6e\x20\x70\x6f\x69\
+\x6e\x74\x73\x3d\x22\x34\x30\x35\x2c\x31\x33\x36\x2e\x37\x39\x38\
+\x20\x33\x37\x35\x2e\x32\x30\x32\x2c\x31\x30\x37\x20\x32\x35\x36\
+\x2c\x32\x32\x36\x2e\x32\x30\x32\x20\x31\x33\x36\x2e\x37\x39\x38\
+\x2c\x31\x30\x37\x20\x31\x30\x37\x2c\x31\x33\x36\x2e\x37\x39\x38\
+\x20\x32\x32\x36\x2e\x32\x30\x32\x2c\x32\x35\x36\x20\x31\x30\x37\
+\x2c\x33\x37\x35\x2e\x32\x30\x32\x20\x31\x33\x36\x2e\x37\x39\x38\
+\x2c\x34\x30\x35\x20\x32\x35\x36\x2c\x32\x38\x35\x2e\x37\x39\x38\
+\x20\x0d\x0a\x09\x09\x09\x33\x37\x35\x2e\x32\x30\x32\x2c\x34\x30\
+\x35\x20\x34\x30\x35\x2c\x33\x37\x35\x2e\x32\x30\x32\x20\x32\x38\
+\x35\x2e\x37\x39\x38\x2c\x32\x35\x36\x20\x09\x09\x22\x2f\x3e\x0d\
+\x0a\x09\x3c\x2f\x67\x3e\x0d\x0a\x3c\x2f\x67\x3e\x0d\x0a\x3c\x2f\
+\x73\x76\x67\x3e\x0d\x0a\
+\x00\x00\x04\xa2\
+\x3c\
+\x3f\x78\x6d\x6c\x20\x76\x65\x72\x73\x69\x6f\x6e\x3d\x27\x31\x2e\
+\x30\x27\x20\x65\x6e\x63\x6f\x64\x69\x6e\x67\x3d\x27\x55\x54\x46\
+\x2d\x38\x27\x3f\x3e\x0a\x3c\x21\x2d\x2d\x20\x54\x68\x69\x73\x20\
+\x66\x69\x6c\x65\x20\x77\x61\x73\x20\x67\x65\x6e\x65\x72\x61\x74\
+\x65\x64\x20\x62\x79\x20\x64\x76\x69\x73\x76\x67\x6d\x20\x32\x2e\
+\x38\x20\x2d\x2d\x3e\x0a\x3c\x73\x76\x67\x20\x76\x65\x72\x73\x69\
+\x6f\x6e\x3d\x27\x31\x2e\x31\x27\x20\x78\x6d\x6c\x6e\x73\x3d\x27\
\x68\x74\x74\x70\x3a\x2f\x2f\x77\x77\x77\x2e\x77\x33\x2e\x6f\x72\
-\x67\x2f\x32\x30\x30\x30\x2f\x73\x76\x67\x22\x20\x78\x6d\x6c\x6e\
-\x73\x3a\x78\x6c\x69\x6e\x6b\x3d\x22\x68\x74\x74\x70\x3a\x2f\x2f\
+\x67\x2f\x32\x30\x30\x30\x2f\x73\x76\x67\x27\x20\x78\x6d\x6c\x6e\
+\x73\x3a\x78\x6c\x69\x6e\x6b\x3d\x27\x68\x74\x74\x70\x3a\x2f\x2f\
\x77\x77\x77\x2e\x77\x33\x2e\x6f\x72\x67\x2f\x31\x39\x39\x39\x2f\
-\x78\x6c\x69\x6e\x6b\x22\x0d\x0a\x09\x20\x78\x3d\x22\x30\x70\x78\
-\x22\x20\x79\x3d\x22\x30\x70\x78\x22\x20\x76\x69\x65\x77\x42\x6f\
-\x78\x3d\x22\x30\x20\x30\x20\x35\x31\x32\x20\x35\x31\x32\x22\x20\
-\x65\x6e\x61\x62\x6c\x65\x2d\x62\x61\x63\x6b\x67\x72\x6f\x75\x6e\
-\x64\x3d\x22\x6e\x65\x77\x20\x30\x20\x30\x20\x35\x31\x32\x20\x35\
-\x31\x32\x22\x20\x78\x6d\x6c\x3a\x73\x70\x61\x63\x65\x3d\x22\x70\
-\x72\x65\x73\x65\x72\x76\x65\x22\x3e\x0d\x0a\x3c\x67\x20\x74\x72\
-\x61\x6e\x73\x66\x6f\x72\x6d\x3d\x27\x6d\x61\x74\x72\x69\x78\x28\
-\x32\x34\x20\x30\x20\x30\x20\x32\x34\x20\x30\x20\x30\x29\x27\x3e\
-\x0d\x0a\x3c\x70\x61\x74\x68\x20\x64\x3d\x22\x4d\x31\x31\x2c\x31\
-\x30\x4c\x38\x2e\x36\x39\x38\x2c\x37\x2e\x34\x39\x34\x63\x2d\x30\
-\x2e\x31\x39\x36\x2d\x30\x2e\x31\x39\x38\x2d\x30\x2e\x31\x39\x36\
-\x2d\x30\x2e\x35\x31\x39\x2c\x30\x2d\x30\x2e\x37\x31\x38\x63\x30\
-\x2e\x31\x39\x36\x2d\x30\x2e\x31\x39\x37\x2c\x30\x2e\x35\x31\x35\
-\x2d\x30\x2e\x31\x39\x37\x2c\x30\x2e\x37\x31\x2c\x30\x6c\x32\x2e\
-\x38\x30\x37\x2c\x32\x2e\x38\x36\x34\x0d\x0a\x09\x63\x30\x2e\x31\
-\x39\x36\x2c\x30\x2e\x31\x39\x39\x2c\x30\x2e\x31\x39\x36\x2c\x30\
-\x2e\x35\x32\x2c\x30\x2c\x30\x2e\x37\x31\x37\x6c\x2d\x32\x2e\x38\
-\x30\x37\x2c\x32\x2e\x38\x36\x34\x63\x2d\x30\x2e\x31\x39\x35\x2c\
-\x30\x2e\x31\x39\x39\x2d\x30\x2e\x35\x31\x34\x2c\x30\x2e\x31\x39\
-\x38\x2d\x30\x2e\x37\x31\x2c\x30\x63\x2d\x30\x2e\x31\x39\x36\x2d\
-\x30\x2e\x31\x39\x37\x2d\x30\x2e\x31\x39\x36\x2d\x30\x2e\x35\x31\
-\x38\x2c\x30\x2d\x30\x2e\x37\x31\x37\x4c\x31\x31\x2c\x31\x30\x7a\
-\x20\x4d\x31\x30\x2c\x30\x2e\x34\x0d\x0a\x09\x63\x35\x2e\x33\x30\
-\x32\x2c\x30\x2c\x39\x2e\x36\x2c\x34\x2e\x32\x39\x38\x2c\x39\x2e\
-\x36\x2c\x39\x2e\x36\x63\x30\x2c\x35\x2e\x33\x30\x33\x2d\x34\x2e\
-\x32\x39\x38\x2c\x39\x2e\x36\x2d\x39\x2e\x36\x2c\x39\x2e\x36\x53\
-\x30\x2e\x34\x2c\x31\x35\x2e\x33\x30\x33\x2c\x30\x2e\x34\x2c\x31\
-\x30\x43\x30\x2e\x34\x2c\x34\x2e\x36\x39\x38\x2c\x34\x2e\x36\x39\
-\x38\x2c\x30\x2e\x34\x2c\x31\x30\x2c\x30\x2e\x34\x7a\x20\x4d\x31\
-\x30\x2c\x31\x38\x2e\x33\x35\x34\x0d\x0a\x09\x63\x34\x2e\x36\x31\
-\x33\x2c\x30\x2c\x38\x2e\x33\x35\x34\x2d\x33\x2e\x37\x34\x2c\x38\
-\x2e\x33\x35\x34\x2d\x38\x2e\x33\x35\x34\x63\x30\x2d\x34\x2e\x36\
-\x31\x34\x2d\x33\x2e\x37\x34\x31\x2d\x38\x2e\x33\x35\x34\x2d\x38\
-\x2e\x33\x35\x34\x2d\x38\x2e\x33\x35\x34\x63\x2d\x34\x2e\x36\x31\
-\x35\x2c\x30\x2d\x38\x2e\x33\x35\x34\x2c\x33\x2e\x37\x34\x2d\x38\
-\x2e\x33\x35\x34\x2c\x38\x2e\x33\x35\x34\x0d\x0a\x09\x43\x31\x2e\
-\x36\x34\x35\x2c\x31\x34\x2e\x36\x31\x34\x2c\x35\x2e\x33\x38\x35\
-\x2c\x31\x38\x2e\x33\x35\x34\x2c\x31\x30\x2c\x31\x38\x2e\x33\x35\
-\x34\x7a\x22\x2f\x3e\x0d\x0a\x3c\x2f\x67\x3e\x0d\x0a\x3c\x2f\x73\
-\x76\x67\x3e\x0d\x0a\
-\x00\x00\x03\xf5\
+\x78\x6c\x69\x6e\x6b\x27\x20\x77\x69\x64\x74\x68\x3d\x27\x36\x33\
+\x2e\x39\x39\x39\x36\x70\x74\x27\x20\x68\x65\x69\x67\x68\x74\x3d\
+\x27\x36\x33\x2e\x39\x39\x39\x37\x70\x74\x27\x20\x76\x69\x65\x77\
+\x42\x6f\x78\x3d\x27\x35\x36\x2e\x34\x30\x39\x34\x20\x35\x33\x2e\
+\x38\x35\x38\x33\x20\x36\x33\x2e\x39\x39\x39\x36\x20\x36\x33\x2e\
+\x39\x39\x39\x37\x27\x3e\x0a\x3c\x67\x20\x69\x64\x3d\x27\x70\x61\
+\x67\x65\x31\x27\x3e\x0a\x3c\x67\x20\x74\x72\x61\x6e\x73\x66\x6f\
+\x72\x6d\x3d\x27\x6d\x61\x74\x72\x69\x78\x28\x30\x2e\x39\x39\x36\
+\x32\x36\x34\x20\x30\x20\x30\x20\x30\x2e\x39\x39\x36\x32\x36\x34\
+\x20\x35\x38\x2e\x34\x36\x36\x39\x20\x31\x31\x37\x2e\x38\x35\x38\
+\x29\x27\x3e\x0a\x3c\x70\x61\x74\x68\x20\x64\x3d\x27\x4d\x20\x33\
+\x2e\x39\x35\x37\x33\x35\x20\x2d\x33\x32\x2e\x31\x32\x43\x20\x34\
+\x2e\x31\x35\x35\x35\x36\x20\x2d\x33\x39\x2e\x32\x37\x34\x35\x20\
+\x36\x2e\x39\x38\x34\x37\x33\x20\x2d\x34\x36\x2e\x31\x30\x34\x37\
+\x20\x31\x31\x2e\x39\x30\x33\x36\x20\x2d\x35\x31\x2e\x33\x30\x33\
+\x39\x43\x20\x32\x37\x2e\x34\x34\x31\x31\x20\x2d\x36\x37\x2e\x37\
+\x32\x36\x39\x20\x35\x33\x2e\x33\x30\x32\x31\x20\x2d\x36\x31\x2e\
+\x35\x34\x30\x35\x20\x35\x36\x2e\x31\x35\x32\x33\x20\x2d\x34\x32\
+\x2e\x35\x30\x32\x32\x43\x20\x35\x37\x2e\x36\x32\x37\x20\x2d\x33\
+\x32\x2e\x36\x35\x31\x39\x20\x35\x30\x2e\x35\x38\x35\x36\x20\x2d\
+\x32\x33\x2e\x35\x36\x32\x31\x20\x34\x30\x2e\x36\x37\x39\x34\x20\
+\x2d\x32\x32\x2e\x35\x32\x38\x31\x27\x20\x66\x69\x6c\x6c\x3d\x27\
+\x6e\x6f\x6e\x65\x27\x20\x73\x74\x72\x6f\x6b\x65\x3d\x27\x23\x30\
+\x30\x30\x30\x30\x30\x27\x20\x73\x74\x72\x6f\x6b\x65\x2d\x6c\x69\
+\x6e\x65\x63\x61\x70\x3d\x27\x72\x6f\x75\x6e\x64\x27\x20\x73\x74\
+\x72\x6f\x6b\x65\x2d\x6c\x69\x6e\x65\x6a\x6f\x69\x6e\x3d\x27\x72\
+\x6f\x75\x6e\x64\x27\x20\x73\x74\x72\x6f\x6b\x65\x2d\x6d\x69\x74\
+\x65\x72\x6c\x69\x6d\x69\x74\x3d\x27\x31\x30\x2e\x30\x33\x37\x35\
+\x27\x20\x73\x74\x72\x6f\x6b\x65\x2d\x77\x69\x64\x74\x68\x3d\x27\
+\x32\x2e\x35\x30\x39\x33\x37\x27\x2f\x3e\x0a\x3c\x2f\x67\x3e\x0a\
+\x3c\x67\x20\x74\x72\x61\x6e\x73\x66\x6f\x72\x6d\x3d\x27\x6d\x61\
+\x74\x72\x69\x78\x28\x30\x2e\x39\x39\x36\x32\x36\x34\x20\x30\x20\
+\x30\x20\x30\x2e\x39\x39\x36\x32\x36\x34\x20\x35\x38\x2e\x34\x36\
+\x36\x39\x20\x31\x31\x37\x2e\x38\x35\x38\x29\x27\x3e\x0a\x3c\x63\
+\x69\x72\x63\x6c\x65\x20\x63\x78\x3d\x27\x33\x2e\x39\x35\x37\x33\
+\x35\x27\x20\x63\x79\x3d\x27\x2d\x33\x32\x2e\x31\x32\x27\x20\x66\
+\x69\x6c\x6c\x3d\x27\x23\x30\x30\x30\x30\x30\x30\x27\x20\x72\x3d\
+\x27\x36\x2e\x30\x32\x32\x35\x27\x2f\x3e\x0a\x3c\x2f\x67\x3e\x0a\
+\x3c\x67\x20\x74\x72\x61\x6e\x73\x66\x6f\x72\x6d\x3d\x27\x6d\x61\
+\x74\x72\x69\x78\x28\x30\x2e\x39\x39\x36\x32\x36\x34\x20\x30\x20\
+\x30\x20\x30\x2e\x39\x39\x36\x32\x36\x34\x20\x35\x38\x2e\x34\x36\
+\x36\x39\x20\x31\x31\x37\x2e\x38\x35\x38\x29\x27\x3e\x0a\x3c\x63\
+\x69\x72\x63\x6c\x65\x20\x63\x78\x3d\x27\x31\x31\x2e\x39\x30\x33\
+\x36\x27\x20\x63\x79\x3d\x27\x2d\x35\x31\x2e\x33\x30\x33\x39\x27\
+\x20\x66\x69\x6c\x6c\x3d\x27\x23\x30\x30\x30\x30\x30\x30\x27\x20\
+\x72\x3d\x27\x36\x2e\x30\x32\x32\x35\x27\x2f\x3e\x0a\x3c\x2f\x67\
+\x3e\x0a\x3c\x67\x20\x74\x72\x61\x6e\x73\x66\x6f\x72\x6d\x3d\x27\
+\x6d\x61\x74\x72\x69\x78\x28\x30\x2e\x39\x39\x36\x32\x36\x34\x20\
+\x30\x20\x30\x20\x30\x2e\x39\x39\x36\x32\x36\x34\x20\x35\x38\x2e\
+\x34\x36\x36\x39\x20\x31\x31\x37\x2e\x38\x35\x38\x29\x27\x3e\x0a\
+\x3c\x63\x69\x72\x63\x6c\x65\x20\x63\x78\x3d\x27\x35\x36\x2e\x31\
+\x35\x32\x33\x27\x20\x63\x79\x3d\x27\x2d\x34\x32\x2e\x35\x30\x32\
+\x32\x27\x20\x66\x69\x6c\x6c\x3d\x27\x23\x30\x30\x30\x30\x30\x30\
+\x27\x20\x72\x3d\x27\x36\x2e\x30\x32\x32\x35\x27\x2f\x3e\x0a\x3c\
+\x2f\x67\x3e\x0a\x3c\x67\x20\x74\x72\x61\x6e\x73\x66\x6f\x72\x6d\
+\x3d\x27\x6d\x61\x74\x72\x69\x78\x28\x30\x2e\x39\x39\x36\x32\x36\
+\x34\x20\x30\x20\x30\x20\x30\x2e\x39\x39\x36\x32\x36\x34\x20\x35\
+\x38\x2e\x34\x36\x36\x39\x20\x31\x31\x37\x2e\x38\x35\x38\x29\x27\
+\x3e\x0a\x3c\x63\x69\x72\x63\x6c\x65\x20\x63\x78\x3d\x27\x34\x30\
+\x2e\x36\x37\x39\x34\x27\x20\x63\x79\x3d\x27\x2d\x32\x32\x2e\x35\
+\x32\x38\x31\x27\x20\x66\x69\x6c\x6c\x3d\x27\x23\x30\x30\x30\x30\
+\x30\x30\x27\x20\x72\x3d\x27\x36\x2e\x30\x32\x32\x35\x27\x2f\x3e\
+\x0a\x3c\x2f\x67\x3e\x0a\x3c\x2f\x67\x3e\x0a\x3c\x2f\x73\x76\x67\
+\x3e\
+\x00\x00\x04\x1c\
+\x3c\
+\x3f\x78\x6d\x6c\x20\x76\x65\x72\x73\x69\x6f\x6e\x3d\x27\x31\x2e\
+\x30\x27\x20\x65\x6e\x63\x6f\x64\x69\x6e\x67\x3d\x27\x55\x54\x46\
+\x2d\x38\x27\x3f\x3e\x0a\x3c\x21\x2d\x2d\x20\x54\x68\x69\x73\x20\
+\x66\x69\x6c\x65\x20\x77\x61\x73\x20\x67\x65\x6e\x65\x72\x61\x74\
+\x65\x64\x20\x62\x79\x20\x64\x76\x69\x73\x76\x67\x6d\x20\x32\x2e\
+\x38\x20\x2d\x2d\x3e\x0a\x3c\x73\x76\x67\x20\x76\x65\x72\x73\x69\
+\x6f\x6e\x3d\x27\x31\x2e\x31\x27\x20\x78\x6d\x6c\x6e\x73\x3d\x27\
+\x68\x74\x74\x70\x3a\x2f\x2f\x77\x77\x77\x2e\x77\x33\x2e\x6f\x72\
+\x67\x2f\x32\x30\x30\x30\x2f\x73\x76\x67\x27\x20\x78\x6d\x6c\x6e\
+\x73\x3a\x78\x6c\x69\x6e\x6b\x3d\x27\x68\x74\x74\x70\x3a\x2f\x2f\
+\x77\x77\x77\x2e\x77\x33\x2e\x6f\x72\x67\x2f\x31\x39\x39\x39\x2f\
+\x78\x6c\x69\x6e\x6b\x27\x20\x77\x69\x64\x74\x68\x3d\x27\x36\x33\
+\x2e\x39\x39\x39\x36\x70\x74\x27\x20\x68\x65\x69\x67\x68\x74\x3d\
+\x27\x36\x33\x2e\x39\x39\x39\x37\x70\x74\x27\x20\x76\x69\x65\x77\
+\x42\x6f\x78\x3d\x27\x35\x36\x2e\x34\x30\x39\x34\x20\x35\x33\x2e\
+\x38\x35\x38\x33\x20\x36\x33\x2e\x39\x39\x39\x36\x20\x36\x33\x2e\
+\x39\x39\x39\x37\x27\x3e\x0a\x3c\x67\x20\x69\x64\x3d\x27\x70\x61\
+\x67\x65\x31\x27\x3e\x0a\x3c\x67\x20\x74\x72\x61\x6e\x73\x66\x6f\
+\x72\x6d\x3d\x27\x6d\x61\x74\x72\x69\x78\x28\x30\x2e\x39\x39\x36\
+\x32\x36\x34\x20\x30\x20\x30\x20\x30\x2e\x39\x39\x36\x32\x36\x34\
+\x20\x35\x36\x2e\x34\x30\x39\x34\x20\x31\x31\x37\x2e\x38\x35\x38\
+\x29\x27\x3e\x0a\x3c\x70\x61\x74\x68\x20\x64\x3d\x27\x4d\x20\x32\
+\x2e\x30\x30\x37\x35\x20\x2d\x32\x2e\x30\x30\x37\x35\x4c\x20\x36\
+\x32\x2e\x32\x33\x32\x35\x20\x2d\x32\x2e\x30\x30\x37\x35\x4c\x20\
+\x36\x32\x2e\x32\x33\x32\x35\x20\x2d\x36\x32\x2e\x32\x33\x32\x35\
+\x4c\x20\x32\x2e\x30\x30\x37\x35\x20\x2d\x36\x32\x2e\x32\x33\x32\
+\x35\x4c\x20\x32\x2e\x30\x30\x37\x35\x20\x2d\x32\x2e\x30\x30\x37\
+\x35\x5a\x27\x20\x66\x69\x6c\x6c\x3d\x27\x6e\x6f\x6e\x65\x27\x20\
+\x73\x74\x72\x6f\x6b\x65\x3d\x27\x23\x30\x30\x30\x30\x30\x30\x27\
+\x20\x73\x74\x72\x6f\x6b\x65\x2d\x6c\x69\x6e\x65\x63\x61\x70\x3d\
+\x27\x72\x6f\x75\x6e\x64\x27\x20\x73\x74\x72\x6f\x6b\x65\x2d\x6c\
+\x69\x6e\x65\x6a\x6f\x69\x6e\x3d\x27\x72\x6f\x75\x6e\x64\x27\x20\
+\x73\x74\x72\x6f\x6b\x65\x2d\x6d\x69\x74\x65\x72\x6c\x69\x6d\x69\
+\x74\x3d\x27\x31\x30\x2e\x30\x33\x37\x35\x27\x20\x73\x74\x72\x6f\
+\x6b\x65\x2d\x77\x69\x64\x74\x68\x3d\x27\x34\x2e\x30\x31\x35\x27\
+\x2f\x3e\x0a\x3c\x2f\x67\x3e\x0a\x3c\x67\x20\x74\x72\x61\x6e\x73\
+\x66\x6f\x72\x6d\x3d\x27\x6d\x61\x74\x72\x69\x78\x28\x30\x2e\x39\
+\x39\x36\x32\x36\x34\x20\x30\x20\x30\x20\x30\x2e\x39\x39\x36\x32\
+\x36\x34\x20\x35\x36\x2e\x34\x30\x39\x34\x20\x31\x31\x37\x2e\x38\
+\x35\x38\x29\x27\x3e\x0a\x3c\x70\x61\x74\x68\x20\x64\x3d\x27\x4d\
+\x20\x32\x2e\x30\x30\x37\x35\x20\x2d\x33\x32\x2e\x31\x32\x4c\x20\
+\x36\x32\x2e\x32\x33\x32\x35\x20\x2d\x33\x32\x2e\x31\x32\x27\x20\
+\x66\x69\x6c\x6c\x3d\x27\x6e\x6f\x6e\x65\x27\x20\x73\x74\x72\x6f\
+\x6b\x65\x3d\x27\x23\x30\x30\x30\x30\x30\x30\x27\x20\x73\x74\x72\
+\x6f\x6b\x65\x2d\x6c\x69\x6e\x65\x63\x61\x70\x3d\x27\x72\x6f\x75\
+\x6e\x64\x27\x20\x73\x74\x72\x6f\x6b\x65\x2d\x6c\x69\x6e\x65\x6a\
+\x6f\x69\x6e\x3d\x27\x72\x6f\x75\x6e\x64\x27\x20\x73\x74\x72\x6f\
+\x6b\x65\x2d\x6d\x69\x74\x65\x72\x6c\x69\x6d\x69\x74\x3d\x27\x31\
+\x30\x2e\x30\x33\x37\x35\x27\x20\x73\x74\x72\x6f\x6b\x65\x2d\x77\
+\x69\x64\x74\x68\x3d\x27\x34\x2e\x30\x31\x35\x27\x2f\x3e\x0a\x3c\
+\x2f\x67\x3e\x0a\x3c\x67\x20\x74\x72\x61\x6e\x73\x66\x6f\x72\x6d\
+\x3d\x27\x6d\x61\x74\x72\x69\x78\x28\x30\x2e\x39\x39\x36\x32\x36\
+\x34\x20\x30\x20\x30\x20\x30\x2e\x39\x39\x36\x32\x36\x34\x20\x35\
+\x36\x2e\x34\x30\x39\x34\x20\x31\x31\x37\x2e\x38\x35\x38\x29\x27\
+\x3e\x0a\x3c\x70\x61\x74\x68\x20\x64\x3d\x27\x4d\x20\x33\x32\x2e\
+\x31\x32\x20\x2d\x32\x2e\x30\x30\x37\x35\x4c\x20\x33\x32\x2e\x31\
+\x32\x20\x2d\x36\x32\x2e\x32\x33\x32\x35\x27\x20\x66\x69\x6c\x6c\
+\x3d\x27\x6e\x6f\x6e\x65\x27\x20\x73\x74\x72\x6f\x6b\x65\x3d\x27\
+\x23\x30\x30\x30\x30\x30\x30\x27\x20\x73\x74\x72\x6f\x6b\x65\x2d\
+\x6c\x69\x6e\x65\x63\x61\x70\x3d\x27\x72\x6f\x75\x6e\x64\x27\x20\
+\x73\x74\x72\x6f\x6b\x65\x2d\x6c\x69\x6e\x65\x6a\x6f\x69\x6e\x3d\
+\x27\x72\x6f\x75\x6e\x64\x27\x20\x73\x74\x72\x6f\x6b\x65\x2d\x6d\
+\x69\x74\x65\x72\x6c\x69\x6d\x69\x74\x3d\x27\x31\x30\x2e\x30\x33\
+\x37\x35\x27\x20\x73\x74\x72\x6f\x6b\x65\x2d\x77\x69\x64\x74\x68\
+\x3d\x27\x34\x2e\x30\x31\x35\x27\x2f\x3e\x0a\x3c\x2f\x67\x3e\x0a\
+\x3c\x2f\x67\x3e\x0a\x3c\x2f\x73\x76\x67\x3e\
+\x00\x00\x04\x4e\
+\x3c\
+\x3f\x78\x6d\x6c\x20\x76\x65\x72\x73\x69\x6f\x6e\x3d\x27\x31\x2e\
+\x30\x27\x20\x65\x6e\x63\x6f\x64\x69\x6e\x67\x3d\x27\x55\x54\x46\
+\x2d\x38\x27\x3f\x3e\x0a\x3c\x21\x2d\x2d\x20\x54\x68\x69\x73\x20\
+\x66\x69\x6c\x65\x20\x77\x61\x73\x20\x67\x65\x6e\x65\x72\x61\x74\
+\x65\x64\x20\x62\x79\x20\x64\x76\x69\x73\x76\x67\x6d\x20\x32\x2e\
+\x38\x20\x2d\x2d\x3e\x0a\x3c\x73\x76\x67\x20\x76\x65\x72\x73\x69\
+\x6f\x6e\x3d\x27\x31\x2e\x31\x27\x20\x78\x6d\x6c\x6e\x73\x3d\x27\
+\x68\x74\x74\x70\x3a\x2f\x2f\x77\x77\x77\x2e\x77\x33\x2e\x6f\x72\
+\x67\x2f\x32\x30\x30\x30\x2f\x73\x76\x67\x27\x20\x78\x6d\x6c\x6e\
+\x73\x3a\x78\x6c\x69\x6e\x6b\x3d\x27\x68\x74\x74\x70\x3a\x2f\x2f\
+\x77\x77\x77\x2e\x77\x33\x2e\x6f\x72\x67\x2f\x31\x39\x39\x39\x2f\
+\x78\x6c\x69\x6e\x6b\x27\x20\x77\x69\x64\x74\x68\x3d\x27\x36\x33\
+\x2e\x39\x39\x39\x36\x70\x74\x27\x20\x68\x65\x69\x67\x68\x74\x3d\
+\x27\x36\x33\x2e\x39\x39\x39\x37\x70\x74\x27\x20\x76\x69\x65\x77\
+\x42\x6f\x78\x3d\x27\x35\x36\x2e\x34\x30\x39\x34\x20\x35\x33\x2e\
+\x38\x35\x38\x33\x20\x36\x33\x2e\x39\x39\x39\x36\x20\x36\x33\x2e\
+\x39\x39\x39\x37\x27\x3e\x0a\x3c\x67\x20\x69\x64\x3d\x27\x70\x61\
+\x67\x65\x31\x27\x3e\x0a\x3c\x67\x20\x74\x72\x61\x6e\x73\x66\x6f\
+\x72\x6d\x3d\x27\x6d\x61\x74\x72\x69\x78\x28\x30\x2e\x39\x39\x36\
+\x32\x36\x34\x20\x30\x20\x30\x20\x30\x2e\x39\x39\x36\x32\x36\x34\
+\x20\x35\x38\x2e\x34\x36\x36\x39\x20\x31\x31\x37\x2e\x38\x35\x38\
+\x29\x27\x3e\x0a\x3c\x70\x61\x74\x68\x20\x64\x3d\x27\x4d\x20\x33\
+\x2e\x39\x35\x37\x33\x35\x20\x2d\x33\x32\x2e\x31\x32\x4c\x20\x31\
+\x31\x2e\x39\x30\x33\x36\x20\x2d\x35\x31\x2e\x33\x30\x33\x39\x4c\
+\x20\x35\x36\x2e\x31\x35\x32\x33\x20\x2d\x34\x32\x2e\x35\x30\x32\
+\x32\x4c\x20\x34\x30\x2e\x36\x37\x39\x34\x20\x2d\x32\x32\x2e\x35\
+\x32\x38\x31\x4c\x20\x33\x2e\x39\x35\x37\x33\x35\x20\x2d\x33\x32\
+\x2e\x31\x32\x5a\x27\x20\x66\x69\x6c\x6c\x3d\x27\x6e\x6f\x6e\x65\
+\x27\x20\x73\x74\x72\x6f\x6b\x65\x3d\x27\x23\x30\x30\x30\x30\x30\
+\x30\x27\x20\x73\x74\x72\x6f\x6b\x65\x2d\x6c\x69\x6e\x65\x63\x61\
+\x70\x3d\x27\x72\x6f\x75\x6e\x64\x27\x20\x73\x74\x72\x6f\x6b\x65\
+\x2d\x6c\x69\x6e\x65\x6a\x6f\x69\x6e\x3d\x27\x72\x6f\x75\x6e\x64\
+\x27\x20\x73\x74\x72\x6f\x6b\x65\x2d\x6d\x69\x74\x65\x72\x6c\x69\
+\x6d\x69\x74\x3d\x27\x31\x30\x2e\x30\x33\x37\x35\x27\x20\x73\x74\
+\x72\x6f\x6b\x65\x2d\x77\x69\x64\x74\x68\x3d\x27\x32\x2e\x35\x30\
+\x39\x33\x37\x27\x2f\x3e\x0a\x3c\x2f\x67\x3e\x0a\x3c\x67\x20\x74\
+\x72\x61\x6e\x73\x66\x6f\x72\x6d\x3d\x27\x6d\x61\x74\x72\x69\x78\
+\x28\x30\x2e\x39\x39\x36\x32\x36\x34\x20\x30\x20\x30\x20\x30\x2e\
+\x39\x39\x36\x32\x36\x34\x20\x35\x38\x2e\x34\x36\x36\x39\x20\x31\
+\x31\x37\x2e\x38\x35\x38\x29\x27\x3e\x0a\x3c\x63\x69\x72\x63\x6c\
+\x65\x20\x63\x78\x3d\x27\x33\x2e\x39\x35\x37\x33\x35\x27\x20\x63\
+\x79\x3d\x27\x2d\x33\x32\x2e\x31\x32\x27\x20\x66\x69\x6c\x6c\x3d\
+\x27\x23\x30\x30\x30\x30\x30\x30\x27\x20\x72\x3d\x27\x36\x2e\x30\
+\x32\x32\x35\x27\x2f\x3e\x0a\x3c\x2f\x67\x3e\x0a\x3c\x67\x20\x74\
+\x72\x61\x6e\x73\x66\x6f\x72\x6d\x3d\x27\x6d\x61\x74\x72\x69\x78\
+\x28\x30\x2e\x39\x39\x36\x32\x36\x34\x20\x30\x20\x30\x20\x30\x2e\
+\x39\x39\x36\x32\x36\x34\x20\x35\x38\x2e\x34\x36\x36\x39\x20\x31\
+\x31\x37\x2e\x38\x35\x38\x29\x27\x3e\x0a\x3c\x63\x69\x72\x63\x6c\
+\x65\x20\x63\x78\x3d\x27\x31\x31\x2e\x39\x30\x33\x36\x27\x20\x63\
+\x79\x3d\x27\x2d\x35\x31\x2e\x33\x30\x33\x39\x27\x20\x66\x69\x6c\
+\x6c\x3d\x27\x23\x30\x30\x30\x30\x30\x30\x27\x20\x72\x3d\x27\x36\
+\x2e\x30\x32\x32\x35\x27\x2f\x3e\x0a\x3c\x2f\x67\x3e\x0a\x3c\x67\
+\x20\x74\x72\x61\x6e\x73\x66\x6f\x72\x6d\x3d\x27\x6d\x61\x74\x72\
+\x69\x78\x28\x30\x2e\x39\x39\x36\x32\x36\x34\x20\x30\x20\x30\x20\
+\x30\x2e\x39\x39\x36\x32\x36\x34\x20\x35\x38\x2e\x34\x36\x36\x39\
+\x20\x31\x31\x37\x2e\x38\x35\x38\x29\x27\x3e\x0a\x3c\x63\x69\x72\
+\x63\x6c\x65\x20\x63\x78\x3d\x27\x35\x36\x2e\x31\x35\x32\x33\x27\
+\x20\x63\x79\x3d\x27\x2d\x34\x32\x2e\x35\x30\x32\x32\x27\x20\x66\
+\x69\x6c\x6c\x3d\x27\x23\x30\x30\x30\x30\x30\x30\x27\x20\x72\x3d\
+\x27\x36\x2e\x30\x32\x32\x35\x27\x2f\x3e\x0a\x3c\x2f\x67\x3e\x0a\
+\x3c\x67\x20\x74\x72\x61\x6e\x73\x66\x6f\x72\x6d\x3d\x27\x6d\x61\
+\x74\x72\x69\x78\x28\x30\x2e\x39\x39\x36\x32\x36\x34\x20\x30\x20\
+\x30\x20\x30\x2e\x39\x39\x36\x32\x36\x34\x20\x35\x38\x2e\x34\x36\
+\x36\x39\x20\x31\x31\x37\x2e\x38\x35\x38\x29\x27\x3e\x0a\x3c\x63\
+\x69\x72\x63\x6c\x65\x20\x63\x78\x3d\x27\x34\x30\x2e\x36\x37\x39\
+\x34\x27\x20\x63\x79\x3d\x27\x2d\x32\x32\x2e\x35\x32\x38\x31\x27\
+\x20\x66\x69\x6c\x6c\x3d\x27\x23\x30\x30\x30\x30\x30\x30\x27\x20\
+\x72\x3d\x27\x36\x2e\x30\x32\x32\x35\x27\x2f\x3e\x0a\x3c\x2f\x67\
+\x3e\x0a\x3c\x2f\x67\x3e\x0a\x3c\x2f\x73\x76\x67\x3e\
+\x00\x00\x02\x7f\
\x3c\
\x3f\x78\x6d\x6c\x20\x76\x65\x72\x73\x69\x6f\x6e\x3d\x22\x31\x2e\
\x30\x22\x20\x65\x6e\x63\x6f\x64\x69\x6e\x67\x3d\x22\x75\x74\x66\
\x2d\x38\x22\x3f\x3e\x0d\x0a\x3c\x21\x2d\x2d\x20\x47\x65\x6e\x65\
\x72\x61\x74\x6f\x72\x3a\x20\x41\x64\x6f\x62\x65\x20\x49\x6c\x6c\
-\x75\x73\x74\x72\x61\x74\x6f\x72\x20\x31\x38\x2e\x31\x2e\x31\x2c\
+\x75\x73\x74\x72\x61\x74\x6f\x72\x20\x31\x36\x2e\x32\x2e\x31\x2c\
\x20\x53\x56\x47\x20\x45\x78\x70\x6f\x72\x74\x20\x50\x6c\x75\x67\
\x2d\x49\x6e\x20\x2e\x20\x53\x56\x47\x20\x56\x65\x72\x73\x69\x6f\
\x6e\x3a\x20\x36\x2e\x30\x30\x20\x42\x75\x69\x6c\x64\x20\x30\x29\
@@ -765,55 +530,104 @@ qt_resource_data = b"\
\x73\x2f\x53\x56\x47\x2f\x31\x2e\x31\x2f\x44\x54\x44\x2f\x73\x76\
\x67\x31\x31\x2e\x64\x74\x64\x22\x3e\x0d\x0a\x3c\x73\x76\x67\x20\
\x76\x65\x72\x73\x69\x6f\x6e\x3d\x22\x31\x2e\x31\x22\x20\x69\x64\
-\x3d\x22\x43\x68\x65\x76\x72\x6f\x6e\x5f\x63\x69\x72\x63\x6c\x65\
-\x64\x5f\x6c\x65\x66\x74\x22\x20\x78\x6d\x6c\x6e\x73\x3d\x22\x68\
-\x74\x74\x70\x3a\x2f\x2f\x77\x77\x77\x2e\x77\x33\x2e\x6f\x72\x67\
-\x2f\x32\x30\x30\x30\x2f\x73\x76\x67\x22\x20\x78\x6d\x6c\x6e\x73\
-\x3a\x78\x6c\x69\x6e\x6b\x3d\x22\x68\x74\x74\x70\x3a\x2f\x2f\x77\
-\x77\x77\x2e\x77\x33\x2e\x6f\x72\x67\x2f\x31\x39\x39\x39\x2f\x78\
-\x6c\x69\x6e\x6b\x22\x0d\x0a\x09\x20\x78\x3d\x22\x30\x70\x78\x22\
-\x20\x79\x3d\x22\x30\x70\x78\x22\x20\x76\x69\x65\x77\x42\x6f\x78\
+\x3d\x22\x4c\x61\x79\x65\x72\x5f\x31\x22\x20\x78\x6d\x6c\x6e\x73\
+\x3d\x22\x68\x74\x74\x70\x3a\x2f\x2f\x77\x77\x77\x2e\x77\x33\x2e\
+\x6f\x72\x67\x2f\x32\x30\x30\x30\x2f\x73\x76\x67\x22\x20\x78\x6d\
+\x6c\x6e\x73\x3a\x78\x6c\x69\x6e\x6b\x3d\x22\x68\x74\x74\x70\x3a\
+\x2f\x2f\x77\x77\x77\x2e\x77\x33\x2e\x6f\x72\x67\x2f\x31\x39\x39\
+\x39\x2f\x78\x6c\x69\x6e\x6b\x22\x20\x78\x3d\x22\x30\x70\x78\x22\
+\x20\x79\x3d\x22\x30\x70\x78\x22\x0d\x0a\x09\x20\x77\x69\x64\x74\
+\x68\x3d\x22\x35\x31\x32\x70\x78\x22\x20\x68\x65\x69\x67\x68\x74\
+\x3d\x22\x35\x31\x32\x70\x78\x22\x20\x76\x69\x65\x77\x42\x6f\x78\
+\x3d\x22\x30\x20\x30\x20\x35\x31\x32\x20\x35\x31\x32\x22\x20\x73\
+\x74\x79\x6c\x65\x3d\x22\x65\x6e\x61\x62\x6c\x65\x2d\x62\x61\x63\
+\x6b\x67\x72\x6f\x75\x6e\x64\x3a\x6e\x65\x77\x20\x30\x20\x30\x20\
+\x35\x31\x32\x20\x35\x31\x32\x3b\x22\x20\x78\x6d\x6c\x3a\x73\x70\
+\x61\x63\x65\x3d\x22\x70\x72\x65\x73\x65\x72\x76\x65\x22\x3e\x0d\
+\x0a\x3c\x70\x6f\x6c\x79\x67\x6f\x6e\x20\x70\x6f\x69\x6e\x74\x73\
+\x3d\x22\x32\x38\x38\x2c\x39\x36\x20\x33\x33\x37\x2e\x39\x2c\x31\
+\x34\x35\x2e\x39\x20\x32\x37\x34\x2c\x32\x30\x39\x2e\x37\x20\x32\
+\x37\x34\x2c\x32\x30\x39\x2e\x37\x20\x31\x34\x35\x2e\x39\x2c\x33\
+\x33\x37\x2e\x39\x20\x39\x36\x2c\x32\x38\x38\x20\x39\x36\x2c\x34\
+\x31\x36\x20\x32\x32\x34\x2c\x34\x31\x36\x20\x31\x37\x34\x2e\x31\
+\x2c\x33\x36\x36\x2e\x31\x20\x33\x35\x37\x2e\x34\x2c\x31\x38\x32\
+\x2e\x39\x20\x33\x36\x36\x2e\x31\x2c\x31\x37\x34\x2e\x31\x20\x0d\
+\x0a\x09\x34\x31\x36\x2c\x32\x32\x34\x20\x34\x31\x36\x2c\x39\x36\
+\x20\x22\x2f\x3e\x0d\x0a\x3c\x2f\x73\x76\x67\x3e\x0d\x0a\
+\x00\x00\x04\x64\
+\x3c\
+\x3f\x78\x6d\x6c\x20\x76\x65\x72\x73\x69\x6f\x6e\x3d\x22\x31\x2e\
+\x30\x22\x20\x65\x6e\x63\x6f\x64\x69\x6e\x67\x3d\x22\x75\x74\x66\
+\x2d\x38\x22\x3f\x3e\x0d\x0a\x3c\x21\x2d\x2d\x20\x47\x65\x6e\x65\
+\x72\x61\x74\x6f\x72\x3a\x20\x41\x64\x6f\x62\x65\x20\x49\x6c\x6c\
+\x75\x73\x74\x72\x61\x74\x6f\x72\x20\x31\x36\x2e\x32\x2e\x31\x2c\
+\x20\x53\x56\x47\x20\x45\x78\x70\x6f\x72\x74\x20\x50\x6c\x75\x67\
+\x2d\x49\x6e\x20\x2e\x20\x53\x56\x47\x20\x56\x65\x72\x73\x69\x6f\
+\x6e\x3a\x20\x36\x2e\x30\x30\x20\x42\x75\x69\x6c\x64\x20\x30\x29\
+\x20\x20\x2d\x2d\x3e\x0d\x0a\x3c\x21\x44\x4f\x43\x54\x59\x50\x45\
+\x20\x73\x76\x67\x20\x50\x55\x42\x4c\x49\x43\x20\x22\x2d\x2f\x2f\
+\x57\x33\x43\x2f\x2f\x44\x54\x44\x20\x53\x56\x47\x20\x31\x2e\x31\
+\x2f\x2f\x45\x4e\x22\x20\x22\x68\x74\x74\x70\x3a\x2f\x2f\x77\x77\
+\x77\x2e\x77\x33\x2e\x6f\x72\x67\x2f\x47\x72\x61\x70\x68\x69\x63\
+\x73\x2f\x53\x56\x47\x2f\x31\x2e\x31\x2f\x44\x54\x44\x2f\x73\x76\
+\x67\x31\x31\x2e\x64\x74\x64\x22\x3e\x0d\x0a\x3c\x73\x76\x67\x20\
+\x76\x65\x72\x73\x69\x6f\x6e\x3d\x22\x31\x2e\x31\x22\x20\x69\x64\
+\x3d\x22\x4c\x61\x79\x65\x72\x5f\x31\x22\x20\x78\x6d\x6c\x6e\x73\
+\x3d\x22\x68\x74\x74\x70\x3a\x2f\x2f\x77\x77\x77\x2e\x77\x33\x2e\
+\x6f\x72\x67\x2f\x32\x30\x30\x30\x2f\x73\x76\x67\x22\x20\x78\x6d\
+\x6c\x6e\x73\x3a\x78\x6c\x69\x6e\x6b\x3d\x22\x68\x74\x74\x70\x3a\
+\x2f\x2f\x77\x77\x77\x2e\x77\x33\x2e\x6f\x72\x67\x2f\x31\x39\x39\
+\x39\x2f\x78\x6c\x69\x6e\x6b\x22\x20\x78\x3d\x22\x30\x70\x78\x22\
+\x20\x79\x3d\x22\x30\x70\x78\x22\x0d\x0a\x09\x20\x77\x69\x64\x74\
+\x68\x3d\x22\x35\x31\x32\x70\x78\x22\x20\x68\x65\x69\x67\x68\x74\
+\x3d\x22\x35\x31\x32\x70\x78\x22\x20\x76\x69\x65\x77\x42\x6f\x78\
\x3d\x22\x30\x20\x30\x20\x35\x31\x32\x20\x35\x31\x32\x22\x20\x65\
\x6e\x61\x62\x6c\x65\x2d\x62\x61\x63\x6b\x67\x72\x6f\x75\x6e\x64\
\x3d\x22\x6e\x65\x77\x20\x30\x20\x30\x20\x35\x31\x32\x20\x35\x31\
\x32\x22\x20\x78\x6d\x6c\x3a\x73\x70\x61\x63\x65\x3d\x22\x70\x72\
-\x65\x73\x65\x72\x76\x65\x22\x3e\x0d\x0a\x3c\x67\x20\x74\x72\x61\
-\x6e\x73\x66\x6f\x72\x6d\x3d\x27\x6d\x61\x74\x72\x69\x78\x28\x32\
-\x34\x20\x30\x20\x30\x20\x32\x34\x20\x30\x20\x30\x29\x27\x3e\x0d\
-\x0a\x3c\x70\x61\x74\x68\x20\x64\x3d\x22\x4d\x31\x31\x2e\x33\x30\
-\x32\x2c\x36\x2e\x37\x37\x36\x63\x2d\x30\x2e\x31\x39\x36\x2d\x30\
-\x2e\x31\x39\x37\x2d\x30\x2e\x35\x31\x35\x2d\x30\x2e\x31\x39\x37\
-\x2d\x30\x2e\x37\x31\x2c\x30\x4c\x37\x2e\x37\x38\x35\x2c\x39\x2e\
-\x36\x34\x31\x63\x2d\x30\x2e\x31\x39\x36\x2c\x30\x2e\x31\x39\x39\
-\x2d\x30\x2e\x31\x39\x36\x2c\x30\x2e\x35\x32\x2c\x30\x2c\x30\x2e\
-\x37\x31\x37\x6c\x32\x2e\x38\x30\x37\x2c\x32\x2e\x38\x36\x34\x0d\
-\x0a\x09\x63\x30\x2e\x31\x39\x35\x2c\x30\x2e\x31\x39\x39\x2c\x30\
-\x2e\x35\x31\x34\x2c\x30\x2e\x31\x39\x38\x2c\x30\x2e\x37\x31\x2c\
-\x30\x63\x30\x2e\x31\x39\x36\x2d\x30\x2e\x31\x39\x37\x2c\x30\x2e\
-\x31\x39\x36\x2d\x30\x2e\x35\x31\x38\x2c\x30\x2d\x30\x2e\x37\x31\
-\x37\x4c\x39\x2c\x31\x30\x6c\x32\x2e\x33\x30\x32\x2d\x32\x2e\x35\
-\x30\x36\x43\x31\x31\x2e\x34\x39\x38\x2c\x37\x2e\x32\x39\x36\x2c\
-\x31\x31\x2e\x34\x39\x38\x2c\x36\x2e\x39\x37\x36\x2c\x31\x31\x2e\
-\x33\x30\x32\x2c\x36\x2e\x37\x37\x36\x7a\x0d\x0a\x09\x20\x4d\x31\
-\x30\x2c\x30\x2e\x34\x63\x2d\x35\x2e\x33\x30\x32\x2c\x30\x2d\x39\
-\x2e\x36\x2c\x34\x2e\x32\x39\x38\x2d\x39\x2e\x36\x2c\x39\x2e\x36\
-\x63\x30\x2c\x35\x2e\x33\x30\x33\x2c\x34\x2e\x32\x39\x38\x2c\x39\
-\x2e\x36\x2c\x39\x2e\x36\x2c\x39\x2e\x36\x73\x39\x2e\x36\x2d\x34\
-\x2e\x32\x39\x37\x2c\x39\x2e\x36\x2d\x39\x2e\x36\x43\x31\x39\x2e\
-\x36\x2c\x34\x2e\x36\x39\x38\x2c\x31\x35\x2e\x33\x30\x32\x2c\x30\
-\x2e\x34\x2c\x31\x30\x2c\x30\x2e\x34\x7a\x20\x4d\x31\x30\x2c\x31\
-\x38\x2e\x33\x35\x34\x0d\x0a\x09\x63\x2d\x34\x2e\x36\x31\x35\x2c\
-\x30\x2d\x38\x2e\x33\x35\x34\x2d\x33\x2e\x37\x34\x2d\x38\x2e\x33\
-\x35\x34\x2d\x38\x2e\x33\x35\x34\x63\x30\x2d\x34\x2e\x36\x31\x34\
-\x2c\x33\x2e\x37\x33\x39\x2d\x38\x2e\x33\x35\x34\x2c\x38\x2e\x33\
-\x35\x34\x2d\x38\x2e\x33\x35\x34\x63\x34\x2e\x36\x31\x33\x2c\x30\
-\x2c\x38\x2e\x33\x35\x34\x2c\x33\x2e\x37\x34\x2c\x38\x2e\x33\x35\
-\x34\x2c\x38\x2e\x33\x35\x34\x0d\x0a\x09\x43\x31\x38\x2e\x33\x35\
-\x34\x2c\x31\x34\x2e\x36\x31\x34\x2c\x31\x34\x2e\x36\x31\x33\x2c\
-\x31\x38\x2e\x33\x35\x34\x2c\x31\x30\x2c\x31\x38\x2e\x33\x35\x34\
-\x7a\x22\x2f\x3e\x0d\x0a\x3c\x2f\x67\x3e\x0d\x0a\x3c\x2f\x73\x76\
-\x67\x3e\x0d\x0a\
-\x00\x00\x02\xc9\
+\x65\x73\x65\x72\x76\x65\x22\x3e\x0d\x0a\x3c\x67\x20\x69\x64\x3d\
+\x22\x49\x63\x6f\x6e\x22\x3e\x0d\x0a\x09\x3c\x67\x3e\x0d\x0a\x09\
+\x09\x3c\x70\x61\x74\x68\x20\x64\x3d\x22\x4d\x32\x35\x36\x2c\x31\
+\x37\x36\x63\x2d\x34\x34\x2e\x30\x30\x34\x2c\x30\x2d\x38\x30\x2e\
+\x30\x30\x31\x2c\x33\x36\x2d\x38\x30\x2e\x30\x30\x31\x2c\x38\x30\
+\x63\x30\x2c\x34\x34\x2e\x30\x30\x34\x2c\x33\x35\x2e\x39\x39\x37\
+\x2c\x38\x30\x2c\x38\x30\x2e\x30\x30\x31\x2c\x38\x30\x63\x34\x34\
+\x2e\x30\x30\x35\x2c\x30\x2c\x37\x39\x2e\x39\x39\x39\x2d\x33\x35\
+\x2e\x39\x39\x36\x2c\x37\x39\x2e\x39\x39\x39\x2d\x38\x30\x0d\x0a\
+\x09\x09\x09\x43\x33\x33\x35\x2e\x39\x39\x39\x2c\x32\x31\x32\x2c\
+\x33\x30\x30\x2e\x30\x30\x35\x2c\x31\x37\x36\x2c\x32\x35\x36\x2c\
+\x31\x37\x36\x7a\x20\x4d\x34\x34\x36\x2e\x39\x33\x38\x2c\x32\x33\
+\x34\x2e\x36\x36\x37\x63\x2d\x39\x2e\x36\x30\x35\x2d\x38\x38\x2e\
+\x35\x33\x31\x2d\x38\x31\x2e\x30\x37\x34\x2d\x31\x36\x30\x2d\x31\
+\x36\x39\x2e\x36\x30\x35\x2d\x31\x36\x39\x2e\x35\x39\x39\x56\x33\
+\x32\x68\x2d\x34\x32\x2e\x36\x36\x36\x76\x33\x33\x2e\x30\x36\x37\
+\x0d\x0a\x09\x09\x09\x63\x2d\x38\x38\x2e\x35\x33\x31\x2c\x39\x2e\
+\x35\x39\x39\x2d\x31\x36\x30\x2c\x38\x31\x2e\x30\x36\x38\x2d\x31\
+\x36\x39\x2e\x36\x30\x34\x2c\x31\x36\x39\x2e\x35\x39\x39\x48\x33\
+\x32\x76\x34\x32\x2e\x36\x36\x37\x68\x33\x33\x2e\x30\x36\x32\x63\
+\x39\x2e\x36\x30\x34\x2c\x38\x38\x2e\x35\x33\x31\x2c\x38\x31\x2e\
+\x30\x37\x32\x2c\x31\x36\x30\x2c\x31\x36\x39\x2e\x36\x30\x34\x2c\
+\x31\x36\x39\x2e\x36\x30\x34\x56\x34\x38\x30\x68\x34\x32\x2e\x36\
+\x36\x36\x76\x2d\x33\x33\x2e\x30\x36\x32\x0d\x0a\x09\x09\x09\x63\
+\x38\x38\x2e\x35\x33\x31\x2d\x39\x2e\x36\x30\x34\x2c\x31\x36\x30\
+\x2d\x38\x31\x2e\x30\x37\x33\x2c\x31\x36\x39\x2e\x36\x30\x35\x2d\
+\x31\x36\x39\x2e\x36\x30\x34\x48\x34\x38\x30\x76\x2d\x34\x32\x2e\
+\x36\x36\x37\x48\x34\x34\x36\x2e\x39\x33\x38\x7a\x20\x4d\x32\x35\
+\x36\x2c\x34\x30\x35\x2e\x33\x33\x33\x63\x2d\x38\x32\x2e\x31\x33\
+\x37\x2c\x30\x2d\x31\x34\x39\x2e\x33\x33\x34\x2d\x36\x37\x2e\x31\
+\x39\x38\x2d\x31\x34\x39\x2e\x33\x33\x34\x2d\x31\x34\x39\x2e\x33\
+\x33\x33\x0d\x0a\x09\x09\x09\x63\x30\x2d\x38\x32\x2e\x31\x33\x36\
+\x2c\x36\x37\x2e\x31\x39\x37\x2d\x31\x34\x39\x2e\x33\x33\x33\x2c\
+\x31\x34\x39\x2e\x33\x33\x34\x2d\x31\x34\x39\x2e\x33\x33\x33\x63\
+\x38\x32\x2e\x31\x33\x35\x2c\x30\x2c\x31\x34\x39\x2e\x33\x33\x32\
+\x2c\x36\x37\x2e\x31\x39\x38\x2c\x31\x34\x39\x2e\x33\x33\x32\x2c\
+\x31\x34\x39\x2e\x33\x33\x33\x43\x34\x30\x35\x2e\x33\x33\x32\x2c\
+\x33\x33\x38\x2e\x31\x33\x35\x2c\x33\x33\x38\x2e\x31\x33\x35\x2c\
+\x34\x30\x35\x2e\x33\x33\x33\x2c\x32\x35\x36\x2c\x34\x30\x35\x2e\
+\x33\x33\x33\x7a\x0d\x0a\x09\x09\x09\x22\x2f\x3e\x0d\x0a\x09\x3c\
+\x2f\x67\x3e\x0d\x0a\x3c\x2f\x67\x3e\x0d\x0a\x3c\x2f\x73\x76\x67\
+\x3e\x0d\x0a\
+\x00\x00\x02\xa2\
\x3c\
\x3f\x78\x6d\x6c\x20\x76\x65\x72\x73\x69\x6f\x6e\x3d\x22\x31\x2e\
\x30\x22\x20\x65\x6e\x63\x6f\x64\x69\x6e\x67\x3d\x22\x75\x74\x66\
@@ -840,27 +654,25 @@ qt_resource_data = b"\
\x20\x79\x3d\x22\x30\x70\x78\x22\x0d\x0a\x09\x20\x77\x69\x64\x74\
\x68\x3d\x22\x35\x31\x32\x70\x78\x22\x20\x68\x65\x69\x67\x68\x74\
\x3d\x22\x35\x31\x32\x70\x78\x22\x20\x76\x69\x65\x77\x42\x6f\x78\
-\x3d\x22\x30\x20\x30\x20\x35\x31\x32\x20\x35\x31\x32\x22\x20\x73\
-\x74\x79\x6c\x65\x3d\x22\x65\x6e\x61\x62\x6c\x65\x2d\x62\x61\x63\
-\x6b\x67\x72\x6f\x75\x6e\x64\x3a\x6e\x65\x77\x20\x30\x20\x30\x20\
-\x35\x31\x32\x20\x35\x31\x32\x3b\x22\x20\x78\x6d\x6c\x3a\x73\x70\
-\x61\x63\x65\x3d\x22\x70\x72\x65\x73\x65\x72\x76\x65\x22\x3e\x0d\
-\x0a\x3c\x70\x6f\x6c\x79\x67\x6f\x6e\x20\x70\x6f\x69\x6e\x74\x73\
-\x3d\x22\x34\x38\x30\x2c\x32\x35\x36\x20\x33\x38\x34\x2c\x31\x36\
-\x30\x20\x33\x38\x34\x2c\x32\x33\x36\x20\x32\x37\x36\x2c\x32\x33\
-\x36\x20\x32\x37\x36\x2c\x31\x32\x38\x20\x33\x35\x32\x2c\x31\x32\
-\x38\x20\x32\x35\x36\x2c\x33\x32\x20\x31\x36\x30\x2c\x31\x32\x38\
-\x20\x32\x33\x36\x2c\x31\x32\x38\x20\x32\x33\x36\x2c\x32\x33\x36\
-\x20\x31\x32\x38\x2c\x32\x33\x36\x20\x31\x32\x38\x2c\x31\x36\x30\
-\x20\x33\x32\x2c\x32\x35\x36\x20\x31\x32\x38\x2c\x33\x35\x32\x20\
-\x0d\x0a\x09\x31\x32\x38\x2c\x32\x37\x36\x20\x32\x33\x36\x2c\x32\
-\x37\x36\x20\x32\x33\x36\x2c\x33\x38\x34\x20\x31\x36\x30\x2c\x33\
-\x38\x34\x20\x32\x35\x36\x2c\x34\x38\x30\x20\x33\x35\x32\x2c\x33\
-\x38\x34\x20\x32\x37\x35\x2e\x38\x2c\x33\x38\x34\x20\x32\x37\x35\
-\x2e\x34\x2c\x32\x37\x35\x2e\x35\x20\x33\x38\x34\x2c\x32\x37\x35\
-\x2e\x38\x20\x33\x38\x34\x2c\x33\x35\x32\x20\x22\x2f\x3e\x0d\x0a\
-\x3c\x2f\x73\x76\x67\x3e\x0d\x0a\
-\x00\x00\x05\xca\
+\x3d\x22\x30\x20\x30\x20\x35\x31\x32\x20\x35\x31\x32\x22\x20\x65\
+\x6e\x61\x62\x6c\x65\x2d\x62\x61\x63\x6b\x67\x72\x6f\x75\x6e\x64\
+\x3d\x22\x6e\x65\x77\x20\x30\x20\x30\x20\x35\x31\x32\x20\x35\x31\
+\x32\x22\x20\x78\x6d\x6c\x3a\x73\x70\x61\x63\x65\x3d\x22\x70\x72\
+\x65\x73\x65\x72\x76\x65\x22\x3e\x0d\x0a\x3c\x67\x3e\x0d\x0a\x09\
+\x3c\x70\x61\x74\x68\x20\x64\x3d\x22\x4d\x31\x32\x38\x2c\x34\x30\
+\x35\x2e\x34\x32\x39\x43\x31\x32\x38\x2c\x34\x32\x38\x2e\x38\x34\
+\x36\x2c\x31\x34\x37\x2e\x31\x39\x38\x2c\x34\x34\x38\x2c\x31\x37\
+\x30\x2e\x36\x36\x37\x2c\x34\x34\x38\x68\x31\x37\x30\x2e\x36\x36\
+\x37\x43\x33\x36\x34\x2e\x38\x30\x32\x2c\x34\x34\x38\x2c\x33\x38\
+\x34\x2c\x34\x32\x38\x2e\x38\x34\x36\x2c\x33\x38\x34\x2c\x34\x30\
+\x35\x2e\x34\x32\x39\x56\x31\x36\x30\x48\x31\x32\x38\x56\x34\x30\
+\x35\x2e\x34\x32\x39\x7a\x20\x4d\x34\x31\x36\x2c\x39\x36\x0d\x0a\
+\x09\x09\x68\x2d\x38\x30\x6c\x2d\x32\x36\x2e\x37\x38\x35\x2d\x33\
+\x32\x48\x32\x30\x32\x2e\x37\x38\x36\x4c\x31\x37\x36\x2c\x39\x36\
+\x48\x39\x36\x76\x33\x32\x68\x33\x32\x30\x56\x39\x36\x7a\x22\x2f\
+\x3e\x0d\x0a\x3c\x2f\x67\x3e\x0d\x0a\x3c\x2f\x73\x76\x67\x3e\x0d\
+\x0a\
+\x00\x00\x02\x79\
\x3c\
\x3f\x78\x6d\x6c\x20\x76\x65\x72\x73\x69\x6f\x6e\x3d\x22\x31\x2e\
\x30\x22\x20\x65\x6e\x63\x6f\x64\x69\x6e\x67\x3d\x22\x75\x74\x66\
@@ -891,77 +703,56 @@ qt_resource_data = b"\
\x6e\x61\x62\x6c\x65\x2d\x62\x61\x63\x6b\x67\x72\x6f\x75\x6e\x64\
\x3d\x22\x6e\x65\x77\x20\x30\x20\x30\x20\x35\x31\x32\x20\x35\x31\
\x32\x22\x20\x78\x6d\x6c\x3a\x73\x70\x61\x63\x65\x3d\x22\x70\x72\
-\x65\x73\x65\x72\x76\x65\x22\x3e\x0d\x0a\x3c\x70\x61\x74\x68\x20\
-\x64\x3d\x22\x4d\x34\x35\x30\x2e\x36\x37\x39\x2c\x32\x37\x33\x2e\
-\x35\x63\x2d\x31\x34\x2e\x35\x38\x35\x2d\x31\x34\x2e\x35\x37\x37\
-\x2d\x33\x36\x2e\x30\x35\x34\x2d\x31\x35\x2e\x38\x39\x2d\x35\x30\
-\x2e\x36\x33\x39\x2d\x31\x2e\x33\x31\x32\x6c\x2d\x34\x31\x2e\x36\
-\x38\x37\x2c\x34\x31\x2e\x36\x36\x34\x63\x2d\x31\x30\x2e\x38\x35\
-\x32\x2c\x31\x30\x2e\x38\x33\x36\x2d\x32\x33\x2e\x39\x33\x2c\x31\
-\x30\x2e\x38\x35\x39\x2d\x33\x31\x2e\x35\x36\x34\x2c\x31\x2e\x38\
-\x35\x32\x0d\x0a\x09\x63\x2d\x35\x2e\x30\x35\x37\x2d\x35\x2e\x39\
-\x36\x38\x2d\x33\x2e\x30\x36\x31\x2d\x32\x34\x2e\x33\x37\x34\x2d\
-\x31\x2e\x36\x34\x34\x2d\x33\x36\x2e\x30\x34\x39\x6c\x32\x30\x2e\
-\x39\x30\x37\x2d\x31\x37\x31\x2e\x38\x34\x39\x63\x31\x2e\x38\x36\
-\x37\x2d\x31\x35\x2e\x33\x35\x33\x2d\x39\x2e\x30\x37\x2d\x33\x30\
-\x2e\x31\x38\x35\x2d\x32\x34\x2e\x34\x33\x2d\x33\x32\x2e\x30\x35\
-\x31\x0d\x0a\x09\x63\x2d\x31\x35\x2e\x33\x35\x38\x2d\x31\x2e\x38\
-\x36\x37\x2d\x32\x39\x2e\x33\x32\x32\x2c\x39\x2e\x39\x33\x39\x2d\
-\x33\x31\x2e\x31\x39\x31\x2c\x32\x35\x2e\x32\x38\x39\x4c\x32\x36\
-\x37\x2e\x33\x37\x2c\x32\x33\x36\x2e\x30\x32\x31\x63\x2d\x31\x2e\
-\x32\x30\x35\x2c\x33\x2e\x33\x35\x38\x2d\x33\x2e\x37\x39\x2c\x33\
-\x2e\x39\x33\x38\x2d\x34\x2e\x30\x38\x31\x2d\x30\x2e\x35\x38\x32\
-\x4c\x32\x35\x35\x2e\x34\x34\x2c\x36\x30\x0d\x0a\x09\x63\x30\x2d\
-\x31\x35\x2e\x34\x36\x35\x2d\x31\x32\x2e\x35\x34\x32\x2d\x32\x38\
-\x2d\x32\x38\x2e\x30\x31\x34\x2d\x32\x38\x63\x2d\x31\x35\x2e\x34\
-\x37\x33\x2c\x30\x2d\x32\x38\x2e\x30\x31\x35\x2c\x31\x32\x2e\x35\
-\x33\x35\x2d\x32\x38\x2e\x30\x31\x35\x2c\x32\x38\x6c\x2d\x30\x2e\
-\x35\x35\x32\x2c\x31\x37\x36\x2e\x37\x35\x32\x63\x30\x2e\x31\x34\
-\x36\x2c\x32\x2e\x30\x34\x2d\x31\x2e\x36\x30\x34\x2c\x32\x2e\x36\
-\x32\x34\x2d\x31\x2e\x39\x32\x2c\x30\x2e\x32\x39\x34\x4c\x31\x37\
-\x32\x2e\x30\x31\x36\x2c\x39\x39\x2e\x30\x37\x37\x0d\x0a\x09\x63\
-\x2d\x32\x2e\x37\x35\x2d\x31\x35\x2e\x32\x31\x39\x2d\x31\x37\x2e\
-\x33\x32\x33\x2d\x32\x36\x2e\x32\x30\x33\x2d\x33\x32\x2e\x35\x34\
-\x38\x2d\x32\x33\x2e\x34\x35\x33\x63\x2d\x31\x35\x2e\x32\x32\x37\
-\x2c\x32\x2e\x37\x34\x38\x2d\x32\x35\x2e\x33\x33\x39\x2c\x31\x38\
-\x2e\x31\x38\x37\x2d\x32\x32\x2e\x35\x39\x31\x2c\x33\x33\x2e\x34\
-\x30\x33\x6c\x32\x32\x2e\x31\x39\x33\x2c\x31\x36\x31\x2e\x34\x35\
-\x35\x0d\x0a\x09\x63\x30\x2e\x30\x32\x33\x2c\x32\x2e\x38\x37\x32\
-\x2d\x30\x2e\x39\x34\x31\x2c\x34\x2e\x35\x31\x33\x2d\x32\x2e\x33\
-\x30\x38\x2c\x30\x2e\x38\x33\x31\x6c\x2d\x33\x33\x2e\x31\x30\x39\
-\x2d\x38\x38\x2e\x35\x31\x37\x63\x2d\x35\x2e\x31\x38\x2d\x31\x34\
-\x2e\x35\x37\x32\x2d\x32\x31\x2e\x31\x39\x36\x2d\x32\x33\x2e\x30\
-\x36\x35\x2d\x33\x35\x2e\x37\x37\x36\x2d\x31\x37\x2e\x38\x38\x39\
-\x0d\x0a\x09\x63\x2d\x31\x34\x2e\x35\x37\x39\x2c\x35\x2e\x31\x37\
-\x37\x2d\x32\x32\x2e\x32\x30\x31\x2c\x32\x32\x2e\x30\x36\x31\x2d\
-\x31\x37\x2e\x30\x32\x33\x2c\x33\x36\x2e\x36\x33\x31\x6c\x35\x38\
-\x2e\x30\x34\x32\x2c\x31\x38\x39\x2e\x36\x32\x35\x63\x30\x2e\x33\
-\x30\x33\x2c\x31\x2e\x30\x34\x36\x2c\x30\x2e\x36\x32\x34\x2c\x32\
-\x2e\x30\x38\x35\x2c\x30\x2e\x39\x35\x33\x2c\x33\x2e\x31\x31\x38\
-\x6c\x30\x2e\x31\x32\x31\x2c\x30\x2e\x33\x39\x0d\x0a\x09\x63\x30\
-\x2e\x30\x31\x31\x2c\x30\x2e\x30\x33\x31\x2c\x30\x2e\x30\x32\x35\
-\x2c\x30\x2e\x30\x35\x38\x2c\x30\x2e\x30\x33\x35\x2c\x30\x2e\x30\
-\x38\x38\x43\x31\x32\x36\x2e\x30\x37\x39\x2c\x34\x34\x34\x2e\x32\
-\x33\x33\x2c\x31\x37\x32\x2e\x35\x37\x2c\x34\x38\x30\x2c\x32\x32\
-\x37\x2e\x34\x32\x37\x2c\x34\x38\x30\x63\x33\x35\x2e\x31\x31\x36\
-\x2c\x30\x2c\x37\x31\x2e\x35\x39\x31\x2d\x31\x32\x2e\x33\x37\x38\
-\x2c\x39\x39\x2e\x33\x35\x37\x2d\x33\x33\x2e\x36\x37\x32\x0d\x0a\
-\x09\x63\x30\x2e\x30\x30\x31\x2c\x30\x2c\x30\x2e\x30\x30\x33\x2d\
-\x30\x2e\x30\x30\x32\x2c\x30\x2e\x30\x30\x33\x2d\x30\x2e\x30\x30\
-\x32\x63\x32\x39\x2e\x39\x39\x2d\x31\x38\x2e\x30\x35\x31\x2c\x31\
-\x32\x36\x2e\x30\x37\x31\x2d\x31\x32\x31\x2e\x33\x34\x37\x2c\x31\
-\x32\x36\x2e\x30\x37\x31\x2d\x31\x32\x31\x2e\x33\x34\x37\x43\x34\
-\x36\x37\x2e\x34\x34\x35\x2c\x33\x31\x30\x2e\x34\x30\x32\x2c\x34\
-\x36\x35\x2e\x32\x36\x36\x2c\x32\x38\x38\x2e\x30\x38\x2c\x34\x35\
-\x30\x2e\x36\x37\x39\x2c\x32\x37\x33\x2e\x35\x7a\x22\x2f\x3e\x0d\
-\x0a\x3c\x2f\x73\x76\x67\x3e\x0d\x0a\
-\x00\x00\x03\xc4\
+\x65\x73\x65\x72\x76\x65\x22\x3e\x0d\x0a\x3c\x67\x20\x69\x64\x3d\
+\x22\x49\x63\x6f\x6e\x5f\x31\x5f\x22\x3e\x0d\x0a\x09\x3c\x67\x3e\
+\x0d\x0a\x09\x09\x3c\x67\x3e\x0d\x0a\x09\x09\x09\x3c\x70\x6f\x6c\
+\x79\x67\x6f\x6e\x20\x70\x6f\x69\x6e\x74\x73\x3d\x22\x31\x38\x36\
+\x2e\x33\x30\x31\x2c\x33\x33\x39\x2e\x38\x39\x33\x20\x39\x36\x2c\
+\x32\x34\x39\x2e\x34\x36\x31\x20\x36\x34\x2c\x32\x37\x39\x2e\x39\
+\x36\x38\x20\x31\x38\x36\x2e\x33\x30\x31\x2c\x34\x30\x32\x20\x34\
+\x34\x38\x2c\x31\x34\x30\x2e\x35\x30\x36\x20\x34\x31\x36\x2c\x31\
+\x31\x30\x20\x09\x09\x09\x22\x2f\x3e\x0d\x0a\x09\x09\x3c\x2f\x67\
+\x3e\x0d\x0a\x09\x3c\x2f\x67\x3e\x0d\x0a\x3c\x2f\x67\x3e\x0d\x0a\
+\x3c\x2f\x73\x76\x67\x3e\x0d\x0a\
+\x00\x00\x01\xdd\
+\x00\
+\x00\x06\xe4\x78\x9c\xcd\x54\x4d\x6f\x9b\x40\x10\x3d\x13\x29\xff\
+\x61\xba\xb7\x4a\xec\x17\xc4\xd4\xa6\xa6\x51\xfd\x21\xcb\x52\x9a\
+\x58\x6a\xea\xaa\xa7\x0a\xc3\x16\x50\x28\x20\x58\xc0\xce\xaf\xef\
+\xee\x92\x54\x51\x95\xfa\x18\xfb\xb0\x33\xda\x79\x6f\xde\xbc\x65\
+\x24\xa6\xd7\xfb\xdf\x39\x74\xa2\x6e\xb2\xb2\x08\x10\x27\x0c\x81\
+\x28\xa2\x32\xce\x8a\x24\x40\xad\xfc\x85\xc7\xe8\xfa\xd3\xe5\xc5\
+\xf4\x1d\xc6\xb0\x12\x85\xa8\x43\x59\xd6\x3e\x7c\x8e\xcb\x9d\x80\
+\x75\x9e\xb7\x8d\x34\x25\xe0\x1e\x71\x08\xb7\xe1\xeb\x76\x05\xcb\
+\x7d\x55\xd6\x12\x36\x79\x9b\xe0\x75\x01\xc4\x14\xb7\xc3\x10\x1f\
+\x3c\xc2\x18\xcc\xda\x2c\x8f\x81\xbd\x07\xc0\xd8\xe8\x2f\xee\xe6\
+\xf7\x3f\x36\x4b\x68\xba\x04\x36\xdf\x66\x37\xeb\x39\x20\x4c\xe9\
+\x77\x77\x4e\xe9\xe2\x7e\x61\x24\x38\xe1\x94\x2e\x6f\x11\xa0\x54\
+\xca\xca\xa7\xb4\xef\x7b\xd2\xbb\xa4\xac\x13\xba\xaa\xc3\x2a\xcd\
+\xa2\x86\x2a\x22\xd5\x44\xd5\x44\x95\x18\xe7\x24\x96\x31\xd2\x33\
+\xb4\xf4\x8b\xa7\x72\x04\x59\x1c\xa0\x9b\xf0\x20\xea\x9f\xea\xa2\
+\xbe\x44\xd1\x04\xaf\x48\x3b\x8c\x31\x2d\xf5\x44\xf1\xf7\x79\x56\
+\x3c\xbc\x46\xe4\x93\xc9\x84\x1a\x54\x51\x03\xc4\xaa\x3d\x82\xc3\
+\x90\x2f\x2f\x2c\xe8\xb3\x58\xa6\x01\x1a\x71\x47\x03\xa9\xc8\x92\
+\x54\xfe\xbd\x76\x99\xe8\x67\xa5\xee\x02\x06\xaa\xa6\x0f\x82\x46\
+\x1e\x72\x11\x20\x51\x84\xbb\x5c\xe0\x5d\x18\x3d\x24\x75\xd9\x16\
+\xb1\x5f\x88\x1e\x5e\x30\x3f\x1a\x6f\x7e\x53\x85\x91\xa2\x57\xb5\
+\x68\x44\xdd\x09\xf3\xea\x44\x05\x6b\x88\xd6\xb4\x0a\x65\x0a\xea\
+\xd1\x5f\xb8\xc7\x6c\x3e\x72\x89\x1b\x31\xdb\x25\x1f\xb0\x6b\x7b\
+\x2a\xaa\xa3\x73\x8a\x47\x8c\x8c\x22\xac\x00\x9b\xe9\x22\x76\xf1\
+\x13\xdc\x0d\x10\x33\x98\xfb\xdc\xa0\x73\x6a\x00\xd3\xa2\x4b\xb6\
+\x51\xd4\x67\x6b\xe6\x3c\xea\x4f\x60\x59\xf4\x1f\x1f\xce\x78\x7c\
+\x16\x3e\xae\xb8\x77\x3a\x1f\x53\xfa\xff\x25\x39\x63\xfe\x26\xa6\
+\xcc\x9c\x23\x4b\x3a\x07\x1f\x7a\x49\x27\xf3\x71\x6c\x49\x57\x6c\
+\xf2\x26\xa6\xcc\x9c\x23\x4b\x3a\x07\x1f\x7a\x49\x27\xf3\x31\x2c\
+\xe9\x39\xaa\x7f\xb6\xca\x7f\x00\x99\x18\x96\x19\
+\x00\x00\x02\xfc\
\x3c\
\x3f\x78\x6d\x6c\x20\x76\x65\x72\x73\x69\x6f\x6e\x3d\x22\x31\x2e\
\x30\x22\x20\x65\x6e\x63\x6f\x64\x69\x6e\x67\x3d\x22\x75\x74\x66\
\x2d\x38\x22\x3f\x3e\x0d\x0a\x3c\x21\x2d\x2d\x20\x47\x65\x6e\x65\
\x72\x61\x74\x6f\x72\x3a\x20\x41\x64\x6f\x62\x65\x20\x49\x6c\x6c\
-\x75\x73\x74\x72\x61\x74\x6f\x72\x20\x31\x38\x2e\x31\x2e\x30\x2c\
+\x75\x73\x74\x72\x61\x74\x6f\x72\x20\x31\x36\x2e\x32\x2e\x31\x2c\
\x20\x53\x56\x47\x20\x45\x78\x70\x6f\x72\x74\x20\x50\x6c\x75\x67\
\x2d\x49\x6e\x20\x2e\x20\x53\x56\x47\x20\x56\x65\x72\x73\x69\x6f\
\x6e\x3a\x20\x36\x2e\x30\x30\x20\x42\x75\x69\x6c\x64\x20\x30\x29\
@@ -973,128 +764,38 @@ qt_resource_data = b"\
\x73\x2f\x53\x56\x47\x2f\x31\x2e\x31\x2f\x44\x54\x44\x2f\x73\x76\
\x67\x31\x31\x2e\x64\x74\x64\x22\x3e\x0d\x0a\x3c\x73\x76\x67\x20\
\x76\x65\x72\x73\x69\x6f\x6e\x3d\x22\x31\x2e\x31\x22\x20\x69\x64\
-\x3d\x22\x4d\x61\x67\x6e\x69\x66\x79\x69\x6e\x67\x5f\x67\x6c\x61\
-\x73\x73\x22\x20\x78\x6d\x6c\x6e\x73\x3d\x22\x68\x74\x74\x70\x3a\
-\x2f\x2f\x77\x77\x77\x2e\x77\x33\x2e\x6f\x72\x67\x2f\x32\x30\x30\
-\x30\x2f\x73\x76\x67\x22\x20\x78\x6d\x6c\x6e\x73\x3a\x78\x6c\x69\
-\x6e\x6b\x3d\x22\x68\x74\x74\x70\x3a\x2f\x2f\x77\x77\x77\x2e\x77\
-\x33\x2e\x6f\x72\x67\x2f\x31\x39\x39\x39\x2f\x78\x6c\x69\x6e\x6b\
-\x22\x20\x78\x3d\x22\x30\x70\x78\x22\x0d\x0a\x09\x20\x79\x3d\x22\
-\x30\x70\x78\x22\x20\x76\x69\x65\x77\x42\x6f\x78\x3d\x22\x30\x20\
-\x30\x20\x35\x31\x32\x20\x35\x31\x32\x22\x20\x65\x6e\x61\x62\x6c\
-\x65\x2d\x62\x61\x63\x6b\x67\x72\x6f\x75\x6e\x64\x3d\x22\x6e\x65\
-\x77\x20\x30\x20\x30\x20\x35\x31\x32\x20\x35\x31\x32\x22\x20\x78\
-\x6d\x6c\x3a\x73\x70\x61\x63\x65\x3d\x22\x70\x72\x65\x73\x65\x72\
-\x76\x65\x22\x3e\x0d\x0a\x3c\x67\x20\x74\x72\x61\x6e\x73\x66\x6f\
-\x72\x6d\x3d\x27\x6d\x61\x74\x72\x69\x78\x28\x32\x34\x20\x30\x20\
-\x30\x20\x32\x34\x20\x30\x20\x30\x29\x27\x3e\x0d\x0a\x3c\x70\x61\
-\x74\x68\x20\x64\x3d\x22\x4d\x31\x37\x2e\x35\x34\x35\x2c\x31\x35\
-\x2e\x34\x36\x37\x6c\x2d\x33\x2e\x37\x37\x39\x2d\x33\x2e\x37\x37\
-\x39\x63\x30\x2e\x35\x37\x2d\x30\x2e\x39\x33\x35\x2c\x30\x2e\x38\
-\x39\x38\x2d\x32\x2e\x30\x33\x35\x2c\x30\x2e\x38\x39\x38\x2d\x33\
-\x2e\x32\x31\x63\x30\x2d\x33\x2e\x34\x31\x37\x2d\x32\x2e\x39\x36\
-\x31\x2d\x36\x2e\x33\x37\x37\x2d\x36\x2e\x33\x37\x38\x2d\x36\x2e\
-\x33\x37\x37\x0d\x0a\x09\x43\x34\x2e\x38\x36\x39\x2c\x32\x2e\x31\
-\x2c\x32\x2e\x31\x2c\x34\x2e\x38\x37\x2c\x32\x2e\x31\x2c\x38\x2e\
-\x32\x38\x37\x63\x30\x2c\x33\x2e\x34\x31\x36\x2c\x32\x2e\x39\x36\
-\x31\x2c\x36\x2e\x33\x37\x37\x2c\x36\x2e\x33\x37\x37\x2c\x36\x2e\
-\x33\x37\x37\x63\x31\x2e\x31\x33\x37\x2c\x30\x2c\x32\x2e\x32\x2d\
-\x30\x2e\x33\x30\x39\x2c\x33\x2e\x31\x31\x35\x2d\x30\x2e\x38\x34\
-\x34\x6c\x33\x2e\x37\x39\x39\x2c\x33\x2e\x38\x30\x31\x0d\x0a\x09\
-\x63\x30\x2e\x33\x37\x32\x2c\x30\x2e\x33\x37\x31\x2c\x30\x2e\x39\
-\x37\x35\x2c\x30\x2e\x33\x37\x31\x2c\x31\x2e\x33\x34\x36\x2c\x30\
-\x6c\x30\x2e\x39\x34\x33\x2d\x30\x2e\x39\x34\x33\x43\x31\x38\x2e\
-\x30\x35\x31\x2c\x31\x36\x2e\x33\x30\x37\x2c\x31\x37\x2e\x39\x31\
-\x36\x2c\x31\x35\x2e\x38\x33\x38\x2c\x31\x37\x2e\x35\x34\x35\x2c\
-\x31\x35\x2e\x34\x36\x37\x7a\x20\x4d\x34\x2e\x30\x30\x34\x2c\x38\
-\x2e\x32\x38\x37\x0d\x0a\x09\x63\x30\x2d\x32\x2e\x33\x36\x36\x2c\
-\x31\x2e\x39\x31\x37\x2d\x34\x2e\x32\x38\x33\x2c\x34\x2e\x32\x38\
-\x32\x2d\x34\x2e\x32\x38\x33\x63\x32\x2e\x33\x36\x36\x2c\x30\x2c\
-\x34\x2e\x34\x37\x34\x2c\x32\x2e\x31\x30\x37\x2c\x34\x2e\x34\x37\
-\x34\x2c\x34\x2e\x34\x37\x34\x63\x30\x2c\x32\x2e\x33\x36\x35\x2d\
-\x31\x2e\x39\x31\x38\x2c\x34\x2e\x32\x38\x33\x2d\x34\x2e\x32\x38\
-\x33\x2c\x34\x2e\x32\x38\x33\x0d\x0a\x09\x43\x36\x2e\x31\x31\x31\
-\x2c\x31\x32\x2e\x37\x36\x2c\x34\x2e\x30\x30\x34\x2c\x31\x30\x2e\
-\x36\x35\x32\x2c\x34\x2e\x30\x30\x34\x2c\x38\x2e\x32\x38\x37\x7a\
-\x22\x2f\x3e\x0d\x0a\x3c\x2f\x67\x3e\x0d\x0a\x3c\x2f\x73\x76\x67\
-\x3e\x0d\x0a\
-\x00\x00\x04\xa2\
-\x3c\
-\x3f\x78\x6d\x6c\x20\x76\x65\x72\x73\x69\x6f\x6e\x3d\x27\x31\x2e\
-\x30\x27\x20\x65\x6e\x63\x6f\x64\x69\x6e\x67\x3d\x27\x55\x54\x46\
-\x2d\x38\x27\x3f\x3e\x0a\x3c\x21\x2d\x2d\x20\x54\x68\x69\x73\x20\
-\x66\x69\x6c\x65\x20\x77\x61\x73\x20\x67\x65\x6e\x65\x72\x61\x74\
-\x65\x64\x20\x62\x79\x20\x64\x76\x69\x73\x76\x67\x6d\x20\x32\x2e\
-\x38\x20\x2d\x2d\x3e\x0a\x3c\x73\x76\x67\x20\x76\x65\x72\x73\x69\
-\x6f\x6e\x3d\x27\x31\x2e\x31\x27\x20\x78\x6d\x6c\x6e\x73\x3d\x27\
-\x68\x74\x74\x70\x3a\x2f\x2f\x77\x77\x77\x2e\x77\x33\x2e\x6f\x72\
-\x67\x2f\x32\x30\x30\x30\x2f\x73\x76\x67\x27\x20\x78\x6d\x6c\x6e\
-\x73\x3a\x78\x6c\x69\x6e\x6b\x3d\x27\x68\x74\x74\x70\x3a\x2f\x2f\
-\x77\x77\x77\x2e\x77\x33\x2e\x6f\x72\x67\x2f\x31\x39\x39\x39\x2f\
-\x78\x6c\x69\x6e\x6b\x27\x20\x77\x69\x64\x74\x68\x3d\x27\x36\x33\
-\x2e\x39\x39\x39\x36\x70\x74\x27\x20\x68\x65\x69\x67\x68\x74\x3d\
-\x27\x36\x33\x2e\x39\x39\x39\x37\x70\x74\x27\x20\x76\x69\x65\x77\
-\x42\x6f\x78\x3d\x27\x35\x36\x2e\x34\x30\x39\x34\x20\x35\x33\x2e\
-\x38\x35\x38\x33\x20\x36\x33\x2e\x39\x39\x39\x36\x20\x36\x33\x2e\
-\x39\x39\x39\x37\x27\x3e\x0a\x3c\x67\x20\x69\x64\x3d\x27\x70\x61\
-\x67\x65\x31\x27\x3e\x0a\x3c\x67\x20\x74\x72\x61\x6e\x73\x66\x6f\
-\x72\x6d\x3d\x27\x6d\x61\x74\x72\x69\x78\x28\x30\x2e\x39\x39\x36\
-\x32\x36\x34\x20\x30\x20\x30\x20\x30\x2e\x39\x39\x36\x32\x36\x34\
-\x20\x35\x38\x2e\x34\x36\x36\x39\x20\x31\x31\x37\x2e\x38\x35\x38\
-\x29\x27\x3e\x0a\x3c\x70\x61\x74\x68\x20\x64\x3d\x27\x4d\x20\x33\
-\x2e\x39\x35\x37\x33\x35\x20\x2d\x33\x32\x2e\x31\x32\x43\x20\x34\
-\x2e\x31\x35\x35\x35\x36\x20\x2d\x33\x39\x2e\x32\x37\x34\x35\x20\
-\x36\x2e\x39\x38\x34\x37\x33\x20\x2d\x34\x36\x2e\x31\x30\x34\x37\
-\x20\x31\x31\x2e\x39\x30\x33\x36\x20\x2d\x35\x31\x2e\x33\x30\x33\
-\x39\x43\x20\x32\x37\x2e\x34\x34\x31\x31\x20\x2d\x36\x37\x2e\x37\
-\x32\x36\x39\x20\x35\x33\x2e\x33\x30\x32\x31\x20\x2d\x36\x31\x2e\
-\x35\x34\x30\x35\x20\x35\x36\x2e\x31\x35\x32\x33\x20\x2d\x34\x32\
-\x2e\x35\x30\x32\x32\x43\x20\x35\x37\x2e\x36\x32\x37\x20\x2d\x33\
-\x32\x2e\x36\x35\x31\x39\x20\x35\x30\x2e\x35\x38\x35\x36\x20\x2d\
-\x32\x33\x2e\x35\x36\x32\x31\x20\x34\x30\x2e\x36\x37\x39\x34\x20\
-\x2d\x32\x32\x2e\x35\x32\x38\x31\x27\x20\x66\x69\x6c\x6c\x3d\x27\
-\x6e\x6f\x6e\x65\x27\x20\x73\x74\x72\x6f\x6b\x65\x3d\x27\x23\x30\
-\x30\x30\x30\x30\x30\x27\x20\x73\x74\x72\x6f\x6b\x65\x2d\x6c\x69\
-\x6e\x65\x63\x61\x70\x3d\x27\x72\x6f\x75\x6e\x64\x27\x20\x73\x74\
-\x72\x6f\x6b\x65\x2d\x6c\x69\x6e\x65\x6a\x6f\x69\x6e\x3d\x27\x72\
-\x6f\x75\x6e\x64\x27\x20\x73\x74\x72\x6f\x6b\x65\x2d\x6d\x69\x74\
-\x65\x72\x6c\x69\x6d\x69\x74\x3d\x27\x31\x30\x2e\x30\x33\x37\x35\
-\x27\x20\x73\x74\x72\x6f\x6b\x65\x2d\x77\x69\x64\x74\x68\x3d\x27\
-\x32\x2e\x35\x30\x39\x33\x37\x27\x2f\x3e\x0a\x3c\x2f\x67\x3e\x0a\
-\x3c\x67\x20\x74\x72\x61\x6e\x73\x66\x6f\x72\x6d\x3d\x27\x6d\x61\
-\x74\x72\x69\x78\x28\x30\x2e\x39\x39\x36\x32\x36\x34\x20\x30\x20\
-\x30\x20\x30\x2e\x39\x39\x36\x32\x36\x34\x20\x35\x38\x2e\x34\x36\
-\x36\x39\x20\x31\x31\x37\x2e\x38\x35\x38\x29\x27\x3e\x0a\x3c\x63\
-\x69\x72\x63\x6c\x65\x20\x63\x78\x3d\x27\x33\x2e\x39\x35\x37\x33\
-\x35\x27\x20\x63\x79\x3d\x27\x2d\x33\x32\x2e\x31\x32\x27\x20\x66\
-\x69\x6c\x6c\x3d\x27\x23\x30\x30\x30\x30\x30\x30\x27\x20\x72\x3d\
-\x27\x36\x2e\x30\x32\x32\x35\x27\x2f\x3e\x0a\x3c\x2f\x67\x3e\x0a\
-\x3c\x67\x20\x74\x72\x61\x6e\x73\x66\x6f\x72\x6d\x3d\x27\x6d\x61\
-\x74\x72\x69\x78\x28\x30\x2e\x39\x39\x36\x32\x36\x34\x20\x30\x20\
-\x30\x20\x30\x2e\x39\x39\x36\x32\x36\x34\x20\x35\x38\x2e\x34\x36\
-\x36\x39\x20\x31\x31\x37\x2e\x38\x35\x38\x29\x27\x3e\x0a\x3c\x63\
-\x69\x72\x63\x6c\x65\x20\x63\x78\x3d\x27\x31\x31\x2e\x39\x30\x33\
-\x36\x27\x20\x63\x79\x3d\x27\x2d\x35\x31\x2e\x33\x30\x33\x39\x27\
-\x20\x66\x69\x6c\x6c\x3d\x27\x23\x30\x30\x30\x30\x30\x30\x27\x20\
-\x72\x3d\x27\x36\x2e\x30\x32\x32\x35\x27\x2f\x3e\x0a\x3c\x2f\x67\
-\x3e\x0a\x3c\x67\x20\x74\x72\x61\x6e\x73\x66\x6f\x72\x6d\x3d\x27\
-\x6d\x61\x74\x72\x69\x78\x28\x30\x2e\x39\x39\x36\x32\x36\x34\x20\
-\x30\x20\x30\x20\x30\x2e\x39\x39\x36\x32\x36\x34\x20\x35\x38\x2e\
-\x34\x36\x36\x39\x20\x31\x31\x37\x2e\x38\x35\x38\x29\x27\x3e\x0a\
-\x3c\x63\x69\x72\x63\x6c\x65\x20\x63\x78\x3d\x27\x35\x36\x2e\x31\
-\x35\x32\x33\x27\x20\x63\x79\x3d\x27\x2d\x34\x32\x2e\x35\x30\x32\
-\x32\x27\x20\x66\x69\x6c\x6c\x3d\x27\x23\x30\x30\x30\x30\x30\x30\
-\x27\x20\x72\x3d\x27\x36\x2e\x30\x32\x32\x35\x27\x2f\x3e\x0a\x3c\
-\x2f\x67\x3e\x0a\x3c\x67\x20\x74\x72\x61\x6e\x73\x66\x6f\x72\x6d\
-\x3d\x27\x6d\x61\x74\x72\x69\x78\x28\x30\x2e\x39\x39\x36\x32\x36\
-\x34\x20\x30\x20\x30\x20\x30\x2e\x39\x39\x36\x32\x36\x34\x20\x35\
-\x38\x2e\x34\x36\x36\x39\x20\x31\x31\x37\x2e\x38\x35\x38\x29\x27\
-\x3e\x0a\x3c\x63\x69\x72\x63\x6c\x65\x20\x63\x78\x3d\x27\x34\x30\
-\x2e\x36\x37\x39\x34\x27\x20\x63\x79\x3d\x27\x2d\x32\x32\x2e\x35\
-\x32\x38\x31\x27\x20\x66\x69\x6c\x6c\x3d\x27\x23\x30\x30\x30\x30\
-\x30\x30\x27\x20\x72\x3d\x27\x36\x2e\x30\x32\x32\x35\x27\x2f\x3e\
-\x0a\x3c\x2f\x67\x3e\x0a\x3c\x2f\x67\x3e\x0a\x3c\x2f\x73\x76\x67\
-\x3e\
+\x3d\x22\x4c\x61\x79\x65\x72\x5f\x31\x22\x20\x78\x6d\x6c\x6e\x73\
+\x3d\x22\x68\x74\x74\x70\x3a\x2f\x2f\x77\x77\x77\x2e\x77\x33\x2e\
+\x6f\x72\x67\x2f\x32\x30\x30\x30\x2f\x73\x76\x67\x22\x20\x78\x6d\
+\x6c\x6e\x73\x3a\x78\x6c\x69\x6e\x6b\x3d\x22\x68\x74\x74\x70\x3a\
+\x2f\x2f\x77\x77\x77\x2e\x77\x33\x2e\x6f\x72\x67\x2f\x31\x39\x39\
+\x39\x2f\x78\x6c\x69\x6e\x6b\x22\x20\x78\x3d\x22\x30\x70\x78\x22\
+\x20\x79\x3d\x22\x30\x70\x78\x22\x0d\x0a\x09\x20\x77\x69\x64\x74\
+\x68\x3d\x22\x35\x31\x32\x70\x78\x22\x20\x68\x65\x69\x67\x68\x74\
+\x3d\x22\x35\x31\x32\x70\x78\x22\x20\x76\x69\x65\x77\x42\x6f\x78\
+\x3d\x22\x30\x20\x30\x20\x35\x31\x32\x20\x35\x31\x32\x22\x20\x65\
+\x6e\x61\x62\x6c\x65\x2d\x62\x61\x63\x6b\x67\x72\x6f\x75\x6e\x64\
+\x3d\x22\x6e\x65\x77\x20\x30\x20\x30\x20\x35\x31\x32\x20\x35\x31\
+\x32\x22\x20\x78\x6d\x6c\x3a\x73\x70\x61\x63\x65\x3d\x22\x70\x72\
+\x65\x73\x65\x72\x76\x65\x22\x3e\x0d\x0a\x3c\x67\x20\x69\x64\x3d\
+\x22\x49\x63\x6f\x6e\x5f\x32\x30\x5f\x22\x3e\x0d\x0a\x09\x3c\x67\
+\x3e\x0d\x0a\x09\x09\x3c\x70\x61\x74\x68\x20\x64\x3d\x22\x4d\x32\
+\x35\x36\x2c\x34\x38\x43\x31\x34\x31\x2e\x36\x30\x31\x2c\x34\x38\
+\x2c\x34\x38\x2c\x31\x34\x31\x2e\x36\x30\x31\x2c\x34\x38\x2c\x32\
+\x35\x36\x73\x39\x33\x2e\x36\x30\x31\x2c\x32\x30\x38\x2c\x32\x30\
+\x38\x2c\x32\x30\x38\x73\x32\x30\x38\x2d\x39\x33\x2e\x36\x30\x31\
+\x2c\x32\x30\x38\x2d\x32\x30\x38\x53\x33\x37\x30\x2e\x33\x39\x39\
+\x2c\x34\x38\x2c\x32\x35\x36\x2c\x34\x38\x7a\x20\x4d\x32\x35\x36\
+\x2c\x34\x32\x32\x2e\x33\x39\x39\x0d\x0a\x09\x09\x09\x63\x2d\x39\
+\x31\x2e\x35\x31\x38\x2c\x30\x2d\x31\x36\x36\x2e\x33\x39\x39\x2d\
+\x37\x34\x2e\x38\x38\x32\x2d\x31\x36\x36\x2e\x33\x39\x39\x2d\x31\
+\x36\x36\x2e\x33\x39\x39\x53\x31\x36\x34\x2e\x34\x38\x32\x2c\x38\
+\x39\x2e\x36\x2c\x32\x35\x36\x2c\x38\x39\x2e\x36\x53\x34\x32\x32\
+\x2e\x34\x2c\x31\x36\x34\x2e\x34\x38\x32\x2c\x34\x32\x32\x2e\x34\
+\x2c\x32\x35\x36\x53\x33\x34\x37\x2e\x35\x31\x38\x2c\x34\x32\x32\
+\x2e\x33\x39\x39\x2c\x32\x35\x36\x2c\x34\x32\x32\x2e\x33\x39\x39\
+\x7a\x22\x2f\x3e\x0d\x0a\x09\x3c\x2f\x67\x3e\x0d\x0a\x3c\x2f\x67\
+\x3e\x0d\x0a\x3c\x2f\x73\x76\x67\x3e\x0d\x0a\
\x00\x00\x02\x7d\
\x3c\
\x3f\x78\x6d\x6c\x20\x76\x65\x72\x73\x69\x6f\x6e\x3d\x22\x31\x2e\
@@ -1128,13 +829,13 @@ qt_resource_data = b"\
\x32\x22\x20\x78\x6d\x6c\x3a\x73\x70\x61\x63\x65\x3d\x22\x70\x72\
\x65\x73\x65\x72\x76\x65\x22\x3e\x0d\x0a\x3c\x67\x20\x69\x64\x3d\
\x22\x49\x63\x6f\x6e\x5f\x38\x5f\x22\x3e\x0d\x0a\x09\x3c\x67\x3e\
-\x0d\x0a\x09\x09\x3c\x70\x61\x74\x68\x20\x64\x3d\x22\x4d\x34\x32\
-\x37\x2c\x32\x33\x34\x2e\x36\x32\x35\x48\x31\x36\x37\x2e\x32\x39\
-\x36\x6c\x31\x31\x39\x2e\x37\x30\x32\x2d\x31\x31\x39\x2e\x37\x30\
-\x32\x4c\x32\x35\x36\x2c\x38\x35\x4c\x38\x35\x2c\x32\x35\x36\x6c\
-\x31\x37\x31\x2c\x31\x37\x31\x6c\x32\x39\x2e\x39\x32\x32\x2d\x32\
-\x39\x2e\x39\x32\x34\x4c\x31\x36\x37\x2e\x32\x39\x36\x2c\x32\x37\
-\x37\x2e\x33\x37\x35\x48\x34\x32\x37\x56\x32\x33\x34\x2e\x36\x32\
+\x0d\x0a\x09\x09\x3c\x70\x61\x74\x68\x20\x64\x3d\x22\x4d\x38\x35\
+\x2c\x32\x37\x37\x2e\x33\x37\x35\x68\x32\x35\x39\x2e\x37\x30\x34\
+\x4c\x32\x32\x35\x2e\x30\x30\x32\x2c\x33\x39\x37\x2e\x30\x37\x37\
+\x4c\x32\x35\x36\x2c\x34\x32\x37\x6c\x31\x37\x31\x2d\x31\x37\x31\
+\x4c\x32\x35\x36\x2c\x38\x35\x6c\x2d\x32\x39\x2e\x39\x32\x32\x2c\
+\x32\x39\x2e\x39\x32\x34\x6c\x31\x31\x38\x2e\x36\x32\x36\x2c\x31\
+\x31\x39\x2e\x37\x30\x31\x48\x38\x35\x56\x32\x37\x37\x2e\x33\x37\
\x35\x7a\x22\x2f\x3e\x0d\x0a\x09\x3c\x2f\x67\x3e\x0d\x0a\x3c\x2f\
\x67\x3e\x0d\x0a\x3c\x2f\x73\x76\x67\x3e\x0d\x0a\
\x00\x00\x02\xf7\
@@ -1187,7 +888,7 @@ qt_resource_data = b"\
\x33\x38\x2e\x33\x2c\x34\x33\x34\x2e\x33\x2c\x32\x32\x34\x2c\x34\
\x31\x37\x2e\x34\x2c\x32\x32\x34\x7a\x22\x2f\x3e\x0d\x0a\x3c\x2f\
\x73\x76\x67\x3e\x0d\x0a\
-\x00\x00\x02\xb7\
+\x00\x00\x03\x26\
\x3c\
\x3f\x78\x6d\x6c\x20\x76\x65\x72\x73\x69\x6f\x6e\x3d\x22\x31\x2e\
\x30\x22\x20\x65\x6e\x63\x6f\x64\x69\x6e\x67\x3d\x22\x75\x74\x66\
@@ -1218,21 +919,28 @@ qt_resource_data = b"\
\x6e\x61\x62\x6c\x65\x2d\x62\x61\x63\x6b\x67\x72\x6f\x75\x6e\x64\
\x3d\x22\x6e\x65\x77\x20\x30\x20\x30\x20\x35\x31\x32\x20\x35\x31\
\x32\x22\x20\x78\x6d\x6c\x3a\x73\x70\x61\x63\x65\x3d\x22\x70\x72\
-\x65\x73\x65\x72\x76\x65\x22\x3e\x0d\x0a\x3c\x67\x20\x69\x64\x3d\
-\x22\x49\x63\x6f\x6e\x5f\x35\x5f\x22\x3e\x0d\x0a\x09\x3c\x67\x3e\
-\x0d\x0a\x09\x09\x3c\x70\x6f\x6c\x79\x67\x6f\x6e\x20\x70\x6f\x69\
-\x6e\x74\x73\x3d\x22\x34\x30\x35\x2c\x31\x33\x36\x2e\x37\x39\x38\
-\x20\x33\x37\x35\x2e\x32\x30\x32\x2c\x31\x30\x37\x20\x32\x35\x36\
-\x2c\x32\x32\x36\x2e\x32\x30\x32\x20\x31\x33\x36\x2e\x37\x39\x38\
-\x2c\x31\x30\x37\x20\x31\x30\x37\x2c\x31\x33\x36\x2e\x37\x39\x38\
-\x20\x32\x32\x36\x2e\x32\x30\x32\x2c\x32\x35\x36\x20\x31\x30\x37\
-\x2c\x33\x37\x35\x2e\x32\x30\x32\x20\x31\x33\x36\x2e\x37\x39\x38\
-\x2c\x34\x30\x35\x20\x32\x35\x36\x2c\x32\x38\x35\x2e\x37\x39\x38\
-\x20\x0d\x0a\x09\x09\x09\x33\x37\x35\x2e\x32\x30\x32\x2c\x34\x30\
-\x35\x20\x34\x30\x35\x2c\x33\x37\x35\x2e\x32\x30\x32\x20\x32\x38\
-\x35\x2e\x37\x39\x38\x2c\x32\x35\x36\x20\x09\x09\x22\x2f\x3e\x0d\
-\x0a\x09\x3c\x2f\x67\x3e\x0d\x0a\x3c\x2f\x67\x3e\x0d\x0a\x3c\x2f\
-\x73\x76\x67\x3e\x0d\x0a\
+\x65\x73\x65\x72\x76\x65\x22\x3e\x0d\x0a\x3c\x67\x3e\x0d\x0a\x09\
+\x3c\x70\x61\x74\x68\x20\x64\x3d\x22\x4d\x32\x35\x36\x2c\x33\x38\
+\x38\x63\x2d\x37\x32\x2e\x35\x39\x37\x2c\x30\x2d\x31\x33\x32\x2d\
+\x35\x39\x2e\x34\x30\x35\x2d\x31\x33\x32\x2d\x31\x33\x32\x63\x30\
+\x2d\x37\x32\x2e\x36\x30\x31\x2c\x35\x39\x2e\x34\x30\x33\x2d\x31\
+\x33\x32\x2c\x31\x33\x32\x2d\x31\x33\x32\x63\x33\x36\x2e\x33\x2c\
+\x30\x2c\x36\x39\x2e\x32\x39\x39\x2c\x31\x35\x2e\x34\x2c\x39\x32\
+\x2e\x34\x30\x36\x2c\x33\x39\x2e\x36\x30\x31\x4c\x32\x37\x38\x2c\
+\x32\x33\x34\x68\x31\x35\x34\x56\x38\x30\x0d\x0a\x09\x09\x6c\x2d\
+\x35\x31\x2e\x36\x39\x38\x2c\x35\x31\x2e\x37\x30\x32\x43\x33\x34\
+\x38\x2e\x34\x30\x36\x2c\x39\x39\x2e\x37\x39\x38\x2c\x33\x30\x34\
+\x2e\x34\x30\x36\x2c\x38\x30\x2c\x32\x35\x36\x2c\x38\x30\x63\x2d\
+\x39\x36\x2e\x37\x39\x37\x2c\x30\x2d\x31\x37\x36\x2c\x37\x39\x2e\
+\x32\x30\x33\x2d\x31\x37\x36\x2c\x31\x37\x36\x73\x37\x38\x2e\x30\
+\x39\x34\x2c\x31\x37\x36\x2c\x31\x37\x36\x2c\x31\x37\x36\x0d\x0a\
+\x09\x09\x63\x38\x31\x2e\x30\x34\x35\x2c\x30\x2c\x31\x34\x38\x2e\
+\x32\x38\x37\x2d\x35\x34\x2e\x31\x33\x34\x2c\x31\x36\x39\x2e\x34\
+\x30\x31\x2d\x31\x32\x38\x48\x33\x37\x38\x2e\x38\x35\x43\x33\x36\
+\x30\x2e\x31\x30\x35\x2c\x33\x35\x33\x2e\x35\x36\x31\x2c\x33\x31\
+\x31\x2e\x37\x31\x32\x2c\x33\x38\x38\x2c\x32\x35\x36\x2c\x33\x38\
+\x38\x7a\x22\x2f\x3e\x0d\x0a\x3c\x2f\x67\x3e\x0d\x0a\x3c\x2f\x73\
+\x76\x67\x3e\x0d\x0a\
\x00\x00\x02\xf2\
\x3c\
\x3f\x78\x6d\x6c\x20\x76\x65\x72\x73\x69\x6f\x6e\x3d\x22\x31\x2e\
@@ -1283,7 +991,7 @@ qt_resource_data = b"\
\x35\x39\x39\x2c\x31\x30\x2c\x31\x37\x2e\x35\x39\x39\x7a\x22\x2f\
\x3e\x0d\x0a\x3c\x2f\x67\x3e\x0d\x0a\x3c\x2f\x73\x76\x67\x3e\x0d\
\x0a\
-\x00\x00\x03\x36\
+\x00\x00\x02\x7d\
\x3c\
\x3f\x78\x6d\x6c\x20\x76\x65\x72\x73\x69\x6f\x6e\x3d\x22\x31\x2e\
\x30\x22\x20\x65\x6e\x63\x6f\x64\x69\x6e\x67\x3d\x22\x75\x74\x66\
@@ -1314,106 +1022,24 @@ qt_resource_data = b"\
\x6e\x61\x62\x6c\x65\x2d\x62\x61\x63\x6b\x67\x72\x6f\x75\x6e\x64\
\x3d\x22\x6e\x65\x77\x20\x30\x20\x30\x20\x35\x31\x32\x20\x35\x31\
\x32\x22\x20\x78\x6d\x6c\x3a\x73\x70\x61\x63\x65\x3d\x22\x70\x72\
-\x65\x73\x65\x72\x76\x65\x22\x3e\x0d\x0a\x3c\x67\x3e\x0d\x0a\x09\
-\x3c\x70\x6f\x6c\x79\x67\x6f\x6e\x20\x70\x6f\x69\x6e\x74\x73\x3d\
-\x22\x33\x39\x36\x2e\x37\x39\x35\x2c\x33\x39\x36\x2e\x38\x20\x33\
-\x32\x30\x2c\x33\x39\x36\x2e\x38\x20\x33\x32\x30\x2c\x34\x34\x38\
-\x20\x34\x34\x38\x2c\x34\x34\x38\x20\x34\x34\x38\x2c\x33\x32\x30\
-\x20\x33\x39\x36\x2e\x37\x39\x35\x2c\x33\x32\x30\x20\x09\x22\x2f\
-\x3e\x0d\x0a\x09\x3c\x70\x6f\x6c\x79\x67\x6f\x6e\x20\x70\x6f\x69\
-\x6e\x74\x73\x3d\x22\x33\x39\x36\x2e\x38\x2c\x31\x31\x35\x2e\x32\
-\x30\x35\x20\x33\x39\x36\x2e\x38\x2c\x31\x39\x32\x20\x34\x34\x38\
-\x2c\x31\x39\x32\x20\x34\x34\x38\x2c\x36\x34\x20\x33\x32\x30\x2c\
-\x36\x34\x20\x33\x32\x30\x2c\x31\x31\x35\x2e\x32\x30\x35\x20\x09\
-\x22\x2f\x3e\x0d\x0a\x09\x3c\x70\x6f\x6c\x79\x67\x6f\x6e\x20\x70\
-\x6f\x69\x6e\x74\x73\x3d\x22\x31\x31\x35\x2e\x32\x30\x35\x2c\x31\
-\x31\x35\x2e\x32\x20\x31\x39\x32\x2c\x31\x31\x35\x2e\x32\x20\x31\
-\x39\x32\x2c\x36\x34\x20\x36\x34\x2c\x36\x34\x20\x36\x34\x2c\x31\
-\x39\x32\x20\x31\x31\x35\x2e\x32\x30\x35\x2c\x31\x39\x32\x20\x09\
-\x22\x2f\x3e\x0d\x0a\x09\x3c\x70\x6f\x6c\x79\x67\x6f\x6e\x20\x70\
-\x6f\x69\x6e\x74\x73\x3d\x22\x31\x31\x35\x2e\x32\x2c\x33\x39\x36\
-\x2e\x37\x39\x35\x20\x31\x31\x35\x2e\x32\x2c\x33\x32\x30\x20\x36\
-\x34\x2c\x33\x32\x30\x20\x36\x34\x2c\x34\x34\x38\x20\x31\x39\x32\
-\x2c\x34\x34\x38\x20\x31\x39\x32\x2c\x33\x39\x36\x2e\x37\x39\x35\
-\x20\x09\x22\x2f\x3e\x0d\x0a\x3c\x2f\x67\x3e\x0d\x0a\x3c\x2f\x73\
-\x76\x67\x3e\x0d\x0a\
-\x00\x00\x04\x3d\
-\x3c\
-\x3f\x78\x6d\x6c\x20\x76\x65\x72\x73\x69\x6f\x6e\x3d\x27\x31\x2e\
-\x30\x27\x20\x65\x6e\x63\x6f\x64\x69\x6e\x67\x3d\x27\x55\x54\x46\
-\x2d\x38\x27\x3f\x3e\x0a\x3c\x21\x2d\x2d\x20\x54\x68\x69\x73\x20\
-\x66\x69\x6c\x65\x20\x77\x61\x73\x20\x67\x65\x6e\x65\x72\x61\x74\
-\x65\x64\x20\x62\x79\x20\x64\x76\x69\x73\x76\x67\x6d\x20\x32\x2e\
-\x38\x20\x2d\x2d\x3e\x0a\x3c\x73\x76\x67\x20\x76\x65\x72\x73\x69\
-\x6f\x6e\x3d\x27\x31\x2e\x31\x27\x20\x78\x6d\x6c\x6e\x73\x3d\x27\
-\x68\x74\x74\x70\x3a\x2f\x2f\x77\x77\x77\x2e\x77\x33\x2e\x6f\x72\
-\x67\x2f\x32\x30\x30\x30\x2f\x73\x76\x67\x27\x20\x78\x6d\x6c\x6e\
-\x73\x3a\x78\x6c\x69\x6e\x6b\x3d\x27\x68\x74\x74\x70\x3a\x2f\x2f\
-\x77\x77\x77\x2e\x77\x33\x2e\x6f\x72\x67\x2f\x31\x39\x39\x39\x2f\
-\x78\x6c\x69\x6e\x6b\x27\x20\x77\x69\x64\x74\x68\x3d\x27\x36\x33\
-\x2e\x39\x39\x39\x36\x70\x74\x27\x20\x68\x65\x69\x67\x68\x74\x3d\
-\x27\x36\x33\x2e\x39\x39\x39\x37\x70\x74\x27\x20\x76\x69\x65\x77\
-\x42\x6f\x78\x3d\x27\x35\x36\x2e\x34\x30\x39\x34\x20\x35\x33\x2e\
-\x38\x35\x38\x33\x20\x36\x33\x2e\x39\x39\x39\x36\x20\x36\x33\x2e\
-\x39\x39\x39\x37\x27\x3e\x0a\x3c\x67\x20\x69\x64\x3d\x27\x70\x61\
-\x67\x65\x31\x27\x3e\x0a\x3c\x67\x20\x74\x72\x61\x6e\x73\x66\x6f\
-\x72\x6d\x3d\x27\x6d\x61\x74\x72\x69\x78\x28\x30\x2e\x39\x39\x36\
-\x32\x36\x34\x20\x30\x20\x30\x20\x30\x2e\x39\x39\x36\x32\x36\x34\
-\x20\x35\x38\x2e\x34\x36\x36\x39\x20\x31\x31\x37\x2e\x38\x35\x38\
-\x29\x27\x3e\x0a\x3c\x70\x61\x74\x68\x20\x64\x3d\x27\x4d\x20\x33\
-\x2e\x39\x35\x37\x33\x35\x20\x2d\x33\x32\x2e\x31\x32\x4c\x20\x31\
-\x31\x2e\x39\x30\x33\x36\x20\x2d\x35\x31\x2e\x33\x30\x33\x39\x4c\
-\x20\x35\x36\x2e\x31\x35\x32\x33\x20\x2d\x34\x32\x2e\x35\x30\x32\
-\x32\x4c\x20\x34\x30\x2e\x36\x37\x39\x34\x20\x2d\x32\x32\x2e\x35\
-\x32\x38\x31\x27\x20\x66\x69\x6c\x6c\x3d\x27\x6e\x6f\x6e\x65\x27\
-\x20\x73\x74\x72\x6f\x6b\x65\x3d\x27\x23\x30\x30\x30\x30\x30\x30\
-\x27\x20\x73\x74\x72\x6f\x6b\x65\x2d\x6c\x69\x6e\x65\x63\x61\x70\
-\x3d\x27\x72\x6f\x75\x6e\x64\x27\x20\x73\x74\x72\x6f\x6b\x65\x2d\
-\x6c\x69\x6e\x65\x6a\x6f\x69\x6e\x3d\x27\x72\x6f\x75\x6e\x64\x27\
-\x20\x73\x74\x72\x6f\x6b\x65\x2d\x6d\x69\x74\x65\x72\x6c\x69\x6d\
-\x69\x74\x3d\x27\x31\x30\x2e\x30\x33\x37\x35\x27\x20\x73\x74\x72\
-\x6f\x6b\x65\x2d\x77\x69\x64\x74\x68\x3d\x27\x32\x2e\x35\x30\x39\
-\x33\x37\x27\x2f\x3e\x0a\x3c\x2f\x67\x3e\x0a\x3c\x67\x20\x74\x72\
-\x61\x6e\x73\x66\x6f\x72\x6d\x3d\x27\x6d\x61\x74\x72\x69\x78\x28\
-\x30\x2e\x39\x39\x36\x32\x36\x34\x20\x30\x20\x30\x20\x30\x2e\x39\
-\x39\x36\x32\x36\x34\x20\x35\x38\x2e\x34\x36\x36\x39\x20\x31\x31\
-\x37\x2e\x38\x35\x38\x29\x27\x3e\x0a\x3c\x63\x69\x72\x63\x6c\x65\
-\x20\x63\x78\x3d\x27\x33\x2e\x39\x35\x37\x33\x35\x27\x20\x63\x79\
-\x3d\x27\x2d\x33\x32\x2e\x31\x32\x27\x20\x66\x69\x6c\x6c\x3d\x27\
-\x23\x30\x30\x30\x30\x30\x30\x27\x20\x72\x3d\x27\x36\x2e\x30\x32\
-\x32\x35\x27\x2f\x3e\x0a\x3c\x2f\x67\x3e\x0a\x3c\x67\x20\x74\x72\
-\x61\x6e\x73\x66\x6f\x72\x6d\x3d\x27\x6d\x61\x74\x72\x69\x78\x28\
-\x30\x2e\x39\x39\x36\x32\x36\x34\x20\x30\x20\x30\x20\x30\x2e\x39\
-\x39\x36\x32\x36\x34\x20\x35\x38\x2e\x34\x36\x36\x39\x20\x31\x31\
-\x37\x2e\x38\x35\x38\x29\x27\x3e\x0a\x3c\x63\x69\x72\x63\x6c\x65\
-\x20\x63\x78\x3d\x27\x31\x31\x2e\x39\x30\x33\x36\x27\x20\x63\x79\
-\x3d\x27\x2d\x35\x31\x2e\x33\x30\x33\x39\x27\x20\x66\x69\x6c\x6c\
-\x3d\x27\x23\x30\x30\x30\x30\x30\x30\x27\x20\x72\x3d\x27\x36\x2e\
-\x30\x32\x32\x35\x27\x2f\x3e\x0a\x3c\x2f\x67\x3e\x0a\x3c\x67\x20\
-\x74\x72\x61\x6e\x73\x66\x6f\x72\x6d\x3d\x27\x6d\x61\x74\x72\x69\
-\x78\x28\x30\x2e\x39\x39\x36\x32\x36\x34\x20\x30\x20\x30\x20\x30\
-\x2e\x39\x39\x36\x32\x36\x34\x20\x35\x38\x2e\x34\x36\x36\x39\x20\
-\x31\x31\x37\x2e\x38\x35\x38\x29\x27\x3e\x0a\x3c\x63\x69\x72\x63\
-\x6c\x65\x20\x63\x78\x3d\x27\x35\x36\x2e\x31\x35\x32\x33\x27\x20\
-\x63\x79\x3d\x27\x2d\x34\x32\x2e\x35\x30\x32\x32\x27\x20\x66\x69\
-\x6c\x6c\x3d\x27\x23\x30\x30\x30\x30\x30\x30\x27\x20\x72\x3d\x27\
-\x36\x2e\x30\x32\x32\x35\x27\x2f\x3e\x0a\x3c\x2f\x67\x3e\x0a\x3c\
-\x67\x20\x74\x72\x61\x6e\x73\x66\x6f\x72\x6d\x3d\x27\x6d\x61\x74\
-\x72\x69\x78\x28\x30\x2e\x39\x39\x36\x32\x36\x34\x20\x30\x20\x30\
-\x20\x30\x2e\x39\x39\x36\x32\x36\x34\x20\x35\x38\x2e\x34\x36\x36\
-\x39\x20\x31\x31\x37\x2e\x38\x35\x38\x29\x27\x3e\x0a\x3c\x63\x69\
-\x72\x63\x6c\x65\x20\x63\x78\x3d\x27\x34\x30\x2e\x36\x37\x39\x34\
-\x27\x20\x63\x79\x3d\x27\x2d\x32\x32\x2e\x35\x32\x38\x31\x27\x20\
-\x66\x69\x6c\x6c\x3d\x27\x23\x30\x30\x30\x30\x30\x30\x27\x20\x72\
-\x3d\x27\x36\x2e\x30\x32\x32\x35\x27\x2f\x3e\x0a\x3c\x2f\x67\x3e\
-\x0a\x3c\x2f\x67\x3e\x0a\x3c\x2f\x73\x76\x67\x3e\
-\x00\x00\x03\x52\
+\x65\x73\x65\x72\x76\x65\x22\x3e\x0d\x0a\x3c\x67\x20\x69\x64\x3d\
+\x22\x49\x63\x6f\x6e\x5f\x38\x5f\x22\x3e\x0d\x0a\x09\x3c\x67\x3e\
+\x0d\x0a\x09\x09\x3c\x70\x61\x74\x68\x20\x64\x3d\x22\x4d\x34\x32\
+\x37\x2c\x32\x33\x34\x2e\x36\x32\x35\x48\x31\x36\x37\x2e\x32\x39\
+\x36\x6c\x31\x31\x39\x2e\x37\x30\x32\x2d\x31\x31\x39\x2e\x37\x30\
+\x32\x4c\x32\x35\x36\x2c\x38\x35\x4c\x38\x35\x2c\x32\x35\x36\x6c\
+\x31\x37\x31\x2c\x31\x37\x31\x6c\x32\x39\x2e\x39\x32\x32\x2d\x32\
+\x39\x2e\x39\x32\x34\x4c\x31\x36\x37\x2e\x32\x39\x36\x2c\x32\x37\
+\x37\x2e\x33\x37\x35\x48\x34\x32\x37\x56\x32\x33\x34\x2e\x36\x32\
+\x35\x7a\x22\x2f\x3e\x0d\x0a\x09\x3c\x2f\x67\x3e\x0d\x0a\x3c\x2f\
+\x67\x3e\x0d\x0a\x3c\x2f\x73\x76\x67\x3e\x0d\x0a\
+\x00\x00\x03\x0c\
\x3c\
\x3f\x78\x6d\x6c\x20\x76\x65\x72\x73\x69\x6f\x6e\x3d\x22\x31\x2e\
\x30\x22\x20\x65\x6e\x63\x6f\x64\x69\x6e\x67\x3d\x22\x75\x74\x66\
\x2d\x38\x22\x3f\x3e\x0d\x0a\x3c\x21\x2d\x2d\x20\x47\x65\x6e\x65\
\x72\x61\x74\x6f\x72\x3a\x20\x41\x64\x6f\x62\x65\x20\x49\x6c\x6c\
-\x75\x73\x74\x72\x61\x74\x6f\x72\x20\x31\x36\x2e\x32\x2e\x31\x2c\
+\x75\x73\x74\x72\x61\x74\x6f\x72\x20\x31\x38\x2e\x31\x2e\x30\x2c\
\x20\x53\x56\x47\x20\x45\x78\x70\x6f\x72\x74\x20\x50\x6c\x75\x67\
\x2d\x49\x6e\x20\x2e\x20\x53\x56\x47\x20\x56\x65\x72\x73\x69\x6f\
\x6e\x3a\x20\x36\x2e\x30\x30\x20\x42\x75\x69\x6c\x64\x20\x30\x29\
@@ -1425,184 +1051,55 @@ qt_resource_data = b"\
\x73\x2f\x53\x56\x47\x2f\x31\x2e\x31\x2f\x44\x54\x44\x2f\x73\x76\
\x67\x31\x31\x2e\x64\x74\x64\x22\x3e\x0d\x0a\x3c\x73\x76\x67\x20\
\x76\x65\x72\x73\x69\x6f\x6e\x3d\x22\x31\x2e\x31\x22\x20\x69\x64\
-\x3d\x22\x4c\x61\x79\x65\x72\x5f\x31\x22\x20\x78\x6d\x6c\x6e\x73\
-\x3d\x22\x68\x74\x74\x70\x3a\x2f\x2f\x77\x77\x77\x2e\x77\x33\x2e\
-\x6f\x72\x67\x2f\x32\x30\x30\x30\x2f\x73\x76\x67\x22\x20\x78\x6d\
-\x6c\x6e\x73\x3a\x78\x6c\x69\x6e\x6b\x3d\x22\x68\x74\x74\x70\x3a\
-\x2f\x2f\x77\x77\x77\x2e\x77\x33\x2e\x6f\x72\x67\x2f\x31\x39\x39\
-\x39\x2f\x78\x6c\x69\x6e\x6b\x22\x20\x78\x3d\x22\x30\x70\x78\x22\
-\x20\x79\x3d\x22\x30\x70\x78\x22\x0d\x0a\x09\x20\x77\x69\x64\x74\
-\x68\x3d\x22\x35\x31\x32\x70\x78\x22\x20\x68\x65\x69\x67\x68\x74\
-\x3d\x22\x35\x31\x32\x70\x78\x22\x20\x76\x69\x65\x77\x42\x6f\x78\
-\x3d\x22\x30\x20\x30\x20\x35\x31\x32\x20\x35\x31\x32\x22\x20\x65\
-\x6e\x61\x62\x6c\x65\x2d\x62\x61\x63\x6b\x67\x72\x6f\x75\x6e\x64\
-\x3d\x22\x6e\x65\x77\x20\x30\x20\x30\x20\x35\x31\x32\x20\x35\x31\
-\x32\x22\x20\x78\x6d\x6c\x3a\x73\x70\x61\x63\x65\x3d\x22\x70\x72\
-\x65\x73\x65\x72\x76\x65\x22\x3e\x0d\x0a\x3c\x70\x61\x74\x68\x20\
-\x64\x3d\x22\x4d\x34\x33\x37\x2e\x33\x33\x34\x2c\x31\x34\x34\x48\
-\x32\x35\x36\x2e\x30\x30\x36\x6c\x2d\x34\x32\x2e\x36\x36\x38\x2d\
-\x34\x38\x48\x37\x34\x2e\x36\x36\x36\x43\x35\x31\x2e\x31\x39\x37\
-\x2c\x39\x36\x2c\x33\x32\x2c\x31\x31\x35\x2e\x31\x39\x38\x2c\x33\
-\x32\x2c\x31\x33\x38\x2e\x36\x36\x37\x76\x32\x33\x34\x2e\x36\x36\
-\x36\x43\x33\x32\x2c\x33\x39\x36\x2e\x38\x30\x32\x2c\x35\x31\x2e\
-\x31\x39\x37\x2c\x34\x31\x36\x2c\x37\x34\x2e\x36\x36\x36\x2c\x34\
-\x31\x36\x68\x33\x36\x32\x2e\x36\x36\x38\x0d\x0a\x09\x43\x34\x36\
-\x30\x2e\x38\x30\x33\x2c\x34\x31\x36\x2c\x34\x38\x30\x2c\x33\x39\
-\x36\x2e\x38\x30\x32\x2c\x34\x38\x30\x2c\x33\x37\x33\x2e\x33\x33\
-\x33\x56\x31\x38\x36\x2e\x36\x36\x37\x43\x34\x38\x30\x2c\x31\x36\
-\x33\x2e\x31\x39\x38\x2c\x34\x36\x30\x2e\x38\x30\x33\x2c\x31\x34\
-\x34\x2c\x34\x33\x37\x2e\x33\x33\x34\x2c\x31\x34\x34\x7a\x20\x4d\
-\x34\x34\x38\x2c\x33\x37\x33\x2e\x33\x33\x33\x0d\x0a\x09\x63\x30\
-\x2c\x35\x2e\x37\x38\x32\x2d\x34\x2e\x38\x38\x35\x2c\x31\x30\x2e\
-\x36\x36\x37\x2d\x31\x30\x2e\x36\x36\x36\x2c\x31\x30\x2e\x36\x36\
-\x37\x48\x37\x34\x2e\x36\x36\x36\x43\x36\x38\x2e\x38\x38\x34\x2c\
-\x33\x38\x34\x2c\x36\x34\x2c\x33\x37\x39\x2e\x31\x31\x35\x2c\x36\
-\x34\x2c\x33\x37\x33\x2e\x33\x33\x33\x56\x31\x37\x36\x68\x33\x37\
-\x33\x2e\x33\x33\x34\x63\x35\x2e\x37\x38\x31\x2c\x30\x2c\x31\x30\
-\x2e\x36\x36\x36\x2c\x34\x2e\x38\x38\x35\x2c\x31\x30\x2e\x36\x36\
-\x36\x2c\x31\x30\x2e\x36\x36\x37\x0d\x0a\x09\x56\x33\x37\x33\x2e\
-\x33\x33\x33\x7a\x22\x2f\x3e\x0d\x0a\x3c\x2f\x73\x76\x67\x3e\x0d\
-\x0a\
-\x00\x00\x04\xd5\
-\x3c\
-\x3f\x78\x6d\x6c\x20\x76\x65\x72\x73\x69\x6f\x6e\x3d\x27\x31\x2e\
-\x30\x27\x20\x65\x6e\x63\x6f\x64\x69\x6e\x67\x3d\x27\x55\x54\x46\
-\x2d\x38\x27\x3f\x3e\x0a\x3c\x21\x2d\x2d\x20\x54\x68\x69\x73\x20\
-\x66\x69\x6c\x65\x20\x77\x61\x73\x20\x67\x65\x6e\x65\x72\x61\x74\
-\x65\x64\x20\x62\x79\x20\x64\x76\x69\x73\x76\x67\x6d\x20\x32\x2e\
-\x38\x20\x2d\x2d\x3e\x0a\x3c\x73\x76\x67\x20\x76\x65\x72\x73\x69\
-\x6f\x6e\x3d\x27\x31\x2e\x31\x27\x20\x78\x6d\x6c\x6e\x73\x3d\x27\
+\x3d\x22\x43\x68\x65\x63\x6b\x22\x20\x78\x6d\x6c\x6e\x73\x3d\x22\
\x68\x74\x74\x70\x3a\x2f\x2f\x77\x77\x77\x2e\x77\x33\x2e\x6f\x72\
-\x67\x2f\x32\x30\x30\x30\x2f\x73\x76\x67\x27\x20\x78\x6d\x6c\x6e\
-\x73\x3a\x78\x6c\x69\x6e\x6b\x3d\x27\x68\x74\x74\x70\x3a\x2f\x2f\
+\x67\x2f\x32\x30\x30\x30\x2f\x73\x76\x67\x22\x20\x78\x6d\x6c\x6e\
+\x73\x3a\x78\x6c\x69\x6e\x6b\x3d\x22\x68\x74\x74\x70\x3a\x2f\x2f\
\x77\x77\x77\x2e\x77\x33\x2e\x6f\x72\x67\x2f\x31\x39\x39\x39\x2f\
-\x78\x6c\x69\x6e\x6b\x27\x20\x77\x69\x64\x74\x68\x3d\x27\x36\x33\
-\x2e\x39\x39\x39\x36\x70\x74\x27\x20\x68\x65\x69\x67\x68\x74\x3d\
-\x27\x36\x33\x2e\x39\x39\x39\x37\x70\x74\x27\x20\x76\x69\x65\x77\
-\x42\x6f\x78\x3d\x27\x35\x36\x2e\x34\x30\x39\x34\x20\x35\x33\x2e\
-\x38\x35\x38\x33\x20\x36\x33\x2e\x39\x39\x39\x36\x20\x36\x33\x2e\
-\x39\x39\x39\x37\x27\x3e\x0a\x3c\x67\x20\x69\x64\x3d\x27\x70\x61\
-\x67\x65\x31\x27\x3e\x0a\x3c\x67\x20\x74\x72\x61\x6e\x73\x66\x6f\
-\x72\x6d\x3d\x27\x6d\x61\x74\x72\x69\x78\x28\x30\x2e\x39\x39\x36\
-\x32\x36\x34\x20\x30\x20\x30\x20\x30\x2e\x39\x39\x36\x32\x36\x34\
-\x20\x35\x38\x2e\x34\x36\x36\x39\x20\x31\x31\x37\x2e\x38\x35\x38\
-\x29\x27\x3e\x0a\x3c\x70\x61\x74\x68\x20\x64\x3d\x27\x4d\x20\x33\
-\x2e\x39\x35\x37\x33\x35\x20\x2d\x33\x32\x2e\x31\x32\x43\x20\x32\
-\x2e\x32\x38\x39\x32\x32\x20\x2d\x33\x39\x2e\x33\x31\x31\x33\x20\
-\x36\x2e\x33\x36\x37\x30\x32\x20\x2d\x34\x36\x2e\x32\x33\x38\x36\
-\x20\x31\x31\x2e\x39\x30\x33\x36\x20\x2d\x35\x31\x2e\x33\x30\x33\
-\x39\x43\x20\x32\x39\x2e\x36\x36\x38\x37\x20\x2d\x36\x37\x2e\x35\
-\x35\x36\x38\x20\x35\x35\x2e\x32\x32\x39\x32\x20\x2d\x36\x30\x2e\
-\x36\x34\x32\x20\x35\x36\x2e\x31\x35\x32\x33\x20\x2d\x34\x32\x2e\
-\x35\x30\x32\x32\x43\x20\x35\x36\x2e\x36\x31\x33\x36\x20\x2d\x33\
-\x33\x2e\x34\x33\x38\x31\x20\x34\x39\x2e\x31\x31\x33\x32\x20\x2d\
-\x32\x36\x2e\x35\x39\x35\x39\x20\x34\x30\x2e\x36\x37\x39\x34\x20\
-\x2d\x32\x32\x2e\x35\x32\x38\x31\x43\x20\x32\x35\x2e\x33\x39\x39\
-\x35\x20\x2d\x31\x35\x2e\x31\x35\x38\x32\x20\x37\x2e\x31\x39\x39\
-\x33\x35\x20\x2d\x31\x38\x2e\x31\x34\x33\x36\x20\x33\x2e\x39\x35\
-\x37\x33\x35\x20\x2d\x33\x32\x2e\x31\x32\x5a\x27\x20\x66\x69\x6c\
-\x6c\x3d\x27\x6e\x6f\x6e\x65\x27\x20\x73\x74\x72\x6f\x6b\x65\x3d\
-\x27\x23\x30\x30\x30\x30\x30\x30\x27\x20\x73\x74\x72\x6f\x6b\x65\
-\x2d\x6c\x69\x6e\x65\x63\x61\x70\x3d\x27\x72\x6f\x75\x6e\x64\x27\
-\x20\x73\x74\x72\x6f\x6b\x65\x2d\x6c\x69\x6e\x65\x6a\x6f\x69\x6e\
-\x3d\x27\x72\x6f\x75\x6e\x64\x27\x20\x73\x74\x72\x6f\x6b\x65\x2d\
-\x6d\x69\x74\x65\x72\x6c\x69\x6d\x69\x74\x3d\x27\x31\x30\x2e\x30\
-\x33\x37\x35\x27\x20\x73\x74\x72\x6f\x6b\x65\x2d\x77\x69\x64\x74\
-\x68\x3d\x27\x32\x2e\x35\x30\x39\x33\x37\x27\x2f\x3e\x0a\x3c\x2f\
-\x67\x3e\x0a\x3c\x67\x20\x74\x72\x61\x6e\x73\x66\x6f\x72\x6d\x3d\
-\x27\x6d\x61\x74\x72\x69\x78\x28\x30\x2e\x39\x39\x36\x32\x36\x34\
-\x20\x30\x20\x30\x20\x30\x2e\x39\x39\x36\x32\x36\x34\x20\x35\x38\
-\x2e\x34\x36\x36\x39\x20\x31\x31\x37\x2e\x38\x35\x38\x29\x27\x3e\
-\x0a\x3c\x63\x69\x72\x63\x6c\x65\x20\x63\x78\x3d\x27\x33\x2e\x39\
-\x35\x37\x33\x35\x27\x20\x63\x79\x3d\x27\x2d\x33\x32\x2e\x31\x32\
-\x27\x20\x66\x69\x6c\x6c\x3d\x27\x23\x30\x30\x30\x30\x30\x30\x27\
-\x20\x72\x3d\x27\x36\x2e\x30\x32\x32\x35\x27\x2f\x3e\x0a\x3c\x2f\
-\x67\x3e\x0a\x3c\x67\x20\x74\x72\x61\x6e\x73\x66\x6f\x72\x6d\x3d\
-\x27\x6d\x61\x74\x72\x69\x78\x28\x30\x2e\x39\x39\x36\x32\x36\x34\
-\x20\x30\x20\x30\x20\x30\x2e\x39\x39\x36\x32\x36\x34\x20\x35\x38\
-\x2e\x34\x36\x36\x39\x20\x31\x31\x37\x2e\x38\x35\x38\x29\x27\x3e\
-\x0a\x3c\x63\x69\x72\x63\x6c\x65\x20\x63\x78\x3d\x27\x31\x31\x2e\
-\x39\x30\x33\x36\x27\x20\x63\x79\x3d\x27\x2d\x35\x31\x2e\x33\x30\
-\x33\x39\x27\x20\x66\x69\x6c\x6c\x3d\x27\x23\x30\x30\x30\x30\x30\
-\x30\x27\x20\x72\x3d\x27\x36\x2e\x30\x32\x32\x35\x27\x2f\x3e\x0a\
-\x3c\x2f\x67\x3e\x0a\x3c\x67\x20\x74\x72\x61\x6e\x73\x66\x6f\x72\
-\x6d\x3d\x27\x6d\x61\x74\x72\x69\x78\x28\x30\x2e\x39\x39\x36\x32\
-\x36\x34\x20\x30\x20\x30\x20\x30\x2e\x39\x39\x36\x32\x36\x34\x20\
-\x35\x38\x2e\x34\x36\x36\x39\x20\x31\x31\x37\x2e\x38\x35\x38\x29\
-\x27\x3e\x0a\x3c\x63\x69\x72\x63\x6c\x65\x20\x63\x78\x3d\x27\x35\
-\x36\x2e\x31\x35\x32\x33\x27\x20\x63\x79\x3d\x27\x2d\x34\x32\x2e\
-\x35\x30\x32\x32\x27\x20\x66\x69\x6c\x6c\x3d\x27\x23\x30\x30\x30\
-\x30\x30\x30\x27\x20\x72\x3d\x27\x36\x2e\x30\x32\x32\x35\x27\x2f\
-\x3e\x0a\x3c\x2f\x67\x3e\x0a\x3c\x67\x20\x74\x72\x61\x6e\x73\x66\
-\x6f\x72\x6d\x3d\x27\x6d\x61\x74\x72\x69\x78\x28\x30\x2e\x39\x39\
-\x36\x32\x36\x34\x20\x30\x20\x30\x20\x30\x2e\x39\x39\x36\x32\x36\
-\x34\x20\x35\x38\x2e\x34\x36\x36\x39\x20\x31\x31\x37\x2e\x38\x35\
-\x38\x29\x27\x3e\x0a\x3c\x63\x69\x72\x63\x6c\x65\x20\x63\x78\x3d\
-\x27\x34\x30\x2e\x36\x37\x39\x34\x27\x20\x63\x79\x3d\x27\x2d\x32\
-\x32\x2e\x35\x32\x38\x31\x27\x20\x66\x69\x6c\x6c\x3d\x27\x23\x30\
-\x30\x30\x30\x30\x30\x27\x20\x72\x3d\x27\x36\x2e\x30\x32\x32\x35\
-\x27\x2f\x3e\x0a\x3c\x2f\x67\x3e\x0a\x3c\x2f\x67\x3e\x0a\x3c\x2f\
-\x73\x76\x67\x3e\
-\x00\x00\x03\x22\
+\x78\x6c\x69\x6e\x6b\x22\x20\x78\x3d\x22\x30\x70\x78\x22\x20\x79\
+\x3d\x22\x30\x70\x78\x22\x0d\x0a\x09\x20\x76\x69\x65\x77\x42\x6f\
+\x78\x3d\x22\x30\x20\x30\x20\x32\x30\x20\x32\x30\x22\x20\x65\x6e\
+\x61\x62\x6c\x65\x2d\x62\x61\x63\x6b\x67\x72\x6f\x75\x6e\x64\x3d\
+\x22\x6e\x65\x77\x20\x30\x20\x30\x20\x32\x30\x20\x32\x30\x22\x20\
+\x78\x6d\x6c\x3a\x73\x70\x61\x63\x65\x3d\x22\x70\x72\x65\x73\x65\
+\x72\x76\x65\x22\x3e\x0d\x0a\x3c\x70\x61\x74\x68\x20\x64\x3d\x22\
+\x4d\x38\x2e\x32\x39\x34\x2c\x31\x36\x2e\x39\x39\x38\x63\x2d\x30\
+\x2e\x34\x33\x35\x2c\x30\x2d\x30\x2e\x38\x34\x37\x2d\x30\x2e\x32\
+\x30\x33\x2d\x31\x2e\x31\x31\x31\x2d\x30\x2e\x35\x35\x33\x4c\x33\
+\x2e\x36\x31\x2c\x31\x31\x2e\x37\x32\x34\x63\x2d\x30\x2e\x34\x36\
+\x35\x2d\x30\x2e\x36\x31\x33\x2d\x30\x2e\x33\x34\x34\x2d\x31\x2e\
+\x34\x38\x36\x2c\x30\x2e\x32\x37\x2d\x31\x2e\x39\x35\x31\x0d\x0a\
+\x09\x63\x30\x2e\x36\x31\x35\x2d\x30\x2e\x34\x36\x37\x2c\x31\x2e\
+\x34\x38\x38\x2d\x30\x2e\x33\x34\x34\x2c\x31\x2e\x39\x35\x33\x2c\
+\x30\x2e\x32\x37\x6c\x32\x2e\x33\x35\x31\x2c\x33\x2e\x31\x30\x34\
+\x6c\x35\x2e\x39\x31\x31\x2d\x39\x2e\x34\x39\x32\x63\x30\x2e\x34\
+\x30\x37\x2d\x30\x2e\x36\x35\x32\x2c\x31\x2e\x32\x36\x37\x2d\x30\
+\x2e\x38\x35\x32\x2c\x31\x2e\x39\x32\x31\x2d\x30\x2e\x34\x34\x35\
+\x0d\x0a\x09\x63\x30\x2e\x36\x35\x33\x2c\x30\x2e\x34\x30\x36\x2c\
+\x30\x2e\x38\x35\x34\x2c\x31\x2e\x32\x36\x36\x2c\x30\x2e\x34\x34\
+\x36\x2c\x31\x2e\x39\x32\x4c\x39\x2e\x34\x37\x38\x2c\x31\x36\x2e\
+\x33\x34\x63\x2d\x30\x2e\x32\x34\x32\x2c\x30\x2e\x33\x39\x31\x2d\
+\x30\x2e\x36\x36\x31\x2c\x30\x2e\x36\x33\x35\x2d\x31\x2e\x31\x32\
+\x2c\x30\x2e\x36\x35\x36\x43\x38\x2e\x33\x33\x36\x2c\x31\x36\x2e\
+\x39\x39\x38\x2c\x38\x2e\x33\x31\x36\x2c\x31\x36\x2e\x39\x39\x38\
+\x2c\x38\x2e\x32\x39\x34\x2c\x31\x36\x2e\x39\x39\x38\x7a\x22\x2f\
+\x3e\x0d\x0a\x3c\x2f\x73\x76\x67\x3e\x0d\x0a\
+\x00\x00\x00\x6c\
\x3c\
-\x3f\x78\x6d\x6c\x20\x76\x65\x72\x73\x69\x6f\x6e\x3d\x22\x31\x2e\
-\x30\x22\x20\x65\x6e\x63\x6f\x64\x69\x6e\x67\x3d\x22\x75\x74\x66\
-\x2d\x38\x22\x3f\x3e\x0d\x0a\x3c\x21\x2d\x2d\x20\x47\x65\x6e\x65\
-\x72\x61\x74\x6f\x72\x3a\x20\x41\x64\x6f\x62\x65\x20\x49\x6c\x6c\
-\x75\x73\x74\x72\x61\x74\x6f\x72\x20\x31\x36\x2e\x32\x2e\x31\x2c\
-\x20\x53\x56\x47\x20\x45\x78\x70\x6f\x72\x74\x20\x50\x6c\x75\x67\
-\x2d\x49\x6e\x20\x2e\x20\x53\x56\x47\x20\x56\x65\x72\x73\x69\x6f\
-\x6e\x3a\x20\x36\x2e\x30\x30\x20\x42\x75\x69\x6c\x64\x20\x30\x29\
-\x20\x20\x2d\x2d\x3e\x0d\x0a\x3c\x21\x44\x4f\x43\x54\x59\x50\x45\
-\x20\x73\x76\x67\x20\x50\x55\x42\x4c\x49\x43\x20\x22\x2d\x2f\x2f\
-\x57\x33\x43\x2f\x2f\x44\x54\x44\x20\x53\x56\x47\x20\x31\x2e\x31\
-\x2f\x2f\x45\x4e\x22\x20\x22\x68\x74\x74\x70\x3a\x2f\x2f\x77\x77\
-\x77\x2e\x77\x33\x2e\x6f\x72\x67\x2f\x47\x72\x61\x70\x68\x69\x63\
-\x73\x2f\x53\x56\x47\x2f\x31\x2e\x31\x2f\x44\x54\x44\x2f\x73\x76\
-\x67\x31\x31\x2e\x64\x74\x64\x22\x3e\x0d\x0a\x3c\x73\x76\x67\x20\
-\x76\x65\x72\x73\x69\x6f\x6e\x3d\x22\x31\x2e\x31\x22\x20\x69\x64\
-\x3d\x22\x4c\x61\x79\x65\x72\x5f\x31\x22\x20\x78\x6d\x6c\x6e\x73\
-\x3d\x22\x68\x74\x74\x70\x3a\x2f\x2f\x77\x77\x77\x2e\x77\x33\x2e\
-\x6f\x72\x67\x2f\x32\x30\x30\x30\x2f\x73\x76\x67\x22\x20\x78\x6d\
-\x6c\x6e\x73\x3a\x78\x6c\x69\x6e\x6b\x3d\x22\x68\x74\x74\x70\x3a\
-\x2f\x2f\x77\x77\x77\x2e\x77\x33\x2e\x6f\x72\x67\x2f\x31\x39\x39\
-\x39\x2f\x78\x6c\x69\x6e\x6b\x22\x20\x78\x3d\x22\x30\x70\x78\x22\
-\x20\x79\x3d\x22\x30\x70\x78\x22\x0d\x0a\x09\x20\x77\x69\x64\x74\
-\x68\x3d\x22\x35\x31\x32\x70\x78\x22\x20\x68\x65\x69\x67\x68\x74\
-\x3d\x22\x35\x31\x32\x70\x78\x22\x20\x76\x69\x65\x77\x42\x6f\x78\
-\x3d\x22\x30\x20\x30\x20\x35\x31\x32\x20\x35\x31\x32\x22\x20\x65\
-\x6e\x61\x62\x6c\x65\x2d\x62\x61\x63\x6b\x67\x72\x6f\x75\x6e\x64\
-\x3d\x22\x6e\x65\x77\x20\x30\x20\x30\x20\x35\x31\x32\x20\x35\x31\
-\x32\x22\x20\x78\x6d\x6c\x3a\x73\x70\x61\x63\x65\x3d\x22\x70\x72\
-\x65\x73\x65\x72\x76\x65\x22\x3e\x0d\x0a\x3c\x67\x3e\x0d\x0a\x09\
-\x3c\x63\x69\x72\x63\x6c\x65\x20\x63\x78\x3d\x22\x32\x35\x36\x22\
-\x20\x63\x79\x3d\x22\x32\x38\x30\x22\x20\x72\x3d\x22\x36\x33\x22\
-\x2f\x3e\x0d\x0a\x09\x3c\x70\x61\x74\x68\x20\x64\x3d\x22\x4d\x34\
-\x34\x30\x2c\x39\x36\x68\x2d\x38\x38\x6c\x2d\x33\x32\x2d\x33\x32\
-\x48\x31\x39\x32\x6c\x2d\x33\x32\x2c\x33\x32\x48\x37\x32\x63\x2d\
-\x32\x32\x2e\x30\x39\x32\x2c\x30\x2d\x34\x30\x2c\x31\x37\x2e\x39\
-\x30\x38\x2d\x34\x30\x2c\x34\x30\x76\x32\x37\x32\x63\x30\x2c\x32\
-\x32\x2e\x30\x39\x32\x2c\x31\x37\x2e\x39\x30\x38\x2c\x34\x30\x2c\
-\x34\x30\x2c\x34\x30\x68\x33\x36\x38\x63\x32\x32\x2e\x30\x39\x32\
-\x2c\x30\x2c\x34\x30\x2d\x31\x37\x2e\x39\x30\x38\x2c\x34\x30\x2d\
-\x34\x30\x0d\x0a\x09\x09\x56\x31\x33\x36\x43\x34\x38\x30\x2c\x31\
-\x31\x33\x2e\x39\x30\x38\x2c\x34\x36\x32\x2e\x30\x39\x32\x2c\x39\
-\x36\x2c\x34\x34\x30\x2c\x39\x36\x7a\x20\x4d\x32\x35\x36\x2c\x33\
-\x39\x32\x63\x2d\x36\x31\x2e\x38\x35\x35\x2c\x30\x2d\x31\x31\x32\
-\x2d\x35\x30\x2e\x31\x34\x35\x2d\x31\x31\x32\x2d\x31\x31\x32\x73\
-\x35\x30\x2e\x31\x34\x35\x2d\x31\x31\x32\x2c\x31\x31\x32\x2d\x31\
-\x31\x32\x73\x31\x31\x32\x2c\x35\x30\x2e\x31\x34\x35\x2c\x31\x31\
-\x32\x2c\x31\x31\x32\x0d\x0a\x09\x09\x53\x33\x31\x37\x2e\x38\x35\
-\x35\x2c\x33\x39\x32\x2c\x32\x35\x36\x2c\x33\x39\x32\x7a\x22\x2f\
-\x3e\x0d\x0a\x3c\x2f\x67\x3e\x0d\x0a\x3c\x2f\x73\x76\x67\x3e\x0d\
-\x0a\
-\x00\x00\x02\x7f\
+\x73\x76\x67\x20\x78\x6d\x6c\x6e\x73\x3d\x22\x68\x74\x74\x70\x3a\
+\x2f\x2f\x77\x77\x77\x2e\x77\x33\x2e\x6f\x72\x67\x2f\x32\x30\x30\
+\x30\x2f\x73\x76\x67\x22\x20\x76\x69\x65\x77\x42\x6f\x78\x3d\x22\
+\x30\x20\x30\x20\x32\x30\x20\x32\x30\x22\x3e\x3c\x70\x61\x74\x68\
+\x20\x64\x3d\x22\x4d\x31\x38\x20\x31\x32\x76\x31\x48\x38\x76\x35\
+\x6c\x2d\x36\x2d\x36\x20\x36\x2d\x36\x76\x35\x68\x38\x56\x32\x68\
+\x32\x7a\x22\x2f\x3e\x3c\x2f\x73\x76\x67\x3e\
+\x00\x00\x03\xc4\
\x3c\
\x3f\x78\x6d\x6c\x20\x76\x65\x72\x73\x69\x6f\x6e\x3d\x22\x31\x2e\
\x30\x22\x20\x65\x6e\x63\x6f\x64\x69\x6e\x67\x3d\x22\x75\x74\x66\
\x2d\x38\x22\x3f\x3e\x0d\x0a\x3c\x21\x2d\x2d\x20\x47\x65\x6e\x65\
\x72\x61\x74\x6f\x72\x3a\x20\x41\x64\x6f\x62\x65\x20\x49\x6c\x6c\
-\x75\x73\x74\x72\x61\x74\x6f\x72\x20\x31\x36\x2e\x32\x2e\x31\x2c\
+\x75\x73\x74\x72\x61\x74\x6f\x72\x20\x31\x38\x2e\x31\x2e\x30\x2c\
\x20\x53\x56\x47\x20\x45\x78\x70\x6f\x72\x74\x20\x50\x6c\x75\x67\
\x2d\x49\x6e\x20\x2e\x20\x53\x56\x47\x20\x56\x65\x72\x73\x69\x6f\
\x6e\x3a\x20\x36\x2e\x30\x30\x20\x42\x75\x69\x6c\x64\x20\x30\x29\
@@ -1614,101 +1111,51 @@ qt_resource_data = b"\
\x73\x2f\x53\x56\x47\x2f\x31\x2e\x31\x2f\x44\x54\x44\x2f\x73\x76\
\x67\x31\x31\x2e\x64\x74\x64\x22\x3e\x0d\x0a\x3c\x73\x76\x67\x20\
\x76\x65\x72\x73\x69\x6f\x6e\x3d\x22\x31\x2e\x31\x22\x20\x69\x64\
-\x3d\x22\x4c\x61\x79\x65\x72\x5f\x31\x22\x20\x78\x6d\x6c\x6e\x73\
-\x3d\x22\x68\x74\x74\x70\x3a\x2f\x2f\x77\x77\x77\x2e\x77\x33\x2e\
-\x6f\x72\x67\x2f\x32\x30\x30\x30\x2f\x73\x76\x67\x22\x20\x78\x6d\
-\x6c\x6e\x73\x3a\x78\x6c\x69\x6e\x6b\x3d\x22\x68\x74\x74\x70\x3a\
-\x2f\x2f\x77\x77\x77\x2e\x77\x33\x2e\x6f\x72\x67\x2f\x31\x39\x39\
-\x39\x2f\x78\x6c\x69\x6e\x6b\x22\x20\x78\x3d\x22\x30\x70\x78\x22\
-\x20\x79\x3d\x22\x30\x70\x78\x22\x0d\x0a\x09\x20\x77\x69\x64\x74\
-\x68\x3d\x22\x35\x31\x32\x70\x78\x22\x20\x68\x65\x69\x67\x68\x74\
-\x3d\x22\x35\x31\x32\x70\x78\x22\x20\x76\x69\x65\x77\x42\x6f\x78\
-\x3d\x22\x30\x20\x30\x20\x35\x31\x32\x20\x35\x31\x32\x22\x20\x73\
-\x74\x79\x6c\x65\x3d\x22\x65\x6e\x61\x62\x6c\x65\x2d\x62\x61\x63\
-\x6b\x67\x72\x6f\x75\x6e\x64\x3a\x6e\x65\x77\x20\x30\x20\x30\x20\
-\x35\x31\x32\x20\x35\x31\x32\x3b\x22\x20\x78\x6d\x6c\x3a\x73\x70\
-\x61\x63\x65\x3d\x22\x70\x72\x65\x73\x65\x72\x76\x65\x22\x3e\x0d\
-\x0a\x3c\x70\x6f\x6c\x79\x67\x6f\x6e\x20\x70\x6f\x69\x6e\x74\x73\
-\x3d\x22\x32\x38\x38\x2c\x39\x36\x20\x33\x33\x37\x2e\x39\x2c\x31\
-\x34\x35\x2e\x39\x20\x32\x37\x34\x2c\x32\x30\x39\x2e\x37\x20\x32\
-\x37\x34\x2c\x32\x30\x39\x2e\x37\x20\x31\x34\x35\x2e\x39\x2c\x33\
-\x33\x37\x2e\x39\x20\x39\x36\x2c\x32\x38\x38\x20\x39\x36\x2c\x34\
-\x31\x36\x20\x32\x32\x34\x2c\x34\x31\x36\x20\x31\x37\x34\x2e\x31\
-\x2c\x33\x36\x36\x2e\x31\x20\x33\x35\x37\x2e\x34\x2c\x31\x38\x32\
-\x2e\x39\x20\x33\x36\x36\x2e\x31\x2c\x31\x37\x34\x2e\x31\x20\x0d\
-\x0a\x09\x34\x31\x36\x2c\x32\x32\x34\x20\x34\x31\x36\x2c\x39\x36\
-\x20\x22\x2f\x3e\x0d\x0a\x3c\x2f\x73\x76\x67\x3e\x0d\x0a\
-\x00\x00\x04\x4e\
-\x3c\
-\x3f\x78\x6d\x6c\x20\x76\x65\x72\x73\x69\x6f\x6e\x3d\x27\x31\x2e\
-\x30\x27\x20\x65\x6e\x63\x6f\x64\x69\x6e\x67\x3d\x27\x55\x54\x46\
-\x2d\x38\x27\x3f\x3e\x0a\x3c\x21\x2d\x2d\x20\x54\x68\x69\x73\x20\
-\x66\x69\x6c\x65\x20\x77\x61\x73\x20\x67\x65\x6e\x65\x72\x61\x74\
-\x65\x64\x20\x62\x79\x20\x64\x76\x69\x73\x76\x67\x6d\x20\x32\x2e\
-\x38\x20\x2d\x2d\x3e\x0a\x3c\x73\x76\x67\x20\x76\x65\x72\x73\x69\
-\x6f\x6e\x3d\x27\x31\x2e\x31\x27\x20\x78\x6d\x6c\x6e\x73\x3d\x27\
-\x68\x74\x74\x70\x3a\x2f\x2f\x77\x77\x77\x2e\x77\x33\x2e\x6f\x72\
-\x67\x2f\x32\x30\x30\x30\x2f\x73\x76\x67\x27\x20\x78\x6d\x6c\x6e\
-\x73\x3a\x78\x6c\x69\x6e\x6b\x3d\x27\x68\x74\x74\x70\x3a\x2f\x2f\
-\x77\x77\x77\x2e\x77\x33\x2e\x6f\x72\x67\x2f\x31\x39\x39\x39\x2f\
-\x78\x6c\x69\x6e\x6b\x27\x20\x77\x69\x64\x74\x68\x3d\x27\x36\x33\
-\x2e\x39\x39\x39\x36\x70\x74\x27\x20\x68\x65\x69\x67\x68\x74\x3d\
-\x27\x36\x33\x2e\x39\x39\x39\x37\x70\x74\x27\x20\x76\x69\x65\x77\
-\x42\x6f\x78\x3d\x27\x35\x36\x2e\x34\x30\x39\x34\x20\x35\x33\x2e\
-\x38\x35\x38\x33\x20\x36\x33\x2e\x39\x39\x39\x36\x20\x36\x33\x2e\
-\x39\x39\x39\x37\x27\x3e\x0a\x3c\x67\x20\x69\x64\x3d\x27\x70\x61\
-\x67\x65\x31\x27\x3e\x0a\x3c\x67\x20\x74\x72\x61\x6e\x73\x66\x6f\
-\x72\x6d\x3d\x27\x6d\x61\x74\x72\x69\x78\x28\x30\x2e\x39\x39\x36\
-\x32\x36\x34\x20\x30\x20\x30\x20\x30\x2e\x39\x39\x36\x32\x36\x34\
-\x20\x35\x38\x2e\x34\x36\x36\x39\x20\x31\x31\x37\x2e\x38\x35\x38\
-\x29\x27\x3e\x0a\x3c\x70\x61\x74\x68\x20\x64\x3d\x27\x4d\x20\x33\
-\x2e\x39\x35\x37\x33\x35\x20\x2d\x33\x32\x2e\x31\x32\x4c\x20\x31\
-\x31\x2e\x39\x30\x33\x36\x20\x2d\x35\x31\x2e\x33\x30\x33\x39\x4c\
-\x20\x35\x36\x2e\x31\x35\x32\x33\x20\x2d\x34\x32\x2e\x35\x30\x32\
-\x32\x4c\x20\x34\x30\x2e\x36\x37\x39\x34\x20\x2d\x32\x32\x2e\x35\
-\x32\x38\x31\x4c\x20\x33\x2e\x39\x35\x37\x33\x35\x20\x2d\x33\x32\
-\x2e\x31\x32\x5a\x27\x20\x66\x69\x6c\x6c\x3d\x27\x6e\x6f\x6e\x65\
-\x27\x20\x73\x74\x72\x6f\x6b\x65\x3d\x27\x23\x30\x30\x30\x30\x30\
-\x30\x27\x20\x73\x74\x72\x6f\x6b\x65\x2d\x6c\x69\x6e\x65\x63\x61\
-\x70\x3d\x27\x72\x6f\x75\x6e\x64\x27\x20\x73\x74\x72\x6f\x6b\x65\
-\x2d\x6c\x69\x6e\x65\x6a\x6f\x69\x6e\x3d\x27\x72\x6f\x75\x6e\x64\
-\x27\x20\x73\x74\x72\x6f\x6b\x65\x2d\x6d\x69\x74\x65\x72\x6c\x69\
-\x6d\x69\x74\x3d\x27\x31\x30\x2e\x30\x33\x37\x35\x27\x20\x73\x74\
-\x72\x6f\x6b\x65\x2d\x77\x69\x64\x74\x68\x3d\x27\x32\x2e\x35\x30\
-\x39\x33\x37\x27\x2f\x3e\x0a\x3c\x2f\x67\x3e\x0a\x3c\x67\x20\x74\
-\x72\x61\x6e\x73\x66\x6f\x72\x6d\x3d\x27\x6d\x61\x74\x72\x69\x78\
-\x28\x30\x2e\x39\x39\x36\x32\x36\x34\x20\x30\x20\x30\x20\x30\x2e\
-\x39\x39\x36\x32\x36\x34\x20\x35\x38\x2e\x34\x36\x36\x39\x20\x31\
-\x31\x37\x2e\x38\x35\x38\x29\x27\x3e\x0a\x3c\x63\x69\x72\x63\x6c\
-\x65\x20\x63\x78\x3d\x27\x33\x2e\x39\x35\x37\x33\x35\x27\x20\x63\
-\x79\x3d\x27\x2d\x33\x32\x2e\x31\x32\x27\x20\x66\x69\x6c\x6c\x3d\
-\x27\x23\x30\x30\x30\x30\x30\x30\x27\x20\x72\x3d\x27\x36\x2e\x30\
-\x32\x32\x35\x27\x2f\x3e\x0a\x3c\x2f\x67\x3e\x0a\x3c\x67\x20\x74\
-\x72\x61\x6e\x73\x66\x6f\x72\x6d\x3d\x27\x6d\x61\x74\x72\x69\x78\
-\x28\x30\x2e\x39\x39\x36\x32\x36\x34\x20\x30\x20\x30\x20\x30\x2e\
-\x39\x39\x36\x32\x36\x34\x20\x35\x38\x2e\x34\x36\x36\x39\x20\x31\
-\x31\x37\x2e\x38\x35\x38\x29\x27\x3e\x0a\x3c\x63\x69\x72\x63\x6c\
-\x65\x20\x63\x78\x3d\x27\x31\x31\x2e\x39\x30\x33\x36\x27\x20\x63\
-\x79\x3d\x27\x2d\x35\x31\x2e\x33\x30\x33\x39\x27\x20\x66\x69\x6c\
-\x6c\x3d\x27\x23\x30\x30\x30\x30\x30\x30\x27\x20\x72\x3d\x27\x36\
-\x2e\x30\x32\x32\x35\x27\x2f\x3e\x0a\x3c\x2f\x67\x3e\x0a\x3c\x67\
-\x20\x74\x72\x61\x6e\x73\x66\x6f\x72\x6d\x3d\x27\x6d\x61\x74\x72\
-\x69\x78\x28\x30\x2e\x39\x39\x36\x32\x36\x34\x20\x30\x20\x30\x20\
-\x30\x2e\x39\x39\x36\x32\x36\x34\x20\x35\x38\x2e\x34\x36\x36\x39\
-\x20\x31\x31\x37\x2e\x38\x35\x38\x29\x27\x3e\x0a\x3c\x63\x69\x72\
-\x63\x6c\x65\x20\x63\x78\x3d\x27\x35\x36\x2e\x31\x35\x32\x33\x27\
-\x20\x63\x79\x3d\x27\x2d\x34\x32\x2e\x35\x30\x32\x32\x27\x20\x66\
-\x69\x6c\x6c\x3d\x27\x23\x30\x30\x30\x30\x30\x30\x27\x20\x72\x3d\
-\x27\x36\x2e\x30\x32\x32\x35\x27\x2f\x3e\x0a\x3c\x2f\x67\x3e\x0a\
-\x3c\x67\x20\x74\x72\x61\x6e\x73\x66\x6f\x72\x6d\x3d\x27\x6d\x61\
-\x74\x72\x69\x78\x28\x30\x2e\x39\x39\x36\x32\x36\x34\x20\x30\x20\
-\x30\x20\x30\x2e\x39\x39\x36\x32\x36\x34\x20\x35\x38\x2e\x34\x36\
-\x36\x39\x20\x31\x31\x37\x2e\x38\x35\x38\x29\x27\x3e\x0a\x3c\x63\
-\x69\x72\x63\x6c\x65\x20\x63\x78\x3d\x27\x34\x30\x2e\x36\x37\x39\
-\x34\x27\x20\x63\x79\x3d\x27\x2d\x32\x32\x2e\x35\x32\x38\x31\x27\
-\x20\x66\x69\x6c\x6c\x3d\x27\x23\x30\x30\x30\x30\x30\x30\x27\x20\
-\x72\x3d\x27\x36\x2e\x30\x32\x32\x35\x27\x2f\x3e\x0a\x3c\x2f\x67\
-\x3e\x0a\x3c\x2f\x67\x3e\x0a\x3c\x2f\x73\x76\x67\x3e\
+\x3d\x22\x4d\x61\x67\x6e\x69\x66\x79\x69\x6e\x67\x5f\x67\x6c\x61\
+\x73\x73\x22\x20\x78\x6d\x6c\x6e\x73\x3d\x22\x68\x74\x74\x70\x3a\
+\x2f\x2f\x77\x77\x77\x2e\x77\x33\x2e\x6f\x72\x67\x2f\x32\x30\x30\
+\x30\x2f\x73\x76\x67\x22\x20\x78\x6d\x6c\x6e\x73\x3a\x78\x6c\x69\
+\x6e\x6b\x3d\x22\x68\x74\x74\x70\x3a\x2f\x2f\x77\x77\x77\x2e\x77\
+\x33\x2e\x6f\x72\x67\x2f\x31\x39\x39\x39\x2f\x78\x6c\x69\x6e\x6b\
+\x22\x20\x78\x3d\x22\x30\x70\x78\x22\x0d\x0a\x09\x20\x79\x3d\x22\
+\x30\x70\x78\x22\x20\x76\x69\x65\x77\x42\x6f\x78\x3d\x22\x30\x20\
+\x30\x20\x35\x31\x32\x20\x35\x31\x32\x22\x20\x65\x6e\x61\x62\x6c\
+\x65\x2d\x62\x61\x63\x6b\x67\x72\x6f\x75\x6e\x64\x3d\x22\x6e\x65\
+\x77\x20\x30\x20\x30\x20\x35\x31\x32\x20\x35\x31\x32\x22\x20\x78\
+\x6d\x6c\x3a\x73\x70\x61\x63\x65\x3d\x22\x70\x72\x65\x73\x65\x72\
+\x76\x65\x22\x3e\x0d\x0a\x3c\x67\x20\x74\x72\x61\x6e\x73\x66\x6f\
+\x72\x6d\x3d\x27\x6d\x61\x74\x72\x69\x78\x28\x32\x34\x20\x30\x20\
+\x30\x20\x32\x34\x20\x30\x20\x30\x29\x27\x3e\x0d\x0a\x3c\x70\x61\
+\x74\x68\x20\x64\x3d\x22\x4d\x31\x37\x2e\x35\x34\x35\x2c\x31\x35\
+\x2e\x34\x36\x37\x6c\x2d\x33\x2e\x37\x37\x39\x2d\x33\x2e\x37\x37\
+\x39\x63\x30\x2e\x35\x37\x2d\x30\x2e\x39\x33\x35\x2c\x30\x2e\x38\
+\x39\x38\x2d\x32\x2e\x30\x33\x35\x2c\x30\x2e\x38\x39\x38\x2d\x33\
+\x2e\x32\x31\x63\x30\x2d\x33\x2e\x34\x31\x37\x2d\x32\x2e\x39\x36\
+\x31\x2d\x36\x2e\x33\x37\x37\x2d\x36\x2e\x33\x37\x38\x2d\x36\x2e\
+\x33\x37\x37\x0d\x0a\x09\x43\x34\x2e\x38\x36\x39\x2c\x32\x2e\x31\
+\x2c\x32\x2e\x31\x2c\x34\x2e\x38\x37\x2c\x32\x2e\x31\x2c\x38\x2e\
+\x32\x38\x37\x63\x30\x2c\x33\x2e\x34\x31\x36\x2c\x32\x2e\x39\x36\
+\x31\x2c\x36\x2e\x33\x37\x37\x2c\x36\x2e\x33\x37\x37\x2c\x36\x2e\
+\x33\x37\x37\x63\x31\x2e\x31\x33\x37\x2c\x30\x2c\x32\x2e\x32\x2d\
+\x30\x2e\x33\x30\x39\x2c\x33\x2e\x31\x31\x35\x2d\x30\x2e\x38\x34\
+\x34\x6c\x33\x2e\x37\x39\x39\x2c\x33\x2e\x38\x30\x31\x0d\x0a\x09\
+\x63\x30\x2e\x33\x37\x32\x2c\x30\x2e\x33\x37\x31\x2c\x30\x2e\x39\
+\x37\x35\x2c\x30\x2e\x33\x37\x31\x2c\x31\x2e\x33\x34\x36\x2c\x30\
+\x6c\x30\x2e\x39\x34\x33\x2d\x30\x2e\x39\x34\x33\x43\x31\x38\x2e\
+\x30\x35\x31\x2c\x31\x36\x2e\x33\x30\x37\x2c\x31\x37\x2e\x39\x31\
+\x36\x2c\x31\x35\x2e\x38\x33\x38\x2c\x31\x37\x2e\x35\x34\x35\x2c\
+\x31\x35\x2e\x34\x36\x37\x7a\x20\x4d\x34\x2e\x30\x30\x34\x2c\x38\
+\x2e\x32\x38\x37\x0d\x0a\x09\x63\x30\x2d\x32\x2e\x33\x36\x36\x2c\
+\x31\x2e\x39\x31\x37\x2d\x34\x2e\x32\x38\x33\x2c\x34\x2e\x32\x38\
+\x32\x2d\x34\x2e\x32\x38\x33\x63\x32\x2e\x33\x36\x36\x2c\x30\x2c\
+\x34\x2e\x34\x37\x34\x2c\x32\x2e\x31\x30\x37\x2c\x34\x2e\x34\x37\
+\x34\x2c\x34\x2e\x34\x37\x34\x63\x30\x2c\x32\x2e\x33\x36\x35\x2d\
+\x31\x2e\x39\x31\x38\x2c\x34\x2e\x32\x38\x33\x2d\x34\x2e\x32\x38\
+\x33\x2c\x34\x2e\x32\x38\x33\x0d\x0a\x09\x43\x36\x2e\x31\x31\x31\
+\x2c\x31\x32\x2e\x37\x36\x2c\x34\x2e\x30\x30\x34\x2c\x31\x30\x2e\
+\x36\x35\x32\x2c\x34\x2e\x30\x30\x34\x2c\x38\x2e\x32\x38\x37\x7a\
+\x22\x2f\x3e\x0d\x0a\x3c\x2f\x67\x3e\x0d\x0a\x3c\x2f\x73\x76\x67\
+\x3e\x0d\x0a\
\x00\x00\x04\xca\
\x3c\
\x3f\x78\x6d\x6c\x20\x76\x65\x72\x73\x69\x6f\x6e\x3d\x22\x31\x2e\
@@ -1788,57 +1235,6 @@ qt_resource_data = b"\
\x36\x37\x2c\x37\x2e\x34\x37\x30\x34\x0a\x09\x48\x33\x2e\x33\x37\
\x33\x33\x4c\x37\x2e\x35\x2c\x33\x2e\x38\x39\x39\x33\x7a\x22\x2f\
\x3e\x0a\x3c\x2f\x73\x76\x67\x3e\x0a\
-\x00\x00\x03\x0c\
-\x3c\
-\x3f\x78\x6d\x6c\x20\x76\x65\x72\x73\x69\x6f\x6e\x3d\x22\x31\x2e\
-\x30\x22\x20\x65\x6e\x63\x6f\x64\x69\x6e\x67\x3d\x22\x75\x74\x66\
-\x2d\x38\x22\x3f\x3e\x0d\x0a\x3c\x21\x2d\x2d\x20\x47\x65\x6e\x65\
-\x72\x61\x74\x6f\x72\x3a\x20\x41\x64\x6f\x62\x65\x20\x49\x6c\x6c\
-\x75\x73\x74\x72\x61\x74\x6f\x72\x20\x31\x38\x2e\x31\x2e\x30\x2c\
-\x20\x53\x56\x47\x20\x45\x78\x70\x6f\x72\x74\x20\x50\x6c\x75\x67\
-\x2d\x49\x6e\x20\x2e\x20\x53\x56\x47\x20\x56\x65\x72\x73\x69\x6f\
-\x6e\x3a\x20\x36\x2e\x30\x30\x20\x42\x75\x69\x6c\x64\x20\x30\x29\
-\x20\x20\x2d\x2d\x3e\x0d\x0a\x3c\x21\x44\x4f\x43\x54\x59\x50\x45\
-\x20\x73\x76\x67\x20\x50\x55\x42\x4c\x49\x43\x20\x22\x2d\x2f\x2f\
-\x57\x33\x43\x2f\x2f\x44\x54\x44\x20\x53\x56\x47\x20\x31\x2e\x31\
-\x2f\x2f\x45\x4e\x22\x20\x22\x68\x74\x74\x70\x3a\x2f\x2f\x77\x77\
-\x77\x2e\x77\x33\x2e\x6f\x72\x67\x2f\x47\x72\x61\x70\x68\x69\x63\
-\x73\x2f\x53\x56\x47\x2f\x31\x2e\x31\x2f\x44\x54\x44\x2f\x73\x76\
-\x67\x31\x31\x2e\x64\x74\x64\x22\x3e\x0d\x0a\x3c\x73\x76\x67\x20\
-\x76\x65\x72\x73\x69\x6f\x6e\x3d\x22\x31\x2e\x31\x22\x20\x69\x64\
-\x3d\x22\x43\x68\x65\x63\x6b\x22\x20\x78\x6d\x6c\x6e\x73\x3d\x22\
-\x68\x74\x74\x70\x3a\x2f\x2f\x77\x77\x77\x2e\x77\x33\x2e\x6f\x72\
-\x67\x2f\x32\x30\x30\x30\x2f\x73\x76\x67\x22\x20\x78\x6d\x6c\x6e\
-\x73\x3a\x78\x6c\x69\x6e\x6b\x3d\x22\x68\x74\x74\x70\x3a\x2f\x2f\
-\x77\x77\x77\x2e\x77\x33\x2e\x6f\x72\x67\x2f\x31\x39\x39\x39\x2f\
-\x78\x6c\x69\x6e\x6b\x22\x20\x78\x3d\x22\x30\x70\x78\x22\x20\x79\
-\x3d\x22\x30\x70\x78\x22\x0d\x0a\x09\x20\x76\x69\x65\x77\x42\x6f\
-\x78\x3d\x22\x30\x20\x30\x20\x32\x30\x20\x32\x30\x22\x20\x65\x6e\
-\x61\x62\x6c\x65\x2d\x62\x61\x63\x6b\x67\x72\x6f\x75\x6e\x64\x3d\
-\x22\x6e\x65\x77\x20\x30\x20\x30\x20\x32\x30\x20\x32\x30\x22\x20\
-\x78\x6d\x6c\x3a\x73\x70\x61\x63\x65\x3d\x22\x70\x72\x65\x73\x65\
-\x72\x76\x65\x22\x3e\x0d\x0a\x3c\x70\x61\x74\x68\x20\x64\x3d\x22\
-\x4d\x38\x2e\x32\x39\x34\x2c\x31\x36\x2e\x39\x39\x38\x63\x2d\x30\
-\x2e\x34\x33\x35\x2c\x30\x2d\x30\x2e\x38\x34\x37\x2d\x30\x2e\x32\
-\x30\x33\x2d\x31\x2e\x31\x31\x31\x2d\x30\x2e\x35\x35\x33\x4c\x33\
-\x2e\x36\x31\x2c\x31\x31\x2e\x37\x32\x34\x63\x2d\x30\x2e\x34\x36\
-\x35\x2d\x30\x2e\x36\x31\x33\x2d\x30\x2e\x33\x34\x34\x2d\x31\x2e\
-\x34\x38\x36\x2c\x30\x2e\x32\x37\x2d\x31\x2e\x39\x35\x31\x0d\x0a\
-\x09\x63\x30\x2e\x36\x31\x35\x2d\x30\x2e\x34\x36\x37\x2c\x31\x2e\
-\x34\x38\x38\x2d\x30\x2e\x33\x34\x34\x2c\x31\x2e\x39\x35\x33\x2c\
-\x30\x2e\x32\x37\x6c\x32\x2e\x33\x35\x31\x2c\x33\x2e\x31\x30\x34\
-\x6c\x35\x2e\x39\x31\x31\x2d\x39\x2e\x34\x39\x32\x63\x30\x2e\x34\
-\x30\x37\x2d\x30\x2e\x36\x35\x32\x2c\x31\x2e\x32\x36\x37\x2d\x30\
-\x2e\x38\x35\x32\x2c\x31\x2e\x39\x32\x31\x2d\x30\x2e\x34\x34\x35\
-\x0d\x0a\x09\x63\x30\x2e\x36\x35\x33\x2c\x30\x2e\x34\x30\x36\x2c\
-\x30\x2e\x38\x35\x34\x2c\x31\x2e\x32\x36\x36\x2c\x30\x2e\x34\x34\
-\x36\x2c\x31\x2e\x39\x32\x4c\x39\x2e\x34\x37\x38\x2c\x31\x36\x2e\
-\x33\x34\x63\x2d\x30\x2e\x32\x34\x32\x2c\x30\x2e\x33\x39\x31\x2d\
-\x30\x2e\x36\x36\x31\x2c\x30\x2e\x36\x33\x35\x2d\x31\x2e\x31\x32\
-\x2c\x30\x2e\x36\x35\x36\x43\x38\x2e\x33\x33\x36\x2c\x31\x36\x2e\
-\x39\x39\x38\x2c\x38\x2e\x33\x31\x36\x2c\x31\x36\x2e\x39\x39\x38\
-\x2c\x38\x2e\x32\x39\x34\x2c\x31\x36\x2e\x39\x39\x38\x7a\x22\x2f\
-\x3e\x0d\x0a\x3c\x2f\x73\x76\x67\x3e\x0d\x0a\
\x00\x00\x04\xaa\
\x3c\
\x3f\x78\x6d\x6c\x20\x76\x65\x72\x73\x69\x6f\x6e\x3d\x22\x31\x2e\
@@ -1916,7 +1312,7 @@ qt_resource_data = b"\
\x35\x2c\x31\x36\x2e\x36\x35\x33\x2c\x39\x2e\x39\x38\x36\x2c\x31\
\x36\x2e\x31\x36\x35\x7a\x22\x2f\x3e\x0d\x0a\x3c\x2f\x67\x3e\x0d\
\x0a\x3c\x2f\x73\x76\x67\x3e\x0d\x0a\
-\x00\x00\x03\x4c\
+\x00\x00\x05\xca\
\x3c\
\x3f\x78\x6d\x6c\x20\x76\x65\x72\x73\x69\x6f\x6e\x3d\x22\x31\x2e\
\x30\x22\x20\x65\x6e\x63\x6f\x64\x69\x6e\x67\x3d\x22\x75\x74\x66\
@@ -1947,108 +1343,70 @@ qt_resource_data = b"\
\x6e\x61\x62\x6c\x65\x2d\x62\x61\x63\x6b\x67\x72\x6f\x75\x6e\x64\
\x3d\x22\x6e\x65\x77\x20\x30\x20\x30\x20\x35\x31\x32\x20\x35\x31\
\x32\x22\x20\x78\x6d\x6c\x3a\x73\x70\x61\x63\x65\x3d\x22\x70\x72\
-\x65\x73\x65\x72\x76\x65\x22\x3e\x0d\x0a\x3c\x67\x20\x69\x64\x3d\
-\x22\x49\x63\x6f\x6e\x5f\x32\x31\x5f\x22\x3e\x0d\x0a\x09\x3c\x67\
-\x3e\x0d\x0a\x09\x09\x3c\x70\x61\x74\x68\x20\x64\x3d\x22\x4d\x32\
-\x35\x36\x2c\x31\x35\x32\x63\x2d\x35\x37\x2e\x32\x2c\x30\x2d\x31\
-\x30\x34\x2c\x34\x36\x2e\x38\x2d\x31\x30\x34\x2c\x31\x30\x34\x73\
-\x34\x36\x2e\x38\x2c\x31\x30\x34\x2c\x31\x30\x34\x2c\x31\x30\x34\
-\x73\x31\x30\x34\x2d\x34\x36\x2e\x38\x2c\x31\x30\x34\x2d\x31\x30\
-\x34\x53\x33\x31\x33\x2e\x32\x2c\x31\x35\x32\x2c\x32\x35\x36\x2c\
-\x31\x35\x32\x7a\x20\x4d\x32\x35\x36\x2c\x34\x38\x0d\x0a\x09\x09\
-\x09\x43\x31\x34\x31\x2e\x36\x30\x31\x2c\x34\x38\x2c\x34\x38\x2c\
-\x31\x34\x31\x2e\x36\x30\x31\x2c\x34\x38\x2c\x32\x35\x36\x73\x39\
-\x33\x2e\x36\x30\x31\x2c\x32\x30\x38\x2c\x32\x30\x38\x2c\x32\x30\
-\x38\x73\x32\x30\x38\x2d\x39\x33\x2e\x36\x30\x31\x2c\x32\x30\x38\
-\x2d\x32\x30\x38\x53\x33\x37\x30\x2e\x33\x39\x39\x2c\x34\x38\x2c\
-\x32\x35\x36\x2c\x34\x38\x7a\x20\x4d\x32\x35\x36\x2c\x34\x32\x32\
-\x2e\x34\x0d\x0a\x09\x09\x09\x63\x2d\x39\x31\x2e\x35\x31\x38\x2c\
-\x30\x2d\x31\x36\x36\x2e\x34\x2d\x37\x34\x2e\x38\x38\x33\x2d\x31\
-\x36\x36\x2e\x34\x2d\x31\x36\x36\x2e\x34\x53\x31\x36\x34\x2e\x34\
-\x38\x32\x2c\x38\x39\x2e\x36\x2c\x32\x35\x36\x2c\x38\x39\x2e\x36\
-\x53\x34\x32\x32\x2e\x34\x2c\x31\x36\x34\x2e\x34\x38\x32\x2c\x34\
-\x32\x32\x2e\x34\x2c\x32\x35\x36\x53\x33\x34\x37\x2e\x35\x31\x38\
-\x2c\x34\x32\x32\x2e\x34\x2c\x32\x35\x36\x2c\x34\x32\x32\x2e\x34\
-\x7a\x22\x2f\x3e\x0d\x0a\x09\x3c\x2f\x67\x3e\x0d\x0a\x3c\x2f\x67\
-\x3e\x0d\x0a\x3c\x2f\x73\x76\x67\x3e\x0d\x0a\
-\x00\x00\x01\x1c\
-\x3c\
-\x73\x76\x67\x20\x78\x6d\x6c\x6e\x73\x3d\x22\x68\x74\x74\x70\x3a\
-\x2f\x2f\x77\x77\x77\x2e\x77\x33\x2e\x6f\x72\x67\x2f\x32\x30\x30\
-\x30\x2f\x73\x76\x67\x22\x20\x77\x69\x64\x74\x68\x3d\x22\x35\x31\
-\x32\x70\x78\x22\x20\x68\x65\x69\x67\x68\x74\x3d\x22\x35\x31\x32\
-\x70\x78\x22\x0a\x20\x20\x20\x20\x20\x76\x69\x65\x77\x42\x6f\x78\
-\x3d\x22\x30\x20\x30\x20\x35\x31\x32\x20\x35\x31\x32\x22\x3e\x0a\
-\x3c\x67\x20\x74\x72\x61\x6e\x73\x66\x6f\x72\x6d\x3d\x27\x6d\x61\
-\x74\x72\x69\x78\x28\x34\x38\x20\x30\x20\x30\x20\x34\x38\x20\x34\
-\x38\x20\x34\x38\x29\x27\x3e\x0a\x20\x20\x3c\x70\x61\x74\x68\x20\
-\x64\x3d\x22\x4d\x30\x20\x30\x76\x32\x68\x2e\x35\x63\x30\x2d\x2e\
-\x35\x35\x2e\x34\x35\x2d\x31\x20\x31\x2d\x31\x68\x31\x2e\x35\x76\
-\x35\x2e\x35\x63\x30\x20\x2e\x32\x38\x2d\x2e\x32\x32\x2e\x35\x2d\
-\x2e\x35\x2e\x35\x68\x2d\x2e\x35\x76\x31\x68\x34\x76\x2d\x31\x68\
-\x2d\x2e\x35\x63\x2d\x2e\x32\x38\x20\x30\x2d\x2e\x35\x2d\x2e\x32\
-\x32\x2d\x2e\x35\x2d\x2e\x35\x76\x2d\x35\x2e\x35\x68\x31\x2e\x35\
-\x63\x2e\x35\x35\x20\x30\x20\x31\x20\x2e\x34\x35\x20\x31\x20\x31\
-\x68\x2e\x35\x76\x2d\x32\x68\x2d\x38\x7a\x22\x20\x2f\x3e\x0a\x3c\
-\x2f\x67\x3e\x0a\x3c\x2f\x73\x76\x67\x3e\x0a\
-\x00\x00\x03\x7c\
-\x3c\
-\x3f\x78\x6d\x6c\x20\x76\x65\x72\x73\x69\x6f\x6e\x3d\x27\x31\x2e\
-\x30\x27\x20\x65\x6e\x63\x6f\x64\x69\x6e\x67\x3d\x27\x55\x54\x46\
-\x2d\x38\x27\x3f\x3e\x0a\x3c\x21\x2d\x2d\x20\x54\x68\x69\x73\x20\
-\x66\x69\x6c\x65\x20\x77\x61\x73\x20\x67\x65\x6e\x65\x72\x61\x74\
-\x65\x64\x20\x62\x79\x20\x64\x76\x69\x73\x76\x67\x6d\x20\x32\x2e\
-\x38\x20\x2d\x2d\x3e\x0a\x3c\x73\x76\x67\x20\x76\x65\x72\x73\x69\
-\x6f\x6e\x3d\x27\x31\x2e\x31\x27\x20\x78\x6d\x6c\x6e\x73\x3d\x27\
-\x68\x74\x74\x70\x3a\x2f\x2f\x77\x77\x77\x2e\x77\x33\x2e\x6f\x72\
-\x67\x2f\x32\x30\x30\x30\x2f\x73\x76\x67\x27\x20\x78\x6d\x6c\x6e\
-\x73\x3a\x78\x6c\x69\x6e\x6b\x3d\x27\x68\x74\x74\x70\x3a\x2f\x2f\
-\x77\x77\x77\x2e\x77\x33\x2e\x6f\x72\x67\x2f\x31\x39\x39\x39\x2f\
-\x78\x6c\x69\x6e\x6b\x27\x20\x77\x69\x64\x74\x68\x3d\x27\x36\x33\
-\x2e\x39\x39\x39\x36\x70\x74\x27\x20\x68\x65\x69\x67\x68\x74\x3d\
-\x27\x36\x33\x2e\x39\x39\x39\x37\x70\x74\x27\x20\x76\x69\x65\x77\
-\x42\x6f\x78\x3d\x27\x35\x36\x2e\x34\x30\x39\x34\x20\x35\x33\x2e\
-\x38\x35\x38\x33\x20\x36\x33\x2e\x39\x39\x39\x36\x20\x36\x33\x2e\
-\x39\x39\x39\x37\x27\x3e\x0a\x3c\x67\x20\x69\x64\x3d\x27\x70\x61\
-\x67\x65\x31\x27\x3e\x0a\x3c\x67\x20\x74\x72\x61\x6e\x73\x66\x6f\
-\x72\x6d\x3d\x27\x6d\x61\x74\x72\x69\x78\x28\x30\x2e\x39\x39\x36\
-\x32\x36\x34\x20\x30\x20\x30\x20\x30\x2e\x39\x39\x36\x32\x36\x34\
-\x20\x35\x36\x2e\x34\x30\x39\x34\x20\x31\x31\x37\x2e\x38\x35\x38\
-\x29\x27\x3e\x0a\x3c\x70\x61\x74\x68\x20\x64\x3d\x27\x4d\x20\x32\
-\x2e\x30\x30\x37\x35\x20\x2d\x32\x2e\x30\x30\x37\x35\x4c\x20\x36\
-\x32\x2e\x32\x33\x32\x35\x20\x2d\x32\x2e\x30\x30\x37\x35\x4c\x20\
-\x36\x32\x2e\x32\x33\x32\x35\x20\x2d\x36\x32\x2e\x32\x33\x32\x35\
-\x4c\x20\x32\x2e\x30\x30\x37\x35\x20\x2d\x36\x32\x2e\x32\x33\x32\
-\x35\x4c\x20\x32\x2e\x30\x30\x37\x35\x20\x2d\x32\x2e\x30\x30\x37\
-\x35\x5a\x27\x20\x66\x69\x6c\x6c\x3d\x27\x6e\x6f\x6e\x65\x27\x20\
-\x73\x74\x72\x6f\x6b\x65\x3d\x27\x23\x30\x30\x30\x30\x30\x30\x27\
-\x20\x73\x74\x72\x6f\x6b\x65\x2d\x6c\x69\x6e\x65\x63\x61\x70\x3d\
-\x27\x72\x6f\x75\x6e\x64\x27\x20\x73\x74\x72\x6f\x6b\x65\x2d\x6c\
-\x69\x6e\x65\x6a\x6f\x69\x6e\x3d\x27\x72\x6f\x75\x6e\x64\x27\x20\
-\x73\x74\x72\x6f\x6b\x65\x2d\x6d\x69\x74\x65\x72\x6c\x69\x6d\x69\
-\x74\x3d\x27\x31\x30\x2e\x30\x33\x37\x35\x27\x20\x73\x74\x72\x6f\
-\x6b\x65\x2d\x77\x69\x64\x74\x68\x3d\x27\x34\x2e\x30\x31\x35\x27\
-\x2f\x3e\x0a\x3c\x2f\x67\x3e\x0a\x3c\x67\x20\x74\x72\x61\x6e\x73\
-\x66\x6f\x72\x6d\x3d\x27\x6d\x61\x74\x72\x69\x78\x28\x30\x2e\x39\
-\x39\x36\x32\x36\x34\x20\x30\x20\x30\x20\x30\x2e\x39\x39\x36\x32\
-\x36\x34\x20\x35\x36\x2e\x34\x30\x39\x34\x20\x31\x31\x37\x2e\x38\
-\x35\x38\x29\x27\x3e\x0a\x3c\x70\x61\x74\x68\x20\x64\x3d\x27\x4d\
-\x20\x34\x37\x2e\x31\x37\x36\x32\x20\x2d\x33\x32\x2e\x31\x32\x43\
-\x20\x34\x37\x2e\x31\x37\x36\x32\x20\x2d\x34\x30\x2e\x34\x33\x35\
-\x33\x20\x34\x30\x2e\x34\x33\x35\x33\x20\x2d\x34\x37\x2e\x31\x37\
-\x36\x32\x20\x33\x32\x2e\x31\x32\x20\x2d\x34\x37\x2e\x31\x37\x36\
-\x32\x43\x20\x32\x33\x2e\x38\x30\x34\x37\x20\x2d\x34\x37\x2e\x31\
-\x37\x36\x32\x20\x31\x37\x2e\x30\x36\x33\x37\x20\x2d\x34\x30\x2e\
-\x34\x33\x35\x33\x20\x31\x37\x2e\x30\x36\x33\x37\x20\x2d\x33\x32\
-\x2e\x31\x32\x43\x20\x31\x37\x2e\x30\x36\x33\x37\x20\x2d\x32\x33\
-\x2e\x38\x30\x34\x37\x20\x32\x33\x2e\x38\x30\x34\x37\x20\x2d\x31\
-\x37\x2e\x30\x36\x33\x37\x20\x33\x32\x2e\x31\x32\x20\x2d\x31\x37\
-\x2e\x30\x36\x33\x37\x43\x20\x34\x30\x2e\x34\x33\x35\x33\x20\x2d\
-\x31\x37\x2e\x30\x36\x33\x37\x20\x34\x37\x2e\x31\x37\x36\x32\x20\
-\x2d\x32\x33\x2e\x38\x30\x34\x37\x20\x34\x37\x2e\x31\x37\x36\x32\
-\x20\x2d\x33\x32\x2e\x31\x32\x5a\x27\x20\x66\x69\x6c\x6c\x3d\x27\
-\x23\x30\x30\x30\x30\x30\x30\x27\x2f\x3e\x0a\x3c\x2f\x67\x3e\x0a\
-\x3c\x2f\x67\x3e\x0a\x3c\x2f\x73\x76\x67\x3e\
+\x65\x73\x65\x72\x76\x65\x22\x3e\x0d\x0a\x3c\x70\x61\x74\x68\x20\
+\x64\x3d\x22\x4d\x34\x35\x30\x2e\x36\x37\x39\x2c\x32\x37\x33\x2e\
+\x35\x63\x2d\x31\x34\x2e\x35\x38\x35\x2d\x31\x34\x2e\x35\x37\x37\
+\x2d\x33\x36\x2e\x30\x35\x34\x2d\x31\x35\x2e\x38\x39\x2d\x35\x30\
+\x2e\x36\x33\x39\x2d\x31\x2e\x33\x31\x32\x6c\x2d\x34\x31\x2e\x36\
+\x38\x37\x2c\x34\x31\x2e\x36\x36\x34\x63\x2d\x31\x30\x2e\x38\x35\
+\x32\x2c\x31\x30\x2e\x38\x33\x36\x2d\x32\x33\x2e\x39\x33\x2c\x31\
+\x30\x2e\x38\x35\x39\x2d\x33\x31\x2e\x35\x36\x34\x2c\x31\x2e\x38\
+\x35\x32\x0d\x0a\x09\x63\x2d\x35\x2e\x30\x35\x37\x2d\x35\x2e\x39\
+\x36\x38\x2d\x33\x2e\x30\x36\x31\x2d\x32\x34\x2e\x33\x37\x34\x2d\
+\x31\x2e\x36\x34\x34\x2d\x33\x36\x2e\x30\x34\x39\x6c\x32\x30\x2e\
+\x39\x30\x37\x2d\x31\x37\x31\x2e\x38\x34\x39\x63\x31\x2e\x38\x36\
+\x37\x2d\x31\x35\x2e\x33\x35\x33\x2d\x39\x2e\x30\x37\x2d\x33\x30\
+\x2e\x31\x38\x35\x2d\x32\x34\x2e\x34\x33\x2d\x33\x32\x2e\x30\x35\
+\x31\x0d\x0a\x09\x63\x2d\x31\x35\x2e\x33\x35\x38\x2d\x31\x2e\x38\
+\x36\x37\x2d\x32\x39\x2e\x33\x32\x32\x2c\x39\x2e\x39\x33\x39\x2d\
+\x33\x31\x2e\x31\x39\x31\x2c\x32\x35\x2e\x32\x38\x39\x4c\x32\x36\
+\x37\x2e\x33\x37\x2c\x32\x33\x36\x2e\x30\x32\x31\x63\x2d\x31\x2e\
+\x32\x30\x35\x2c\x33\x2e\x33\x35\x38\x2d\x33\x2e\x37\x39\x2c\x33\
+\x2e\x39\x33\x38\x2d\x34\x2e\x30\x38\x31\x2d\x30\x2e\x35\x38\x32\
+\x4c\x32\x35\x35\x2e\x34\x34\x2c\x36\x30\x0d\x0a\x09\x63\x30\x2d\
+\x31\x35\x2e\x34\x36\x35\x2d\x31\x32\x2e\x35\x34\x32\x2d\x32\x38\
+\x2d\x32\x38\x2e\x30\x31\x34\x2d\x32\x38\x63\x2d\x31\x35\x2e\x34\
+\x37\x33\x2c\x30\x2d\x32\x38\x2e\x30\x31\x35\x2c\x31\x32\x2e\x35\
+\x33\x35\x2d\x32\x38\x2e\x30\x31\x35\x2c\x32\x38\x6c\x2d\x30\x2e\
+\x35\x35\x32\x2c\x31\x37\x36\x2e\x37\x35\x32\x63\x30\x2e\x31\x34\
+\x36\x2c\x32\x2e\x30\x34\x2d\x31\x2e\x36\x30\x34\x2c\x32\x2e\x36\
+\x32\x34\x2d\x31\x2e\x39\x32\x2c\x30\x2e\x32\x39\x34\x4c\x31\x37\
+\x32\x2e\x30\x31\x36\x2c\x39\x39\x2e\x30\x37\x37\x0d\x0a\x09\x63\
+\x2d\x32\x2e\x37\x35\x2d\x31\x35\x2e\x32\x31\x39\x2d\x31\x37\x2e\
+\x33\x32\x33\x2d\x32\x36\x2e\x32\x30\x33\x2d\x33\x32\x2e\x35\x34\
+\x38\x2d\x32\x33\x2e\x34\x35\x33\x63\x2d\x31\x35\x2e\x32\x32\x37\
+\x2c\x32\x2e\x37\x34\x38\x2d\x32\x35\x2e\x33\x33\x39\x2c\x31\x38\
+\x2e\x31\x38\x37\x2d\x32\x32\x2e\x35\x39\x31\x2c\x33\x33\x2e\x34\
+\x30\x33\x6c\x32\x32\x2e\x31\x39\x33\x2c\x31\x36\x31\x2e\x34\x35\
+\x35\x0d\x0a\x09\x63\x30\x2e\x30\x32\x33\x2c\x32\x2e\x38\x37\x32\
+\x2d\x30\x2e\x39\x34\x31\x2c\x34\x2e\x35\x31\x33\x2d\x32\x2e\x33\
+\x30\x38\x2c\x30\x2e\x38\x33\x31\x6c\x2d\x33\x33\x2e\x31\x30\x39\
+\x2d\x38\x38\x2e\x35\x31\x37\x63\x2d\x35\x2e\x31\x38\x2d\x31\x34\
+\x2e\x35\x37\x32\x2d\x32\x31\x2e\x31\x39\x36\x2d\x32\x33\x2e\x30\
+\x36\x35\x2d\x33\x35\x2e\x37\x37\x36\x2d\x31\x37\x2e\x38\x38\x39\
+\x0d\x0a\x09\x63\x2d\x31\x34\x2e\x35\x37\x39\x2c\x35\x2e\x31\x37\
+\x37\x2d\x32\x32\x2e\x32\x30\x31\x2c\x32\x32\x2e\x30\x36\x31\x2d\
+\x31\x37\x2e\x30\x32\x33\x2c\x33\x36\x2e\x36\x33\x31\x6c\x35\x38\
+\x2e\x30\x34\x32\x2c\x31\x38\x39\x2e\x36\x32\x35\x63\x30\x2e\x33\
+\x30\x33\x2c\x31\x2e\x30\x34\x36\x2c\x30\x2e\x36\x32\x34\x2c\x32\
+\x2e\x30\x38\x35\x2c\x30\x2e\x39\x35\x33\x2c\x33\x2e\x31\x31\x38\
+\x6c\x30\x2e\x31\x32\x31\x2c\x30\x2e\x33\x39\x0d\x0a\x09\x63\x30\
+\x2e\x30\x31\x31\x2c\x30\x2e\x30\x33\x31\x2c\x30\x2e\x30\x32\x35\
+\x2c\x30\x2e\x30\x35\x38\x2c\x30\x2e\x30\x33\x35\x2c\x30\x2e\x30\
+\x38\x38\x43\x31\x32\x36\x2e\x30\x37\x39\x2c\x34\x34\x34\x2e\x32\
+\x33\x33\x2c\x31\x37\x32\x2e\x35\x37\x2c\x34\x38\x30\x2c\x32\x32\
+\x37\x2e\x34\x32\x37\x2c\x34\x38\x30\x63\x33\x35\x2e\x31\x31\x36\
+\x2c\x30\x2c\x37\x31\x2e\x35\x39\x31\x2d\x31\x32\x2e\x33\x37\x38\
+\x2c\x39\x39\x2e\x33\x35\x37\x2d\x33\x33\x2e\x36\x37\x32\x0d\x0a\
+\x09\x63\x30\x2e\x30\x30\x31\x2c\x30\x2c\x30\x2e\x30\x30\x33\x2d\
+\x30\x2e\x30\x30\x32\x2c\x30\x2e\x30\x30\x33\x2d\x30\x2e\x30\x30\
+\x32\x63\x32\x39\x2e\x39\x39\x2d\x31\x38\x2e\x30\x35\x31\x2c\x31\
+\x32\x36\x2e\x30\x37\x31\x2d\x31\x32\x31\x2e\x33\x34\x37\x2c\x31\
+\x32\x36\x2e\x30\x37\x31\x2d\x31\x32\x31\x2e\x33\x34\x37\x43\x34\
+\x36\x37\x2e\x34\x34\x35\x2c\x33\x31\x30\x2e\x34\x30\x32\x2c\x34\
+\x36\x35\x2e\x32\x36\x36\x2c\x32\x38\x38\x2e\x30\x38\x2c\x34\x35\
+\x30\x2e\x36\x37\x39\x2c\x32\x37\x33\x2e\x35\x7a\x22\x2f\x3e\x0d\
+\x0a\x3c\x2f\x73\x76\x67\x3e\x0d\x0a\
\x00\x00\x02\xa1\
\x3c\
\x3f\x78\x6d\x6c\x20\x76\x65\x72\x73\x69\x6f\x6e\x3d\x22\x31\x2e\
@@ -2094,7 +1452,241 @@ qt_resource_data = b"\
\x33\x2c\x34\x68\x2d\x32\x76\x34\x68\x32\x56\x34\x7a\x22\x2f\x3e\
\x0d\x0a\x3c\x2f\x67\x3e\x0d\x0a\x3c\x2f\x73\x76\x67\x3e\x0d\x0a\
\
-\x00\x00\x02\xfc\
+\x00\x00\x02\xc9\
+\x3c\
+\x3f\x78\x6d\x6c\x20\x76\x65\x72\x73\x69\x6f\x6e\x3d\x22\x31\x2e\
+\x30\x22\x20\x65\x6e\x63\x6f\x64\x69\x6e\x67\x3d\x22\x75\x74\x66\
+\x2d\x38\x22\x3f\x3e\x0d\x0a\x3c\x21\x2d\x2d\x20\x47\x65\x6e\x65\
+\x72\x61\x74\x6f\x72\x3a\x20\x41\x64\x6f\x62\x65\x20\x49\x6c\x6c\
+\x75\x73\x74\x72\x61\x74\x6f\x72\x20\x31\x36\x2e\x32\x2e\x31\x2c\
+\x20\x53\x56\x47\x20\x45\x78\x70\x6f\x72\x74\x20\x50\x6c\x75\x67\
+\x2d\x49\x6e\x20\x2e\x20\x53\x56\x47\x20\x56\x65\x72\x73\x69\x6f\
+\x6e\x3a\x20\x36\x2e\x30\x30\x20\x42\x75\x69\x6c\x64\x20\x30\x29\
+\x20\x20\x2d\x2d\x3e\x0d\x0a\x3c\x21\x44\x4f\x43\x54\x59\x50\x45\
+\x20\x73\x76\x67\x20\x50\x55\x42\x4c\x49\x43\x20\x22\x2d\x2f\x2f\
+\x57\x33\x43\x2f\x2f\x44\x54\x44\x20\x53\x56\x47\x20\x31\x2e\x31\
+\x2f\x2f\x45\x4e\x22\x20\x22\x68\x74\x74\x70\x3a\x2f\x2f\x77\x77\
+\x77\x2e\x77\x33\x2e\x6f\x72\x67\x2f\x47\x72\x61\x70\x68\x69\x63\
+\x73\x2f\x53\x56\x47\x2f\x31\x2e\x31\x2f\x44\x54\x44\x2f\x73\x76\
+\x67\x31\x31\x2e\x64\x74\x64\x22\x3e\x0d\x0a\x3c\x73\x76\x67\x20\
+\x76\x65\x72\x73\x69\x6f\x6e\x3d\x22\x31\x2e\x31\x22\x20\x69\x64\
+\x3d\x22\x4c\x61\x79\x65\x72\x5f\x31\x22\x20\x78\x6d\x6c\x6e\x73\
+\x3d\x22\x68\x74\x74\x70\x3a\x2f\x2f\x77\x77\x77\x2e\x77\x33\x2e\
+\x6f\x72\x67\x2f\x32\x30\x30\x30\x2f\x73\x76\x67\x22\x20\x78\x6d\
+\x6c\x6e\x73\x3a\x78\x6c\x69\x6e\x6b\x3d\x22\x68\x74\x74\x70\x3a\
+\x2f\x2f\x77\x77\x77\x2e\x77\x33\x2e\x6f\x72\x67\x2f\x31\x39\x39\
+\x39\x2f\x78\x6c\x69\x6e\x6b\x22\x20\x78\x3d\x22\x30\x70\x78\x22\
+\x20\x79\x3d\x22\x30\x70\x78\x22\x0d\x0a\x09\x20\x77\x69\x64\x74\
+\x68\x3d\x22\x35\x31\x32\x70\x78\x22\x20\x68\x65\x69\x67\x68\x74\
+\x3d\x22\x35\x31\x32\x70\x78\x22\x20\x76\x69\x65\x77\x42\x6f\x78\
+\x3d\x22\x30\x20\x30\x20\x35\x31\x32\x20\x35\x31\x32\x22\x20\x73\
+\x74\x79\x6c\x65\x3d\x22\x65\x6e\x61\x62\x6c\x65\x2d\x62\x61\x63\
+\x6b\x67\x72\x6f\x75\x6e\x64\x3a\x6e\x65\x77\x20\x30\x20\x30\x20\
+\x35\x31\x32\x20\x35\x31\x32\x3b\x22\x20\x78\x6d\x6c\x3a\x73\x70\
+\x61\x63\x65\x3d\x22\x70\x72\x65\x73\x65\x72\x76\x65\x22\x3e\x0d\
+\x0a\x3c\x70\x6f\x6c\x79\x67\x6f\x6e\x20\x70\x6f\x69\x6e\x74\x73\
+\x3d\x22\x34\x38\x30\x2c\x32\x35\x36\x20\x33\x38\x34\x2c\x31\x36\
+\x30\x20\x33\x38\x34\x2c\x32\x33\x36\x20\x32\x37\x36\x2c\x32\x33\
+\x36\x20\x32\x37\x36\x2c\x31\x32\x38\x20\x33\x35\x32\x2c\x31\x32\
+\x38\x20\x32\x35\x36\x2c\x33\x32\x20\x31\x36\x30\x2c\x31\x32\x38\
+\x20\x32\x33\x36\x2c\x31\x32\x38\x20\x32\x33\x36\x2c\x32\x33\x36\
+\x20\x31\x32\x38\x2c\x32\x33\x36\x20\x31\x32\x38\x2c\x31\x36\x30\
+\x20\x33\x32\x2c\x32\x35\x36\x20\x31\x32\x38\x2c\x33\x35\x32\x20\
+\x0d\x0a\x09\x31\x32\x38\x2c\x32\x37\x36\x20\x32\x33\x36\x2c\x32\
+\x37\x36\x20\x32\x33\x36\x2c\x33\x38\x34\x20\x31\x36\x30\x2c\x33\
+\x38\x34\x20\x32\x35\x36\x2c\x34\x38\x30\x20\x33\x35\x32\x2c\x33\
+\x38\x34\x20\x32\x37\x35\x2e\x38\x2c\x33\x38\x34\x20\x32\x37\x35\
+\x2e\x34\x2c\x32\x37\x35\x2e\x35\x20\x33\x38\x34\x2c\x32\x37\x35\
+\x2e\x38\x20\x33\x38\x34\x2c\x33\x35\x32\x20\x22\x2f\x3e\x0d\x0a\
+\x3c\x2f\x73\x76\x67\x3e\x0d\x0a\
+\x00\x00\x07\x80\
+\x3c\
+\x3f\x78\x6d\x6c\x20\x76\x65\x72\x73\x69\x6f\x6e\x3d\x22\x31\x2e\
+\x30\x22\x20\x65\x6e\x63\x6f\x64\x69\x6e\x67\x3d\x22\x75\x74\x66\
+\x2d\x38\x22\x3f\x3e\x0d\x0a\x3c\x21\x2d\x2d\x20\x47\x65\x6e\x65\
+\x72\x61\x74\x6f\x72\x3a\x20\x41\x64\x6f\x62\x65\x20\x49\x6c\x6c\
+\x75\x73\x74\x72\x61\x74\x6f\x72\x20\x31\x36\x2e\x32\x2e\x31\x2c\
+\x20\x53\x56\x47\x20\x45\x78\x70\x6f\x72\x74\x20\x50\x6c\x75\x67\
+\x2d\x49\x6e\x20\x2e\x20\x53\x56\x47\x20\x56\x65\x72\x73\x69\x6f\
+\x6e\x3a\x20\x36\x2e\x30\x30\x20\x42\x75\x69\x6c\x64\x20\x30\x29\
+\x20\x20\x2d\x2d\x3e\x0d\x0a\x3c\x21\x44\x4f\x43\x54\x59\x50\x45\
+\x20\x73\x76\x67\x20\x50\x55\x42\x4c\x49\x43\x20\x22\x2d\x2f\x2f\
+\x57\x33\x43\x2f\x2f\x44\x54\x44\x20\x53\x56\x47\x20\x31\x2e\x31\
+\x2f\x2f\x45\x4e\x22\x20\x22\x68\x74\x74\x70\x3a\x2f\x2f\x77\x77\
+\x77\x2e\x77\x33\x2e\x6f\x72\x67\x2f\x47\x72\x61\x70\x68\x69\x63\
+\x73\x2f\x53\x56\x47\x2f\x31\x2e\x31\x2f\x44\x54\x44\x2f\x73\x76\
+\x67\x31\x31\x2e\x64\x74\x64\x22\x3e\x0d\x0a\x3c\x73\x76\x67\x20\
+\x76\x65\x72\x73\x69\x6f\x6e\x3d\x22\x31\x2e\x31\x22\x20\x69\x64\
+\x3d\x22\x4c\x61\x79\x65\x72\x5f\x31\x22\x20\x78\x6d\x6c\x6e\x73\
+\x3d\x22\x68\x74\x74\x70\x3a\x2f\x2f\x77\x77\x77\x2e\x77\x33\x2e\
+\x6f\x72\x67\x2f\x32\x30\x30\x30\x2f\x73\x76\x67\x22\x20\x78\x6d\
+\x6c\x6e\x73\x3a\x78\x6c\x69\x6e\x6b\x3d\x22\x68\x74\x74\x70\x3a\
+\x2f\x2f\x77\x77\x77\x2e\x77\x33\x2e\x6f\x72\x67\x2f\x31\x39\x39\
+\x39\x2f\x78\x6c\x69\x6e\x6b\x22\x20\x78\x3d\x22\x30\x70\x78\x22\
+\x20\x79\x3d\x22\x30\x70\x78\x22\x0d\x0a\x09\x20\x77\x69\x64\x74\
+\x68\x3d\x22\x35\x31\x32\x70\x78\x22\x20\x68\x65\x69\x67\x68\x74\
+\x3d\x22\x35\x31\x32\x70\x78\x22\x20\x76\x69\x65\x77\x42\x6f\x78\
+\x3d\x22\x30\x20\x30\x20\x35\x31\x32\x20\x35\x31\x32\x22\x20\x65\
+\x6e\x61\x62\x6c\x65\x2d\x62\x61\x63\x6b\x67\x72\x6f\x75\x6e\x64\
+\x3d\x22\x6e\x65\x77\x20\x30\x20\x30\x20\x35\x31\x32\x20\x35\x31\
+\x32\x22\x20\x78\x6d\x6c\x3a\x73\x70\x61\x63\x65\x3d\x22\x70\x72\
+\x65\x73\x65\x72\x76\x65\x22\x3e\x0d\x0a\x3c\x67\x3e\x0d\x0a\x09\
+\x3c\x70\x61\x74\x68\x20\x64\x3d\x22\x4d\x31\x39\x33\x2e\x34\x36\
+\x2c\x32\x34\x39\x2e\x30\x35\x36\x63\x33\x2e\x37\x32\x33\x2d\x30\
+\x2e\x36\x37\x2c\x37\x2e\x35\x38\x39\x2d\x31\x2e\x30\x34\x31\x2c\
+\x31\x31\x2e\x35\x38\x36\x2d\x31\x2e\x30\x34\x31\x4c\x32\x30\x31\
+\x2e\x39\x32\x34\x2c\x32\x34\x38\x68\x31\x30\x33\x2e\x38\x32\x33\
+\x63\x34\x2e\x35\x30\x33\x2c\x30\x2c\x38\x2e\x38\x30\x36\x2d\x30\
+\x2e\x36\x31\x37\x2c\x31\x32\x2e\x39\x30\x38\x2d\x31\x2e\x37\x35\
+\x34\x0d\x0a\x09\x09\x63\x31\x39\x2e\x33\x37\x2d\x35\x2e\x33\x36\
+\x33\x2c\x33\x33\x2e\x33\x34\x35\x2d\x32\x32\x2e\x35\x33\x37\x2c\
+\x33\x33\x2e\x33\x34\x35\x2d\x34\x33\x2e\x36\x36\x33\x76\x2d\x33\
+\x30\x2e\x38\x32\x32\x76\x2d\x35\x36\x2e\x34\x30\x32\x63\x30\x2d\
+\x32\x34\x2e\x38\x33\x32\x2d\x32\x31\x2e\x31\x35\x2d\x34\x33\x2e\
+\x34\x38\x34\x2d\x34\x36\x2e\x32\x38\x39\x2d\x34\x37\x2e\x36\x30\
+\x36\x0d\x0a\x09\x09\x63\x2d\x31\x35\x2e\x39\x33\x31\x2d\x32\x2e\
+\x36\x32\x34\x2d\x33\x39\x2e\x32\x35\x38\x2d\x33\x2e\x38\x32\x37\
+\x2d\x35\x35\x2e\x30\x38\x39\x2d\x33\x2e\x37\x34\x39\x63\x2d\x31\
+\x35\x2e\x38\x32\x39\x2c\x30\x2e\x30\x38\x36\x2d\x33\x30\x2e\x39\
+\x38\x31\x2c\x31\x2e\x34\x30\x34\x2d\x34\x34\x2e\x32\x37\x37\x2c\
+\x33\x2e\x37\x34\x39\x43\x31\x36\x37\x2e\x31\x34\x33\x2c\x37\x34\
+\x2e\x35\x37\x36\x2c\x31\x36\x30\x2c\x38\x38\x2e\x39\x32\x38\x2c\
+\x31\x36\x30\x2c\x31\x31\x35\x2e\x33\x35\x39\x56\x31\x34\x34\x68\
+\x39\x36\x0d\x0a\x09\x09\x76\x31\x36\x48\x31\x32\x38\x2e\x38\x32\
+\x63\x2d\x33\x35\x2e\x36\x32\x38\x2c\x30\x2d\x36\x34\x2e\x35\x33\
+\x38\x2c\x34\x32\x2e\x35\x37\x31\x2d\x36\x34\x2e\x38\x31\x33\x2c\
+\x39\x35\x2e\x32\x34\x32\x43\x36\x34\x2e\x30\x30\x35\x2c\x32\x35\
+\x35\x2e\x34\x39\x35\x2c\x36\x34\x2c\x32\x35\x35\x2e\x37\x34\x37\
+\x2c\x36\x34\x2c\x32\x35\x36\x63\x30\x2c\x39\x2e\x35\x32\x33\x2c\
+\x30\x2e\x39\x34\x2c\x31\x38\x2e\x37\x32\x2c\x32\x2e\x36\x38\x35\
+\x2c\x32\x37\x2e\x34\x30\x34\x0d\x0a\x09\x09\x43\x37\x34\x2e\x36\
+\x34\x38\x2c\x33\x32\x33\x2e\x30\x37\x2c\x39\x39\x2e\x34\x35\x31\
+\x2c\x33\x35\x32\x2c\x31\x32\x38\x2e\x38\x32\x2c\x33\x35\x32\x48\
+\x31\x34\x34\x76\x2d\x32\x2e\x36\x36\x32\x76\x2d\x34\x33\x2e\x32\
+\x37\x33\x43\x31\x34\x34\x2c\x32\x37\x39\x2e\x32\x33\x38\x2c\x31\
+\x36\x34\x2e\x31\x34\x36\x2c\x32\x35\x34\x2e\x33\x33\x32\x2c\x31\
+\x39\x33\x2e\x34\x36\x2c\x32\x34\x39\x2e\x30\x35\x36\x7a\x20\x4d\
+\x32\x30\x33\x2e\x36\x35\x36\x2c\x31\x32\x37\x2e\x30\x30\x32\x0d\
+\x0a\x09\x09\x63\x2d\x39\x2e\x35\x39\x32\x2c\x30\x2d\x31\x37\x2e\
+\x33\x38\x34\x2d\x37\x2e\x37\x38\x35\x2d\x31\x37\x2e\x33\x38\x34\
+\x2d\x31\x37\x2e\x34\x30\x33\x63\x30\x2d\x39\x2e\x36\x36\x34\x2c\
+\x37\x2e\x37\x37\x34\x2d\x31\x37\x2e\x35\x32\x2c\x31\x37\x2e\x33\
+\x38\x34\x2d\x31\x37\x2e\x35\x32\x63\x39\x2e\x35\x37\x34\x2c\x30\
+\x2c\x31\x37\x2e\x33\x39\x39\x2c\x37\x2e\x38\x35\x35\x2c\x31\x37\
+\x2e\x33\x39\x39\x2c\x31\x37\x2e\x35\x32\x0d\x0a\x09\x09\x43\x32\
+\x32\x31\x2e\x30\x35\x36\x2c\x31\x31\x39\x2e\x32\x31\x37\x2c\x32\
+\x31\x33\x2e\x32\x34\x36\x2c\x31\x32\x37\x2e\x30\x30\x32\x2c\x32\
+\x30\x33\x2e\x36\x35\x36\x2c\x31\x32\x37\x2e\x30\x30\x32\x7a\x22\
+\x2f\x3e\x0d\x0a\x09\x3c\x70\x61\x74\x68\x20\x64\x3d\x22\x4d\x34\
+\x34\x33\x2e\x39\x35\x31\x2c\x32\x32\x32\x2e\x35\x34\x33\x43\x34\
+\x33\x34\x2e\x37\x38\x2c\x31\x38\x36\x2e\x30\x32\x31\x2c\x34\x31\
+\x31\x2e\x30\x33\x33\x2c\x31\x36\x30\x2c\x33\x38\x33\x2e\x31\x38\
+\x2c\x31\x36\x30\x48\x33\x36\x38\x76\x32\x2e\x36\x32\x36\x76\x33\
+\x38\x2e\x30\x34\x36\x63\x30\x2c\x33\x33\x2e\x39\x31\x35\x2d\x32\
+\x32\x2e\x32\x38\x36\x2c\x35\x38\x2e\x34\x37\x34\x2d\x34\x39\x2e\
+\x34\x38\x39\x2c\x36\x32\x2e\x36\x38\x31\x0d\x0a\x09\x09\x63\x2d\
+\x32\x2e\x37\x33\x37\x2c\x30\x2e\x34\x32\x34\x2d\x35\x2e\x34\x38\
+\x33\x2c\x30\x2e\x36\x34\x36\x2d\x38\x2e\x33\x30\x31\x2c\x30\x2e\
+\x36\x34\x36\x48\x32\x30\x36\x2e\x33\x35\x31\x63\x2d\x34\x2e\x35\
+\x31\x38\x2c\x30\x2d\x38\x2e\x39\x30\x34\x2c\x30\x2e\x35\x38\x34\
+\x2d\x31\x33\x2e\x30\x34\x39\x2c\x31\x2e\x36\x37\x32\x43\x31\x37\
+\x34\x2e\x31\x38\x2c\x32\x37\x30\x2e\x36\x38\x39\x2c\x31\x36\x30\
+\x2c\x32\x38\x36\x2e\x36\x2c\x31\x36\x30\x2c\x33\x30\x37\x2e\x32\
+\x33\x36\x76\x33\x32\x2e\x39\x32\x32\x0d\x0a\x09\x09\x76\x35\x34\
+\x2e\x33\x30\x35\x63\x30\x2c\x32\x34\x2e\x38\x33\x32\x2c\x32\x34\
+\x2e\x39\x37\x37\x2c\x33\x39\x2e\x34\x32\x36\x2c\x34\x39\x2e\x34\
+\x38\x31\x2c\x34\x36\x2e\x35\x35\x31\x63\x32\x39\x2e\x33\x32\x37\
+\x2c\x38\x2e\x35\x33\x31\x2c\x36\x31\x2e\x32\x36\x37\x2c\x31\x30\
+\x2e\x30\x36\x38\x2c\x39\x36\x2e\x33\x36\x36\x2c\x30\x43\x33\x32\
+\x39\x2e\x31\x35\x2c\x34\x33\x34\x2e\x33\x35\x34\x2c\x33\x35\x32\
+\x2c\x34\x32\x30\x2e\x38\x39\x33\x2c\x33\x35\x32\x2c\x33\x39\x34\
+\x2e\x34\x36\x33\x56\x33\x36\x38\x0d\x0a\x09\x09\x68\x2d\x39\x36\
+\x76\x2d\x31\x36\x68\x31\x32\x37\x2e\x31\x38\x63\x32\x35\x2e\x32\
+\x34\x2c\x30\x2c\x34\x37\x2e\x31\x30\x37\x2d\x32\x31\x2e\x33\x36\
+\x35\x2c\x35\x37\x2e\x38\x31\x34\x2d\x35\x32\x2e\x35\x34\x39\x43\
+\x34\x34\x35\x2e\x34\x37\x34\x2c\x32\x38\x36\x2e\x34\x30\x34\x2c\
+\x34\x34\x38\x2c\x32\x37\x31\x2e\x36\x34\x31\x2c\x34\x34\x38\x2c\
+\x32\x35\x36\x0d\x0a\x09\x09\x43\x34\x34\x38\x2c\x32\x34\x34\x2e\
+\x32\x33\x32\x2c\x34\x34\x36\x2e\x35\x36\x37\x2c\x32\x33\x32\x2e\
+\x39\x36\x32\x2c\x34\x34\x33\x2e\x39\x35\x31\x2c\x32\x32\x32\x2e\
+\x35\x34\x33\x7a\x20\x4d\x33\x30\x37\x2e\x38\x36\x37\x2c\x33\x38\
+\x32\x2e\x38\x32\x63\x39\x2e\x35\x39\x2c\x30\x2c\x31\x37\x2e\x33\
+\x38\x31\x2c\x37\x2e\x37\x38\x35\x2c\x31\x37\x2e\x33\x38\x31\x2c\
+\x31\x37\x2e\x34\x0d\x0a\x09\x09\x63\x30\x2c\x39\x2e\x36\x35\x2d\
+\x37\x2e\x37\x39\x31\x2c\x31\x37\x2e\x35\x32\x31\x2d\x31\x37\x2e\
+\x33\x38\x31\x2c\x31\x37\x2e\x35\x32\x31\x63\x2d\x39\x2e\x35\x37\
+\x37\x2c\x30\x2d\x31\x37\x2e\x33\x39\x39\x2d\x37\x2e\x38\x37\x31\
+\x2d\x31\x37\x2e\x33\x39\x39\x2d\x31\x37\x2e\x35\x32\x31\x43\x32\
+\x39\x30\x2e\x34\x36\x38\x2c\x33\x39\x30\x2e\x35\x39\x2c\x32\x39\
+\x38\x2e\x32\x37\x34\x2c\x33\x38\x32\x2e\x38\x32\x2c\x33\x30\x37\
+\x2e\x38\x36\x37\x2c\x33\x38\x32\x2e\x38\x32\x7a\x22\x2f\x3e\x0d\
+\x0a\x3c\x2f\x67\x3e\x0d\x0a\x3c\x2f\x73\x76\x67\x3e\x0d\x0a\
+\x00\x00\x03\xe6\
+\x3c\
+\x3f\x78\x6d\x6c\x20\x76\x65\x72\x73\x69\x6f\x6e\x3d\x22\x31\x2e\
+\x30\x22\x20\x65\x6e\x63\x6f\x64\x69\x6e\x67\x3d\x22\x75\x74\x66\
+\x2d\x38\x22\x3f\x3e\x0d\x0a\x3c\x21\x2d\x2d\x20\x47\x65\x6e\x65\
+\x72\x61\x74\x6f\x72\x3a\x20\x41\x64\x6f\x62\x65\x20\x49\x6c\x6c\
+\x75\x73\x74\x72\x61\x74\x6f\x72\x20\x31\x38\x2e\x31\x2e\x31\x2c\
+\x20\x53\x56\x47\x20\x45\x78\x70\x6f\x72\x74\x20\x50\x6c\x75\x67\
+\x2d\x49\x6e\x20\x2e\x20\x53\x56\x47\x20\x56\x65\x72\x73\x69\x6f\
+\x6e\x3a\x20\x36\x2e\x30\x30\x20\x42\x75\x69\x6c\x64\x20\x30\x29\
+\x20\x20\x2d\x2d\x3e\x0d\x0a\x3c\x21\x44\x4f\x43\x54\x59\x50\x45\
+\x20\x73\x76\x67\x20\x50\x55\x42\x4c\x49\x43\x20\x22\x2d\x2f\x2f\
+\x57\x33\x43\x2f\x2f\x44\x54\x44\x20\x53\x56\x47\x20\x31\x2e\x31\
+\x2f\x2f\x45\x4e\x22\x20\x22\x68\x74\x74\x70\x3a\x2f\x2f\x77\x77\
+\x77\x2e\x77\x33\x2e\x6f\x72\x67\x2f\x47\x72\x61\x70\x68\x69\x63\
+\x73\x2f\x53\x56\x47\x2f\x31\x2e\x31\x2f\x44\x54\x44\x2f\x73\x76\
+\x67\x31\x31\x2e\x64\x74\x64\x22\x3e\x0d\x0a\x3c\x73\x76\x67\x20\
+\x76\x65\x72\x73\x69\x6f\x6e\x3d\x22\x31\x2e\x31\x22\x20\x69\x64\
+\x3d\x22\x43\x68\x65\x76\x72\x6f\x6e\x5f\x63\x69\x72\x63\x6c\x65\
+\x64\x5f\x72\x69\x67\x68\x74\x22\x20\x78\x6d\x6c\x6e\x73\x3d\x22\
+\x68\x74\x74\x70\x3a\x2f\x2f\x77\x77\x77\x2e\x77\x33\x2e\x6f\x72\
+\x67\x2f\x32\x30\x30\x30\x2f\x73\x76\x67\x22\x20\x78\x6d\x6c\x6e\
+\x73\x3a\x78\x6c\x69\x6e\x6b\x3d\x22\x68\x74\x74\x70\x3a\x2f\x2f\
+\x77\x77\x77\x2e\x77\x33\x2e\x6f\x72\x67\x2f\x31\x39\x39\x39\x2f\
+\x78\x6c\x69\x6e\x6b\x22\x0d\x0a\x09\x20\x78\x3d\x22\x30\x70\x78\
+\x22\x20\x79\x3d\x22\x30\x70\x78\x22\x20\x76\x69\x65\x77\x42\x6f\
+\x78\x3d\x22\x30\x20\x30\x20\x35\x31\x32\x20\x35\x31\x32\x22\x20\
+\x65\x6e\x61\x62\x6c\x65\x2d\x62\x61\x63\x6b\x67\x72\x6f\x75\x6e\
+\x64\x3d\x22\x6e\x65\x77\x20\x30\x20\x30\x20\x35\x31\x32\x20\x35\
+\x31\x32\x22\x20\x78\x6d\x6c\x3a\x73\x70\x61\x63\x65\x3d\x22\x70\
+\x72\x65\x73\x65\x72\x76\x65\x22\x3e\x0d\x0a\x3c\x67\x20\x74\x72\
+\x61\x6e\x73\x66\x6f\x72\x6d\x3d\x27\x6d\x61\x74\x72\x69\x78\x28\
+\x32\x34\x20\x30\x20\x30\x20\x32\x34\x20\x30\x20\x30\x29\x27\x3e\
+\x0d\x0a\x3c\x70\x61\x74\x68\x20\x64\x3d\x22\x4d\x31\x31\x2c\x31\
+\x30\x4c\x38\x2e\x36\x39\x38\x2c\x37\x2e\x34\x39\x34\x63\x2d\x30\
+\x2e\x31\x39\x36\x2d\x30\x2e\x31\x39\x38\x2d\x30\x2e\x31\x39\x36\
+\x2d\x30\x2e\x35\x31\x39\x2c\x30\x2d\x30\x2e\x37\x31\x38\x63\x30\
+\x2e\x31\x39\x36\x2d\x30\x2e\x31\x39\x37\x2c\x30\x2e\x35\x31\x35\
+\x2d\x30\x2e\x31\x39\x37\x2c\x30\x2e\x37\x31\x2c\x30\x6c\x32\x2e\
+\x38\x30\x37\x2c\x32\x2e\x38\x36\x34\x0d\x0a\x09\x63\x30\x2e\x31\
+\x39\x36\x2c\x30\x2e\x31\x39\x39\x2c\x30\x2e\x31\x39\x36\x2c\x30\
+\x2e\x35\x32\x2c\x30\x2c\x30\x2e\x37\x31\x37\x6c\x2d\x32\x2e\x38\
+\x30\x37\x2c\x32\x2e\x38\x36\x34\x63\x2d\x30\x2e\x31\x39\x35\x2c\
+\x30\x2e\x31\x39\x39\x2d\x30\x2e\x35\x31\x34\x2c\x30\x2e\x31\x39\
+\x38\x2d\x30\x2e\x37\x31\x2c\x30\x63\x2d\x30\x2e\x31\x39\x36\x2d\
+\x30\x2e\x31\x39\x37\x2d\x30\x2e\x31\x39\x36\x2d\x30\x2e\x35\x31\
+\x38\x2c\x30\x2d\x30\x2e\x37\x31\x37\x4c\x31\x31\x2c\x31\x30\x7a\
+\x20\x4d\x31\x30\x2c\x30\x2e\x34\x0d\x0a\x09\x63\x35\x2e\x33\x30\
+\x32\x2c\x30\x2c\x39\x2e\x36\x2c\x34\x2e\x32\x39\x38\x2c\x39\x2e\
+\x36\x2c\x39\x2e\x36\x63\x30\x2c\x35\x2e\x33\x30\x33\x2d\x34\x2e\
+\x32\x39\x38\x2c\x39\x2e\x36\x2d\x39\x2e\x36\x2c\x39\x2e\x36\x53\
+\x30\x2e\x34\x2c\x31\x35\x2e\x33\x30\x33\x2c\x30\x2e\x34\x2c\x31\
+\x30\x43\x30\x2e\x34\x2c\x34\x2e\x36\x39\x38\x2c\x34\x2e\x36\x39\
+\x38\x2c\x30\x2e\x34\x2c\x31\x30\x2c\x30\x2e\x34\x7a\x20\x4d\x31\
+\x30\x2c\x31\x38\x2e\x33\x35\x34\x0d\x0a\x09\x63\x34\x2e\x36\x31\
+\x33\x2c\x30\x2c\x38\x2e\x33\x35\x34\x2d\x33\x2e\x37\x34\x2c\x38\
+\x2e\x33\x35\x34\x2d\x38\x2e\x33\x35\x34\x63\x30\x2d\x34\x2e\x36\
+\x31\x34\x2d\x33\x2e\x37\x34\x31\x2d\x38\x2e\x33\x35\x34\x2d\x38\
+\x2e\x33\x35\x34\x2d\x38\x2e\x33\x35\x34\x63\x2d\x34\x2e\x36\x31\
+\x35\x2c\x30\x2d\x38\x2e\x33\x35\x34\x2c\x33\x2e\x37\x34\x2d\x38\
+\x2e\x33\x35\x34\x2c\x38\x2e\x33\x35\x34\x0d\x0a\x09\x43\x31\x2e\
+\x36\x34\x35\x2c\x31\x34\x2e\x36\x31\x34\x2c\x35\x2e\x33\x38\x35\
+\x2c\x31\x38\x2e\x33\x35\x34\x2c\x31\x30\x2c\x31\x38\x2e\x33\x35\
+\x34\x7a\x22\x2f\x3e\x0d\x0a\x3c\x2f\x67\x3e\x0d\x0a\x3c\x2f\x73\
+\x76\x67\x3e\x0d\x0a\
+\x00\x00\x03\x4c\
\x3c\
\x3f\x78\x6d\x6c\x20\x76\x65\x72\x73\x69\x6f\x6e\x3d\x22\x31\x2e\
\x30\x22\x20\x65\x6e\x63\x6f\x64\x69\x6e\x67\x3d\x22\x75\x74\x66\
@@ -2126,57 +1718,205 @@ qt_resource_data = b"\
\x3d\x22\x6e\x65\x77\x20\x30\x20\x30\x20\x35\x31\x32\x20\x35\x31\
\x32\x22\x20\x78\x6d\x6c\x3a\x73\x70\x61\x63\x65\x3d\x22\x70\x72\
\x65\x73\x65\x72\x76\x65\x22\x3e\x0d\x0a\x3c\x67\x20\x69\x64\x3d\
-\x22\x49\x63\x6f\x6e\x5f\x32\x30\x5f\x22\x3e\x0d\x0a\x09\x3c\x67\
+\x22\x49\x63\x6f\x6e\x5f\x32\x31\x5f\x22\x3e\x0d\x0a\x09\x3c\x67\
\x3e\x0d\x0a\x09\x09\x3c\x70\x61\x74\x68\x20\x64\x3d\x22\x4d\x32\
-\x35\x36\x2c\x34\x38\x43\x31\x34\x31\x2e\x36\x30\x31\x2c\x34\x38\
-\x2c\x34\x38\x2c\x31\x34\x31\x2e\x36\x30\x31\x2c\x34\x38\x2c\x32\
-\x35\x36\x73\x39\x33\x2e\x36\x30\x31\x2c\x32\x30\x38\x2c\x32\x30\
-\x38\x2c\x32\x30\x38\x73\x32\x30\x38\x2d\x39\x33\x2e\x36\x30\x31\
-\x2c\x32\x30\x38\x2d\x32\x30\x38\x53\x33\x37\x30\x2e\x33\x39\x39\
-\x2c\x34\x38\x2c\x32\x35\x36\x2c\x34\x38\x7a\x20\x4d\x32\x35\x36\
-\x2c\x34\x32\x32\x2e\x33\x39\x39\x0d\x0a\x09\x09\x09\x63\x2d\x39\
-\x31\x2e\x35\x31\x38\x2c\x30\x2d\x31\x36\x36\x2e\x33\x39\x39\x2d\
-\x37\x34\x2e\x38\x38\x32\x2d\x31\x36\x36\x2e\x33\x39\x39\x2d\x31\
-\x36\x36\x2e\x33\x39\x39\x53\x31\x36\x34\x2e\x34\x38\x32\x2c\x38\
-\x39\x2e\x36\x2c\x32\x35\x36\x2c\x38\x39\x2e\x36\x53\x34\x32\x32\
-\x2e\x34\x2c\x31\x36\x34\x2e\x34\x38\x32\x2c\x34\x32\x32\x2e\x34\
-\x2c\x32\x35\x36\x53\x33\x34\x37\x2e\x35\x31\x38\x2c\x34\x32\x32\
-\x2e\x33\x39\x39\x2c\x32\x35\x36\x2c\x34\x32\x32\x2e\x33\x39\x39\
+\x35\x36\x2c\x31\x35\x32\x63\x2d\x35\x37\x2e\x32\x2c\x30\x2d\x31\
+\x30\x34\x2c\x34\x36\x2e\x38\x2d\x31\x30\x34\x2c\x31\x30\x34\x73\
+\x34\x36\x2e\x38\x2c\x31\x30\x34\x2c\x31\x30\x34\x2c\x31\x30\x34\
+\x73\x31\x30\x34\x2d\x34\x36\x2e\x38\x2c\x31\x30\x34\x2d\x31\x30\
+\x34\x53\x33\x31\x33\x2e\x32\x2c\x31\x35\x32\x2c\x32\x35\x36\x2c\
+\x31\x35\x32\x7a\x20\x4d\x32\x35\x36\x2c\x34\x38\x0d\x0a\x09\x09\
+\x09\x43\x31\x34\x31\x2e\x36\x30\x31\x2c\x34\x38\x2c\x34\x38\x2c\
+\x31\x34\x31\x2e\x36\x30\x31\x2c\x34\x38\x2c\x32\x35\x36\x73\x39\
+\x33\x2e\x36\x30\x31\x2c\x32\x30\x38\x2c\x32\x30\x38\x2c\x32\x30\
+\x38\x73\x32\x30\x38\x2d\x39\x33\x2e\x36\x30\x31\x2c\x32\x30\x38\
+\x2d\x32\x30\x38\x53\x33\x37\x30\x2e\x33\x39\x39\x2c\x34\x38\x2c\
+\x32\x35\x36\x2c\x34\x38\x7a\x20\x4d\x32\x35\x36\x2c\x34\x32\x32\
+\x2e\x34\x0d\x0a\x09\x09\x09\x63\x2d\x39\x31\x2e\x35\x31\x38\x2c\
+\x30\x2d\x31\x36\x36\x2e\x34\x2d\x37\x34\x2e\x38\x38\x33\x2d\x31\
+\x36\x36\x2e\x34\x2d\x31\x36\x36\x2e\x34\x53\x31\x36\x34\x2e\x34\
+\x38\x32\x2c\x38\x39\x2e\x36\x2c\x32\x35\x36\x2c\x38\x39\x2e\x36\
+\x53\x34\x32\x32\x2e\x34\x2c\x31\x36\x34\x2e\x34\x38\x32\x2c\x34\
+\x32\x32\x2e\x34\x2c\x32\x35\x36\x53\x33\x34\x37\x2e\x35\x31\x38\
+\x2c\x34\x32\x32\x2e\x34\x2c\x32\x35\x36\x2c\x34\x32\x32\x2e\x34\
\x7a\x22\x2f\x3e\x0d\x0a\x09\x3c\x2f\x67\x3e\x0d\x0a\x3c\x2f\x67\
\x3e\x0d\x0a\x3c\x2f\x73\x76\x67\x3e\x0d\x0a\
-\x00\x00\x01\xdd\
-\x00\
-\x00\x06\xe4\x78\x9c\xcd\x54\x4d\x6f\x9b\x40\x10\x3d\x13\x29\xff\
-\x61\xba\xb7\x4a\xec\x17\xc4\xd4\xa6\xa6\x51\xfd\x21\xcb\x52\x9a\
-\x58\x6a\xea\xaa\xa7\x0a\xc3\x16\x50\x28\x20\x58\xc0\xce\xaf\xef\
-\xee\x92\x54\x51\x95\xfa\x18\xfb\xb0\x33\xda\x79\x6f\xde\xbc\x65\
-\x24\xa6\xd7\xfb\xdf\x39\x74\xa2\x6e\xb2\xb2\x08\x10\x27\x0c\x81\
-\x28\xa2\x32\xce\x8a\x24\x40\xad\xfc\x85\xc7\xe8\xfa\xd3\xe5\xc5\
-\xf4\x1d\xc6\xb0\x12\x85\xa8\x43\x59\xd6\x3e\x7c\x8e\xcb\x9d\x80\
-\x75\x9e\xb7\x8d\x34\x25\xe0\x1e\x71\x08\xb7\xe1\xeb\x76\x05\xcb\
-\x7d\x55\xd6\x12\x36\x79\x9b\xe0\x75\x01\xc4\x14\xb7\xc3\x10\x1f\
-\x3c\xc2\x18\xcc\xda\x2c\x8f\x81\xbd\x07\xc0\xd8\xe8\x2f\xee\xe6\
-\xf7\x3f\x36\x4b\x68\xba\x04\x36\xdf\x66\x37\xeb\x39\x20\x4c\xe9\
-\x77\x77\x4e\xe9\xe2\x7e\x61\x24\x38\xe1\x94\x2e\x6f\x11\xa0\x54\
-\xca\xca\xa7\xb4\xef\x7b\xd2\xbb\xa4\xac\x13\xba\xaa\xc3\x2a\xcd\
-\xa2\x86\x2a\x22\xd5\x44\xd5\x44\x95\x18\xe7\x24\x96\x31\xd2\x33\
-\xb4\xf4\x8b\xa7\x72\x04\x59\x1c\xa0\x9b\xf0\x20\xea\x9f\xea\xa2\
-\xbe\x44\xd1\x04\xaf\x48\x3b\x8c\x31\x2d\xf5\x44\xf1\xf7\x79\x56\
-\x3c\xbc\x46\xe4\x93\xc9\x84\x1a\x54\x51\x03\xc4\xaa\x3d\x82\xc3\
-\x90\x2f\x2f\x2c\xe8\xb3\x58\xa6\x01\x1a\x71\x47\x03\xa9\xc8\x92\
-\x54\xfe\xbd\x76\x99\xe8\x67\xa5\xee\x02\x06\xaa\xa6\x0f\x82\x46\
-\x1e\x72\x11\x20\x51\x84\xbb\x5c\xe0\x5d\x18\x3d\x24\x75\xd9\x16\
-\xb1\x5f\x88\x1e\x5e\x30\x3f\x1a\x6f\x7e\x53\x85\x91\xa2\x57\xb5\
-\x68\x44\xdd\x09\xf3\xea\x44\x05\x6b\x88\xd6\xb4\x0a\x65\x0a\xea\
-\xd1\x5f\xb8\xc7\x6c\x3e\x72\x89\x1b\x31\xdb\x25\x1f\xb0\x6b\x7b\
-\x2a\xaa\xa3\x73\x8a\x47\x8c\x8c\x22\xac\x00\x9b\xe9\x22\x76\xf1\
-\x13\xdc\x0d\x10\x33\x98\xfb\xdc\xa0\x73\x6a\x00\xd3\xa2\x4b\xb6\
-\x51\xd4\x67\x6b\xe6\x3c\xea\x4f\x60\x59\xf4\x1f\x1f\xce\x78\x7c\
-\x16\x3e\xae\xb8\x77\x3a\x1f\x53\xfa\xff\x25\x39\x63\xfe\x26\xa6\
-\xcc\x9c\x23\x4b\x3a\x07\x1f\x7a\x49\x27\xf3\x71\x6c\x49\x57\x6c\
-\xf2\x26\xa6\xcc\x9c\x23\x4b\x3a\x07\x1f\x7a\x49\x27\xf3\x31\x2c\
-\xe9\x39\xaa\x7f\xb6\xca\x7f\x00\x99\x18\x96\x19\
-\x00\x00\x04\x1c\
+\x00\x00\x03\x22\
+\x3c\
+\x3f\x78\x6d\x6c\x20\x76\x65\x72\x73\x69\x6f\x6e\x3d\x22\x31\x2e\
+\x30\x22\x20\x65\x6e\x63\x6f\x64\x69\x6e\x67\x3d\x22\x75\x74\x66\
+\x2d\x38\x22\x3f\x3e\x0d\x0a\x3c\x21\x2d\x2d\x20\x47\x65\x6e\x65\
+\x72\x61\x74\x6f\x72\x3a\x20\x41\x64\x6f\x62\x65\x20\x49\x6c\x6c\
+\x75\x73\x74\x72\x61\x74\x6f\x72\x20\x31\x36\x2e\x32\x2e\x31\x2c\
+\x20\x53\x56\x47\x20\x45\x78\x70\x6f\x72\x74\x20\x50\x6c\x75\x67\
+\x2d\x49\x6e\x20\x2e\x20\x53\x56\x47\x20\x56\x65\x72\x73\x69\x6f\
+\x6e\x3a\x20\x36\x2e\x30\x30\x20\x42\x75\x69\x6c\x64\x20\x30\x29\
+\x20\x20\x2d\x2d\x3e\x0d\x0a\x3c\x21\x44\x4f\x43\x54\x59\x50\x45\
+\x20\x73\x76\x67\x20\x50\x55\x42\x4c\x49\x43\x20\x22\x2d\x2f\x2f\
+\x57\x33\x43\x2f\x2f\x44\x54\x44\x20\x53\x56\x47\x20\x31\x2e\x31\
+\x2f\x2f\x45\x4e\x22\x20\x22\x68\x74\x74\x70\x3a\x2f\x2f\x77\x77\
+\x77\x2e\x77\x33\x2e\x6f\x72\x67\x2f\x47\x72\x61\x70\x68\x69\x63\
+\x73\x2f\x53\x56\x47\x2f\x31\x2e\x31\x2f\x44\x54\x44\x2f\x73\x76\
+\x67\x31\x31\x2e\x64\x74\x64\x22\x3e\x0d\x0a\x3c\x73\x76\x67\x20\
+\x76\x65\x72\x73\x69\x6f\x6e\x3d\x22\x31\x2e\x31\x22\x20\x69\x64\
+\x3d\x22\x4c\x61\x79\x65\x72\x5f\x31\x22\x20\x78\x6d\x6c\x6e\x73\
+\x3d\x22\x68\x74\x74\x70\x3a\x2f\x2f\x77\x77\x77\x2e\x77\x33\x2e\
+\x6f\x72\x67\x2f\x32\x30\x30\x30\x2f\x73\x76\x67\x22\x20\x78\x6d\
+\x6c\x6e\x73\x3a\x78\x6c\x69\x6e\x6b\x3d\x22\x68\x74\x74\x70\x3a\
+\x2f\x2f\x77\x77\x77\x2e\x77\x33\x2e\x6f\x72\x67\x2f\x31\x39\x39\
+\x39\x2f\x78\x6c\x69\x6e\x6b\x22\x20\x78\x3d\x22\x30\x70\x78\x22\
+\x20\x79\x3d\x22\x30\x70\x78\x22\x0d\x0a\x09\x20\x77\x69\x64\x74\
+\x68\x3d\x22\x35\x31\x32\x70\x78\x22\x20\x68\x65\x69\x67\x68\x74\
+\x3d\x22\x35\x31\x32\x70\x78\x22\x20\x76\x69\x65\x77\x42\x6f\x78\
+\x3d\x22\x30\x20\x30\x20\x35\x31\x32\x20\x35\x31\x32\x22\x20\x65\
+\x6e\x61\x62\x6c\x65\x2d\x62\x61\x63\x6b\x67\x72\x6f\x75\x6e\x64\
+\x3d\x22\x6e\x65\x77\x20\x30\x20\x30\x20\x35\x31\x32\x20\x35\x31\
+\x32\x22\x20\x78\x6d\x6c\x3a\x73\x70\x61\x63\x65\x3d\x22\x70\x72\
+\x65\x73\x65\x72\x76\x65\x22\x3e\x0d\x0a\x3c\x67\x3e\x0d\x0a\x09\
+\x3c\x63\x69\x72\x63\x6c\x65\x20\x63\x78\x3d\x22\x32\x35\x36\x22\
+\x20\x63\x79\x3d\x22\x32\x38\x30\x22\x20\x72\x3d\x22\x36\x33\x22\
+\x2f\x3e\x0d\x0a\x09\x3c\x70\x61\x74\x68\x20\x64\x3d\x22\x4d\x34\
+\x34\x30\x2c\x39\x36\x68\x2d\x38\x38\x6c\x2d\x33\x32\x2d\x33\x32\
+\x48\x31\x39\x32\x6c\x2d\x33\x32\x2c\x33\x32\x48\x37\x32\x63\x2d\
+\x32\x32\x2e\x30\x39\x32\x2c\x30\x2d\x34\x30\x2c\x31\x37\x2e\x39\
+\x30\x38\x2d\x34\x30\x2c\x34\x30\x76\x32\x37\x32\x63\x30\x2c\x32\
+\x32\x2e\x30\x39\x32\x2c\x31\x37\x2e\x39\x30\x38\x2c\x34\x30\x2c\
+\x34\x30\x2c\x34\x30\x68\x33\x36\x38\x63\x32\x32\x2e\x30\x39\x32\
+\x2c\x30\x2c\x34\x30\x2d\x31\x37\x2e\x39\x30\x38\x2c\x34\x30\x2d\
+\x34\x30\x0d\x0a\x09\x09\x56\x31\x33\x36\x43\x34\x38\x30\x2c\x31\
+\x31\x33\x2e\x39\x30\x38\x2c\x34\x36\x32\x2e\x30\x39\x32\x2c\x39\
+\x36\x2c\x34\x34\x30\x2c\x39\x36\x7a\x20\x4d\x32\x35\x36\x2c\x33\
+\x39\x32\x63\x2d\x36\x31\x2e\x38\x35\x35\x2c\x30\x2d\x31\x31\x32\
+\x2d\x35\x30\x2e\x31\x34\x35\x2d\x31\x31\x32\x2d\x31\x31\x32\x73\
+\x35\x30\x2e\x31\x34\x35\x2d\x31\x31\x32\x2c\x31\x31\x32\x2d\x31\
+\x31\x32\x73\x31\x31\x32\x2c\x35\x30\x2e\x31\x34\x35\x2c\x31\x31\
+\x32\x2c\x31\x31\x32\x0d\x0a\x09\x09\x53\x33\x31\x37\x2e\x38\x35\
+\x35\x2c\x33\x39\x32\x2c\x32\x35\x36\x2c\x33\x39\x32\x7a\x22\x2f\
+\x3e\x0d\x0a\x3c\x2f\x67\x3e\x0d\x0a\x3c\x2f\x73\x76\x67\x3e\x0d\
+\x0a\
+\x00\x00\x03\xf5\
+\x3c\
+\x3f\x78\x6d\x6c\x20\x76\x65\x72\x73\x69\x6f\x6e\x3d\x22\x31\x2e\
+\x30\x22\x20\x65\x6e\x63\x6f\x64\x69\x6e\x67\x3d\x22\x75\x74\x66\
+\x2d\x38\x22\x3f\x3e\x0d\x0a\x3c\x21\x2d\x2d\x20\x47\x65\x6e\x65\
+\x72\x61\x74\x6f\x72\x3a\x20\x41\x64\x6f\x62\x65\x20\x49\x6c\x6c\
+\x75\x73\x74\x72\x61\x74\x6f\x72\x20\x31\x38\x2e\x31\x2e\x31\x2c\
+\x20\x53\x56\x47\x20\x45\x78\x70\x6f\x72\x74\x20\x50\x6c\x75\x67\
+\x2d\x49\x6e\x20\x2e\x20\x53\x56\x47\x20\x56\x65\x72\x73\x69\x6f\
+\x6e\x3a\x20\x36\x2e\x30\x30\x20\x42\x75\x69\x6c\x64\x20\x30\x29\
+\x20\x20\x2d\x2d\x3e\x0d\x0a\x3c\x21\x44\x4f\x43\x54\x59\x50\x45\
+\x20\x73\x76\x67\x20\x50\x55\x42\x4c\x49\x43\x20\x22\x2d\x2f\x2f\
+\x57\x33\x43\x2f\x2f\x44\x54\x44\x20\x53\x56\x47\x20\x31\x2e\x31\
+\x2f\x2f\x45\x4e\x22\x20\x22\x68\x74\x74\x70\x3a\x2f\x2f\x77\x77\
+\x77\x2e\x77\x33\x2e\x6f\x72\x67\x2f\x47\x72\x61\x70\x68\x69\x63\
+\x73\x2f\x53\x56\x47\x2f\x31\x2e\x31\x2f\x44\x54\x44\x2f\x73\x76\
+\x67\x31\x31\x2e\x64\x74\x64\x22\x3e\x0d\x0a\x3c\x73\x76\x67\x20\
+\x76\x65\x72\x73\x69\x6f\x6e\x3d\x22\x31\x2e\x31\x22\x20\x69\x64\
+\x3d\x22\x43\x68\x65\x76\x72\x6f\x6e\x5f\x63\x69\x72\x63\x6c\x65\
+\x64\x5f\x6c\x65\x66\x74\x22\x20\x78\x6d\x6c\x6e\x73\x3d\x22\x68\
+\x74\x74\x70\x3a\x2f\x2f\x77\x77\x77\x2e\x77\x33\x2e\x6f\x72\x67\
+\x2f\x32\x30\x30\x30\x2f\x73\x76\x67\x22\x20\x78\x6d\x6c\x6e\x73\
+\x3a\x78\x6c\x69\x6e\x6b\x3d\x22\x68\x74\x74\x70\x3a\x2f\x2f\x77\
+\x77\x77\x2e\x77\x33\x2e\x6f\x72\x67\x2f\x31\x39\x39\x39\x2f\x78\
+\x6c\x69\x6e\x6b\x22\x0d\x0a\x09\x20\x78\x3d\x22\x30\x70\x78\x22\
+\x20\x79\x3d\x22\x30\x70\x78\x22\x20\x76\x69\x65\x77\x42\x6f\x78\
+\x3d\x22\x30\x20\x30\x20\x35\x31\x32\x20\x35\x31\x32\x22\x20\x65\
+\x6e\x61\x62\x6c\x65\x2d\x62\x61\x63\x6b\x67\x72\x6f\x75\x6e\x64\
+\x3d\x22\x6e\x65\x77\x20\x30\x20\x30\x20\x35\x31\x32\x20\x35\x31\
+\x32\x22\x20\x78\x6d\x6c\x3a\x73\x70\x61\x63\x65\x3d\x22\x70\x72\
+\x65\x73\x65\x72\x76\x65\x22\x3e\x0d\x0a\x3c\x67\x20\x74\x72\x61\
+\x6e\x73\x66\x6f\x72\x6d\x3d\x27\x6d\x61\x74\x72\x69\x78\x28\x32\
+\x34\x20\x30\x20\x30\x20\x32\x34\x20\x30\x20\x30\x29\x27\x3e\x0d\
+\x0a\x3c\x70\x61\x74\x68\x20\x64\x3d\x22\x4d\x31\x31\x2e\x33\x30\
+\x32\x2c\x36\x2e\x37\x37\x36\x63\x2d\x30\x2e\x31\x39\x36\x2d\x30\
+\x2e\x31\x39\x37\x2d\x30\x2e\x35\x31\x35\x2d\x30\x2e\x31\x39\x37\
+\x2d\x30\x2e\x37\x31\x2c\x30\x4c\x37\x2e\x37\x38\x35\x2c\x39\x2e\
+\x36\x34\x31\x63\x2d\x30\x2e\x31\x39\x36\x2c\x30\x2e\x31\x39\x39\
+\x2d\x30\x2e\x31\x39\x36\x2c\x30\x2e\x35\x32\x2c\x30\x2c\x30\x2e\
+\x37\x31\x37\x6c\x32\x2e\x38\x30\x37\x2c\x32\x2e\x38\x36\x34\x0d\
+\x0a\x09\x63\x30\x2e\x31\x39\x35\x2c\x30\x2e\x31\x39\x39\x2c\x30\
+\x2e\x35\x31\x34\x2c\x30\x2e\x31\x39\x38\x2c\x30\x2e\x37\x31\x2c\
+\x30\x63\x30\x2e\x31\x39\x36\x2d\x30\x2e\x31\x39\x37\x2c\x30\x2e\
+\x31\x39\x36\x2d\x30\x2e\x35\x31\x38\x2c\x30\x2d\x30\x2e\x37\x31\
+\x37\x4c\x39\x2c\x31\x30\x6c\x32\x2e\x33\x30\x32\x2d\x32\x2e\x35\
+\x30\x36\x43\x31\x31\x2e\x34\x39\x38\x2c\x37\x2e\x32\x39\x36\x2c\
+\x31\x31\x2e\x34\x39\x38\x2c\x36\x2e\x39\x37\x36\x2c\x31\x31\x2e\
+\x33\x30\x32\x2c\x36\x2e\x37\x37\x36\x7a\x0d\x0a\x09\x20\x4d\x31\
+\x30\x2c\x30\x2e\x34\x63\x2d\x35\x2e\x33\x30\x32\x2c\x30\x2d\x39\
+\x2e\x36\x2c\x34\x2e\x32\x39\x38\x2d\x39\x2e\x36\x2c\x39\x2e\x36\
+\x63\x30\x2c\x35\x2e\x33\x30\x33\x2c\x34\x2e\x32\x39\x38\x2c\x39\
+\x2e\x36\x2c\x39\x2e\x36\x2c\x39\x2e\x36\x73\x39\x2e\x36\x2d\x34\
+\x2e\x32\x39\x37\x2c\x39\x2e\x36\x2d\x39\x2e\x36\x43\x31\x39\x2e\
+\x36\x2c\x34\x2e\x36\x39\x38\x2c\x31\x35\x2e\x33\x30\x32\x2c\x30\
+\x2e\x34\x2c\x31\x30\x2c\x30\x2e\x34\x7a\x20\x4d\x31\x30\x2c\x31\
+\x38\x2e\x33\x35\x34\x0d\x0a\x09\x63\x2d\x34\x2e\x36\x31\x35\x2c\
+\x30\x2d\x38\x2e\x33\x35\x34\x2d\x33\x2e\x37\x34\x2d\x38\x2e\x33\
+\x35\x34\x2d\x38\x2e\x33\x35\x34\x63\x30\x2d\x34\x2e\x36\x31\x34\
+\x2c\x33\x2e\x37\x33\x39\x2d\x38\x2e\x33\x35\x34\x2c\x38\x2e\x33\
+\x35\x34\x2d\x38\x2e\x33\x35\x34\x63\x34\x2e\x36\x31\x33\x2c\x30\
+\x2c\x38\x2e\x33\x35\x34\x2c\x33\x2e\x37\x34\x2c\x38\x2e\x33\x35\
+\x34\x2c\x38\x2e\x33\x35\x34\x0d\x0a\x09\x43\x31\x38\x2e\x33\x35\
+\x34\x2c\x31\x34\x2e\x36\x31\x34\x2c\x31\x34\x2e\x36\x31\x33\x2c\
+\x31\x38\x2e\x33\x35\x34\x2c\x31\x30\x2c\x31\x38\x2e\x33\x35\x34\
+\x7a\x22\x2f\x3e\x0d\x0a\x3c\x2f\x67\x3e\x0d\x0a\x3c\x2f\x73\x76\
+\x67\x3e\x0d\x0a\
+\x00\x00\x03\x52\
+\x3c\
+\x3f\x78\x6d\x6c\x20\x76\x65\x72\x73\x69\x6f\x6e\x3d\x22\x31\x2e\
+\x30\x22\x20\x65\x6e\x63\x6f\x64\x69\x6e\x67\x3d\x22\x75\x74\x66\
+\x2d\x38\x22\x3f\x3e\x0d\x0a\x3c\x21\x2d\x2d\x20\x47\x65\x6e\x65\
+\x72\x61\x74\x6f\x72\x3a\x20\x41\x64\x6f\x62\x65\x20\x49\x6c\x6c\
+\x75\x73\x74\x72\x61\x74\x6f\x72\x20\x31\x36\x2e\x32\x2e\x31\x2c\
+\x20\x53\x56\x47\x20\x45\x78\x70\x6f\x72\x74\x20\x50\x6c\x75\x67\
+\x2d\x49\x6e\x20\x2e\x20\x53\x56\x47\x20\x56\x65\x72\x73\x69\x6f\
+\x6e\x3a\x20\x36\x2e\x30\x30\x20\x42\x75\x69\x6c\x64\x20\x30\x29\
+\x20\x20\x2d\x2d\x3e\x0d\x0a\x3c\x21\x44\x4f\x43\x54\x59\x50\x45\
+\x20\x73\x76\x67\x20\x50\x55\x42\x4c\x49\x43\x20\x22\x2d\x2f\x2f\
+\x57\x33\x43\x2f\x2f\x44\x54\x44\x20\x53\x56\x47\x20\x31\x2e\x31\
+\x2f\x2f\x45\x4e\x22\x20\x22\x68\x74\x74\x70\x3a\x2f\x2f\x77\x77\
+\x77\x2e\x77\x33\x2e\x6f\x72\x67\x2f\x47\x72\x61\x70\x68\x69\x63\
+\x73\x2f\x53\x56\x47\x2f\x31\x2e\x31\x2f\x44\x54\x44\x2f\x73\x76\
+\x67\x31\x31\x2e\x64\x74\x64\x22\x3e\x0d\x0a\x3c\x73\x76\x67\x20\
+\x76\x65\x72\x73\x69\x6f\x6e\x3d\x22\x31\x2e\x31\x22\x20\x69\x64\
+\x3d\x22\x4c\x61\x79\x65\x72\x5f\x31\x22\x20\x78\x6d\x6c\x6e\x73\
+\x3d\x22\x68\x74\x74\x70\x3a\x2f\x2f\x77\x77\x77\x2e\x77\x33\x2e\
+\x6f\x72\x67\x2f\x32\x30\x30\x30\x2f\x73\x76\x67\x22\x20\x78\x6d\
+\x6c\x6e\x73\x3a\x78\x6c\x69\x6e\x6b\x3d\x22\x68\x74\x74\x70\x3a\
+\x2f\x2f\x77\x77\x77\x2e\x77\x33\x2e\x6f\x72\x67\x2f\x31\x39\x39\
+\x39\x2f\x78\x6c\x69\x6e\x6b\x22\x20\x78\x3d\x22\x30\x70\x78\x22\
+\x20\x79\x3d\x22\x30\x70\x78\x22\x0d\x0a\x09\x20\x77\x69\x64\x74\
+\x68\x3d\x22\x35\x31\x32\x70\x78\x22\x20\x68\x65\x69\x67\x68\x74\
+\x3d\x22\x35\x31\x32\x70\x78\x22\x20\x76\x69\x65\x77\x42\x6f\x78\
+\x3d\x22\x30\x20\x30\x20\x35\x31\x32\x20\x35\x31\x32\x22\x20\x65\
+\x6e\x61\x62\x6c\x65\x2d\x62\x61\x63\x6b\x67\x72\x6f\x75\x6e\x64\
+\x3d\x22\x6e\x65\x77\x20\x30\x20\x30\x20\x35\x31\x32\x20\x35\x31\
+\x32\x22\x20\x78\x6d\x6c\x3a\x73\x70\x61\x63\x65\x3d\x22\x70\x72\
+\x65\x73\x65\x72\x76\x65\x22\x3e\x0d\x0a\x3c\x70\x61\x74\x68\x20\
+\x64\x3d\x22\x4d\x34\x33\x37\x2e\x33\x33\x34\x2c\x31\x34\x34\x48\
+\x32\x35\x36\x2e\x30\x30\x36\x6c\x2d\x34\x32\x2e\x36\x36\x38\x2d\
+\x34\x38\x48\x37\x34\x2e\x36\x36\x36\x43\x35\x31\x2e\x31\x39\x37\
+\x2c\x39\x36\x2c\x33\x32\x2c\x31\x31\x35\x2e\x31\x39\x38\x2c\x33\
+\x32\x2c\x31\x33\x38\x2e\x36\x36\x37\x76\x32\x33\x34\x2e\x36\x36\
+\x36\x43\x33\x32\x2c\x33\x39\x36\x2e\x38\x30\x32\x2c\x35\x31\x2e\
+\x31\x39\x37\x2c\x34\x31\x36\x2c\x37\x34\x2e\x36\x36\x36\x2c\x34\
+\x31\x36\x68\x33\x36\x32\x2e\x36\x36\x38\x0d\x0a\x09\x43\x34\x36\
+\x30\x2e\x38\x30\x33\x2c\x34\x31\x36\x2c\x34\x38\x30\x2c\x33\x39\
+\x36\x2e\x38\x30\x32\x2c\x34\x38\x30\x2c\x33\x37\x33\x2e\x33\x33\
+\x33\x56\x31\x38\x36\x2e\x36\x36\x37\x43\x34\x38\x30\x2c\x31\x36\
+\x33\x2e\x31\x39\x38\x2c\x34\x36\x30\x2e\x38\x30\x33\x2c\x31\x34\
+\x34\x2c\x34\x33\x37\x2e\x33\x33\x34\x2c\x31\x34\x34\x7a\x20\x4d\
+\x34\x34\x38\x2c\x33\x37\x33\x2e\x33\x33\x33\x0d\x0a\x09\x63\x30\
+\x2c\x35\x2e\x37\x38\x32\x2d\x34\x2e\x38\x38\x35\x2c\x31\x30\x2e\
+\x36\x36\x37\x2d\x31\x30\x2e\x36\x36\x36\x2c\x31\x30\x2e\x36\x36\
+\x37\x48\x37\x34\x2e\x36\x36\x36\x43\x36\x38\x2e\x38\x38\x34\x2c\
+\x33\x38\x34\x2c\x36\x34\x2c\x33\x37\x39\x2e\x31\x31\x35\x2c\x36\
+\x34\x2c\x33\x37\x33\x2e\x33\x33\x33\x56\x31\x37\x36\x68\x33\x37\
+\x33\x2e\x33\x33\x34\x63\x35\x2e\x37\x38\x31\x2c\x30\x2c\x31\x30\
+\x2e\x36\x36\x36\x2c\x34\x2e\x38\x38\x35\x2c\x31\x30\x2e\x36\x36\
+\x36\x2c\x31\x30\x2e\x36\x36\x37\x0d\x0a\x09\x56\x33\x37\x33\x2e\
+\x33\x33\x33\x7a\x22\x2f\x3e\x0d\x0a\x3c\x2f\x73\x76\x67\x3e\x0d\
+\x0a\
+\x00\x00\x03\x7c\
\x3c\
\x3f\x78\x6d\x6c\x20\x76\x65\x72\x73\x69\x6f\x6e\x3d\x27\x31\x2e\
\x30\x27\x20\x65\x6e\x63\x6f\x64\x69\x6e\x67\x3d\x27\x55\x54\x46\
@@ -2218,31 +1958,21 @@ qt_resource_data = b"\
\x39\x36\x32\x36\x34\x20\x30\x20\x30\x20\x30\x2e\x39\x39\x36\x32\
\x36\x34\x20\x35\x36\x2e\x34\x30\x39\x34\x20\x31\x31\x37\x2e\x38\
\x35\x38\x29\x27\x3e\x0a\x3c\x70\x61\x74\x68\x20\x64\x3d\x27\x4d\
-\x20\x32\x2e\x30\x30\x37\x35\x20\x2d\x33\x32\x2e\x31\x32\x4c\x20\
-\x36\x32\x2e\x32\x33\x32\x35\x20\x2d\x33\x32\x2e\x31\x32\x27\x20\
-\x66\x69\x6c\x6c\x3d\x27\x6e\x6f\x6e\x65\x27\x20\x73\x74\x72\x6f\
-\x6b\x65\x3d\x27\x23\x30\x30\x30\x30\x30\x30\x27\x20\x73\x74\x72\
-\x6f\x6b\x65\x2d\x6c\x69\x6e\x65\x63\x61\x70\x3d\x27\x72\x6f\x75\
-\x6e\x64\x27\x20\x73\x74\x72\x6f\x6b\x65\x2d\x6c\x69\x6e\x65\x6a\
-\x6f\x69\x6e\x3d\x27\x72\x6f\x75\x6e\x64\x27\x20\x73\x74\x72\x6f\
-\x6b\x65\x2d\x6d\x69\x74\x65\x72\x6c\x69\x6d\x69\x74\x3d\x27\x31\
-\x30\x2e\x30\x33\x37\x35\x27\x20\x73\x74\x72\x6f\x6b\x65\x2d\x77\
-\x69\x64\x74\x68\x3d\x27\x34\x2e\x30\x31\x35\x27\x2f\x3e\x0a\x3c\
-\x2f\x67\x3e\x0a\x3c\x67\x20\x74\x72\x61\x6e\x73\x66\x6f\x72\x6d\
-\x3d\x27\x6d\x61\x74\x72\x69\x78\x28\x30\x2e\x39\x39\x36\x32\x36\
-\x34\x20\x30\x20\x30\x20\x30\x2e\x39\x39\x36\x32\x36\x34\x20\x35\
-\x36\x2e\x34\x30\x39\x34\x20\x31\x31\x37\x2e\x38\x35\x38\x29\x27\
-\x3e\x0a\x3c\x70\x61\x74\x68\x20\x64\x3d\x27\x4d\x20\x33\x32\x2e\
-\x31\x32\x20\x2d\x32\x2e\x30\x30\x37\x35\x4c\x20\x33\x32\x2e\x31\
-\x32\x20\x2d\x36\x32\x2e\x32\x33\x32\x35\x27\x20\x66\x69\x6c\x6c\
-\x3d\x27\x6e\x6f\x6e\x65\x27\x20\x73\x74\x72\x6f\x6b\x65\x3d\x27\
-\x23\x30\x30\x30\x30\x30\x30\x27\x20\x73\x74\x72\x6f\x6b\x65\x2d\
-\x6c\x69\x6e\x65\x63\x61\x70\x3d\x27\x72\x6f\x75\x6e\x64\x27\x20\
-\x73\x74\x72\x6f\x6b\x65\x2d\x6c\x69\x6e\x65\x6a\x6f\x69\x6e\x3d\
-\x27\x72\x6f\x75\x6e\x64\x27\x20\x73\x74\x72\x6f\x6b\x65\x2d\x6d\
-\x69\x74\x65\x72\x6c\x69\x6d\x69\x74\x3d\x27\x31\x30\x2e\x30\x33\
-\x37\x35\x27\x20\x73\x74\x72\x6f\x6b\x65\x2d\x77\x69\x64\x74\x68\
-\x3d\x27\x34\x2e\x30\x31\x35\x27\x2f\x3e\x0a\x3c\x2f\x67\x3e\x0a\
+\x20\x34\x37\x2e\x31\x37\x36\x32\x20\x2d\x33\x32\x2e\x31\x32\x43\
+\x20\x34\x37\x2e\x31\x37\x36\x32\x20\x2d\x34\x30\x2e\x34\x33\x35\
+\x33\x20\x34\x30\x2e\x34\x33\x35\x33\x20\x2d\x34\x37\x2e\x31\x37\
+\x36\x32\x20\x33\x32\x2e\x31\x32\x20\x2d\x34\x37\x2e\x31\x37\x36\
+\x32\x43\x20\x32\x33\x2e\x38\x30\x34\x37\x20\x2d\x34\x37\x2e\x31\
+\x37\x36\x32\x20\x31\x37\x2e\x30\x36\x33\x37\x20\x2d\x34\x30\x2e\
+\x34\x33\x35\x33\x20\x31\x37\x2e\x30\x36\x33\x37\x20\x2d\x33\x32\
+\x2e\x31\x32\x43\x20\x31\x37\x2e\x30\x36\x33\x37\x20\x2d\x32\x33\
+\x2e\x38\x30\x34\x37\x20\x32\x33\x2e\x38\x30\x34\x37\x20\x2d\x31\
+\x37\x2e\x30\x36\x33\x37\x20\x33\x32\x2e\x31\x32\x20\x2d\x31\x37\
+\x2e\x30\x36\x33\x37\x43\x20\x34\x30\x2e\x34\x33\x35\x33\x20\x2d\
+\x31\x37\x2e\x30\x36\x33\x37\x20\x34\x37\x2e\x31\x37\x36\x32\x20\
+\x2d\x32\x33\x2e\x38\x30\x34\x37\x20\x34\x37\x2e\x31\x37\x36\x32\
+\x20\x2d\x33\x32\x2e\x31\x32\x5a\x27\x20\x66\x69\x6c\x6c\x3d\x27\
+\x23\x30\x30\x30\x30\x30\x30\x27\x2f\x3e\x0a\x3c\x2f\x67\x3e\x0a\
\x3c\x2f\x67\x3e\x0a\x3c\x2f\x73\x76\x67\x3e\
\x00\x00\x03\x46\
\x3c\
@@ -2299,7 +2029,139 @@ qt_resource_data = b"\
\x34\x35\x31\x2e\x35\x2c\x34\x30\x30\x2e\x36\x2c\x34\x33\x37\x2e\
\x35\x2c\x33\x38\x36\x2e\x36\x7a\x22\x2f\x3e\x0d\x0a\x3c\x2f\x73\
\x76\x67\x3e\x0d\x0a\
-\x00\x00\x03\x26\
+\x00\x00\x02\x21\
+\x00\
+\x00\x07\xaf\x78\x9c\xdd\x55\x4d\x6f\x9c\x30\x10\xbd\xf7\x57\x4c\
+\xd5\x83\xdb\x03\xc6\xdf\x86\x28\x24\x52\x57\xea\x29\xbd\x25\x97\
+\xde\x68\xf0\x82\x9b\x5d\x58\x01\x5d\xb6\xff\xbe\x66\xd7\x60\x4a\
+\xaa\xf4\x92\x43\x15\x90\x30\xf3\x18\xbf\x99\xe7\xf1\x98\xeb\xdb\
+\xd3\x7e\x07\x47\xd3\x76\xb6\xa9\x33\x44\x31\x41\x60\xea\xc7\xa6\
+\xb0\x75\x99\xa1\x87\xfb\x2f\x51\x82\x6e\x6f\xde\x5d\xbf\x8f\x22\
+\xb8\xaf\x6c\x07\x5b\xbb\x33\x30\xe4\x1d\x94\xa6\x36\x6d\xde\x9b\
+\x02\xbe\xff\x82\xe2\x68\xbb\x63\xb9\x07\x86\x13\x88\x22\xe7\xef\
+\xac\x25\x2b\x45\xe0\xe2\xd4\x5d\x86\xaa\xbe\x3f\x5c\xc5\xf1\x30\
+\x0c\x78\xe0\xb8\x69\xcb\x98\x11\x42\x62\xe7\xef\x5d\xae\x4e\x3b\
+\x5b\x3f\xfd\xcd\x91\xa6\x69\x1a\x9f\xbf\x22\x18\x6c\xd1\x57\x19\
+\x52\x1c\x3b\x50\x1d\x7a\x04\x95\xb1\x65\xd5\x4f\x90\x1e\xa1\xa3\
+\x35\xc3\xe7\xe6\x94\x21\xa9\xb0\x20\xa9\x00\xc9\x71\x22\x13\x0e\
+\x7e\x9a\x1f\x35\x72\x09\x97\x60\x8b\x0c\x1d\xf2\xd2\xd0\x8b\xd9\
+\xb7\x79\xdd\x6d\x9b\x76\x9f\xa1\x7d\xde\xb7\xf6\xf4\x91\x38\x67\
+\xc5\x94\x00\x32\xde\x93\x31\x71\x53\xaa\x47\xf2\x4f\xe3\xec\x43\
+\xde\x57\xe0\xe8\xbe\x42\x8a\xb9\xd0\x82\x41\xc4\x38\x26\x94\xde\
+\x05\xc0\xbf\x3c\x47\x36\xcf\x90\x7f\x03\x8b\x39\x12\x53\x29\x29\
+\x05\x9a\x62\x29\x38\x85\x88\x62\x2d\x95\x54\xc0\x19\xa6\x6c\x36\
+\x37\x20\x04\x56\xa9\x4a\x83\x83\x14\x38\x49\x99\x0a\x14\x33\x30\
+\xe7\xfa\x02\x32\x09\x9c\x01\xae\xb0\xd2\x42\x6e\x02\x22\x08\x4e\
+\x94\x4a\x42\x64\xf7\xc2\x94\x14\x53\x6a\xde\xdc\x84\xdc\x27\x87\
+\x59\xdd\x44\x31\x03\x3e\xca\xdd\x7a\xa5\xbf\xa1\x71\xab\xee\x32\
+\xf4\x41\x6f\xc7\x1b\xc5\xae\x2e\x71\xf9\x8a\xa5\x0d\x42\x53\xac\
+\x29\x49\x97\x42\xdd\xbe\x22\x9c\x2d\x84\x6a\xcc\x09\xd5\xb3\xd0\
+\x8b\xb9\x14\xea\x1d\x82\x50\x4f\x11\x84\x4e\x51\x02\x22\xb1\xa4\
+\x89\x0c\x24\x17\x76\x1f\xe3\x3c\x2c\xaa\x7c\x81\x43\xd2\x7e\xf2\
+\x5a\xc5\xbc\x6e\x75\x53\x1b\x04\x5d\xdf\x36\x4f\xc6\xad\x22\x39\
+\x5f\x13\x10\xb9\x2e\x34\x8f\xf9\x21\x43\x6d\xf3\xb3\x2e\xfe\x80\
+\x7f\x34\xb6\x5e\xe3\x7b\xdb\x9b\x76\x67\xdd\xe0\x4e\x03\x82\x09\
+\xd7\x72\xfe\xe6\x5b\x99\xbb\x7c\x38\x65\xaf\x5f\xa7\xf5\x0a\xbe\
+\xe1\x1e\xf4\x0a\xdf\x5c\x09\x5f\x68\x35\xc9\x30\x4b\xf4\xe2\x4c\
+\x51\x0c\x8b\x84\xcf\x67\x8a\x37\x17\xad\x36\x39\x84\x6a\x79\x8a\
+\xf5\x46\xf9\x6f\x96\xf1\xf2\x70\xbf\xc8\x9b\xdf\xf9\x80\xe2\xe1\
+\
+\x00\x00\x01\x69\
+\x3c\
+\x73\x76\x67\x20\x78\x6d\x6c\x6e\x73\x3d\x22\x68\x74\x74\x70\x3a\
+\x2f\x2f\x77\x77\x77\x2e\x77\x33\x2e\x6f\x72\x67\x2f\x32\x30\x30\
+\x30\x2f\x73\x76\x67\x22\x20\x77\x69\x64\x74\x68\x3d\x22\x35\x31\
+\x32\x70\x78\x22\x20\x68\x65\x69\x67\x68\x74\x3d\x22\x35\x31\x32\
+\x70\x78\x22\x20\x76\x69\x65\x77\x42\x6f\x78\x3d\x22\x30\x20\x30\
+\x20\x35\x31\x32\x20\x35\x31\x32\x22\x3e\x3c\x67\x20\x74\x72\x61\
+\x6e\x73\x66\x6f\x72\x6d\x3d\x27\x6d\x61\x74\x72\x69\x78\x28\x32\
+\x34\x20\x30\x20\x30\x20\x32\x34\x20\x30\x20\x30\x29\x27\x3e\x3c\
+\x70\x61\x74\x68\x20\x64\x3d\x22\x4d\x34\x2e\x33\x34\x20\x31\x35\
+\x2e\x36\x36\x41\x37\x2e\x39\x37\x20\x37\x2e\x39\x37\x20\x30\x20\
+\x30\x20\x30\x20\x39\x20\x31\x37\x2e\x39\x34\x56\x31\x30\x48\x35\
+\x56\x38\x68\x34\x56\x35\x2e\x38\x33\x61\x33\x20\x33\x20\x30\x20\
+\x31\x20\x31\x20\x32\x20\x30\x56\x38\x68\x34\x76\x32\x68\x2d\x34\
+\x76\x37\x2e\x39\x34\x61\x37\x2e\x39\x37\x20\x37\x2e\x39\x37\x20\
+\x30\x20\x30\x20\x30\x20\x34\x2e\x36\x36\x2d\x32\x2e\x32\x38\x6c\
+\x2d\x31\x2e\x34\x32\x2d\x31\x2e\x34\x32\x68\x35\x2e\x36\x36\x6c\
+\x2d\x32\x2e\x38\x33\x20\x32\x2e\x38\x33\x61\x31\x30\x20\x31\x30\
+\x20\x30\x20\x30\x20\x31\x2d\x31\x34\x2e\x31\x34\x20\x30\x4c\x2e\
+\x31\x20\x31\x34\x2e\x32\x34\x68\x35\x2e\x36\x36\x6c\x2d\x31\x2e\
+\x34\x32\x20\x31\x2e\x34\x32\x7a\x4d\x31\x30\x20\x34\x61\x31\x20\
+\x31\x20\x30\x20\x31\x20\x30\x20\x30\x2d\x32\x20\x31\x20\x31\x20\
+\x30\x20\x30\x20\x30\x20\x30\x20\x32\x7a\x22\x2f\x3e\x3c\x2f\x67\
+\x3e\x3c\x2f\x73\x76\x67\x3e\x0a\
+\x00\x00\x04\x3d\
+\x3c\
+\x3f\x78\x6d\x6c\x20\x76\x65\x72\x73\x69\x6f\x6e\x3d\x27\x31\x2e\
+\x30\x27\x20\x65\x6e\x63\x6f\x64\x69\x6e\x67\x3d\x27\x55\x54\x46\
+\x2d\x38\x27\x3f\x3e\x0a\x3c\x21\x2d\x2d\x20\x54\x68\x69\x73\x20\
+\x66\x69\x6c\x65\x20\x77\x61\x73\x20\x67\x65\x6e\x65\x72\x61\x74\
+\x65\x64\x20\x62\x79\x20\x64\x76\x69\x73\x76\x67\x6d\x20\x32\x2e\
+\x38\x20\x2d\x2d\x3e\x0a\x3c\x73\x76\x67\x20\x76\x65\x72\x73\x69\
+\x6f\x6e\x3d\x27\x31\x2e\x31\x27\x20\x78\x6d\x6c\x6e\x73\x3d\x27\
+\x68\x74\x74\x70\x3a\x2f\x2f\x77\x77\x77\x2e\x77\x33\x2e\x6f\x72\
+\x67\x2f\x32\x30\x30\x30\x2f\x73\x76\x67\x27\x20\x78\x6d\x6c\x6e\
+\x73\x3a\x78\x6c\x69\x6e\x6b\x3d\x27\x68\x74\x74\x70\x3a\x2f\x2f\
+\x77\x77\x77\x2e\x77\x33\x2e\x6f\x72\x67\x2f\x31\x39\x39\x39\x2f\
+\x78\x6c\x69\x6e\x6b\x27\x20\x77\x69\x64\x74\x68\x3d\x27\x36\x33\
+\x2e\x39\x39\x39\x36\x70\x74\x27\x20\x68\x65\x69\x67\x68\x74\x3d\
+\x27\x36\x33\x2e\x39\x39\x39\x37\x70\x74\x27\x20\x76\x69\x65\x77\
+\x42\x6f\x78\x3d\x27\x35\x36\x2e\x34\x30\x39\x34\x20\x35\x33\x2e\
+\x38\x35\x38\x33\x20\x36\x33\x2e\x39\x39\x39\x36\x20\x36\x33\x2e\
+\x39\x39\x39\x37\x27\x3e\x0a\x3c\x67\x20\x69\x64\x3d\x27\x70\x61\
+\x67\x65\x31\x27\x3e\x0a\x3c\x67\x20\x74\x72\x61\x6e\x73\x66\x6f\
+\x72\x6d\x3d\x27\x6d\x61\x74\x72\x69\x78\x28\x30\x2e\x39\x39\x36\
+\x32\x36\x34\x20\x30\x20\x30\x20\x30\x2e\x39\x39\x36\x32\x36\x34\
+\x20\x35\x38\x2e\x34\x36\x36\x39\x20\x31\x31\x37\x2e\x38\x35\x38\
+\x29\x27\x3e\x0a\x3c\x70\x61\x74\x68\x20\x64\x3d\x27\x4d\x20\x33\
+\x2e\x39\x35\x37\x33\x35\x20\x2d\x33\x32\x2e\x31\x32\x4c\x20\x31\
+\x31\x2e\x39\x30\x33\x36\x20\x2d\x35\x31\x2e\x33\x30\x33\x39\x4c\
+\x20\x35\x36\x2e\x31\x35\x32\x33\x20\x2d\x34\x32\x2e\x35\x30\x32\
+\x32\x4c\x20\x34\x30\x2e\x36\x37\x39\x34\x20\x2d\x32\x32\x2e\x35\
+\x32\x38\x31\x27\x20\x66\x69\x6c\x6c\x3d\x27\x6e\x6f\x6e\x65\x27\
+\x20\x73\x74\x72\x6f\x6b\x65\x3d\x27\x23\x30\x30\x30\x30\x30\x30\
+\x27\x20\x73\x74\x72\x6f\x6b\x65\x2d\x6c\x69\x6e\x65\x63\x61\x70\
+\x3d\x27\x72\x6f\x75\x6e\x64\x27\x20\x73\x74\x72\x6f\x6b\x65\x2d\
+\x6c\x69\x6e\x65\x6a\x6f\x69\x6e\x3d\x27\x72\x6f\x75\x6e\x64\x27\
+\x20\x73\x74\x72\x6f\x6b\x65\x2d\x6d\x69\x74\x65\x72\x6c\x69\x6d\
+\x69\x74\x3d\x27\x31\x30\x2e\x30\x33\x37\x35\x27\x20\x73\x74\x72\
+\x6f\x6b\x65\x2d\x77\x69\x64\x74\x68\x3d\x27\x32\x2e\x35\x30\x39\
+\x33\x37\x27\x2f\x3e\x0a\x3c\x2f\x67\x3e\x0a\x3c\x67\x20\x74\x72\
+\x61\x6e\x73\x66\x6f\x72\x6d\x3d\x27\x6d\x61\x74\x72\x69\x78\x28\
+\x30\x2e\x39\x39\x36\x32\x36\x34\x20\x30\x20\x30\x20\x30\x2e\x39\
+\x39\x36\x32\x36\x34\x20\x35\x38\x2e\x34\x36\x36\x39\x20\x31\x31\
+\x37\x2e\x38\x35\x38\x29\x27\x3e\x0a\x3c\x63\x69\x72\x63\x6c\x65\
+\x20\x63\x78\x3d\x27\x33\x2e\x39\x35\x37\x33\x35\x27\x20\x63\x79\
+\x3d\x27\x2d\x33\x32\x2e\x31\x32\x27\x20\x66\x69\x6c\x6c\x3d\x27\
+\x23\x30\x30\x30\x30\x30\x30\x27\x20\x72\x3d\x27\x36\x2e\x30\x32\
+\x32\x35\x27\x2f\x3e\x0a\x3c\x2f\x67\x3e\x0a\x3c\x67\x20\x74\x72\
+\x61\x6e\x73\x66\x6f\x72\x6d\x3d\x27\x6d\x61\x74\x72\x69\x78\x28\
+\x30\x2e\x39\x39\x36\x32\x36\x34\x20\x30\x20\x30\x20\x30\x2e\x39\
+\x39\x36\x32\x36\x34\x20\x35\x38\x2e\x34\x36\x36\x39\x20\x31\x31\
+\x37\x2e\x38\x35\x38\x29\x27\x3e\x0a\x3c\x63\x69\x72\x63\x6c\x65\
+\x20\x63\x78\x3d\x27\x31\x31\x2e\x39\x30\x33\x36\x27\x20\x63\x79\
+\x3d\x27\x2d\x35\x31\x2e\x33\x30\x33\x39\x27\x20\x66\x69\x6c\x6c\
+\x3d\x27\x23\x30\x30\x30\x30\x30\x30\x27\x20\x72\x3d\x27\x36\x2e\
+\x30\x32\x32\x35\x27\x2f\x3e\x0a\x3c\x2f\x67\x3e\x0a\x3c\x67\x20\
+\x74\x72\x61\x6e\x73\x66\x6f\x72\x6d\x3d\x27\x6d\x61\x74\x72\x69\
+\x78\x28\x30\x2e\x39\x39\x36\x32\x36\x34\x20\x30\x20\x30\x20\x30\
+\x2e\x39\x39\x36\x32\x36\x34\x20\x35\x38\x2e\x34\x36\x36\x39\x20\
+\x31\x31\x37\x2e\x38\x35\x38\x29\x27\x3e\x0a\x3c\x63\x69\x72\x63\
+\x6c\x65\x20\x63\x78\x3d\x27\x35\x36\x2e\x31\x35\x32\x33\x27\x20\
+\x63\x79\x3d\x27\x2d\x34\x32\x2e\x35\x30\x32\x32\x27\x20\x66\x69\
+\x6c\x6c\x3d\x27\x23\x30\x30\x30\x30\x30\x30\x27\x20\x72\x3d\x27\
+\x36\x2e\x30\x32\x32\x35\x27\x2f\x3e\x0a\x3c\x2f\x67\x3e\x0a\x3c\
+\x67\x20\x74\x72\x61\x6e\x73\x66\x6f\x72\x6d\x3d\x27\x6d\x61\x74\
+\x72\x69\x78\x28\x30\x2e\x39\x39\x36\x32\x36\x34\x20\x30\x20\x30\
+\x20\x30\x2e\x39\x39\x36\x32\x36\x34\x20\x35\x38\x2e\x34\x36\x36\
+\x39\x20\x31\x31\x37\x2e\x38\x35\x38\x29\x27\x3e\x0a\x3c\x63\x69\
+\x72\x63\x6c\x65\x20\x63\x78\x3d\x27\x34\x30\x2e\x36\x37\x39\x34\
+\x27\x20\x63\x79\x3d\x27\x2d\x32\x32\x2e\x35\x32\x38\x31\x27\x20\
+\x66\x69\x6c\x6c\x3d\x27\x23\x30\x30\x30\x30\x30\x30\x27\x20\x72\
+\x3d\x27\x36\x2e\x30\x32\x32\x35\x27\x2f\x3e\x0a\x3c\x2f\x67\x3e\
+\x0a\x3c\x2f\x67\x3e\x0a\x3c\x2f\x73\x76\x67\x3e\
+\x00\x00\x03\x6c\
\x3c\
\x3f\x78\x6d\x6c\x20\x76\x65\x72\x73\x69\x6f\x6e\x3d\x22\x31\x2e\
\x30\x22\x20\x65\x6e\x63\x6f\x64\x69\x6e\x67\x3d\x22\x75\x74\x66\
@@ -2331,52 +2193,190 @@ qt_resource_data = b"\
\x3d\x22\x6e\x65\x77\x20\x30\x20\x30\x20\x35\x31\x32\x20\x35\x31\
\x32\x22\x20\x78\x6d\x6c\x3a\x73\x70\x61\x63\x65\x3d\x22\x70\x72\
\x65\x73\x65\x72\x76\x65\x22\x3e\x0d\x0a\x3c\x67\x3e\x0d\x0a\x09\
-\x3c\x70\x61\x74\x68\x20\x64\x3d\x22\x4d\x32\x35\x36\x2c\x33\x38\
-\x38\x63\x2d\x37\x32\x2e\x35\x39\x37\x2c\x30\x2d\x31\x33\x32\x2d\
-\x35\x39\x2e\x34\x30\x35\x2d\x31\x33\x32\x2d\x31\x33\x32\x63\x30\
-\x2d\x37\x32\x2e\x36\x30\x31\x2c\x35\x39\x2e\x34\x30\x33\x2d\x31\
-\x33\x32\x2c\x31\x33\x32\x2d\x31\x33\x32\x63\x33\x36\x2e\x33\x2c\
-\x30\x2c\x36\x39\x2e\x32\x39\x39\x2c\x31\x35\x2e\x34\x2c\x39\x32\
-\x2e\x34\x30\x36\x2c\x33\x39\x2e\x36\x30\x31\x4c\x32\x37\x38\x2c\
-\x32\x33\x34\x68\x31\x35\x34\x56\x38\x30\x0d\x0a\x09\x09\x6c\x2d\
-\x35\x31\x2e\x36\x39\x38\x2c\x35\x31\x2e\x37\x30\x32\x43\x33\x34\
-\x38\x2e\x34\x30\x36\x2c\x39\x39\x2e\x37\x39\x38\x2c\x33\x30\x34\
-\x2e\x34\x30\x36\x2c\x38\x30\x2c\x32\x35\x36\x2c\x38\x30\x63\x2d\
-\x39\x36\x2e\x37\x39\x37\x2c\x30\x2d\x31\x37\x36\x2c\x37\x39\x2e\
-\x32\x30\x33\x2d\x31\x37\x36\x2c\x31\x37\x36\x73\x37\x38\x2e\x30\
-\x39\x34\x2c\x31\x37\x36\x2c\x31\x37\x36\x2c\x31\x37\x36\x0d\x0a\
-\x09\x09\x63\x38\x31\x2e\x30\x34\x35\x2c\x30\x2c\x31\x34\x38\x2e\
-\x32\x38\x37\x2d\x35\x34\x2e\x31\x33\x34\x2c\x31\x36\x39\x2e\x34\
-\x30\x31\x2d\x31\x32\x38\x48\x33\x37\x38\x2e\x38\x35\x43\x33\x36\
-\x30\x2e\x31\x30\x35\x2c\x33\x35\x33\x2e\x35\x36\x31\x2c\x33\x31\
-\x31\x2e\x37\x31\x32\x2c\x33\x38\x38\x2c\x32\x35\x36\x2c\x33\x38\
-\x38\x7a\x22\x2f\x3e\x0d\x0a\x3c\x2f\x67\x3e\x0d\x0a\x3c\x2f\x73\
+\x0d\x0a\x09\x09\x3c\x72\x65\x63\x74\x20\x78\x3d\x22\x31\x37\x38\
+\x2e\x38\x34\x36\x22\x20\x79\x3d\x22\x39\x32\x2e\x30\x38\x37\x22\
+\x20\x74\x72\x61\x6e\x73\x66\x6f\x72\x6d\x3d\x22\x6d\x61\x74\x72\
+\x69\x78\x28\x2d\x30\x2e\x37\x30\x37\x31\x20\x2d\x30\x2e\x37\x30\
+\x37\x31\x20\x30\x2e\x37\x30\x37\x31\x20\x2d\x30\x2e\x37\x30\x37\
+\x31\x20\x32\x32\x34\x2e\x33\x34\x37\x36\x20\x36\x33\x31\x2e\x31\
+\x34\x39\x38\x29\x22\x20\x77\x69\x64\x74\x68\x3d\x22\x31\x32\x38\
+\x2e\x30\x38\x35\x22\x20\x68\x65\x69\x67\x68\x74\x3d\x22\x33\x35\
+\x34\x2e\x30\x34\x39\x22\x2f\x3e\x0d\x0a\x09\x3c\x70\x61\x74\x68\
+\x20\x64\x3d\x22\x4d\x34\x37\x31\x2e\x37\x32\x33\x2c\x38\x38\x2e\
+\x33\x39\x33\x6c\x2d\x34\x38\x2e\x31\x31\x35\x2d\x34\x38\x2e\x31\
+\x31\x34\x63\x2d\x31\x31\x2e\x37\x32\x33\x2d\x31\x31\x2e\x37\x32\
+\x34\x2d\x33\x31\x2e\x35\x35\x38\x2d\x31\x30\x2e\x38\x39\x36\x2d\
+\x34\x34\x2e\x33\x30\x34\x2c\x31\x2e\x38\x35\x6c\x2d\x34\x35\x2e\
+\x32\x30\x32\x2c\x34\x35\x2e\x32\x30\x33\x6c\x39\x30\x2e\x35\x36\
+\x39\x2c\x39\x30\x2e\x35\x36\x38\x6c\x34\x35\x2e\x32\x30\x32\x2d\
+\x34\x35\x2e\x32\x30\x32\x0d\x0a\x09\x09\x43\x34\x38\x32\x2e\x36\
+\x31\x36\x2c\x31\x31\x39\x2e\x39\x35\x32\x2c\x34\x38\x33\x2e\x34\
+\x34\x35\x2c\x31\x30\x30\x2e\x31\x31\x36\x2c\x34\x37\x31\x2e\x37\
+\x32\x33\x2c\x38\x38\x2e\x33\x39\x33\x7a\x22\x2f\x3e\x0d\x0a\x09\
+\x3c\x70\x6f\x6c\x79\x67\x6f\x6e\x20\x70\x6f\x69\x6e\x74\x73\x3d\
+\x22\x36\x34\x2e\x30\x32\x31\x2c\x33\x36\x33\x2e\x32\x35\x32\x20\
+\x33\x32\x2c\x34\x38\x30\x20\x31\x34\x38\x2e\x37\x33\x37\x2c\x34\
+\x34\x37\x2e\x39\x37\x39\x20\x09\x22\x2f\x3e\x0d\x0a\x3c\x2f\x67\
+\x3e\x0d\x0a\x3c\x2f\x73\x76\x67\x3e\x0d\x0a\
+\x00\x00\x03\x36\
+\x3c\
+\x3f\x78\x6d\x6c\x20\x76\x65\x72\x73\x69\x6f\x6e\x3d\x22\x31\x2e\
+\x30\x22\x20\x65\x6e\x63\x6f\x64\x69\x6e\x67\x3d\x22\x75\x74\x66\
+\x2d\x38\x22\x3f\x3e\x0d\x0a\x3c\x21\x2d\x2d\x20\x47\x65\x6e\x65\
+\x72\x61\x74\x6f\x72\x3a\x20\x41\x64\x6f\x62\x65\x20\x49\x6c\x6c\
+\x75\x73\x74\x72\x61\x74\x6f\x72\x20\x31\x36\x2e\x32\x2e\x31\x2c\
+\x20\x53\x56\x47\x20\x45\x78\x70\x6f\x72\x74\x20\x50\x6c\x75\x67\
+\x2d\x49\x6e\x20\x2e\x20\x53\x56\x47\x20\x56\x65\x72\x73\x69\x6f\
+\x6e\x3a\x20\x36\x2e\x30\x30\x20\x42\x75\x69\x6c\x64\x20\x30\x29\
+\x20\x20\x2d\x2d\x3e\x0d\x0a\x3c\x21\x44\x4f\x43\x54\x59\x50\x45\
+\x20\x73\x76\x67\x20\x50\x55\x42\x4c\x49\x43\x20\x22\x2d\x2f\x2f\
+\x57\x33\x43\x2f\x2f\x44\x54\x44\x20\x53\x56\x47\x20\x31\x2e\x31\
+\x2f\x2f\x45\x4e\x22\x20\x22\x68\x74\x74\x70\x3a\x2f\x2f\x77\x77\
+\x77\x2e\x77\x33\x2e\x6f\x72\x67\x2f\x47\x72\x61\x70\x68\x69\x63\
+\x73\x2f\x53\x56\x47\x2f\x31\x2e\x31\x2f\x44\x54\x44\x2f\x73\x76\
+\x67\x31\x31\x2e\x64\x74\x64\x22\x3e\x0d\x0a\x3c\x73\x76\x67\x20\
+\x76\x65\x72\x73\x69\x6f\x6e\x3d\x22\x31\x2e\x31\x22\x20\x69\x64\
+\x3d\x22\x4c\x61\x79\x65\x72\x5f\x31\x22\x20\x78\x6d\x6c\x6e\x73\
+\x3d\x22\x68\x74\x74\x70\x3a\x2f\x2f\x77\x77\x77\x2e\x77\x33\x2e\
+\x6f\x72\x67\x2f\x32\x30\x30\x30\x2f\x73\x76\x67\x22\x20\x78\x6d\
+\x6c\x6e\x73\x3a\x78\x6c\x69\x6e\x6b\x3d\x22\x68\x74\x74\x70\x3a\
+\x2f\x2f\x77\x77\x77\x2e\x77\x33\x2e\x6f\x72\x67\x2f\x31\x39\x39\
+\x39\x2f\x78\x6c\x69\x6e\x6b\x22\x20\x78\x3d\x22\x30\x70\x78\x22\
+\x20\x79\x3d\x22\x30\x70\x78\x22\x0d\x0a\x09\x20\x77\x69\x64\x74\
+\x68\x3d\x22\x35\x31\x32\x70\x78\x22\x20\x68\x65\x69\x67\x68\x74\
+\x3d\x22\x35\x31\x32\x70\x78\x22\x20\x76\x69\x65\x77\x42\x6f\x78\
+\x3d\x22\x30\x20\x30\x20\x35\x31\x32\x20\x35\x31\x32\x22\x20\x65\
+\x6e\x61\x62\x6c\x65\x2d\x62\x61\x63\x6b\x67\x72\x6f\x75\x6e\x64\
+\x3d\x22\x6e\x65\x77\x20\x30\x20\x30\x20\x35\x31\x32\x20\x35\x31\
+\x32\x22\x20\x78\x6d\x6c\x3a\x73\x70\x61\x63\x65\x3d\x22\x70\x72\
+\x65\x73\x65\x72\x76\x65\x22\x3e\x0d\x0a\x3c\x67\x3e\x0d\x0a\x09\
+\x3c\x70\x6f\x6c\x79\x67\x6f\x6e\x20\x70\x6f\x69\x6e\x74\x73\x3d\
+\x22\x33\x39\x36\x2e\x37\x39\x35\x2c\x33\x39\x36\x2e\x38\x20\x33\
+\x32\x30\x2c\x33\x39\x36\x2e\x38\x20\x33\x32\x30\x2c\x34\x34\x38\
+\x20\x34\x34\x38\x2c\x34\x34\x38\x20\x34\x34\x38\x2c\x33\x32\x30\
+\x20\x33\x39\x36\x2e\x37\x39\x35\x2c\x33\x32\x30\x20\x09\x22\x2f\
+\x3e\x0d\x0a\x09\x3c\x70\x6f\x6c\x79\x67\x6f\x6e\x20\x70\x6f\x69\
+\x6e\x74\x73\x3d\x22\x33\x39\x36\x2e\x38\x2c\x31\x31\x35\x2e\x32\
+\x30\x35\x20\x33\x39\x36\x2e\x38\x2c\x31\x39\x32\x20\x34\x34\x38\
+\x2c\x31\x39\x32\x20\x34\x34\x38\x2c\x36\x34\x20\x33\x32\x30\x2c\
+\x36\x34\x20\x33\x32\x30\x2c\x31\x31\x35\x2e\x32\x30\x35\x20\x09\
+\x22\x2f\x3e\x0d\x0a\x09\x3c\x70\x6f\x6c\x79\x67\x6f\x6e\x20\x70\
+\x6f\x69\x6e\x74\x73\x3d\x22\x31\x31\x35\x2e\x32\x30\x35\x2c\x31\
+\x31\x35\x2e\x32\x20\x31\x39\x32\x2c\x31\x31\x35\x2e\x32\x20\x31\
+\x39\x32\x2c\x36\x34\x20\x36\x34\x2c\x36\x34\x20\x36\x34\x2c\x31\
+\x39\x32\x20\x31\x31\x35\x2e\x32\x30\x35\x2c\x31\x39\x32\x20\x09\
+\x22\x2f\x3e\x0d\x0a\x09\x3c\x70\x6f\x6c\x79\x67\x6f\x6e\x20\x70\
+\x6f\x69\x6e\x74\x73\x3d\x22\x31\x31\x35\x2e\x32\x2c\x33\x39\x36\
+\x2e\x37\x39\x35\x20\x31\x31\x35\x2e\x32\x2c\x33\x32\x30\x20\x36\
+\x34\x2c\x33\x32\x30\x20\x36\x34\x2c\x34\x34\x38\x20\x31\x39\x32\
+\x2c\x34\x34\x38\x20\x31\x39\x32\x2c\x33\x39\x36\x2e\x37\x39\x35\
+\x20\x09\x22\x2f\x3e\x0d\x0a\x3c\x2f\x67\x3e\x0d\x0a\x3c\x2f\x73\
\x76\x67\x3e\x0d\x0a\
-\x00\x00\x01\x69\
+\x00\x00\x05\x27\
+\x3c\
+\x3f\x78\x6d\x6c\x20\x76\x65\x72\x73\x69\x6f\x6e\x3d\x22\x31\x2e\
+\x30\x22\x20\x65\x6e\x63\x6f\x64\x69\x6e\x67\x3d\x22\x75\x74\x66\
+\x2d\x38\x22\x3f\x3e\x0d\x0a\x3c\x21\x2d\x2d\x20\x47\x65\x6e\x65\
+\x72\x61\x74\x6f\x72\x3a\x20\x41\x64\x6f\x62\x65\x20\x49\x6c\x6c\
+\x75\x73\x74\x72\x61\x74\x6f\x72\x20\x31\x36\x2e\x32\x2e\x31\x2c\
+\x20\x53\x56\x47\x20\x45\x78\x70\x6f\x72\x74\x20\x50\x6c\x75\x67\
+\x2d\x49\x6e\x20\x2e\x20\x53\x56\x47\x20\x56\x65\x72\x73\x69\x6f\
+\x6e\x3a\x20\x36\x2e\x30\x30\x20\x42\x75\x69\x6c\x64\x20\x30\x29\
+\x20\x20\x2d\x2d\x3e\x0d\x0a\x3c\x21\x44\x4f\x43\x54\x59\x50\x45\
+\x20\x73\x76\x67\x20\x50\x55\x42\x4c\x49\x43\x20\x22\x2d\x2f\x2f\
+\x57\x33\x43\x2f\x2f\x44\x54\x44\x20\x53\x56\x47\x20\x31\x2e\x31\
+\x2f\x2f\x45\x4e\x22\x20\x22\x68\x74\x74\x70\x3a\x2f\x2f\x77\x77\
+\x77\x2e\x77\x33\x2e\x6f\x72\x67\x2f\x47\x72\x61\x70\x68\x69\x63\
+\x73\x2f\x53\x56\x47\x2f\x31\x2e\x31\x2f\x44\x54\x44\x2f\x73\x76\
+\x67\x31\x31\x2e\x64\x74\x64\x22\x3e\x0d\x0a\x3c\x73\x76\x67\x20\
+\x76\x65\x72\x73\x69\x6f\x6e\x3d\x22\x31\x2e\x31\x22\x20\x69\x64\
+\x3d\x22\x4c\x61\x79\x65\x72\x5f\x31\x22\x20\x78\x6d\x6c\x6e\x73\
+\x3d\x22\x68\x74\x74\x70\x3a\x2f\x2f\x77\x77\x77\x2e\x77\x33\x2e\
+\x6f\x72\x67\x2f\x32\x30\x30\x30\x2f\x73\x76\x67\x22\x20\x78\x6d\
+\x6c\x6e\x73\x3a\x78\x6c\x69\x6e\x6b\x3d\x22\x68\x74\x74\x70\x3a\
+\x2f\x2f\x77\x77\x77\x2e\x77\x33\x2e\x6f\x72\x67\x2f\x31\x39\x39\
+\x39\x2f\x78\x6c\x69\x6e\x6b\x22\x20\x78\x3d\x22\x30\x70\x78\x22\
+\x20\x79\x3d\x22\x30\x70\x78\x22\x0d\x0a\x09\x20\x77\x69\x64\x74\
+\x68\x3d\x22\x35\x31\x32\x70\x78\x22\x20\x68\x65\x69\x67\x68\x74\
+\x3d\x22\x35\x31\x32\x70\x78\x22\x20\x76\x69\x65\x77\x42\x6f\x78\
+\x3d\x22\x30\x20\x30\x20\x35\x31\x32\x20\x35\x31\x32\x22\x20\x65\
+\x6e\x61\x62\x6c\x65\x2d\x62\x61\x63\x6b\x67\x72\x6f\x75\x6e\x64\
+\x3d\x22\x6e\x65\x77\x20\x30\x20\x30\x20\x35\x31\x32\x20\x35\x31\
+\x32\x22\x20\x78\x6d\x6c\x3a\x73\x70\x61\x63\x65\x3d\x22\x70\x72\
+\x65\x73\x65\x72\x76\x65\x22\x3e\x0d\x0a\x3c\x67\x20\x69\x64\x3d\
+\x22\x49\x63\x6f\x6e\x5f\x31\x32\x5f\x22\x3e\x0d\x0a\x09\x3c\x67\
+\x3e\x0d\x0a\x09\x09\x3c\x70\x61\x74\x68\x20\x64\x3d\x22\x4d\x32\
+\x35\x36\x2c\x36\x34\x43\x31\x35\x30\x2e\x34\x30\x31\x2c\x36\x34\
+\x2c\x36\x34\x2c\x31\x35\x30\x2e\x34\x30\x31\x2c\x36\x34\x2c\x32\
+\x35\x36\x63\x30\x2c\x31\x30\x35\x2e\x36\x30\x34\x2c\x38\x36\x2e\
+\x34\x30\x31\x2c\x31\x39\x32\x2c\x31\x39\x32\x2c\x31\x39\x32\x63\
+\x31\x38\x2e\x31\x33\x36\x2c\x30\x2c\x33\x32\x2d\x31\x33\x2e\x38\
+\x36\x34\x2c\x33\x32\x2d\x33\x32\x0d\x0a\x09\x09\x09\x63\x30\x2d\
+\x38\x2e\x35\x33\x31\x2d\x33\x2e\x31\x39\x38\x2d\x31\x36\x2d\x38\
+\x2e\x35\x33\x31\x2d\x32\x31\x2e\x33\x33\x33\x63\x2d\x35\x2e\x33\
+\x33\x33\x2d\x35\x2e\x33\x33\x34\x2d\x38\x2e\x35\x33\x31\x2d\x31\
+\x32\x2e\x38\x30\x33\x2d\x38\x2e\x35\x33\x31\x2d\x32\x31\x2e\x33\
+\x33\x34\x63\x30\x2d\x31\x38\x2e\x31\x33\x35\x2c\x31\x33\x2e\x38\
+\x36\x34\x2d\x33\x32\x2c\x33\x32\x2d\x33\x32\x68\x33\x38\x2e\x33\
+\x39\x36\x0d\x0a\x09\x09\x09\x63\x35\x38\x2e\x36\x36\x37\x2c\x30\
+\x2c\x31\x30\x36\x2e\x36\x36\x37\x2d\x34\x38\x2c\x31\x30\x36\x2e\
+\x36\x36\x37\x2d\x31\x30\x36\x2e\x36\x36\x36\x43\x34\x34\x38\x2c\
+\x31\x34\x30\x2e\x38\x30\x32\x2c\x33\x36\x31\x2e\x36\x30\x34\x2c\
+\x36\x34\x2c\x32\x35\x36\x2c\x36\x34\x7a\x20\x4d\x31\x33\x38\x2e\
+\x36\x36\x37\x2c\x32\x35\x36\x63\x2d\x31\x38\x2e\x31\x33\x36\x2c\
+\x30\x2d\x33\x32\x2d\x31\x33\x2e\x38\x36\x34\x2d\x33\x32\x2d\x33\
+\x32\x73\x31\x33\x2e\x38\x36\x34\x2d\x33\x32\x2c\x33\x32\x2d\x33\
+\x32\x0d\x0a\x09\x09\x09\x63\x31\x38\x2e\x31\x33\x35\x2c\x30\x2c\
+\x33\x32\x2c\x31\x33\x2e\x38\x36\x34\x2c\x33\x32\x2c\x33\x32\x53\
+\x31\x35\x36\x2e\x38\x30\x32\x2c\x32\x35\x36\x2c\x31\x33\x38\x2e\
+\x36\x36\x37\x2c\x32\x35\x36\x7a\x20\x4d\x32\x30\x32\x2e\x36\x36\
+\x37\x2c\x31\x37\x30\x2e\x36\x36\x37\x63\x2d\x31\x38\x2e\x31\x33\
+\x36\x2c\x30\x2d\x33\x32\x2d\x31\x33\x2e\x38\x36\x35\x2d\x33\x32\
+\x2d\x33\x32\x63\x30\x2d\x31\x38\x2e\x31\x33\x36\x2c\x31\x33\x2e\
+\x38\x36\x34\x2d\x33\x32\x2c\x33\x32\x2d\x33\x32\x0d\x0a\x09\x09\
+\x09\x63\x31\x38\x2e\x31\x33\x35\x2c\x30\x2c\x33\x32\x2c\x31\x33\
+\x2e\x38\x36\x34\x2c\x33\x32\x2c\x33\x32\x43\x32\x33\x34\x2e\x36\
+\x36\x37\x2c\x31\x35\x36\x2e\x38\x30\x32\x2c\x32\x32\x30\x2e\x38\
+\x30\x32\x2c\x31\x37\x30\x2e\x36\x36\x37\x2c\x32\x30\x32\x2e\x36\
+\x36\x37\x2c\x31\x37\x30\x2e\x36\x36\x37\x7a\x20\x4d\x33\x30\x39\
+\x2e\x33\x33\x33\x2c\x31\x37\x30\x2e\x36\x36\x37\x63\x2d\x31\x38\
+\x2e\x31\x33\x35\x2c\x30\x2d\x33\x32\x2d\x31\x33\x2e\x38\x36\x35\
+\x2d\x33\x32\x2d\x33\x32\x0d\x0a\x09\x09\x09\x63\x30\x2d\x31\x38\
+\x2e\x31\x33\x36\x2c\x31\x33\x2e\x38\x36\x35\x2d\x33\x32\x2c\x33\
+\x32\x2d\x33\x32\x63\x31\x38\x2e\x31\x33\x36\x2c\x30\x2c\x33\x32\
+\x2c\x31\x33\x2e\x38\x36\x34\x2c\x33\x32\x2c\x33\x32\x43\x33\x34\
+\x31\x2e\x33\x33\x33\x2c\x31\x35\x36\x2e\x38\x30\x32\x2c\x33\x32\
+\x37\x2e\x34\x36\x39\x2c\x31\x37\x30\x2e\x36\x36\x37\x2c\x33\x30\
+\x39\x2e\x33\x33\x33\x2c\x31\x37\x30\x2e\x36\x36\x37\x7a\x20\x4d\
+\x33\x37\x33\x2e\x33\x33\x33\x2c\x32\x35\x36\x0d\x0a\x09\x09\x09\
+\x63\x2d\x31\x38\x2e\x31\x33\x35\x2c\x30\x2d\x33\x32\x2d\x31\x33\
+\x2e\x38\x36\x34\x2d\x33\x32\x2d\x33\x32\x73\x31\x33\x2e\x38\x36\
+\x35\x2d\x33\x32\x2c\x33\x32\x2d\x33\x32\x63\x31\x38\x2e\x31\x33\
+\x36\x2c\x30\x2c\x33\x32\x2c\x31\x33\x2e\x38\x36\x34\x2c\x33\x32\
+\x2c\x33\x32\x53\x33\x39\x31\x2e\x34\x36\x39\x2c\x32\x35\x36\x2c\
+\x33\x37\x33\x2e\x33\x33\x33\x2c\x32\x35\x36\x7a\x22\x2f\x3e\x0d\
+\x0a\x09\x3c\x2f\x67\x3e\x0d\x0a\x3c\x2f\x67\x3e\x0d\x0a\x3c\x2f\
+\x73\x76\x67\x3e\x0d\x0a\
+\x00\x00\x01\x1c\
\x3c\
\x73\x76\x67\x20\x78\x6d\x6c\x6e\x73\x3d\x22\x68\x74\x74\x70\x3a\
\x2f\x2f\x77\x77\x77\x2e\x77\x33\x2e\x6f\x72\x67\x2f\x32\x30\x30\
\x30\x2f\x73\x76\x67\x22\x20\x77\x69\x64\x74\x68\x3d\x22\x35\x31\
\x32\x70\x78\x22\x20\x68\x65\x69\x67\x68\x74\x3d\x22\x35\x31\x32\
-\x70\x78\x22\x20\x76\x69\x65\x77\x42\x6f\x78\x3d\x22\x30\x20\x30\
-\x20\x35\x31\x32\x20\x35\x31\x32\x22\x3e\x3c\x67\x20\x74\x72\x61\
-\x6e\x73\x66\x6f\x72\x6d\x3d\x27\x6d\x61\x74\x72\x69\x78\x28\x32\
-\x34\x20\x30\x20\x30\x20\x32\x34\x20\x30\x20\x30\x29\x27\x3e\x3c\
-\x70\x61\x74\x68\x20\x64\x3d\x22\x4d\x34\x2e\x33\x34\x20\x31\x35\
-\x2e\x36\x36\x41\x37\x2e\x39\x37\x20\x37\x2e\x39\x37\x20\x30\x20\
-\x30\x20\x30\x20\x39\x20\x31\x37\x2e\x39\x34\x56\x31\x30\x48\x35\
-\x56\x38\x68\x34\x56\x35\x2e\x38\x33\x61\x33\x20\x33\x20\x30\x20\
-\x31\x20\x31\x20\x32\x20\x30\x56\x38\x68\x34\x76\x32\x68\x2d\x34\
-\x76\x37\x2e\x39\x34\x61\x37\x2e\x39\x37\x20\x37\x2e\x39\x37\x20\
-\x30\x20\x30\x20\x30\x20\x34\x2e\x36\x36\x2d\x32\x2e\x32\x38\x6c\
-\x2d\x31\x2e\x34\x32\x2d\x31\x2e\x34\x32\x68\x35\x2e\x36\x36\x6c\
-\x2d\x32\x2e\x38\x33\x20\x32\x2e\x38\x33\x61\x31\x30\x20\x31\x30\
-\x20\x30\x20\x30\x20\x31\x2d\x31\x34\x2e\x31\x34\x20\x30\x4c\x2e\
-\x31\x20\x31\x34\x2e\x32\x34\x68\x35\x2e\x36\x36\x6c\x2d\x31\x2e\
-\x34\x32\x20\x31\x2e\x34\x32\x7a\x4d\x31\x30\x20\x34\x61\x31\x20\
-\x31\x20\x30\x20\x31\x20\x30\x20\x30\x2d\x32\x20\x31\x20\x31\x20\
-\x30\x20\x30\x20\x30\x20\x30\x20\x32\x7a\x22\x2f\x3e\x3c\x2f\x67\
-\x3e\x3c\x2f\x73\x76\x67\x3e\x0a\
+\x70\x78\x22\x0a\x20\x20\x20\x20\x20\x76\x69\x65\x77\x42\x6f\x78\
+\x3d\x22\x30\x20\x30\x20\x35\x31\x32\x20\x35\x31\x32\x22\x3e\x0a\
+\x3c\x67\x20\x74\x72\x61\x6e\x73\x66\x6f\x72\x6d\x3d\x27\x6d\x61\
+\x74\x72\x69\x78\x28\x34\x38\x20\x30\x20\x30\x20\x34\x38\x20\x34\
+\x38\x20\x34\x38\x29\x27\x3e\x0a\x20\x20\x3c\x70\x61\x74\x68\x20\
+\x64\x3d\x22\x4d\x30\x20\x30\x76\x32\x68\x2e\x35\x63\x30\x2d\x2e\
+\x35\x35\x2e\x34\x35\x2d\x31\x20\x31\x2d\x31\x68\x31\x2e\x35\x76\
+\x35\x2e\x35\x63\x30\x20\x2e\x32\x38\x2d\x2e\x32\x32\x2e\x35\x2d\
+\x2e\x35\x2e\x35\x68\x2d\x2e\x35\x76\x31\x68\x34\x76\x2d\x31\x68\
+\x2d\x2e\x35\x63\x2d\x2e\x32\x38\x20\x30\x2d\x2e\x35\x2d\x2e\x32\
+\x32\x2d\x2e\x35\x2d\x2e\x35\x76\x2d\x35\x2e\x35\x68\x31\x2e\x35\
+\x63\x2e\x35\x35\x20\x30\x20\x31\x20\x2e\x34\x35\x20\x31\x20\x31\
+\x68\x2e\x35\x76\x2d\x32\x68\x2d\x38\x7a\x22\x20\x2f\x3e\x0a\x3c\
+\x2f\x67\x3e\x0a\x3c\x2f\x73\x76\x67\x3e\x0a\
"
qt_resource_name = b"\
@@ -2384,11 +2384,40 @@ qt_resource_name = b"\
\x00\x6f\xa6\x53\
\x00\x69\
\x00\x63\x00\x6f\x00\x6e\x00\x73\
-\x00\x15\
-\x0f\xc4\x59\xe7\
-\x00\x73\
-\x00\x75\x00\x62\x00\x64\x00\x69\x00\x72\x00\x65\x00\x63\x00\x74\x00\x6f\x00\x72\x00\x79\x00\x2d\x00\x6c\x00\x65\x00\x66\x00\x74\
-\x00\x2e\x00\x73\x00\x76\x00\x67\
+\x00\x0f\
+\x04\xf2\xa7\x87\
+\x00\x63\
+\x00\x6c\x00\x6f\x00\x73\x00\x65\x00\x64\x00\x63\x00\x75\x00\x72\x00\x76\x00\x65\x00\x2e\x00\x73\x00\x76\x00\x67\
+\x00\x07\
+\x0c\xf8\x5a\x07\
+\x00\x65\
+\x00\x79\x00\x65\x00\x2e\x00\x73\x00\x76\x00\x67\
+\x00\x0a\
+\x01\xca\x6d\x87\
+\x00\x62\
+\x00\x75\x00\x63\x00\x6b\x00\x65\x00\x74\x00\x2e\x00\x73\x00\x76\x00\x67\
+\x00\x11\
+\x0c\xdb\x38\xe7\
+\x00\x61\
+\x00\x6e\x00\x64\x00\x72\x00\x6f\x00\x69\x00\x64\x00\x2d\x00\x63\x00\x6c\x00\x6f\x00\x73\x00\x65\x00\x2e\x00\x73\x00\x76\x00\x67\
+\
+\x00\x0d\
+\x05\x20\xce\x87\
+\x00\x6f\
+\x00\x70\x00\x65\x00\x6e\x00\x63\x00\x75\x00\x72\x00\x76\x00\x65\x00\x2e\x00\x73\x00\x76\x00\x67\
+\x00\x10\
+\x08\x89\xfa\x47\
+\x00\x63\
+\x00\x65\x00\x6e\x00\x74\x00\x65\x00\x72\x00\x6f\x00\x72\x00\x69\x00\x67\x00\x69\x00\x6e\x00\x2e\x00\x73\x00\x76\x00\x67\
+\x00\x11\
+\x0c\xa7\xc7\x47\
+\x00\x63\
+\x00\x6c\x00\x6f\x00\x73\x00\x65\x00\x64\x00\x70\x00\x6f\x00\x6c\x00\x79\x00\x67\x00\x6f\x00\x6e\x00\x2e\x00\x73\x00\x76\x00\x67\
+\
+\x00\x10\
+\x0c\x57\x65\x47\
+\x00\x61\
+\x00\x72\x00\x72\x00\x6f\x00\x77\x00\x2d\x00\x72\x00\x65\x00\x73\x00\x69\x00\x7a\x00\x65\x00\x2e\x00\x73\x00\x76\x00\x67\
\x00\x12\
\x0c\x5e\xd4\xa7\
\x00\x61\
@@ -2399,220 +2428,191 @@ qt_resource_name = b"\
\x00\x61\
\x00\x6e\x00\x64\x00\x72\x00\x6f\x00\x69\x00\x64\x00\x2d\x00\x64\x00\x65\x00\x6c\x00\x65\x00\x74\x00\x65\x00\x2e\x00\x73\x00\x76\
\x00\x67\
-\x00\x19\
-\x0a\x43\x45\xc7\
-\x00\x61\
-\x00\x6e\x00\x64\x00\x72\x00\x6f\x00\x69\x00\x64\x00\x2d\x00\x61\x00\x72\x00\x72\x00\x6f\x00\x77\x00\x2d\x00\x66\x00\x6f\x00\x72\
-\x00\x77\x00\x61\x00\x72\x00\x64\x00\x2e\x00\x73\x00\x76\x00\x67\
-\x00\x08\
-\x0b\x07\x57\xa7\
-\x00\x65\
-\x00\x64\x00\x69\x00\x74\x00\x2e\x00\x73\x00\x76\x00\x67\
-\x00\x19\
-\x0f\xef\x7b\xe7\
-\x00\x61\
-\x00\x6e\x00\x64\x00\x72\x00\x6f\x00\x69\x00\x64\x00\x2d\x00\x63\x00\x6f\x00\x6c\x00\x6f\x00\x72\x00\x2d\x00\x70\x00\x61\x00\x6c\
-\x00\x65\x00\x74\x00\x74\x00\x65\x00\x2e\x00\x73\x00\x76\x00\x67\
\x00\x10\
\x08\xe4\xaf\x47\
\x00\x61\
\x00\x6e\x00\x64\x00\x72\x00\x6f\x00\x69\x00\x64\x00\x2d\x00\x64\x00\x6f\x00\x6e\x00\x65\x00\x2e\x00\x73\x00\x76\x00\x67\
-\x00\x11\
-\x01\x60\xbc\x47\
-\x00\x73\
-\x00\x6f\x00\x63\x00\x69\x00\x61\x00\x6c\x00\x2d\x00\x70\x00\x79\x00\x74\x00\x68\x00\x6f\x00\x6e\x00\x2e\x00\x73\x00\x76\x00\x67\
-\
-\x00\x07\
-\x0c\xf8\x5a\x07\
-\x00\x65\
-\x00\x79\x00\x65\x00\x2e\x00\x73\x00\x76\x00\x67\
-\x00\x0a\
-\x01\xca\x6d\x87\
-\x00\x62\
-\x00\x75\x00\x63\x00\x6b\x00\x65\x00\x74\x00\x2e\x00\x73\x00\x76\x00\x67\
-\x00\x10\
-\x04\xa9\x22\xc7\
-\x00\x66\
-\x00\x69\x00\x6c\x00\x6c\x00\x65\x00\x64\x00\x62\x00\x75\x00\x63\x00\x6b\x00\x65\x00\x74\x00\x2e\x00\x73\x00\x76\x00\x67\
-\x00\x1d\
-\x06\xec\xf4\xc7\
-\x00\x63\
-\x00\x68\x00\x65\x00\x76\x00\x72\x00\x6f\x00\x6e\x00\x2d\x00\x77\x00\x69\x00\x74\x00\x68\x00\x2d\x00\x63\x00\x69\x00\x72\x00\x63\
-\x00\x6c\x00\x65\x00\x2d\x00\x72\x00\x69\x00\x67\x00\x68\x00\x74\x00\x2e\x00\x73\x00\x76\x00\x67\
+\x00\x08\
+\x08\xf7\x57\x07\
+\x00\x67\
+\x00\x72\x00\x69\x00\x64\x00\x2e\x00\x73\x00\x76\x00\x67\
\x00\x1c\
-\x04\x66\xe1\x67\
-\x00\x63\
-\x00\x68\x00\x65\x00\x76\x00\x72\x00\x6f\x00\x6e\x00\x2d\x00\x77\x00\x69\x00\x74\x00\x68\x00\x2d\x00\x63\x00\x69\x00\x72\x00\x63\
-\x00\x6c\x00\x65\x00\x2d\x00\x6c\x00\x65\x00\x66\x00\x74\x00\x2e\x00\x73\x00\x76\x00\x67\
-\x00\x0e\
-\x05\xed\x38\x67\
-\x00\x61\
-\x00\x72\x00\x72\x00\x6f\x00\x77\x00\x2d\x00\x6d\x00\x6f\x00\x76\x00\x65\x00\x2e\x00\x73\x00\x76\x00\x67\
-\x00\x10\
-\x06\xe3\xaf\xe7\
+\x08\x8a\x79\x07\
\x00\x61\
-\x00\x6e\x00\x64\x00\x72\x00\x6f\x00\x69\x00\x64\x00\x2d\x00\x68\x00\x61\x00\x6e\x00\x64\x00\x2e\x00\x73\x00\x76\x00\x67\
-\x00\x14\
-\x0f\xa5\xe0\xc7\
-\x00\x6d\
-\x00\x61\x00\x67\x00\x6e\x00\x69\x00\x66\x00\x79\x00\x69\x00\x6e\x00\x67\x00\x2d\x00\x67\x00\x6c\x00\x61\x00\x73\x00\x73\x00\x2e\
-\x00\x73\x00\x76\x00\x67\
-\x00\x0d\
-\x05\x20\xce\x87\
-\x00\x6f\
-\x00\x70\x00\x65\x00\x6e\x00\x63\x00\x75\x00\x72\x00\x76\x00\x65\x00\x2e\x00\x73\x00\x76\x00\x67\
-\x00\x16\
-\x01\xfb\x76\x27\
+\x00\x6e\x00\x64\x00\x72\x00\x6f\x00\x69\x00\x64\x00\x2d\x00\x72\x00\x61\x00\x64\x00\x69\x00\x6f\x00\x2d\x00\x62\x00\x75\x00\x74\
+\x00\x74\x00\x6f\x00\x6e\x00\x2d\x00\x6f\x00\x66\x00\x66\x00\x2e\x00\x73\x00\x76\x00\x67\
+\x00\x19\
+\x0a\x43\x45\xc7\
\x00\x61\
-\x00\x6e\x00\x64\x00\x72\x00\x6f\x00\x69\x00\x64\x00\x2d\x00\x61\x00\x72\x00\x72\x00\x6f\x00\x77\x00\x2d\x00\x62\x00\x61\x00\x63\
-\x00\x6b\x00\x2e\x00\x73\x00\x76\x00\x67\
+\x00\x6e\x00\x64\x00\x72\x00\x6f\x00\x69\x00\x64\x00\x2d\x00\x61\x00\x72\x00\x72\x00\x6f\x00\x77\x00\x2d\x00\x66\x00\x6f\x00\x72\
+\x00\x77\x00\x61\x00\x72\x00\x64\x00\x2e\x00\x73\x00\x76\x00\x67\
\x00\x0e\
\x0f\xcb\xd5\xc7\
\x00\x70\
\x00\x6c\x00\x75\x00\x73\x00\x2d\x00\x72\x00\x6f\x00\x75\x00\x6e\x00\x64\x00\x2e\x00\x73\x00\x76\x00\x67\
-\x00\x11\
-\x0c\xdb\x38\xe7\
+\x00\x13\
+\x03\x24\x75\x47\
\x00\x61\
-\x00\x6e\x00\x64\x00\x72\x00\x6f\x00\x69\x00\x64\x00\x2d\x00\x63\x00\x6c\x00\x6f\x00\x73\x00\x65\x00\x2e\x00\x73\x00\x76\x00\x67\
-\
+\x00\x6e\x00\x64\x00\x72\x00\x6f\x00\x69\x00\x64\x00\x2d\x00\x72\x00\x65\x00\x66\x00\x72\x00\x65\x00\x73\x00\x68\x00\x2e\x00\x73\
+\x00\x76\x00\x67\
\x00\x0a\
\x0a\x2d\x1b\xc7\
\x00\x63\
\x00\x69\x00\x72\x00\x63\x00\x6c\x00\x65\x00\x2e\x00\x73\x00\x76\x00\x67\
-\x00\x12\
-\x04\xb2\x21\x47\
-\x00\x61\
-\x00\x6e\x00\x64\x00\x72\x00\x6f\x00\x69\x00\x64\x00\x2d\x00\x65\x00\x78\x00\x70\x00\x61\x00\x6e\x00\x64\x00\x2e\x00\x73\x00\x76\
-\x00\x67\
-\x00\x0f\
-\x07\x0e\xc4\x87\
-\x00\x6f\
-\x00\x70\x00\x65\x00\x6e\x00\x70\x00\x6f\x00\x6c\x00\x79\x00\x67\x00\x6f\x00\x6e\x00\x2e\x00\x73\x00\x76\x00\x67\
-\x00\x17\
-\x07\x87\x48\x27\
-\x00\x61\
-\x00\x6e\x00\x64\x00\x72\x00\x6f\x00\x69\x00\x64\x00\x2d\x00\x66\x00\x6f\x00\x6c\x00\x64\x00\x65\x00\x72\x00\x2d\x00\x6f\x00\x70\
-\x00\x65\x00\x6e\x00\x2e\x00\x73\x00\x76\x00\x67\
-\x00\x0f\
-\x04\xf2\xa7\x87\
-\x00\x63\
-\x00\x6c\x00\x6f\x00\x73\x00\x65\x00\x64\x00\x63\x00\x75\x00\x72\x00\x76\x00\x65\x00\x2e\x00\x73\x00\x76\x00\x67\
-\x00\x12\
-\x08\x79\x97\xe7\
-\x00\x61\
-\x00\x6e\x00\x64\x00\x72\x00\x6f\x00\x69\x00\x64\x00\x2d\x00\x63\x00\x61\x00\x6d\x00\x65\x00\x72\x00\x61\x00\x2e\x00\x73\x00\x76\
-\x00\x67\
-\x00\x10\
-\x0c\x57\x65\x47\
+\x00\x16\
+\x01\xfb\x76\x27\
\x00\x61\
-\x00\x72\x00\x72\x00\x6f\x00\x77\x00\x2d\x00\x72\x00\x65\x00\x73\x00\x69\x00\x7a\x00\x65\x00\x2e\x00\x73\x00\x76\x00\x67\
-\x00\x11\
-\x0c\xa7\xc7\x47\
+\x00\x6e\x00\x64\x00\x72\x00\x6f\x00\x69\x00\x64\x00\x2d\x00\x61\x00\x72\x00\x72\x00\x6f\x00\x77\x00\x2d\x00\x62\x00\x61\x00\x63\
+\x00\x6b\x00\x2e\x00\x73\x00\x76\x00\x67\
+\x00\x09\
+\x0b\x9e\x89\x07\
\x00\x63\
-\x00\x6c\x00\x6f\x00\x73\x00\x65\x00\x64\x00\x70\x00\x6f\x00\x6c\x00\x79\x00\x67\x00\x6f\x00\x6e\x00\x2e\x00\x73\x00\x76\x00\x67\
-\
+\x00\x68\x00\x65\x00\x63\x00\x6b\x00\x2e\x00\x73\x00\x76\x00\x67\
+\x00\x15\
+\x0f\xc4\x59\xe7\
+\x00\x73\
+\x00\x75\x00\x62\x00\x64\x00\x69\x00\x72\x00\x65\x00\x63\x00\x74\x00\x6f\x00\x72\x00\x79\x00\x2d\x00\x6c\x00\x65\x00\x66\x00\x74\
+\x00\x2e\x00\x73\x00\x76\x00\x67\
+\x00\x14\
+\x0f\xa5\xe0\xc7\
+\x00\x6d\
+\x00\x61\x00\x67\x00\x6e\x00\x69\x00\x66\x00\x79\x00\x69\x00\x6e\x00\x67\x00\x2d\x00\x67\x00\x6c\x00\x61\x00\x73\x00\x73\x00\x2e\
+\x00\x73\x00\x76\x00\x67\
\x00\x17\
\x06\xc6\x02\xa7\
\x00\x74\
\x00\x72\x00\x69\x00\x61\x00\x6e\x00\x67\x00\x6c\x00\x65\x00\x2d\x00\x73\x00\x74\x00\x72\x00\x6f\x00\x6b\x00\x65\x00\x64\x00\x2d\
\x00\x31\x00\x35\x00\x2e\x00\x73\x00\x76\x00\x67\
-\x00\x09\
-\x0b\x9e\x89\x07\
-\x00\x63\
-\x00\x68\x00\x65\x00\x63\x00\x6b\x00\x2e\x00\x73\x00\x76\x00\x67\
\x00\x08\
\x05\xa8\x57\x87\
\x00\x63\
\x00\x6f\x00\x64\x00\x65\x00\x2e\x00\x73\x00\x76\x00\x67\
-\x00\x1b\
-\x0e\xb5\x68\xe7\
+\x00\x10\
+\x06\xe3\xaf\xe7\
\x00\x61\
-\x00\x6e\x00\x64\x00\x72\x00\x6f\x00\x69\x00\x64\x00\x2d\x00\x72\x00\x61\x00\x64\x00\x69\x00\x6f\x00\x2d\x00\x62\x00\x75\x00\x74\
-\x00\x74\x00\x6f\x00\x6e\x00\x2d\x00\x6f\x00\x6e\x00\x2e\x00\x73\x00\x76\x00\x67\
-\x00\x08\
-\x0c\xf7\x55\x87\
-\x00\x74\
-\x00\x65\x00\x78\x00\x74\x00\x2e\x00\x73\x00\x76\x00\x67\
-\x00\x0a\
-\x0a\xc8\x62\x67\
-\x00\x63\
-\x00\x65\x00\x6e\x00\x74\x00\x65\x00\x72\x00\x2e\x00\x73\x00\x76\x00\x67\
+\x00\x6e\x00\x64\x00\x72\x00\x6f\x00\x69\x00\x64\x00\x2d\x00\x68\x00\x61\x00\x6e\x00\x64\x00\x2e\x00\x73\x00\x76\x00\x67\
\x00\x08\
\x08\xc8\x55\xe7\
\x00\x73\
\x00\x61\x00\x76\x00\x65\x00\x2e\x00\x73\x00\x76\x00\x67\
-\x00\x1c\
-\x08\x8a\x79\x07\
+\x00\x0e\
+\x05\xed\x38\x67\
+\x00\x61\
+\x00\x72\x00\x72\x00\x6f\x00\x77\x00\x2d\x00\x6d\x00\x6f\x00\x76\x00\x65\x00\x2e\x00\x73\x00\x76\x00\x67\
+\x00\x11\
+\x01\x60\xbc\x47\
+\x00\x73\
+\x00\x6f\x00\x63\x00\x69\x00\x61\x00\x6c\x00\x2d\x00\x70\x00\x79\x00\x74\x00\x68\x00\x6f\x00\x6e\x00\x2e\x00\x73\x00\x76\x00\x67\
+\
+\x00\x1d\
+\x06\xec\xf4\xc7\
+\x00\x63\
+\x00\x68\x00\x65\x00\x76\x00\x72\x00\x6f\x00\x6e\x00\x2d\x00\x77\x00\x69\x00\x74\x00\x68\x00\x2d\x00\x63\x00\x69\x00\x72\x00\x63\
+\x00\x6c\x00\x65\x00\x2d\x00\x72\x00\x69\x00\x67\x00\x68\x00\x74\x00\x2e\x00\x73\x00\x76\x00\x67\
+\x00\x1b\
+\x0e\xb5\x68\xe7\
\x00\x61\
\x00\x6e\x00\x64\x00\x72\x00\x6f\x00\x69\x00\x64\x00\x2d\x00\x72\x00\x61\x00\x64\x00\x69\x00\x6f\x00\x2d\x00\x62\x00\x75\x00\x74\
-\x00\x74\x00\x6f\x00\x6e\x00\x2d\x00\x6f\x00\x66\x00\x66\x00\x2e\x00\x73\x00\x76\x00\x67\
-\x00\x08\
-\x08\xf7\x57\x07\
+\x00\x74\x00\x6f\x00\x6e\x00\x2d\x00\x6f\x00\x6e\x00\x2e\x00\x73\x00\x76\x00\x67\
+\x00\x12\
+\x08\x79\x97\xe7\
+\x00\x61\
+\x00\x6e\x00\x64\x00\x72\x00\x6f\x00\x69\x00\x64\x00\x2d\x00\x63\x00\x61\x00\x6d\x00\x65\x00\x72\x00\x61\x00\x2e\x00\x73\x00\x76\
\x00\x67\
-\x00\x72\x00\x69\x00\x64\x00\x2e\x00\x73\x00\x76\x00\x67\
-\x00\x10\
-\x08\x89\xfa\x47\
+\x00\x1c\
+\x04\x66\xe1\x67\
\x00\x63\
-\x00\x65\x00\x6e\x00\x74\x00\x65\x00\x72\x00\x6f\x00\x72\x00\x69\x00\x67\x00\x69\x00\x6e\x00\x2e\x00\x73\x00\x76\x00\x67\
+\x00\x68\x00\x65\x00\x76\x00\x72\x00\x6f\x00\x6e\x00\x2d\x00\x77\x00\x69\x00\x74\x00\x68\x00\x2d\x00\x63\x00\x69\x00\x72\x00\x63\
+\x00\x6c\x00\x65\x00\x2d\x00\x6c\x00\x65\x00\x66\x00\x74\x00\x2e\x00\x73\x00\x76\x00\x67\
+\x00\x17\
+\x07\x87\x48\x27\
+\x00\x61\
+\x00\x6e\x00\x64\x00\x72\x00\x6f\x00\x69\x00\x64\x00\x2d\x00\x66\x00\x6f\x00\x6c\x00\x64\x00\x65\x00\x72\x00\x2d\x00\x6f\x00\x70\
+\x00\x65\x00\x6e\x00\x2e\x00\x73\x00\x76\x00\x67\
+\x00\x0a\
+\x0a\xc8\x62\x67\
+\x00\x63\
+\x00\x65\x00\x6e\x00\x74\x00\x65\x00\x72\x00\x2e\x00\x73\x00\x76\x00\x67\
\x00\x0f\
\x09\x76\x60\xc7\
\x00\x63\
\x00\x6c\x00\x6f\x00\x73\x00\x65\x00\x2d\x00\x72\x00\x6f\x00\x75\x00\x6e\x00\x64\x00\x2e\x00\x73\x00\x76\x00\x67\
-\x00\x13\
-\x03\x24\x75\x47\
-\x00\x61\
-\x00\x6e\x00\x64\x00\x72\x00\x6f\x00\x69\x00\x64\x00\x2d\x00\x72\x00\x65\x00\x66\x00\x72\x00\x65\x00\x73\x00\x68\x00\x2e\x00\x73\
-\x00\x76\x00\x67\
+\x00\x10\
+\x04\xa9\x22\xc7\
+\x00\x66\
+\x00\x69\x00\x6c\x00\x6c\x00\x65\x00\x64\x00\x62\x00\x75\x00\x63\x00\x6b\x00\x65\x00\x74\x00\x2e\x00\x73\x00\x76\x00\x67\
\x00\x0a\
\x0f\x68\x53\xe7\
\x00\x61\
\x00\x6e\x00\x63\x00\x68\x00\x6f\x00\x72\x00\x2e\x00\x73\x00\x76\x00\x67\
+\x00\x0f\
+\x07\x0e\xc4\x87\
+\x00\x6f\
+\x00\x70\x00\x65\x00\x6e\x00\x70\x00\x6f\x00\x6c\x00\x79\x00\x67\x00\x6f\x00\x6e\x00\x2e\x00\x73\x00\x76\x00\x67\
+\x00\x08\
+\x0b\x07\x57\xa7\
+\x00\x65\
+\x00\x64\x00\x69\x00\x74\x00\x2e\x00\x73\x00\x76\x00\x67\
+\x00\x12\
+\x04\xb2\x21\x47\
+\x00\x61\
+\x00\x6e\x00\x64\x00\x72\x00\x6f\x00\x69\x00\x64\x00\x2d\x00\x65\x00\x78\x00\x70\x00\x61\x00\x6e\x00\x64\x00\x2e\x00\x73\x00\x76\
+\x00\x67\
+\x00\x19\
+\x0f\xef\x7b\xe7\
+\x00\x61\
+\x00\x6e\x00\x64\x00\x72\x00\x6f\x00\x69\x00\x64\x00\x2d\x00\x63\x00\x6f\x00\x6c\x00\x6f\x00\x72\x00\x2d\x00\x70\x00\x61\x00\x6c\
+\x00\x65\x00\x74\x00\x74\x00\x65\x00\x2e\x00\x73\x00\x76\x00\x67\
+\x00\x08\
+\x0c\xf7\x55\x87\
+\x00\x74\
+\x00\x65\x00\x78\x00\x74\x00\x2e\x00\x73\x00\x76\x00\x67\
"
qt_resource_struct_v1 = b"\
\x00\x00\x00\x00\x00\x02\x00\x00\x00\x01\x00\x00\x00\x01\
\x00\x00\x00\x00\x00\x02\x00\x00\x00\x29\x00\x00\x00\x02\
-\x00\x00\x01\x40\x00\x00\x00\x00\x00\x01\x00\x00\x15\x17\
-\x00\x00\x01\x7c\x00\x00\x00\x00\x00\x01\x00\x00\x20\x8a\
-\x00\x00\x02\xd0\x00\x00\x00\x00\x00\x01\x00\x00\x41\x73\
-\x00\x00\x06\x06\x00\x00\x00\x00\x00\x01\x00\x00\x89\xb1\
-\x00\x00\x01\xfc\x00\x00\x00\x00\x00\x01\x00\x00\x2c\x71\
-\x00\x00\x01\x96\x00\x01\x00\x00\x00\x01\x00\x00\x26\x62\
-\x00\x00\x03\x66\x00\x00\x00\x00\x00\x01\x00\x00\x4c\xa0\
-\x00\x00\x03\xe8\x00\x00\x00\x00\x00\x01\x00\x00\x57\x71\
-\x00\x00\x02\xb0\x00\x00\x00\x00\x00\x01\x00\x00\x3c\xcd\
-\x00\x00\x04\xd0\x00\x00\x00\x00\x00\x01\x00\x00\x6e\x23\
-\x00\x00\x02\x3a\x00\x00\x00\x00\x00\x01\x00\x00\x30\x6a\
-\x00\x00\x04\x84\x00\x00\x00\x00\x00\x01\x00\x00\x66\x45\
-\x00\x00\x02\x5c\x00\x00\x00\x00\x00\x01\x00\x00\x33\x37\
-\x00\x00\x01\xbc\x00\x00\x00\x00\x00\x01\x00\x00\x28\x87\
-\x00\x00\x03\x90\x00\x00\x00\x00\x00\x01\x00\x00\x4f\xda\
-\x00\x00\x03\xb4\x00\x00\x00\x00\x00\x01\x00\x00\x54\x1b\
-\x00\x00\x00\x6a\x00\x00\x00\x00\x00\x01\x00\x00\x04\xd8\
-\x00\x00\x04\x0c\x00\x00\x00\x00\x00\x01\x00\x00\x5c\x4a\
-\x00\x00\x05\xbc\x00\x00\x00\x00\x00\x01\x00\x00\x82\x47\
-\x00\x00\x05\x68\x00\x00\x00\x00\x00\x01\x00\x00\x7d\x66\
-\x00\x00\x05\x52\x00\x00\x00\x00\x00\x01\x00\x00\x7a\xc1\
-\x00\x00\x01\x1a\x00\x00\x00\x00\x00\x01\x00\x00\x12\x9a\
-\x00\x00\x05\xa6\x00\x01\x00\x00\x00\x01\x00\x00\x80\x66\
-\x00\x00\x05\xe2\x00\x00\x00\x00\x00\x01\x00\x00\x86\x67\
-\x00\x00\x03\x4c\x00\x00\x00\x00\x00\x01\x00\x00\x49\xaa\
-\x00\x00\x00\x94\x00\x00\x00\x00\x00\x01\x00\x00\x07\x7e\
-\x00\x00\x05\x38\x00\x00\x00\x00\x00\x01\x00\x00\x77\x41\
-\x00\x00\x00\xcc\x00\x00\x00\x00\x00\x01\x00\x00\x09\xff\
-\x00\x00\x04\xb8\x00\x00\x00\x00\x00\x01\x00\x00\x6b\x13\
-\x00\x00\x04\x36\x00\x00\x00\x00\x00\x01\x00\x00\x5f\x70\
-\x00\x00\x00\x40\x00\x00\x00\x00\x00\x01\x00\x00\x00\x70\
-\x00\x00\x04\x5c\x00\x00\x00\x00\x00\x01\x00\x00\x61\xf3\
-\x00\x00\x03\x24\x00\x00\x00\x00\x00\x01\x00\x00\x46\xef\
-\x00\x00\x05\x22\x00\x00\x00\x00\x00\x01\x00\x00\x76\x21\
-\x00\x00\x01\x68\x00\x00\x00\x00\x00\x01\x00\x00\x1c\x9b\
-\x00\x00\x04\xe6\x00\x00\x00\x00\x00\x01\x00\x00\x72\xd1\
-\x00\x00\x06\x32\x00\x00\x00\x00\x00\x01\x00\x00\x8c\xdb\
-\x00\x00\x02\x82\x00\x00\x00\x00\x00\x01\x00\x00\x39\x05\
+\x00\x00\x03\xdc\x00\x00\x00\x00\x00\x01\x00\x00\x59\x83\
+\x00\x00\x00\x48\x00\x00\x00\x00\x00\x01\x00\x00\x08\xc8\
+\x00\x00\x02\x8c\x00\x00\x00\x00\x00\x01\x00\x00\x3a\xfe\
+\x00\x00\x02\x46\x00\x00\x00\x00\x00\x01\x00\x00\x34\xde\
+\x00\x00\x04\xaa\x00\x00\x00\x00\x00\x01\x00\x00\x6b\x67\
+\x00\x00\x05\x5a\x00\x01\x00\x00\x00\x01\x00\x00\x79\x80\
+\x00\x00\x05\xd4\x00\x00\x00\x00\x00\x01\x00\x00\x84\xc3\
\x00\x00\x00\x10\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\
-\x00\x00\x03\x02\x00\x00\x00\x00\x00\x01\x00\x00\x43\xf4\
-\x00\x00\x00\xe2\x00\x00\x00\x00\x00\x01\x00\x00\x0d\x6f\
+\x00\x00\x00\x8a\x00\x00\x00\x00\x00\x01\x00\x00\x11\x5b\
+\x00\x00\x03\x68\x00\x00\x00\x00\x00\x01\x00\x00\x49\x95\
+\x00\x00\x03\xba\x00\x00\x00\x00\x00\x01\x00\x00\x56\xb6\
+\x00\x00\x03\x34\x00\x00\x00\x00\x00\x01\x00\x00\x44\xc7\
+\x00\x00\x03\x7e\x00\x00\x00\x00\x00\x01\x00\x00\x4e\x43\
+\x00\x00\x04\x04\x00\x00\x00\x00\x00\x01\x00\x00\x61\x07\
+\x00\x00\x05\x9a\x00\x00\x00\x00\x00\x01\x00\x00\x7d\x12\
+\x00\x00\x04\xe8\x00\x00\x00\x00\x00\x01\x00\x00\x6f\x60\
+\x00\x00\x01\x48\x00\x00\x00\x00\x00\x01\x00\x00\x25\x5e\
+\x00\x00\x04\x80\x00\x00\x00\x00\x00\x01\x00\x00\x68\x41\
+\x00\x00\x00\xaa\x00\x00\x00\x00\x00\x01\x00\x00\x16\x01\
+\x00\x00\x01\xae\x00\x00\x00\x00\x00\x01\x00\x00\x2c\x62\
+\x00\x00\x03\xa4\x00\x00\x00\x00\x00\x01\x00\x00\x54\x11\
+\x00\x00\x01\x72\x00\x00\x00\x00\x00\x01\x00\x00\x28\x04\
+\x00\x00\x01\x98\x00\x01\x00\x00\x00\x01\x00\x00\x2a\x81\
+\x00\x00\x05\x36\x00\x00\x00\x00\x00\x01\x00\x00\x76\x36\
+\x00\x00\x02\x72\x00\x00\x00\x00\x00\x01\x00\x00\x38\x08\
+\x00\x00\x01\xec\x00\x00\x00\x00\x00\x01\x00\x00\x2f\x62\
+\x00\x00\x05\x1c\x00\x00\x00\x00\x00\x01\x00\x00\x72\xb6\
+\x00\x00\x05\xbe\x00\x00\x00\x00\x00\x01\x00\x00\x81\x53\
+\x00\x00\x02\xbe\x00\x00\x00\x00\x00\x01\x00\x00\x3d\x7f\
+\x00\x00\x00\xf8\x00\x00\x00\x00\x00\x01\x00\x00\x1e\x73\
+\x00\x00\x01\x1e\x00\x00\x00\x00\x00\x01\x00\x00\x20\xf6\
+\x00\x00\x00\xd0\x00\x00\x00\x00\x00\x01\x00\x00\x1a\x21\
+\x00\x00\x00\x62\x00\x00\x00\x00\x00\x01\x00\x00\x0e\xa0\
+\x00\x00\x06\x36\x00\x00\x00\x00\x00\x01\x00\x00\x8d\x28\
+\x00\x00\x00\x34\x00\x00\x00\x00\x00\x01\x00\x00\x04\xd9\
+\x00\x00\x04\x44\x00\x00\x00\x00\x00\x01\x00\x00\x64\xf1\
+\x00\x00\x05\x80\x00\x00\x00\x00\x00\x01\x00\x00\x7b\xa5\
+\x00\x00\x03\x06\x00\x00\x00\x00\x00\x01\x00\x00\x40\xff\
+\x00\x00\x02\xd6\x00\x00\x00\x00\x00\x01\x00\x00\x40\x8f\
+\x00\x00\x02\x24\x00\x00\x00\x00\x00\x01\x00\x00\x31\xe3\
+\x00\x00\x05\xfe\x00\x00\x00\x00\x00\x01\x00\x00\x87\xfd\
"
qt_resource_struct_v2 = b"\
@@ -2620,88 +2620,88 @@ qt_resource_struct_v2 = b"\
\x00\x00\x00\x00\x00\x00\x00\x00\
\x00\x00\x00\x00\x00\x02\x00\x00\x00\x29\x00\x00\x00\x02\
\x00\x00\x00\x00\x00\x00\x00\x00\
-\x00\x00\x01\x40\x00\x00\x00\x00\x00\x01\x00\x00\x15\x17\
-\x00\x00\x01\x6f\xa6\xde\xd7\x4a\
-\x00\x00\x01\x7c\x00\x00\x00\x00\x00\x01\x00\x00\x20\x8a\
-\x00\x00\x01\x6f\xa6\xde\xd7\x49\
-\x00\x00\x02\xd0\x00\x00\x00\x00\x00\x01\x00\x00\x41\x73\
-\x00\x00\x01\x6f\xa6\xde\xd7\x48\
-\x00\x00\x06\x06\x00\x00\x00\x00\x00\x01\x00\x00\x89\xb1\
-\x00\x00\x01\x6f\xa6\xde\xd7\x48\
-\x00\x00\x01\xfc\x00\x00\x00\x00\x00\x01\x00\x00\x2c\x71\
-\x00\x00\x01\x6f\xa6\xde\xd7\x49\
-\x00\x00\x01\x96\x00\x01\x00\x00\x00\x01\x00\x00\x26\x62\
-\x00\x00\x01\x6f\xa6\xde\xd7\x49\
-\x00\x00\x03\x66\x00\x00\x00\x00\x00\x01\x00\x00\x4c\xa0\
-\x00\x00\x01\x6f\xa6\xde\xd7\x48\
-\x00\x00\x03\xe8\x00\x00\x00\x00\x00\x01\x00\x00\x57\x71\
-\x00\x00\x01\x6f\xa6\xde\xd7\x49\
-\x00\x00\x02\xb0\x00\x00\x00\x00\x00\x01\x00\x00\x3c\xcd\
-\x00\x00\x01\x6f\xa6\xde\xd7\x49\
-\x00\x00\x04\xd0\x00\x00\x00\x00\x00\x01\x00\x00\x6e\x23\
-\x00\x00\x01\x6f\xa6\xde\xd7\x49\
-\x00\x00\x02\x3a\x00\x00\x00\x00\x00\x01\x00\x00\x30\x6a\
-\x00\x00\x01\x6f\xa6\xde\xd7\x49\
-\x00\x00\x04\x84\x00\x00\x00\x00\x00\x01\x00\x00\x66\x45\
-\x00\x00\x01\x6f\xa6\xde\xd7\x4a\
-\x00\x00\x02\x5c\x00\x00\x00\x00\x00\x01\x00\x00\x33\x37\
-\x00\x00\x01\x6f\xa6\xde\xd7\x48\
-\x00\x00\x01\xbc\x00\x00\x00\x00\x00\x01\x00\x00\x28\x87\
-\x00\x00\x01\x6f\xa6\xde\xd7\x49\
-\x00\x00\x03\x90\x00\x00\x00\x00\x00\x01\x00\x00\x4f\xda\
-\x00\x00\x01\x6f\xa6\xde\xd7\x49\
-\x00\x00\x03\xb4\x00\x00\x00\x00\x00\x01\x00\x00\x54\x1b\
-\x00\x00\x01\x6f\xa6\xde\xd7\x48\
-\x00\x00\x00\x6a\x00\x00\x00\x00\x00\x01\x00\x00\x04\xd8\
-\x00\x00\x01\x6f\xa6\xde\xd7\x48\
-\x00\x00\x04\x0c\x00\x00\x00\x00\x00\x01\x00\x00\x5c\x4a\
-\x00\x00\x01\x6f\xa6\xde\xd7\x48\
-\x00\x00\x05\xbc\x00\x00\x00\x00\x00\x01\x00\x00\x82\x47\
-\x00\x00\x01\x6f\xa6\xde\xd7\x49\
-\x00\x00\x05\x68\x00\x00\x00\x00\x00\x01\x00\x00\x7d\x66\
-\x00\x00\x01\x6f\xa6\xde\xd7\x48\
-\x00\x00\x05\x52\x00\x00\x00\x00\x00\x01\x00\x00\x7a\xc1\
-\x00\x00\x01\x6f\xa6\xde\xd7\x4a\
-\x00\x00\x01\x1a\x00\x00\x00\x00\x00\x01\x00\x00\x12\x9a\
-\x00\x00\x01\x6f\xa6\xde\xd7\x48\
-\x00\x00\x05\xa6\x00\x01\x00\x00\x00\x01\x00\x00\x80\x66\
-\x00\x00\x01\x6f\xa6\xde\xd7\x49\
-\x00\x00\x05\xe2\x00\x00\x00\x00\x00\x01\x00\x00\x86\x67\
-\x00\x00\x01\x6f\xa6\xde\xd7\x49\
-\x00\x00\x03\x4c\x00\x00\x00\x00\x00\x01\x00\x00\x49\xaa\
-\x00\x00\x01\x6f\xa6\xde\xd7\x49\
-\x00\x00\x00\x94\x00\x00\x00\x00\x00\x01\x00\x00\x07\x7e\
-\x00\x00\x01\x6f\xa6\xde\xd7\x48\
-\x00\x00\x05\x38\x00\x00\x00\x00\x00\x01\x00\x00\x77\x41\
-\x00\x00\x01\x6f\xa6\xde\xd7\x49\
-\x00\x00\x00\xcc\x00\x00\x00\x00\x00\x01\x00\x00\x09\xff\
-\x00\x00\x01\x6f\xa6\xde\xd7\x49\
-\x00\x00\x04\xb8\x00\x00\x00\x00\x00\x01\x00\x00\x6b\x13\
-\x00\x00\x01\x6f\xa6\xde\xd7\x49\
-\x00\x00\x04\x36\x00\x00\x00\x00\x00\x01\x00\x00\x5f\x70\
-\x00\x00\x01\x6f\xa6\xde\xd7\x49\
-\x00\x00\x00\x40\x00\x00\x00\x00\x00\x01\x00\x00\x00\x70\
-\x00\x00\x01\x6f\xa6\xde\xd7\x48\
-\x00\x00\x04\x5c\x00\x00\x00\x00\x00\x01\x00\x00\x61\xf3\
-\x00\x00\x01\x6f\xa6\xde\xd7\x49\
-\x00\x00\x03\x24\x00\x00\x00\x00\x00\x01\x00\x00\x46\xef\
-\x00\x00\x01\x6f\xa6\xde\xd7\x48\
-\x00\x00\x05\x22\x00\x00\x00\x00\x00\x01\x00\x00\x76\x21\
-\x00\x00\x01\x6f\xa6\xde\xd7\x4a\
-\x00\x00\x01\x68\x00\x00\x00\x00\x00\x01\x00\x00\x1c\x9b\
-\x00\x00\x01\x6f\xa6\xde\xd7\x49\
-\x00\x00\x04\xe6\x00\x00\x00\x00\x00\x01\x00\x00\x72\xd1\
-\x00\x00\x01\x6f\xa6\xde\xd7\x48\
-\x00\x00\x06\x32\x00\x00\x00\x00\x00\x01\x00\x00\x8c\xdb\
-\x00\x00\x01\x6f\xa6\xde\xd7\x48\
-\x00\x00\x02\x82\x00\x00\x00\x00\x00\x01\x00\x00\x39\x05\
-\x00\x00\x01\x6f\xa6\xde\xd7\x49\
+\x00\x00\x03\xdc\x00\x00\x00\x00\x00\x01\x00\x00\x59\x83\
+\x00\x00\x01\x70\x9e\xd3\x06\xe0\
+\x00\x00\x00\x48\x00\x00\x00\x00\x00\x01\x00\x00\x08\xc8\
+\x00\x00\x01\x70\x9e\xd3\x06\xdf\
+\x00\x00\x02\x8c\x00\x00\x00\x00\x00\x01\x00\x00\x3a\xfe\
+\x00\x00\x01\x70\x9e\xd3\x06\xdf\
+\x00\x00\x02\x46\x00\x00\x00\x00\x00\x01\x00\x00\x34\xde\
+\x00\x00\x01\x70\x9e\xd3\x06\xdf\
+\x00\x00\x04\xaa\x00\x00\x00\x00\x00\x01\x00\x00\x6b\x67\
+\x00\x00\x01\x70\x9e\xd3\x06\xe0\
+\x00\x00\x05\x5a\x00\x01\x00\x00\x00\x01\x00\x00\x79\x80\
+\x00\x00\x01\x70\x9e\xd3\x06\xe0\
+\x00\x00\x05\xd4\x00\x00\x00\x00\x00\x01\x00\x00\x84\xc3\
+\x00\x00\x01\x70\x9e\xd3\x06\xdf\
\x00\x00\x00\x10\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\
-\x00\x00\x01\x6f\xa6\xde\xd7\x4a\
-\x00\x00\x03\x02\x00\x00\x00\x00\x00\x01\x00\x00\x43\xf4\
-\x00\x00\x01\x6f\xa6\xde\xd7\x49\
-\x00\x00\x00\xe2\x00\x00\x00\x00\x00\x01\x00\x00\x0d\x6f\
-\x00\x00\x01\x6f\xa6\xde\xd7\x48\
+\x00\x00\x01\x70\x9e\xd3\x06\xe0\
+\x00\x00\x00\x8a\x00\x00\x00\x00\x00\x01\x00\x00\x11\x5b\
+\x00\x00\x01\x70\x9e\xd3\x06\xe0\
+\x00\x00\x03\x68\x00\x00\x00\x00\x00\x01\x00\x00\x49\x95\
+\x00\x00\x01\x70\x9e\xd3\x06\xe0\
+\x00\x00\x03\xba\x00\x00\x00\x00\x00\x01\x00\x00\x56\xb6\
+\x00\x00\x01\x70\x9e\xd3\x06\xdf\
+\x00\x00\x03\x34\x00\x00\x00\x00\x00\x01\x00\x00\x44\xc7\
+\x00\x00\x01\x70\x9e\xd3\x06\xe0\
+\x00\x00\x03\x7e\x00\x00\x00\x00\x00\x01\x00\x00\x4e\x43\
+\x00\x00\x01\x70\x9e\xd3\x06\xdf\
+\x00\x00\x04\x04\x00\x00\x00\x00\x00\x01\x00\x00\x61\x07\
+\x00\x00\x01\x70\x9e\xd3\x06\xe0\
+\x00\x00\x05\x9a\x00\x00\x00\x00\x00\x01\x00\x00\x7d\x12\
+\x00\x00\x01\x70\x9e\xd3\x06\xe0\
+\x00\x00\x04\xe8\x00\x00\x00\x00\x00\x01\x00\x00\x6f\x60\
+\x00\x00\x01\x70\x9e\xd3\x06\xdf\
+\x00\x00\x01\x48\x00\x00\x00\x00\x00\x01\x00\x00\x25\x5e\
+\x00\x00\x01\x70\x9e\xd3\x06\xdf\
+\x00\x00\x04\x80\x00\x00\x00\x00\x00\x01\x00\x00\x68\x41\
+\x00\x00\x01\x70\x9e\xd3\x06\xdf\
+\x00\x00\x00\xaa\x00\x00\x00\x00\x00\x01\x00\x00\x16\x01\
+\x00\x00\x01\x70\x9e\xd3\x06\xe0\
+\x00\x00\x01\xae\x00\x00\x00\x00\x00\x01\x00\x00\x2c\x62\
+\x00\x00\x01\x70\x9e\xd3\x06\xdf\
+\x00\x00\x03\xa4\x00\x00\x00\x00\x00\x01\x00\x00\x54\x11\
+\x00\x00\x01\x70\x9e\xd3\x06\xe0\
+\x00\x00\x01\x72\x00\x00\x00\x00\x00\x01\x00\x00\x28\x04\
+\x00\x00\x01\x70\x9e\xd3\x06\xdf\
+\x00\x00\x01\x98\x00\x01\x00\x00\x00\x01\x00\x00\x2a\x81\
+\x00\x00\x01\x70\x9e\xd3\x06\xe0\
+\x00\x00\x05\x36\x00\x00\x00\x00\x00\x01\x00\x00\x76\x36\
+\x00\x00\x01\x70\x9e\xd3\x06\xe0\
+\x00\x00\x02\x72\x00\x00\x00\x00\x00\x01\x00\x00\x38\x08\
+\x00\x00\x01\x70\x9e\xd3\x06\xe0\
+\x00\x00\x01\xec\x00\x00\x00\x00\x00\x01\x00\x00\x2f\x62\
+\x00\x00\x01\x70\x9e\xd3\x06\xdf\
+\x00\x00\x05\x1c\x00\x00\x00\x00\x00\x01\x00\x00\x72\xb6\
+\x00\x00\x01\x70\x9e\xd3\x06\xdf\
+\x00\x00\x05\xbe\x00\x00\x00\x00\x00\x01\x00\x00\x81\x53\
+\x00\x00\x01\x70\x9e\xd3\x06\xe0\
+\x00\x00\x02\xbe\x00\x00\x00\x00\x00\x01\x00\x00\x3d\x7f\
+\x00\x00\x01\x70\x9e\xd3\x06\xe0\
+\x00\x00\x00\xf8\x00\x00\x00\x00\x00\x01\x00\x00\x1e\x73\
+\x00\x00\x01\x70\x9e\xd3\x06\xdf\
+\x00\x00\x01\x1e\x00\x00\x00\x00\x00\x01\x00\x00\x20\xf6\
+\x00\x00\x01\x70\x9e\xd3\x06\xdf\
+\x00\x00\x00\xd0\x00\x00\x00\x00\x00\x01\x00\x00\x1a\x21\
+\x00\x00\x01\x70\x9e\xd3\x06\xe0\
+\x00\x00\x00\x62\x00\x00\x00\x00\x00\x01\x00\x00\x0e\xa0\
+\x00\x00\x01\x70\x9e\xd3\x06\xdf\
+\x00\x00\x06\x36\x00\x00\x00\x00\x00\x01\x00\x00\x8d\x28\
+\x00\x00\x01\x70\x9e\xd3\x06\xe0\
+\x00\x00\x00\x34\x00\x00\x00\x00\x00\x01\x00\x00\x04\xd9\
+\x00\x00\x01\x70\x9e\xd3\x06\xe0\
+\x00\x00\x04\x44\x00\x00\x00\x00\x00\x01\x00\x00\x64\xf1\
+\x00\x00\x01\x70\x9e\xd3\x06\xdf\
+\x00\x00\x05\x80\x00\x00\x00\x00\x00\x01\x00\x00\x7b\xa5\
+\x00\x00\x01\x70\x9e\xd3\x06\xdf\
+\x00\x00\x03\x06\x00\x00\x00\x00\x00\x01\x00\x00\x40\xff\
+\x00\x00\x01\x70\x9e\xd3\x06\xe0\
+\x00\x00\x02\xd6\x00\x00\x00\x00\x00\x01\x00\x00\x40\x8f\
+\x00\x00\x01\x70\x9e\xd3\x06\xe0\
+\x00\x00\x02\x24\x00\x00\x00\x00\x00\x01\x00\x00\x31\xe3\
+\x00\x00\x01\x70\x9e\xd3\x06\xe0\
+\x00\x00\x05\xfe\x00\x00\x00\x00\x00\x01\x00\x00\x87\xfd\
+\x00\x00\x01\x70\x9e\xd3\x06\xdf\
"
qt_version = [int(v) for v in QtCore.qVersion().split('.')]
diff --git a/Master/texmf-dist/asymptote/GUI/xasyVersion.py b/Master/texmf-dist/asymptote/GUI/xasyVersion.py
index 42b32156a9e..a47ea98d901 100755
--- a/Master/texmf-dist/asymptote/GUI/xasyVersion.py
+++ b/Master/texmf-dist/asymptote/GUI/xasyVersion.py
@@ -1,2 +1,2 @@
#!/usr/bin/env python3
-xasyVersion = "2.62"
+xasyVersion = "2.63"
diff --git a/Master/texmf-dist/asymptote/asy-keywords.el b/Master/texmf-dist/asymptote/asy-keywords.el
index ea8f57beba3..0b120cc6c5f 100644
--- a/Master/texmf-dist/asymptote/asy-keywords.el
+++ b/Master/texmf-dist/asymptote/asy-keywords.el
@@ -2,7 +2,7 @@
;; This file is automatically generated by asy-list.pl.
;; Changes will be overwritten.
;;
-(defvar asy-keywords-version "2.62")
+(defvar asy-keywords-version "2.63")
(defvar asy-keyword-name '(
and controls tension atleast curl if else while for do return break continue struct typedef new access import unravel from include quote static public private restricted this explicit true false null cycle newframe operator ))
@@ -11,7 +11,7 @@ and controls tension atleast curl if else while for do return break continue str
Braid FitResult Label Legend Solution TreeNode abscissa arc arrowhead binarytree binarytreeNode block bool bool3 bounds bqe circle conic coord coordsys cputime ellipse evaluatedpoint file filltype frame grid3 guide horner hsv hyperbola int inversion key light line linefit marginT marker mass node object pair parabola patch path path3 pen picture point position positionedvector projection rational real revolution scaleT scientific segment side simplex slice solution splitface string surface tensionSpecifier ticklocate ticksgridT tickvalues transform transformation tree triangle trilinear triple vector vertex void ))
(defvar asy-function-name '(
-AND Arc ArcArrow ArcArrows Arrow Arrows AtA Automatic AvantGarde B03 B13 B23 B33 BBox BWRainbow BWRainbow2 Bar Bars BeginArcArrow BeginArrow BeginBar BeginDotMargin BeginMargin BeginPenMargin Blank Bookman Bottom BottomTop Bounds Break Broken BrokenLog CLZ CTZ Ceil Circle CircleBarIntervalMarker Cos Courier CrossIntervalMarker DOSendl DOSnewl DefaultFormat DefaultLogFormat Degrees Dir DotMargin DotMargins Dotted Draw Drawline Embed EndArcArrow EndArrow EndBar EndDotMargin EndMargin EndPenMargin Fill FillDraw Finite Floor Format Full Gaussian Gaussrand Gaussrandpair Gradient Grayscale Helvetica Hermite HookHead InOutTicks InTicks Jn Label Landscape Left LeftRight LeftTicks Legend Linear Log LogFormat Margin Margins Mark MidArcArrow MidArrow NOT NewCenturySchoolBook NoBox NoMargin NoModifier NoTicks NoTicks3 NoZero NoZeroFormat None OR OmitFormat OmitTick OmitTickInterval OmitTickIntervals OutTicks Ox Oy Palatino PaletteTicks Pen PenMargin PenMargins Pentype Portrait RGB RadialShade RadialShadeDraw Rainbow Range Relative Right RightTicks Rotate Round SQR Scale ScaleX ScaleY ScaleZ Seascape Shift Sin Slant Spline StickIntervalMarker Straight Symbol Tan TeXify Ticks Ticks3 TildeIntervalMarker TimesRoman Top TrueMargin UnFill UpsideDown Wheel X XEquals XOR XY XYEquals XYZero XYgrid XZEquals XZZero XZero XZgrid Y YEquals YXgrid YZ YZEquals YZZero YZero YZgrid Yn Z ZX ZXgrid ZYgrid ZapfChancery ZapfDingbats _begingroup3 _cputime _draw _eval _findroot _image _labelpath _projection _shipout _strokepath _texpath aCos aSin aTan abort abs accel acos acosh acot acsc activatequote add addArrow addMargins addSaveFunction addpenarc addpenline addseg adjust alias align all altitude angabscissa angle angledegrees angpoint animate annotate anticomplementary antipedal apply approximate arc arcarrowsize arccircle arcdir arcfromcenter arcfromfocus arclength arcnodesnumber arcpoint arcsubtended arcsubtendedcenter arctime arctopath array arrow arrow2 arrowbase arrowbasepoints arrowsize ascii asec asin asinh ask assert asy asycode asydir asyfigure asyfilecode asyinclude asywrite atan atan2 atanh atbreakpoint atexit attach attract atupdate autoformat autoscale autoscale3 axes axes3 axialshade axis axiscoverage azimuth babel background bangles bar barmarksize barsize basealign baseline bbox beep begin beginclip begingroup beginpoint between bevel bezier bezierP bezierPP bezierPPP bezulate bibliography bibliographystyle binarytree binarytreeNode binomial bins bisector bisectorpoint bispline bitreverse blend blockconnector box bqe brace breakpoint breakpoints brick buildRestoreDefaults buildRestoreThunk buildcycle bulletcolor byte calculateScaling canonical canonicalcartesiansystem cartesiansystem case1 case2 case3 cbrt cd ceil center centerToFocus centroid cevian change2 changecoordsys checkSegment check_fpt_zero checkconditionlength checker checkincreasing checklengths checkposition checkpt checkptincube checktriangle choose circle circlebarframe circlemarkradius circlenodesnumber circumcenter circumcircle clamped clear clip clipdraw close cmyk code colatitude collect collinear color colorless colors colorspace comma compassmark complement complementary concat concurrent cone conic conicnodesnumber conictype conj connect containmentTree contains contour contour3 controlSpecifier convert coordinates coordsys copy copyPairOrTriple cos cosh cot countIntersections cputime crop cropcode cross crossframe crosshatch crossmarksize csc cubicroots curabscissa curlSpecifier curpoint currentarrow currentexitfunction currentmomarrow currentpolarconicroutine curve cut cutafter cutbefore cyclic cylinder deactivatequote debugger deconstruct defaultdir defaultformat defaultpen defined degenerate degrees delete deletepreamble determinant diagonal diamond diffdiv dir dirSpecifier dirtime display distance divisors do_overpaint dot dotframe dotsize downcase draw drawAll drawDoubleLine drawFermion drawGhost drawGluon drawMomArrow drawPRCcylinder drawPRCdisk drawPRCsphere drawPRCtube drawPhoton drawScalar drawVertex drawVertexBox drawVertexBoxO drawVertexBoxX drawVertexO drawVertexOX drawVertexTriangle drawVertexTriangleO drawVertexX drawarrow drawarrow2 drawbeziertriangle drawline drawpixel drawstrokepath drawtick duplicate elle ellipse ellipsenodesnumber embed embed3 embedplayer empty enclose end endclip endgroup endgroup3 endl endpoint endpoints eof eol equation equations erase erasestep erf erfc error errorbar errorbars eval excenter excircle exit exitfunction exp expfactors expi expm1 exradius extend extension extouch fabs factorial fermat fft fhorner figure file filecode fill filldraw filloutside fillrule filltype find findall findroot finite finiteDifferenceJacobian firstcut firstframe fit fit2 fixedscaling floor flush fmdefaults fmod focusToCenter font fontcommand fontsize foot format frac frequency fromCenter fromFocus fspline functionshade gamma gcd generate_random_backtrace generateticks gergonne getc getint getpair getreal getstring gettriple gluon gouraudshade graph graphic graphicscale gray grestore grid grid3 gsave halfbox hatch hdiffdiv hermite hex histogram history hline hprojection hsv hyperbola hyperbolanodesnumber hyperlink hypot identity image implicitsurface incenter incentral incircle increasing incrementposition indexedfigure initdefaults initialized input inradius insert inside insphere integrate interactive interior interp interpolate intersect intersection intersectionpoint intersectionpoints intersections intouch inverse inversion invisible is3D isDuplicate isnan isogonal isogonalconjugate isotomic isotomicconjugate isparabola italic item jobname key kurtosis kurtosisexcess label labelaxis labelmargin labelpath labels labeltick labelx labelx3 labely labely3 labelz labelz3 lastcut latex latitude latticeshade layer layout lcm ldexp leastsquares legend legenditem length lexorder lift light limits line linear linecap lineinversion linejoin linemargin lineskip linetype linewidth link list lm_enorm lm_evaluate_default lm_lmdif lm_lmpar lm_minimize lm_print_default lm_print_quiet lm_qrfac lm_qrsolv locale locate locatefile location log log10 log1p logaxiscoverage longitude lookup make3dgrid makeMappingArray makeNode makecircle makedraw makepen maketriangle map margin markangle markangleradius markanglespace markarc marker markinterval marknodes markrightangle markthin markuniform mass masscenter massformat math max max3 maxAfterTransform maxbezier maxbound maxcoords maxlength maxratio maxtimes mean medial median midpoint min min3 minAfterTransform minbezier minbound minipage minratio mintimes miterlimit mktemp momArrowPath momarrowsize monotonic multifigure nGrad nativeformat natural newl newpage newslide newton newtree nextframe nextnormal nextpage nib nodabscissa node none norm normalout normalvideo nosetpagesize notaknot nowarn numberpage nurb object offset onpath opacity opposite orient orientation origin orthic orthocentercenter outdirectory outformat outline outname outprefix output overloadedMessage overwrite pack pad pairs palette parabola parabolanodesnumber parallel parallelogram partialsum patchwithnormals path path3 pathbetween pathinface pattern pause pdf pedal periodic perp perpendicular perpendicularmark phantom phi1 phi2 phi3 photon piecewisestraight point polar polarconicroutine polargraph polygon popcount postcontrol postscript pow10 ppoint prc prc0 prconly precision precontrol prepend printBytecode print_random_addresses progress project projection projecttospan projecttospan_findcoeffs purge pwhermite quadpatches quadrant quadraticroots quantize quarticroots quotient radialshade radians radicalcenter radicalline radius rand randompath rationalidentity rd readline realmult realquarticroots rectangle rectangular rectify reflect relabscissa relative relativedistance reldir relpoint reltime remainder remark removeDuplicates rename replace report resetdefaultpen restore restoredefaults reverse reversevideo rf rfind rgb rgba rgbint rms rotate rotateO rotation round roundbox roundedpath roundrectangle samecoordsys sameside sample save savedefaults saveline scale scale3 scaleO scaleT scaleless scientific search searchtree sec secondaryX secondaryY seconds section sector seek seekeof segment segmentlimits sequence setpens sgn sgnd sharpangle sharpdegrees shift shiftless shipout shipout3 show simeq simplex simplexPhase1 simplexPhase2 simplexStandard simplexTableau simplexWrite simpson sin sinh size size3 skewness skip slant sleep slice slope slopefield solve solveBVP sort sourceline sphere split sqrt square srand standardizecoordsys stdev step stickframe stickmarksize stickmarkspace stop straight straightness string stripdirectory stripextension stripfile stripsuffix strokepath subdivide subitem subpath substr sum surface symmedial symmedian system tab tableau tan tangent tangential tangents tanh tell tensionSpecifier tensorshade tex texcolor texify texpath texpreamble texreset texshipout texsize texstring textpath thick thin tick tickMax tickMax3 tickMin tickMin3 ticklabelshift ticklocate tildeframe tildemarksize tile tiling time times title titlepage topbox toplocation transform transformation transpose trembleFuzz triangle triangleAbc triangleabc triangletoquads trianglewithnormals triangulate tricoef tridiagonal trilinear trim truepoint tube uncycle unfill uniform unique unit unitrand unitsize unityroot unstraighten upcase updatefunction uperiodic upscale uptodate usepackage usersetting usetypescript usleep value variance variancebiased vbox vector vectorfield verbatim view vline vperiodic vprojection warn warning windingnumber write xasyKEY xaxis xaxis3 xaxis3At xaxisAt xequals xlimits xmap xpart xscale xscaleO xtick xtick3 xtrans yaxis yaxis3 yaxis3At yaxisAt yequals ylimits ypart yscale yscaleO ytick ytick3 ytrans zaxis3 zaxis3At zero zlimits zpart ztick ztick3 ztrans ))
+AND Arc ArcArrow ArcArrows Arrow Arrows AtA Automatic AvantGarde B03 B13 B23 B33 BBox BWRainbow BWRainbow2 Bar Bars BeginArcArrow BeginArrow BeginBar BeginDotMargin BeginMargin BeginPenMargin Blank Bookman Bottom BottomTop Bounds Break Broken BrokenLog CLZ CTZ Ceil Circle CircleBarIntervalMarker Cos Courier CrossIntervalMarker DOSendl DOSnewl DefaultFormat DefaultLogFormat Degrees Dir DotMargin DotMargins Dotted Draw Drawline Embed EndArcArrow EndArrow EndBar EndDotMargin EndMargin EndPenMargin Fill FillDraw Finite Floor Format Full Gaussian Gaussrand Gaussrandpair Gradient Grayscale Helvetica Hermite HookHead InOutTicks InTicks Jn Label Landscape Left LeftRight LeftTicks Legend Linear Log LogFormat Margin Margins Mark MidArcArrow MidArrow NOT NewCenturySchoolBook NoBox NoMargin NoModifier NoTicks NoTicks3 NoZero NoZeroFormat None OR OmitFormat OmitTick OmitTickInterval OmitTickIntervals OutTicks Ox Oy Palatino PaletteTicks Pen PenMargin PenMargins Pentype Portrait RGB RadialShade RadialShadeDraw Rainbow Range Relative Right RightTicks Rotate Round SQR Scale ScaleX ScaleY ScaleZ Seascape Shift Sin Slant Spline StickIntervalMarker Straight Symbol Tan TeXify Ticks Ticks3 TildeIntervalMarker TimesRoman Top TrueMargin UnFill UpsideDown Wheel X XEquals XOR XY XYEquals XYZero XYgrid XZEquals XZZero XZero XZgrid Y YEquals YXgrid YZ YZEquals YZZero YZero YZgrid Yn Z ZX ZXgrid ZYgrid ZapfChancery ZapfDingbats _begingroup3 _cputime _draw _eval _findroot _image _labelpath _projection _shipout _strokepath _texpath aCos aSin aTan abort abs accel acos acosh acot acsc activatequote add addArrow addMargins addSaveFunction addpenarc addpenline addseg adjust alias align all altitude angabscissa angle angledegrees angpoint animate annotate anticomplementary antipedal apply approximate arc arcarrowsize arccircle arcdir arcfromcenter arcfromfocus arclength arcnodesnumber arcpoint arcsubtended arcsubtendedcenter arctime arctopath array arrow arrow2 arrowbase arrowbasepoints arrowsize ascii asec asin asinh ask assert asy asycode asydir asyfigure asyfilecode asyinclude asywrite atan atan2 atanh atbreakpoint atexit attach attract atupdate autoformat autoscale autoscale3 axes axes3 axialshade axis axiscoverage azimuth babel background bangles bar barmarksize barsize basealign baseline bbox beep begin beginclip begingroup beginpoint between bevel bezier bezierP bezierPP bezierPPP bezulate bibliography bibliographystyle binarytree binarytreeNode binomial bins bisector bisectorpoint bispline bispline0 bitreverse blend blockconnector box bqe brace breakpoint breakpoints brick buildRestoreDefaults buildRestoreThunk buildcycle bulletcolor byte calculateScaling canonical canonicalcartesiansystem cartesiansystem case1 case2 case3 cbrt cd ceil center centerToFocus centroid cevian change2 changecoordsys checkSegment check_fpt_zero checkconditionlength checker checkincreasing checklengths checkposition checkpt checkptincube checktriangle choose circle circlebarframe circlemarkradius circlenodesnumber circumcenter circumcircle clamped clear clip clipdraw close cmyk code colatitude collect collinear color colorless colors colorspace comma compassmark complement complementary concat concurrent cone conic conicnodesnumber conictype conj connect containmentTree contains contour contour3 controlSpecifier convert coordinates coordsys copy copyPairOrTriple cos cosh cot countIntersections cputime crop cropcode cross crossframe crosshatch crossmarksize csc cubicroots curabscissa curlSpecifier curpoint currentarrow currentexitfunction currentmomarrow currentpolarconicroutine curve cut cutafter cutbefore cyclic cylinder deactivatequote debugger deconstruct defaultdir defaultformat defaultpen defined degenerate degrees delete deletepreamble determinant diagonal diamond diffdiv dir dirSpecifier dirtime display distance divisors do_overpaint dot dotframe dotsize downcase draw drawAll drawCylinder drawDisk drawDoubleLine drawFermion drawGhost drawGluon drawMomArrow drawPhoton drawScalar drawSphere drawTube drawVertex drawVertexBox drawVertexBoxO drawVertexBoxX drawVertexO drawVertexOX drawVertexTriangle drawVertexTriangleO drawVertexX drawarrow drawarrow2 drawbeziertriangle drawline drawpixel drawstrokepath drawtick duplicate elle ellipse ellipsenodesnumber embed embed3 embedplayer empty enclose end endclip endgroup endgroup3 endl endpoint endpoints eof eol equation equations erase erasestep erf erfc error errorbar errorbars eval excenter excircle exit exitfunction exp expfactors expi expm1 exradius extend extension extouch fabs factorial fermat fft fhorner figure file filecode fill filldraw filloutside fillrule filltype find findall findroot finite finiteDifferenceJacobian firstcut firstframe fit fit2 fixedscaling floor flush fmdefaults fmod focusToCenter font fontcommand fontsize foot format frac frequency fromCenter fromFocus fspline functionshade gamma gcd generate_random_backtrace generateticks gergonne getc getint getpair getreal getstring gettriple gluon gouraudshade graph graphic graphicscale gray grestore grid grid3 gsave halfbox hatch hdiffdiv hermite hex histogram history hline hprojection hsv hyperbola hyperbolanodesnumber hyperlink hypot identity image implicitsurface incenter incentral incircle increasing incrementposition indexedfigure initdefaults initialized input inradius insert inside insphere integrate interactive interior interp interpolate intersect intersection intersectionpoint intersectionpoints intersections intouch inverse inversion invisible is3D isDuplicate isnan isogonal isogonalconjugate isotomic isotomicconjugate isparabola italic item jobname key kurtosis kurtosisexcess label labelaxis labelmargin labelpath labels labeltick labelx labelx3 labely labely3 labelz labelz3 lastcut latex latitude latticeshade layer layout lcm ldexp leastsquares legend legenditem length lexorder lift light limits line linear linecap lineinversion linejoin linemargin lineskip linetype linewidth link list lm_enorm lm_evaluate_default lm_lmdif lm_lmpar lm_minimize lm_print_default lm_print_quiet lm_qrfac lm_qrsolv locale locate locatefile location log log10 log1p logaxiscoverage longitude lookup make3dgrid makeMappingArray makeNode makecircle makedraw makepen maketriangle map margin markangle markangleradius markanglespace markarc marker markinterval marknodes markrightangle markthin markuniform mass masscenter massformat math max max3 maxAfterTransform maxbezier maxbound maxcoords maxlength maxratio maxtimes mean medial median midpoint min min3 minAfterTransform minbezier minbound minipage minratio mintimes miterlimit mktemp momArrowPath momarrowsize monotonic multifigure nGrad nativeformat natural newl newpage newslide newton newtree nextframe nextnormal nextpage nib nodabscissa node none norm normalout normalvideo nosetpagesize notaknot nowarn numberpage nurb object offset onpath opacity opposite orient orientation origin orthic orthocentercenter outdirectory outformat outline outname outprefix output overloadedMessage overwrite pack pad pairs palette parabola parabolanodesnumber parallel parallelogram partialsum patchwithnormals path path3 pathbetween pathinface pattern pause pdf pedal periodic perp perpendicular perpendicularmark phantom phi1 phi2 phi3 photon piecewisestraight point polar polarconicroutine polargraph polygon popcount postcontrol postscript pow10 ppoint prc prc0 prconly precision precontrol prepend printBytecode print_random_addresses progress project projection projecttospan projecttospan_findcoeffs purge pwhermite quadpatches quadrant quadraticroots quantize quarticroots quotient radialshade radians radicalcenter radicalline radius rand randompath rationalidentity rd readline realmult realquarticroots rectangle rectangular rectify reflect relabscissa relative relativedistance reldir relpoint reltime remainder remark removeDuplicates rename render replace report resetdefaultpen restore restoredefaults reverse reversevideo rf rfind rgb rgba rgbint rms rotate rotateO rotation round roundbox roundedpath roundrectangle samecoordsys sameside sample save savedefaults saveline scale scale3 scaleO scaleT scaleless scientific search searchtree sec secondaryX secondaryY seconds section sector seek seekeof segment segmentlimits sequence setpens sgn sgnd sharpangle sharpdegrees shift shiftless shipout shipout3 show simeq simplex simplexPhase1 simplexPhase2 simplexStandard simplexTableau simplexWrite simpson sin sinh size size3 skewness skip slant sleep slice slope slopefield solve solveBVP sort sourceline sphere split sqrt square srand standardizecoordsys stdev step stickframe stickmarksize stickmarkspace stop straight straightness string stripdirectory stripextension stripfile stripsuffix strokepath subdivide subitem subpath substr sum surface symmedial symmedian system tab tableau tan tangent tangential tangents tanh tell tensionSpecifier tensorshade tex texcolor texify texpath texpreamble texreset texshipout texsize texstring textpath thick thin tick tickMax tickMax3 tickMin tickMin3 ticklabelshift ticklocate tildeframe tildemarksize tile tiling time times title titlepage topbox toplocation transform transformation transpose trembleFuzz triangle triangleAbc triangleabc triangletoquads trianglewithnormals triangulate tricoef tridiagonal trilinear trim truepoint tube uncycle unfill uniform unique unit unitrand unitsize unityroot unstraighten upcase updatefunction uperiodic upscale uptodate usepackage usersetting usetypescript usleep value variance variancebiased vbox vector vectorfield verbatim view vline vperiodic vprojection warn warning windingnumber write xasyKEY xaxis xaxis3 xaxis3At xaxisAt xequals xlimits xmap xpart xscale xscaleO xtick xtick3 xtrans yaxis yaxis3 yaxis3At yaxisAt yequals ylimits ypart yscale yscaleO ytick ytick3 ytrans zaxis3 zaxis3At zero zlimits zpart ztick ztick3 ztrans ))
(defvar asy-variable-name '(
-Accent AliceBlue Align Allow AntiqueWhite Apricot Aqua Aquamarine Aspect Azure BeginPoint Beige Bisque Bittersweet Black BlanchedAlmond Blue BlueGreen BlueViolet Blues Both BrBG Break BrickRed Brown BuGn BuPu BurlyWood BurntOrange CCW CMRmap CW CadetBlue CarnationPink Center Centered Cerulean Chartreuse Chocolate Coeff Coral CornflowerBlue Cornsilk Crimson Crop Cyan Dandelion Dark2 DarkBlue DarkCyan DarkGoldenrod DarkGray DarkGreen DarkKhaki DarkMagenta DarkOliveGreen DarkOrange DarkOrchid DarkRed DarkSalmon DarkSeaGreen DarkSlateBlue DarkSlateGray DarkTurquoise DarkViolet DeepPink DeepSkyBlue DefaultHead DimGray DodgerBlue Dotted Down Draw E ENE EPS ESE E_Euler E_PC E_RK2 E_RK3BS Emerald EndPoint Euler Fill FillDraw FireBrick FloralWhite ForestGreen Fuchsia Gainsboro GhostWhite GnBu Gold Goldenrod Gray Green GreenYellow Greens Greys Honeydew HookHead Horizontal HotPink I IgnoreAspect IndianRed Indigo Infinity Ivory JOIN_IN JOIN_OUT JungleGreen Khaki LM_DWARF LM_MACHEP LM_SQRT_DWARF LM_SQRT_GIANT LM_USERTOL Label Lavender LavenderBlush LawnGreen Left LeftJustified LeftSide LemonChiffon LightBlue LightCoral LightCyan LightGoldenrodYellow LightGreen LightGrey LightPink LightSalmon LightSeaGreen LightSkyBlue LightSlateGray LightSteelBlue LightYellow Lime LimeGreen Linear Linen Log Logarithmic Magenta Mahogany Mark MarkFill MarkPath Maroon Max MediumAquamarine MediumBlue MediumOrchid MediumPurple MediumSeaGreen MediumSlateBlue MediumSpringGreen MediumTurquoise MediumVioletRed Melon MidPoint MidnightBlue Min MintCream MistyRose Moccasin Move MoveQuiet Mulberry N NE NNE NNW NULL_VERTEX NW NavajoWhite Navy NavyBlue NoAlign NoCrop NoFill NoSide OldLace Olive OliveDrab OliveGreen OrRd Orange OrangeRed Oranges Orchid Ox Oy PC PRGn Paired PaleGoldenrod PaleGreen PaleTurquoise PaleVioletRed PapayaWhip Pastel1 Pastel2 Peach PeachPuff Periwinkle Peru PiYG PineGreen Pink Plum PowderBlue ProcessBlue PuBu PuBuGn PuOr PuRd Purple Purples RK2 RK3 RK3BS RK4 RK5 RK5DP RK5F RawSienna RdBu RdGy RdPu RdYlBu RdYlGn Red RedOrange RedViolet Reds Rhodamine Right RightJustified RightSide RosyBrown RoyalBlue RoyalPurple RubineRed S SE SSE SSW SW SaddleBrown Salmon SandyBrown SeaGreen Seashell Sepia Set1 Set2 Set3 Sienna Silver SimpleHead SkyBlue SlateBlue SlateGray Snow Spectral SpringGreen SteelBlue Suppress SuppressQuiet Tan TeXHead Teal TealBlue Thistle Ticksize Tomato Turquoise UnFill Up VERSION Value Vertical Violet VioletRed W WNW WSW Wheat White WhiteSmoke WildStrawberry XHIGH XLOW XYAlign YAlign YHIGH YLOW Yellow YellowGreen YellowOrange YlGn YlGnBu YlOrBr YlOrRd ZHIGH ZLOW _outpipe aboveequationskip addpenarc addpenline align allowstepping angularsystem animationdelay appendsuffix arcarrowangle arcarrowfactor arrow2sizelimit arrowangle arrowbarb arrowdir arrowfactor arrowhookfactor arrowlength arrowsizelimit arrowtexfactor authorpen autumn axis axiscoverage axislabelfactor background backgroundcolor backgroundpen barfactor barmarksizefactor basealign baselinetemplate bernstein beveljoin bigvertexpen bigvertexsize binary black blue bm bone bottom bp bracedefaultratio braceinnerangle bracemidangle braceouterangle brg brown bullet bwr byfoci byvertices camerafactor chartreuse circlemarkradiusfactor circlenodesnumberfactor circleprecision circlescale cividis cm codefile codepen codeskip colorPen coloredNodes coloredSegments conditionlength conicnodesfactor cool coolwarm copper count cputimeformat crossmarksizefactor currentcoordsys currentlight currentpatterns currentpen currentpicture currentposition currentprojection curvilinearsystem cuttings cyan darkblue darkbrown darkcyan darkgray darkgreen darkgrey darkmagenta darkolive darkred dashdotted dashed datepen dateskip debuggerlines debugging deepblue deepcyan deepgray deepgreen deepgrey deepmagenta deepred deepyellow default defaultControl defaultS defaultbackpen defaultcoordsys defaultexcursion defaultfilename defaultformat defaultmassformat defaultpen defaultseparator differentlengths dot dotfactor dotfilltype dotframe dotted doublelinepen doublelinespacing down duplicateFuzz ellipsenodesnumberfactor eps epsgeo epsilon evenodd expansionfactor extendcap fermionpen figureborder figuremattpen file3 firstnode firststep foregroundcolor fuchsia fuzz gapfactor ghostpen gist_earth gist_ncar gist_stern gluonamplitude gluonpen gluonratio gray green grey hatchepsilon havepagenumber heavyblue heavycyan heavygray heavygreen heavygrey heavymagenta heavyred hline hot hsv hwratio hyperbolanodesnumberfactor identity identity4 ignore implicitshipout inch inches includegraphicscommand inf inferno infinity institutionpen intMax intMin invert invisible itempen itemskip itemstep jet labelmargin landscape lastnode left legendhskip legendlinelength legendmargin legendmarkersize legendmaxrelativewidth legendvskip lightblue lightcyan lightgray lightgreen lightgrey lightmagenta lightolive lightred lightyellow linemargin lm_infmsg lm_shortmsg longdashdotted longdashed magenta magma magneticRadius mantissaBits markangleradius markangleradiusfactor markanglespace markanglespacefactor maxrefinements mediumblue mediumcyan mediumgray mediumgreen mediumgrey mediummagenta mediumred mediumyellow middle minDistDefault minblockheight minblockwidth mincirclediameter minipagemargin minipagewidth minvertexangle miterjoin mm momarrowfactor momarrowlength momarrowmargin momarrowoffset momarrowpen monoPen morepoints nCircle nan newbulletcolor ngraph nil nipy_spectral nmesh nobasealign nodeMarginDefault nodesystem nomarker nopoint noprimary nullpath nullpen numarray ocgindex oldbulletcolor olive orange origin overpaint page pageheight pagemargin pagenumberalign pagenumberpen pagenumberposition pagewidth paleblue palecyan palegray palegreen palegrey palemagenta palered paleyellow parabolanodesnumberfactor perpfactor phi photonamplitude photonpen photonratio pi pink plain plain_bounds plain_scaling plasma plus preamblenodes pt purple r3 r4a r4b randMax realDigits realEpsilon realMax realMin red relativesystem reverse right roundcap roundjoin royalblue salmon saveFunctions scalarpen seismic sequencereal settings signedtrailingzero simplex solid spinner spring springgreen sqrtEpsilon squarecap squarepen startposition stdin stdout stepfactor stepfraction steppagenumberpen stepping stickframe stickmarksizefactor stickmarkspacefactor summer swap tab10 tab20 tab20b tab20c textpen ticksize tildeframe tildemarksizefactor tinv titlealign titlepagepen titlepageposition titlepen titleskip top trailingzero treeLevelStep treeMinNodeWidth treeNodeStep trembleAngle trembleFrequency trembleRandom twilight twilight_shifted undefined unitcircle unitsquare up urlpen urlskip version vertexpen vertexsize viewportmargin viewportsize viridis vline white winter wistia wye yellow ylabelwidth zeroTransform zerotickfuzz zerowinding ))
+Accent AliceBlue Align Allow AntiqueWhite Apricot Aqua Aquamarine Aspect Azure BeginPoint Beige Bisque Bittersweet Black BlanchedAlmond Blue BlueGreen BlueViolet Blues Both BrBG Break BrickRed Brown BuGn BuPu BurlyWood BurntOrange CCW CMRmap CW CadetBlue CarnationPink Center Centered Cerulean Chartreuse Chocolate Coeff Coral CornflowerBlue Cornsilk Crimson Crop Cyan Dandelion Dark2 DarkBlue DarkCyan DarkGoldenrod DarkGray DarkGreen DarkKhaki DarkMagenta DarkOliveGreen DarkOrange DarkOrchid DarkRed DarkSalmon DarkSeaGreen DarkSlateBlue DarkSlateGray DarkTurquoise DarkViolet DeepPink DeepSkyBlue DefaultHead DimGray DodgerBlue Dotted Down Draw E ENE EPS ESE E_Euler E_PC E_RK2 E_RK3BS Emerald EndPoint Euler Fill FillDraw FireBrick FloralWhite ForestGreen Fuchsia Gainsboro GhostWhite GnBu Gold Goldenrod Gray Green GreenYellow Greens Greys Honeydew HookHead Horizontal HotPink I IgnoreAspect IndianRed Indigo Infinity Ivory JOIN_IN JOIN_OUT JungleGreen Khaki LM_DWARF LM_MACHEP LM_SQRT_DWARF LM_SQRT_GIANT LM_USERTOL Label Lavender LavenderBlush LawnGreen Left LeftJustified LeftSide LemonChiffon LightBlue LightCoral LightCyan LightGoldenrodYellow LightGreen LightGrey LightPink LightSalmon LightSeaGreen LightSkyBlue LightSlateGray LightSteelBlue LightYellow Lime LimeGreen Linear Linen Log Logarithmic Magenta Mahogany Mark MarkFill MarkPath Maroon Max MediumAquamarine MediumBlue MediumOrchid MediumPurple MediumSeaGreen MediumSlateBlue MediumSpringGreen MediumTurquoise MediumVioletRed Melon MidPoint MidnightBlue Min MintCream MistyRose Moccasin Move MoveQuiet Mulberry N NE NNE NNW NULL_VERTEX NW NavajoWhite Navy NavyBlue NoAlign NoCrop NoFill NoSide OldLace Olive OliveDrab OliveGreen OrRd Orange OrangeRed Oranges Orchid Ox Oy PC PRGn Paired PaleGoldenrod PaleGreen PaleTurquoise PaleVioletRed PapayaWhip Pastel1 Pastel2 Peach PeachPuff Periwinkle Peru PiYG PineGreen Pink Plum PowderBlue ProcessBlue PuBu PuBuGn PuOr PuRd Purple Purples RK2 RK3 RK3BS RK4 RK5 RK5DP RK5F RawSienna RdBu RdGy RdPu RdYlBu RdYlGn Red RedOrange RedViolet Reds Rhodamine Right RightJustified RightSide RosyBrown RoyalBlue RoyalPurple RubineRed S SE SSE SSW SW SaddleBrown Salmon SandyBrown SeaGreen Seashell Sepia Set1 Set2 Set3 Sienna Silver SimpleHead SkyBlue SlateBlue SlateGray Snow Spectral SpringGreen SteelBlue Suppress SuppressQuiet Tan TeXHead Teal TealBlue Thistle Ticksize Tomato Turquoise UnFill Up VERSION Value Vertical Violet VioletRed W WNW WSW Wheat White WhiteSmoke WildStrawberry XHIGH XLOW XYAlign YAlign YHIGH YLOW Yellow YellowGreen YellowOrange YlGn YlGnBu YlOrBr YlOrRd ZHIGH ZLOW _outpipe aboveequationskip addpenarc addpenline align allowstepping angularsystem animationdelay appendsuffix arcarrowangle arcarrowfactor arrow2sizelimit arrowangle arrowbarb arrowdir arrowfactor arrowhookfactor arrowlength arrowsizelimit arrowtexfactor authorpen autumn axis axiscoverage axislabelfactor background backgroundcolor backgroundpen barfactor barmarksizefactor basealign baselinetemplate bernstein beveljoin bigvertexpen bigvertexsize binary black blue bm bone bottom bp bracedefaultratio braceinnerangle bracemidangle braceouterangle brg brown bullet bwr byfoci byvertices camerafactor chartreuse circlemarkradiusfactor circlenodesnumberfactor circleprecision circlescale cividis cm codefile codepen codeskip colorPen coloredNodes coloredSegments conditionlength conicnodesfactor cool coolwarm copper count cputimeformat crossmarksizefactor currentcoordsys currentlight currentpatterns currentpen currentpicture currentposition currentprojection curvilinearsystem cuttings cyan darkblue darkbrown darkcyan darkgray darkgreen darkgrey darkmagenta darkolive darkred dashdotted dashed datepen dateskip debuggerlines debugging deepblue deepcyan deepgray deepgreen deepgrey deepmagenta deepred deepyellow default defaultControl defaultS defaultbackpen defaultcoordsys defaultexcursion defaultfilename defaultformat defaultmassformat defaultpen defaultseparator differentlengths dot dotfactor dotfilltype dotframe dotted doublelinepen doublelinespacing down duplicateFuzz ellipsenodesnumberfactor eps epsgeo epsilon evenodd expansionfactor extendcap fermionpen figureborder figuremattpen file3 firstnode firststep foregroundcolor fuchsia fuzz gapfactor ghostpen gist_earth gist_ncar gist_stern gluonamplitude gluonpen gluonratio gray green grey hatchepsilon havepagenumber heavyblue heavycyan heavygray heavygreen heavygrey heavymagenta heavyred hline hot hsv hwratio hyperbolanodesnumberfactor identity identity4 ignore implicitshipout inch inches includegraphicscommand inf inferno infinity institutionpen intMax intMin invert invisible itempen itemskip itemstep jet labelmargin landscape lastnode left legendhskip legendlinelength legendmargin legendmarkersize legendmaxrelativewidth legendvskip lightblue lightcyan lightgray lightgreen lightgrey lightmagenta lightolive lightred lightyellow linemargin lm_infmsg lm_shortmsg longdashdotted longdashed magenta magma magneticRadius mantissaBits markangleradius markangleradiusfactor markanglespace markanglespacefactor maxrefinements mediumblue mediumcyan mediumgray mediumgreen mediumgrey mediummagenta mediumred mediumyellow middle minDistDefault minblockheight minblockwidth mincirclediameter minipagemargin minipagewidth minvertexangle miterjoin mm momarrowfactor momarrowlength momarrowmargin momarrowoffset momarrowpen monoPen morepoints nCircle nan newbulletcolor ngraph nil nipy_spectral nmesh nobasealign nodeMarginDefault nodesystem nomarker nopoint noprimary nullpath nullpen numarray ocgindex oldbulletcolor olive orange origin overpaint page pageheight pagemargin pagenumberalign pagenumberpen pagenumberposition pagewidth paleblue palecyan palegray palegreen palegrey palemagenta palered paleyellow parabolanodesnumberfactor perpfactor phi photonamplitude photonpen photonratio pi pink plain plain_bounds plain_scaling plasma plus preamblenodes pt purple r3 r4a r4b randMax realDigits realEpsilon realMax realMin red relativesystem reverse right roundcap roundjoin royalblue salmon saveFunctions scalarpen seismic sequencereal settings signedtrailingzero simplex solid spinner spring springgreen sqrtEpsilon squarecap squarepen startposition stdin stdout stepfactor stepfraction steppagenumberpen stepping stickframe stickmarksizefactor stickmarkspacefactor summer swap tab10 tab20 tab20b tab20c textpen ticksize tildeframe tildemarksizefactor tinv titlealign titlepagepen titlepageposition titlepen titleskip top trailingzero treeLevelStep treeMinNodeWidth treeNodeStep trembleAngle trembleFrequency trembleRandom tubegranularity twilight twilight_shifted undefined unitcircle unitsquare up urlpen urlskip version vertexpen vertexsize viewportmargin viewportsize viridis vline white winter wistia wye yellow ylabelwidth zeroTransform zerotickfuzz zerowinding ))
diff --git a/Master/texmf-dist/asymptote/graph3.asy b/Master/texmf-dist/asymptote/graph3.asy
index ed098309740..1fe63490c9b 100644
--- a/Master/texmf-dist/asymptote/graph3.asy
+++ b/Master/texmf-dist/asymptote/graph3.asy
@@ -1547,6 +1547,33 @@ path3[] segment(triple[] v, bool[] cond, interpolate3 join=operator --)
segment.length);
}
+bool uperiodic(real[][] a) {
+ int n=a.length;
+ if(n == 0) return false;
+ int m=a[0].length;
+ real[] a0=a[0];
+ real[] a1=a[n-1];
+ for(int j=0; j < m; ++j) {
+ real norm=0;
+ for(int i=0; i < n; ++i)
+ norm=max(norm,abs(a[i][j]));
+ real epsilon=sqrtEpsilon*norm;
+ if(abs(a0[j]-a1[j]) > epsilon) return false;
+ }
+ return true;
+}
+bool vperiodic(real[][] a) {
+ int n=a.length;
+ if(n == 0) return false;
+ int m=a[0].length-1;
+ for(int i=0; i < n; ++i) {
+ real[] ai=a[i];
+ real epsilon=sqrtEpsilon*norm(ai);
+ if(abs(ai[0]-ai[m]) > epsilon) return false;
+ }
+ return true;
+}
+
bool uperiodic(triple[][] a) {
int n=a.length;
if(n == 0) return false;
@@ -1614,7 +1641,7 @@ surface surface(triple[][] f, bool[][] cond={})
if(uperiodic(f)) s.ucyclic(true);
if(vperiodic(f)) s.vcyclic(true);
}
-
+
return s;
}
@@ -1694,10 +1721,114 @@ surface bispline(real[][] z, real[][] p, real[][] q, real[][] r,
}
}
}
-
+
+ return s;
+}
+
+private real[][][] bispline0(real[][] z, real[][] p, real[][] q, real[][] r,
+ real[] x, real[] y, bool[][] cond={})
+{ // z[i][j] is the value at (x[i],y[j])
+ // p and q are the first derivatives with respect to x and y, respectively
+ // r is the second derivative ddu/dxdy
+ int n=x.length-1;
+ int m=y.length-1;
+
+ bool all=cond.length == 0;
+
+ int count;
+ if(all)
+ count=n*m;
+ else {
+ count=0;
+ for(int i=0; i < n; ++i) {
+ bool[] condi=cond[i];
+ bool[] condp=cond[i+1];
+ for(int j=0; j < m; ++j)
+ if(all || (condi[j] && condi[j+1] && condp[j] && condp[j+1]))
+ ++count;
+ }
+ }
+
+ real[][][] s=new real[count][][];
+ int k=0;
+ for(int i=0; i < n; ++i) {
+ int ip=i+1;
+ real xi=x[i];
+ real xp=x[ip];
+ real hx=(xp-xi)/3;
+ real[] zi=z[i];
+ real[] zp=z[ip];
+ real[] ri=r[i];
+ real[] rp=r[ip];
+ real[] pi=p[i];
+ real[] pp=p[ip];
+ real[] qi=q[i];
+ real[] qp=q[ip];
+ bool[] condi=all ? null : cond[i];
+ bool[] condp=all ? null : cond[i+1];
+ for(int j=0; j < m; ++j) {
+ if(all || (condi[j] && condi[j+1] && condp[j] && condp[j+1])) {
+ real yj=y[j];
+ int jp=j+1;
+ real yp=y[jp];
+ real hy=(yp-yj)/3;
+ real hxy=hx*hy;
+ real zij=zi[j];
+ real zip=zi[jp];
+ real zpj=zp[j];
+ real zpp=zp[jp];
+ real pij=hx*pi[j];
+ real ppj=hx*pp[j];
+ real qip=hy*qi[jp];
+ real qpp=hy*qp[jp];
+ real zippip=zip+hx*pi[jp];
+ real zppmppp=zpp-hx*pp[jp];
+ real zijqij=zij+hy*qi[j];
+ real zpjqpj=zpj+hy*qp[j];
+
+ s[k]=new real[][] {{zij,zijqij,zip-qip,zip},
+ {zij+pij,zijqij+pij+hxy*ri[j],
+ zippip-qip-hxy*ri[jp],zippip},
+ {zpj-ppj,zpjqpj-ppj-hxy*rp[j],
+ zppmppp-qpp+hxy*rp[jp],zppmppp},
+ {zpj,zpjqpj,zpp-qpp,zpp}};
+ ++k;
+ }
+ }
+ }
+
return s;
}
+// return the surface values described by a real matrix f, interpolated with
+// xsplinetype and ysplinetype.
+real[][][] bispline(real[][] f, real[] x, real[] y,
+ splinetype xsplinetype=null,
+ splinetype ysplinetype=xsplinetype, bool[][] cond={})
+{
+ real epsilon=sqrtEpsilon*norm(y);
+ if(xsplinetype == null)
+ xsplinetype=(abs(x[0]-x[x.length-1]) <= epsilon) ? periodic : notaknot;
+ if(ysplinetype == null)
+ ysplinetype=(abs(y[0]-y[y.length-1]) <= epsilon) ? periodic : notaknot;
+ int n=x.length; int m=y.length;
+ real[][] ft=transpose(f);
+ real[][] tp=new real[m][];
+ for(int j=0; j < m; ++j)
+ tp[j]=xsplinetype(x,ft[j]);
+ real[][] q=new real[n][];
+ for(int i=0; i < n; ++i)
+ q[i]=ysplinetype(y,f[i]);
+ real[][] qt=transpose(q);
+ real[] d1=xsplinetype(x,qt[0]);
+ real[] d2=xsplinetype(x,qt[m-1]);
+ real[][] r=new real[n][];
+ real[][] p=transpose(tp);
+ for(int i=0; i < n; ++i)
+ r[i]=clamped(d1[i],d2[i])(y,p[i]);
+ return bispline0(f,p,q,r,x,y,cond);
+}
+
// return the surface described by a real matrix f, interpolated with
// xsplinetype and ysplinetype.
surface surface(real[][] f, real[] x, real[] y,
@@ -1802,6 +1933,91 @@ surface surface(triple f(pair z), pair a, pair b, int nu=nmesh, int nv=nu,
return surface(v,active);
}
+// return the surface described by a parametric function f evaluated at u and v
+// and interpolated with usplinetype and vsplinetype.
+surface surface(triple f(pair z), real[] u, real[] v,
+ splinetype[] usplinetype, splinetype[] vsplinetype=Spline,
+ bool cond(pair z)=null)
+{
+ int nu=u.length-1;
+ int nv=v.length-1;
+ real[] ipt=sequence(u.length);
+ real[] jpt=sequence(v.length);
+ real[][] fx=new real[u.length][v.length];
+ real[][] fy=new real[u.length][v.length];
+ real[][] fz=new real[u.length][v.length];
+
+ bool[][] active;
+ bool all=cond == null;
+ if(!all) active=new bool[u.length][v.length];
+
+ for(int i=0; i <= nu; ++i) {
+ real ui=u[i];
+ real[] fxi=fx[i];
+ real[] fyi=fy[i];
+ real[] fzi=fz[i];
+ bool[] activei=all ? null : active[i];
+ for(int j=0; j <= nv; ++j) {
+ pair z=(ui,v[j]);
+ if(!all) activei[j]=cond(z);
+ triple f=f(z);
+ fxi[j]=f.x;
+ fyi[j]=f.y;
+ fzi[j]=f.z;
+ }
+ }
+
+ if(usplinetype.length == 0) {
+ usplinetype=new splinetype[] {uperiodic(fx) ? periodic : notaknot,
+ uperiodic(fy) ? periodic : notaknot,
+ uperiodic(fz) ? periodic : notaknot};
+ } else if(usplinetype.length != 3) abort("usplinetype must have length 3");
+
+ if(vsplinetype.length == 0) {
+ vsplinetype=new splinetype[] {vperiodic(fx) ? periodic : notaknot,
+ vperiodic(fy) ? periodic : notaknot,
+ vperiodic(fz) ? periodic : notaknot};
+ } else if(vsplinetype.length != 3) abort("vsplinetype must have length 3");
+
+ real[][][] sx=bispline(fx,ipt,jpt,usplinetype[0],vsplinetype[0],active);
+ real[][][] sy=bispline(fy,ipt,jpt,usplinetype[1],vsplinetype[1],active);
+ real[][][] sz=bispline(fz,ipt,jpt,usplinetype[2],vsplinetype[2],active);
+
+ surface s=surface(sx.length);
+ s.index=new int[nu][nv];
+ int k=-1;
+ for(int i=0; i < nu; ++i) {
+ int[] indexi=s.index[i];
+ for(int j=0; j < nv; ++j)
+ indexi[j]=++k;
+ }
+
+ for(int k=0; k < sx.length; ++k) {
+ triple[][] Q=new triple[4][];
+ real[][] Px=sx[k];
+ real[][] Py=sy[k];
+ real[][] Pz=sz[k];
+ for(int i=0; i < 4 ; ++i) {
+ real[] Pxi=Px[i];
+ real[] Pyi=Py[i];
+ real[] Pzi=Pz[i];
+ Q[i]=new triple[] {(Pxi[0],Pyi[0],Pzi[0]),
+ (Pxi[1],Pyi[1],Pzi[1]),
+ (Pxi[2],Pyi[2],Pzi[2]),
+ (Pxi[3],Pyi[3],Pzi[3])};
+ }
+ s.s[k]=patch(Q);
+ }
+
+ if(usplinetype[0] == periodic && usplinetype[1] == periodic &&
+ usplinetype[1] == periodic) s.ucyclic(true);
+
+ if(vsplinetype[0] == periodic && vsplinetype[1] == periodic &&
+ vsplinetype[1] == periodic) s.vcyclic(true);
+
+ return s;
+}
+
// return the surface described by a parametric function f over box(a,b),
// interpolated with usplinetype and vsplinetype.
surface surface(triple f(pair z), pair a, pair b, int nu=nmesh, int nv=nu,
diff --git a/Master/texmf-dist/asymptote/palette.asy b/Master/texmf-dist/asymptote/palette.asy
index 2cb6e7c5475..e77fa946e6b 100644
--- a/Master/texmf-dist/asymptote/palette.asy
+++ b/Master/texmf-dist/asymptote/palette.asy
@@ -358,10 +358,10 @@ pen[] Wheel(int NColors=32766)
if(settings.gray) return Grayscale(NColors);
int nintervals=6;
+ if(NColors <= nintervals) NColors=nintervals+1;
int n=-quotient(NColors,-nintervals);
pen[] Palette;
- if(n == 0) return Palette;
Palette=new pen[n*nintervals];
real ninv=1.0/n;
@@ -386,10 +386,10 @@ pen[] Rainbow(int NColors=32766)
int offset=1;
int nintervals=5;
+ if(NColors <= nintervals) NColors=nintervals+1;
int n=-quotient(NColors-1,-nintervals);
pen[] Palette;
- if(n == 0) return Palette;
Palette=new pen[n*nintervals+offset];
real ninv=1.0/n;
@@ -418,12 +418,13 @@ private pen[] BWRainbow(int NColors, bool two)
if(two) nintervals += 6;
+ int Nintervals=nintervals*divisor;
+ if(NColors <= Nintervals) NColors=Nintervals+1;
int num=NColors-offset;
- int n=-quotient(num,-nintervals*divisor)*divisor;
+ int n=-quotient(num,-Nintervals)*divisor;
NColors=n*nintervals+offset;
pen[] Palette;
- if(n == 0) return Palette;
Palette=new pen[NColors];
real ninv=1.0/n;
diff --git a/Master/texmf-dist/asymptote/shaders/fragment.glsl b/Master/texmf-dist/asymptote/shaders/fragment.glsl
index cdcc0b49e83..057acbc744f 100755
--- a/Master/texmf-dist/asymptote/shaders/fragment.glsl
+++ b/Master/texmf-dist/asymptote/shaders/fragment.glsl
@@ -135,29 +135,25 @@ void main()
Material m;
#ifdef TRANSPARENT
m=Materials[abs(materialIndex)-1];
- if(materialIndex >= 0) {
+ emissive=m.emissive;
+ if(materialIndex >= 0)
diffuse=m.diffuse;
- emissive=m.emissive;
- } else {
+ else {
diffuse=Color;
-#if Nlights > 0
- emissive=vec4(0.0);
-#else
- emissive=Color;
+#if Nlights == 0
+ emissive += Color;
#endif
}
#else
m=Materials[int(materialIndex)];
+ emissive=m.emissive;
#ifdef COLOR
diffuse=Color;
-#if Nlights > 0
- emissive=vec4(0.0);
-#else
- emissive=Color;
+#if Nlights == 0
+ emissive += Color;
#endif
#else
diffuse=m.diffuse;
- emissive=m.emissive;
#endif
#endif
diff --git a/Master/texmf-dist/asymptote/shaders/vertex.glsl b/Master/texmf-dist/asymptote/shaders/vertex.glsl
index 9a54d3211ca..4b2a54b9897 100755
--- a/Master/texmf-dist/asymptote/shaders/vertex.glsl
+++ b/Master/texmf-dist/asymptote/shaders/vertex.glsl
@@ -34,7 +34,7 @@ void main()
#ifndef ORTHOGRAPHIC
ViewPosition=(viewMat*v).xyz;
#endif
- Normal=normal*normMat;
+ Normal=normalize(normal*normMat);
#endif
#ifdef COLOR
diff --git a/Master/texmf-dist/asymptote/solids.asy b/Master/texmf-dist/asymptote/solids.asy
index 2f0a13f4b50..72110d6f7aa 100644
--- a/Master/texmf-dist/asymptote/solids.asy
+++ b/Master/texmf-dist/asymptote/solids.asy
@@ -374,6 +374,7 @@ void draw(picture pic=currentpicture, revolution r, int m=0, int n=nslice,
// Return a right circular cylinder of height h in the direction of axis
// based on a circle centered at c with radius r.
+// Note: unitcylinder provides a smoother and more efficient representation.
revolution cylinder(triple c=O, real r, real h, triple axis=Z)
{
triple C=c+r*perp(axis);
@@ -392,7 +393,7 @@ revolution cone(triple c=O, real r, real h, triple axis=Z, int n=nslice)
// Return an approximate sphere of radius r centered at c obtained by rotating
// an (n+1)-point approximation to a half circle about the Z axis.
-// Note: unitsphere provides a smoother and more efficient surface.
+// Note: unitsphere provides a smoother and more efficient representation.
revolution sphere(triple c=O, real r, int n=nslice)
{
return revolution(c,Arc(c,r,180-sqrtEpsilon,0,sqrtEpsilon,0,Y,n),Z);
diff --git a/Master/texmf-dist/asymptote/three.asy b/Master/texmf-dist/asymptote/three.asy
index 2b32fd16125..75f758dd353 100644
--- a/Master/texmf-dist/asymptote/three.asy
+++ b/Master/texmf-dist/asymptote/three.asy
@@ -37,8 +37,7 @@ struct render
// General parameters:
real margin; // shrink amount for rendered openGL viewport, in bp.
- real tubegranularity; // granularity for rendering tubes
- bool labelfill; // fill subdivision cracks in unlighted labels
+ bool labelfill; // fill PRC subdivision cracks in unlighted labels
bool partnames; // assign part name indices to compound objects
bool defaultnames; // assign default names to unnamed objects
@@ -52,7 +51,6 @@ struct render
bool3 merge=defaultrender.merge,
int sphere=defaultrender.sphere,
real margin=defaultrender.margin,
- real tubegranularity=defaultrender.tubegranularity,
bool labelfill=defaultrender.labelfill,
bool partnames=defaultrender.partnames,
bool defaultnames=defaultrender.defaultnames)
@@ -64,7 +62,6 @@ struct render
this.merge=merge;
this.sphere=sphere;
this.margin=margin;
- this.tubegranularity=tubegranularity;
this.labelfill=labelfill;
this.partnames=partnames;
this.defaultnames=defaultnames;
@@ -80,7 +77,6 @@ defaultrender.closed=false;
defaultrender.tessellate=false;
defaultrender.merge=false;
defaultrender.margin=0.02;
-defaultrender.tubegranularity=0.001;
defaultrender.sphere=NURBSsphere;
defaultrender.labelfill=true;
defaultrender.partnames=false;
@@ -217,9 +213,10 @@ triple project(triple u, triple v)
triple perp(triple v)
{
triple u=cross(v,Y);
- if(abs(u) > sqrtEpsilon) return unit(u);
+ real norm=sqrtEpsilon*abs(v);
+ if(abs(u) > norm) return unit(u);
u=cross(v,Z);
- return (abs(u) > sqrtEpsilon) ? unit(u) : X;
+ return (abs(u) > norm) ? unit(u) : X;
}
// Return the transformation corresponding to moving the camera from the target
@@ -1140,6 +1137,18 @@ path3[] path3(explicit path[] g, triple plane(pair)=XYplane)
return sequence(new path3(int i) {return path3(g[i],plane);},g.length);
}
+path3 interp(path3 a, path3 b, real t)
+{
+ int n=size(a);
+ return path3(sequence(new triple(int i) {
+ return interp(precontrol(a,i),precontrol(b,i),t);},n),
+ sequence(new triple(int i) {return interp(point(a,i),point(b,i),t);},n),
+ sequence(new triple(int i) {return interp(postcontrol(a,i),
+ postcontrol(b,i),t);},n),
+ sequence(new bool(int i) {return straight(a,i) && straight(b,i);},n),
+ cyclic(a) && cyclic(b));
+}
+
path3 invert(path p, triple normal, triple point,
projection P=currentprojection)
{
@@ -2158,7 +2167,8 @@ pair max(frame f, projection P)
void draw(picture pic=currentpicture, Label L="", path3 g,
align align=NoAlign, material p=currentpen, margin3 margin=NoMargin3,
- light light=nolight, string name="", render render=defaultrender)
+ light light=nolight, string name="",
+ render render=defaultrender)
{
pen q=(pen) p;
pic.add(new void(frame f, transform3 t, picture pic, projection P) {
@@ -2188,80 +2198,62 @@ draw=new void(frame f, path3 g, material p=currentpen,
projection P=currentprojection) {
pen q=(pen) p;
if(is3D()) {
- p=material(p);
real width=linewidth(q);
void drawthick(path3 g) {
- if(settings.thick) {
- if(width > 0) {
- bool prc=prc();
- void cylinder(transform3) {};
- void sphere(transform3, bool half) {};
- void disk(transform3) {};
- void pipe(path3, path3);
- if(prc) {
- cylinder=new void(transform3 t) {drawPRCcylinder(f,t,p,light);};
- sphere=new void(transform3 t, bool half)
- {drawPRCsphere(f,t,half,p,light,render);};
- disk=new void(transform3 t) {draw(f,t*unitdisk,p,light,render);};
- pipe=new void(path3 center, path3 g)
- {drawPRCtube(f,center,g,p,light);};
+ if(settings.thick && width > 0) {
+ bool prc=prc();
+ bool webgl=settings.outformat == "html";
+ real linecap=linecap(q);
+ real r=0.5*width;
+ bool open=!cyclic(g);
+ int L=length(g);
+ triple g0=point(g,0);
+ triple gL=point(g,L);
+ if(open && L > 0) {
+ if(linecap == 2) {
+ g0 -= r*dir(g,0);
+ gL += r*dir(g,L);
+ g=g0..g..gL;
+ L += 2;
}
- real linecap=linecap(q);
- real r=0.5*width;
- bool open=!cyclic(g);
- int L=length(g);
- triple g0=point(g,0);
- triple gL=point(g,L);
- if(open && L > 0) {
- if(linecap == 2) {
- g0 -= r*dir(g,0);
- gL += r*dir(g,L);
- g=g0..g..gL;
- L += 2;
- }
- }
- tube T=tube(g,width,render,cylinder,sphere,pipe);
- path3 c=T.center;
- if(L >= 0) {
- if(open) {
- int Lc=length(c);
- triple c0=point(c,0);
- triple cL=point(c,Lc);
- triple dir0=dir(g,0);
- triple dirL=dir(g,L);
- triple dirc0=dir(c,0);
- triple dircL=dir(c,Lc);
- transform3 t0=shift(g0)*align(-dir0);
- transform3 tL=shift(gL)*align(dirL);
- transform3 tc0=shift(c0)*align(-dirc0);
- transform3 tcL=shift(cL)*align(dircL);
- if(linecap == 0 || linecap == 2) {
- transform3 scale2r=scale(r,r,1);
- T.s.append(t0*scale2r*unitdisk);
- disk(tc0*scale2r);
- if(L > 0) {
- T.s.append(tL*scale2r*unitdisk);
- disk(tcL*scale2r);
- }
- } else if(linecap == 1) {
- transform3 scale3r=scale3(r);
- T.s.append(t0*scale3r*
- (dir0 != O ? unithemisphere : unitsphere));
- sphere(tc0*scale3r,half=straight(c,0));
- if(L > 0) {
- T.s.append(tL*scale3r*
- (dirL != O ? unithemisphere : unitsphere));
- sphere(tcL*scale3r,half=straight(c,Lc-1));
- }
+ }
+ tube T=tube(g,width);
+ path3 c=T.center;
+ if(L >= 0) {
+ if(open) {
+ int Lc=length(c);
+ triple c0=point(c,0);
+ triple cL=point(c,Lc);
+ triple dir0=dir(g,0);
+ triple dirL=dir(g,L);
+ triple dirc0=dir(c,0);
+ triple dircL=dir(c,Lc);
+ transform3 t0=shift(g0)*align(-dir0);
+ transform3 tL=shift(gL)*align(dirL);
+ transform3 tc0=shift(c0)*align(-dirc0);
+ transform3 tcL=shift(cL)*align(dircL);
+ if(linecap == 0 || linecap == 2) {
+ transform3 scale2r=scale(r,r,1);
+ T.s.push(t0*scale2r*unitdisk);
+ if(L > 0) {
+ T.s.push(tL*scale2r*unitdisk);
}
+ } else if(linecap == 1) {
+ transform3 scale3r=scale3(r);
+ T.s.push(t0*scale3r*(straight(c,0) ?
+ unithemisphere : unitsphere));
+ if(L > 0)
+ T.s.push(tL*scale3r*(straight(c,Lc-1) ?
+ unithemisphere : unitsphere));
}
- if(opacity(q) == 1)
- _draw(f,c,q);
}
- for(patch s : T.s.s)
- draw3D(f,s,p,light,prc=false);
- } else _draw(f,g,q);
- } else _draw(f,g,q);
+// Draw central core for better small-scale rendering.
+ if((!prc || piecewisestraight(g)) && !webgl && opacity(q) == 1)
+ _draw(f,c,p,light);
+ }
+ for(surface s : T.s)
+ draw(f,s,p,light,render);
+ } else _draw(f,g,p,light);
}
bool group=q != nullpen && (name != "" || render.defaultnames);
if(group)
@@ -2701,7 +2693,7 @@ struct scene
if(pic.bounds3.exact && noAdjust)
this.P.bboxonly=false;
-
+
f=pic.fit3(t,pic.bounds3.exact ? pic2 : null,this.P);
if(!pic.bounds3.exact) {
diff --git a/Master/texmf-dist/asymptote/three_arrows.asy b/Master/texmf-dist/asymptote/three_arrows.asy
index 87fc39c52e8..b0369e6beab 100644
--- a/Master/texmf-dist/asymptote/three_arrows.asy
+++ b/Master/texmf-dist/asymptote/three_arrows.asy
@@ -105,8 +105,11 @@ struct arrowhead3
s.append(shift(-n)*t*extrude(g,width*Z));
}
if(draw)
- for(path3 g : H)
- s.append(tube(g,width).s);
+ for(path3 g : H) {
+ tube T=tube(g,width);
+ for(surface S : T.s)
+ s.append(S);
+ }
return shift(v)*s;
}
@@ -150,27 +153,26 @@ DefaultHead3.head=new surface(path3 g, position position=EndPoint,
real remainL=size;
bool first=true;
for(int i=0; i < n; ++i) {
- render(subpath(s,i,i+1),new void(path3 q, real) {
- if(remainL > 0) {
- real l=arclength(q);
- real w=remainL*aspect;
- surface segment=scale(w,w,l)*unitcylinder;
- if(first) { // add base
- first=false;
- segment.append(scale(w,w,1)*unitdisk);
- }
- for(patch p : segment.s) {
- for(int i=0; i < 4; ++i) {
- for(int j=0; j < 4; ++j) {
- real k=1-p.P[i][j].z/remainL;
- p.P[i][j]=bend((k*p.P[i][j].x,k*p.P[i][j].y,p.P[i][j].z),q,l);
- }
- }
+ path3 q=subpath(s,i,i+1);
+ if(remainL > 0) {
+ real l=arclength(q);
+ real w=remainL*aspect;
+ surface segment=scale(w,w,l)*unitcylinder;
+ if(first) { // add base
+ first=false;
+ segment.append(scale(w,w,1)*unitdisk);
+ }
+ for(patch p : segment.s) {
+ for(int i=0; i < 4; ++i) {
+ for(int j=0; j < 4; ++j) {
+ real k=1-p.P[i][j].z/remainL;
+ p.P[i][j]=bend((k*p.P[i][j].x,k*p.P[i][j].y,p.P[i][j].z),q,l);
}
- head.append(segment);
- remainL -= l;
}
- });
+ }
+ head.append(segment);
+ remainL -= l;
+ }
}
}
return head;
diff --git a/Master/texmf-dist/asymptote/three_light.asy b/Master/texmf-dist/asymptote/three_light.asy
index 6e0bc366c78..25db6ad6d27 100644
--- a/Master/texmf-dist/asymptote/three_light.asy
+++ b/Master/texmf-dist/asymptote/three_light.asy
@@ -80,9 +80,9 @@ pen operator ecast(material m)
return m.p.length > 0 ? m.diffuse() : nullpen;
}
-material emissive(material m)
+material emissive(material m, bool colors=false)
{
- return material(black+opacity(m.opacity),m.diffuse(),black,m.opacity,1);
+ return material(black+opacity(m.opacity),colors ? m.emissive() : m.diffuse()+m.emissive(),black,m.opacity,1);
}
pen color(triple normal, material m, light light, transform3 T=light.T) {
diff --git a/Master/texmf-dist/asymptote/three_surface.asy b/Master/texmf-dist/asymptote/three_surface.asy
index 4ad31d6d2d7..12ac464b242 100644
--- a/Master/texmf-dist/asymptote/three_surface.asy
+++ b/Master/texmf-dist/asymptote/three_surface.asy
@@ -71,10 +71,6 @@ struct patch {
triple BuP(int j, real u) {
return bezierP(P[0][j],P[1][j],P[2][j],P[3][j],u);
}
- triple BuPP(int j, real u) {
- return bezierPP(P[0][j],P[1][j],P[2][j],P[3][j],u);
- }
- triple BuPPP(int j) {return bezierPPP(P[0][j],P[1][j],P[2][j],P[3][j]);}
path3 uequals(real u) {
triple z0=Bu(0,u);
@@ -87,10 +83,6 @@ struct patch {
triple BvP(int i, real v) {
return bezierP(P[i][0],P[i][1],P[i][2],P[i][3],v);
}
- triple BvPP(int i, real v) {
- return bezierPP(P[i][0],P[i][1],P[i][2],P[i][3],v);
- }
- triple BvPPP(int i) {return bezierPPP(P[i][0],P[i][1],P[i][2],P[i][3]);}
path3 vequals(real v) {
triple z0=Bv(0,v);
@@ -103,29 +95,52 @@ struct patch {
return bezier(Bu(0,u),Bu(1,u),Bu(2,u),Bu(3,u),v);
}
- // compute normal vectors for degenerate cases
- private triple normal0(real u, real v, real epsilon) {
- triple n=0.5*(cross(bezier(BuPP(0,u),BuPP(1,u),BuPP(2,u),BuPP(3,u),v),
- bezier(BvP(0,v),BvP(1,v),BvP(2,v),BvP(3,v),u))+
- cross(bezier(BuP(0,u),BuP(1,u),BuP(2,u),BuP(3,u),v),
- bezier(BvPP(0,v),BvPP(1,v),BvPP(2,v),BvPP(3,v),u)));
- return abs(n) > epsilon ? n :
- 0.25*cross(bezier(BuPP(0,u),BuPP(1,u),BuPP(2,u),BuPP(3,u),v),
- bezier(BvPP(0,v),BvPP(1,v),BvPP(2,v),BvPP(3,v),u))+
- 1/6*(cross(bezier(BuP(0,u),BuP(1,u),BuP(2,u),BuP(3,u),v),
- bezier(BvPPP(0),BvPPP(1),BvPPP(2),BvPPP(3),u))+
- cross(bezier(BuPPP(0),BuPPP(1),BuPPP(2),BuPPP(3),v),
- bezier(BvP(0,v),BvP(1,v),BvP(2,v),BvP(3,v),u)))+
- 1/12*(cross(bezier(BuPPP(0),BuPPP(1),BuPPP(2),BuPPP(3),v),
- bezier(BvPP(0,v),BvPP(1,v),BvPP(2,v),BvPP(3,v),u))+
- cross(bezier(BuPP(0,u),BuPP(1,u),BuPP(2,u),BuPP(3,u),v),
- bezier(BvPPP(0),BvPPP(1),BvPPP(2),BvPPP(3),u)))+
- 1/36*cross(bezier(BuPPP(0),BuPPP(1),BuPPP(2),BuPPP(3),v),
- bezier(BvPPP(0),BvPPP(1),BvPPP(2),BvPPP(3),u));
- }
-
static real fuzz=1000*realEpsilon;
+ triple normal(triple left3, triple left2, triple left1, triple middle,
+ triple right1, triple right2, triple right3) {
+ real epsilon=fuzz*change2(P);
+
+ triple lp=3.0*(left1-middle);
+ triple rp=3.0*(right1-middle);
+
+ triple n=cross(rp,lp);
+ if(abs(n) > epsilon)
+ return n;
+
+ // Return one-half of the second derivative of the Bezier curve defined
+ // by a,b,c,d at 0.
+ triple bezierPP(triple a, triple b, triple c) {
+ return 3.0*(a+c-2.0*b);
+ }
+
+ triple lpp=bezierPP(middle,left1,left2);
+ triple rpp=bezierPP(middle,right1,right2);
+
+ n=cross(rpp,lp)+cross(rp,lpp);
+ if(abs(n) > epsilon)
+ return n;
+
+ // Return one-sixth of the third derivative of the Bezier curve defined
+ // by a,b,c,d at 0.
+ triple bezierPPP(triple a, triple b, triple c, triple d) {
+ return d-a+3.0*(b-c);
+ }
+
+ triple lppp=bezierPPP(middle,left1,left2,left3);
+ triple rppp=bezierPPP(middle,right1,right2,right3);
+
+ n=cross(rpp,lpp)+cross(rppp,lp)+cross(rp,lppp);
+ if(abs(n) > epsilon)
+ return n;
+
+ n=cross(rppp,lpp)+cross(rpp,lppp);
+ if(abs(n) > epsilon)
+ return n;
+
+ return cross(rppp,lppp);
+ }
+
triple partialu(real u, real v) {
return bezier(BuP(0,u),BuP(1,u),BuP(2,u),BuP(3,u),v);
}
@@ -134,34 +149,32 @@ struct patch {
return bezier(BvP(0,v),BvP(1,v),BvP(2,v),BvP(3,v),u);
}
- triple normal(real u, real v) {
- triple n=cross(partialu(u,v),partialv(u,v));
- real epsilon=fuzz*change2(P);
- return (abs(n) > epsilon) ? n : normal0(u,v,epsilon);
- }
-
triple normal00() {
- triple n=9*cross(P[1][0]-P[0][0],P[0][1]-P[0][0]);
- real epsilon=fuzz*change2(P);
- return abs(n) > epsilon ? n : normal0(0,0,epsilon);
+ return normal(P[0][3],P[0][2],P[0][1],P[0][0],P[1][0],P[2][0],P[3][0]);
}
triple normal10() {
- triple n=9*cross(P[3][0]-P[2][0],P[3][1]-P[3][0]);
- real epsilon=fuzz*change2(P);
- return abs(n) > epsilon ? n : normal0(1,0,epsilon);
+ return normal(P[0][0],P[1][0],P[2][0],P[3][0],P[3][1],P[3][2],P[3][3]);
}
triple normal11() {
- triple n=9*cross(P[3][3]-P[2][3],P[3][3]-P[3][2]);
- real epsilon=fuzz*change2(P);
- return abs(n) > epsilon ? n : normal0(1,1,epsilon);
+ return normal(P[3][0],P[3][1],P[3][2],P[3][3],P[2][3],P[1][3],P[0][3]);
}
triple normal01() {
- triple n=9*cross(P[1][3]-P[0][3],P[0][3]-P[0][2]);
- real epsilon=fuzz*change2(P);
- return abs(n) > epsilon ? n : normal0(0,1,epsilon);
+ return normal(P[3][3],P[2][3],P[1][3],P[0][3],P[0][2],P[0][1],P[0][0]);
+ }
+
+ triple normal(real u, real v) {
+ if(u == 0) {
+ if(v == 0) return normal00();
+ if(v == 1) return normal01();
+ }
+ if(u == 1) {
+ if(v == 0) return normal10();
+ if(v == 1) return normal11();
+ }
+ return cross(partialu(u,v),partialv(u,v));
}
triple pointtriangular(real u, real v) {
@@ -171,7 +184,7 @@ struct patch {
6*u*v*w*P[2][1]+v^2*(3*(w*P[2][2]+u*P[3][2])+v*P[3][3]);
}
- triple bu(real u, real v) {
+ triple partialutriangular(real u, real v) {
// Compute one-third of the directional derivative of a Bezier triangle
// in the u direction at (u,v).
real w=1-u-v;
@@ -179,21 +192,7 @@ struct patch {
2*v*(w-u)*P[2][1]-v^2*P[2][2]+u^2*P[3][0]+2*u*v*P[3][1]+v^2*P[3][2];
}
- triple buu(real u, real v) {
- // Compute one-sixth of the second directional derivative of a Bezier
- // triangle in the u direction at (u,v).
- real w=1-u-v;
- return w*P[0][0]+(u-2*w)*P[1][0]+v*P[1][1]+(w-2*u)*P[2][0]-2*v*P[2][1]+
- u*P[3][0]+v*P[3][1];
- }
-
- triple buuu() {
- // Compute one-sixth of the third directional derivative of a Bezier
- // triangle in the u direction at (u,v).
- return -P[0][0]+3*P[1][0]-3*P[2][0]+P[3][0];
- }
-
- triple bv(real u, real v) {
+ triple partialvtriangular(real u, real v) {
// Compute one-third of the directional derivative of a Bezier triangle
// in the v direction at (u,v).
real w=1-u-v;
@@ -202,54 +201,26 @@ struct patch {
v^2*P[3][3];
}
- triple bvv(real u, real v) {
- // Compute one-sixth of the second directional derivative of a Bezier
- // triangle in the v direction at (u,v).
- real w=1-u-v;
- return w*P[0][0]+u*P[1][0]+(v-2*w)*P[1][1]-2*u*P[2][1]+(w-2*v)*P[2][2]+
- u*P[3][2]+v*P[3][3];
- }
-
- triple bvvv() {
- // Compute one-sixth of the third directional derivative of a Bezier
- // triangle in the v direction at (u,v).
- return -P[0][0]+3*P[1][1]-3*P[2][2]+P[3][3];
- }
-
- // compute normal vectors for a degenerate Bezier triangle
- private triple normaltriangular0(real u, real v, real epsilon) {
- triple n=9*(cross(buu(u,v),bv(u,v))+
- cross(bu(u,v),bvv(u,v)));
- return abs(n) > epsilon ? n :
- 9*cross(buu(u,v),bvv(u,v))+
- 3*(cross(buuu(),bv(u,v))+cross(bu(u,v),bvvv())+
- cross(buuu(),bvv(u,v))+cross(buu(u,v),bvvv()))+
- cross(buuu(),bvvv());
- }
-
- // Compute the normal of a Bezier triangle at (u,v)
- triple normaltriangular(real u, real v) {
- triple n=9*cross(bu(u,v),bv(u,v));
- real epsilon=fuzz*change2(P);
- return (abs(n) > epsilon) ? n : normal0(u,v,epsilon);
- }
-
triple normal00triangular() {
- triple n=9*cross(P[1][0]-P[0][0],P[1][1]-P[0][0]);
- real epsilon=fuzz*change2(P);
- return abs(n) > epsilon ? n : normaltriangular0(0,0,epsilon);
+ return normal(P[3][3],P[2][2],P[1][1],P[0][0],P[1][0],P[2][0],P[3][0]);
}
triple normal10triangular() {
- triple n=9*cross(P[3][0]-P[2][0],P[3][1]-P[2][0]);
- real epsilon=fuzz*change2(P);
- return abs(n) > epsilon ? n : normaltriangular0(1,0,epsilon);
+ return normal(P[0][0],P[1][0],P[2][0],P[3][0],P[3][1],P[3][2],P[3][3]);
}
triple normal01triangular() {
- triple n=9*cross(P[3][2]-P[2][2],P[3][3]-P[2][2]);
- real epsilon=fuzz*change2(P);
- return abs(n) > epsilon ? n : normaltriangular0(0,1,epsilon);
+ return normal(P[3][0],P[3][1],P[3][2],P[3][3],P[2][2],P[1][1],P[0][0]);
+ }
+
+ // Compute the normal vector of a Bezier triangle at (u,v)
+ triple normaltriangular(real u, real v) {
+ if(u == 0) {
+ if(v == 0) return normal00triangular();
+ if(v == 1) return normal01triangular();
+ }
+ if(u == 1 && v == 0) return normal10triangular();
+ return cross(partialutriangular(u,v),partialvtriangular(u,v));
}
pen[] colors(material m, light light=currentlight) {
@@ -751,11 +722,18 @@ path[] regularize(path p, bool checkboundary=true)
return s;
}
+typedef void drawfcn(frame f, transform3 t=identity4, material[] m,
+ light light=currentlight, render render=defaultrender);
+
struct surface {
patch[] s;
int index[][];// Position of patch corresponding to major U,V parameter in s.
bool vcyclic;
+ transform3 T=identity4;
+ drawfcn draw;
+ bool PRCprimitive=true; // True unless no PRC primitive is available.
+
bool empty() {
return s.length == 0;
}
@@ -1052,6 +1030,9 @@ surface operator * (transform3 t, surface s)
S.s[i]=t*s.s[i];
S.index=copy(s.index);
S.vcyclic=(bool) s.vcyclic;
+ S.T=t*s.T;
+ S.draw=s.draw;
+ S.PRCprimitive=s.PRCprimitive;
return S;
}
@@ -1365,16 +1346,6 @@ triple point(patch s, real u, real v)
return s.point(u,v);
}
-real PRCshininess(real shininess)
-{
- // Empirical translation table from Phong-Blinn to PRC shininess model:
- static real[] x={0.015,0.025,0.05,0.07,0.1,0.14,0.23,0.5,0.65,0.75,0.85,
- 0.875,0.9,1};
- static real[] y={0.05,0.1,0.15,0.2,0.25,0.3,0.4,0.5,0.55,0.6,0.7,0.8,0.9,1};
- static realfunction s=fspline(x,y,monotonic);
- return s(shininess);
-}
-
struct interaction
{
int type;
@@ -1393,30 +1364,34 @@ interaction LabelInteraction()
return settings.autobillboard ? Billboard : Embedded;
}
-material material(material m, light light)
+material material(material m, light light, bool colors=false)
{
- return light.on() || invisible((pen) m) ? m : emissive(m);
+ return light.on() || invisible((pen) m) ? m : emissive(m,colors);
}
-void draw3D(frame f, int type=0, patch s, triple center=O, material m,
+void draw3D(frame f, patch s, triple center=O, material m,
light light=currentlight, interaction interaction=Embedded,
- bool prc=true)
+ bool primitive=false)
{
bool straight=s.straight && s.planar;
- bool prc=prc();
if(s.colors.length > 0) {
- if(prc && light.on())
+ if(prc() && light.on())
straight=false; // PRC vertex colors (for quads only) ignore lighting
- m=mean(s.colors);
+ m.diffuse(mean(s.colors));
}
- m=material(m,light);
+ m=material(m,light,s.colors.length > 0);
- real PRCshininess;
- if(prc) PRCshininess=PRCshininess(m.shininess);
-
(s.triangular ? drawbeziertriangle : draw)
(f,s.P,center,straight,m.p,m.opacity,m.shininess,
- m.metallic,m.fresnel0,PRCshininess,s.colors,interaction.type,prc);
+ m.metallic,m.fresnel0,s.colors,interaction.type,primitive);
+}
+
+void _draw(frame f, path3 g, triple center=O, material m,
+ light light=currentlight, interaction interaction=Embedded)
+{
+ if(!prc()) m=material(m,light);
+ _draw(f,g,center,m.p,m.opacity,m.shininess,m.metallic,m.fresnel0,
+ interaction.type);
}
int computeNormals(triple[] v, int[][] vi, triple[] n, int[][] ni)
@@ -1448,11 +1423,7 @@ void draw(frame f, triple[] v, int[][] vi,
if(p.length > 0)
m=mean(p);
m=material(m,light);
- real PRCshininess;
- if(prc())
- PRCshininess=PRCshininess(m.shininess);
- draw(f,v,vi,n,ni,m.p,m.opacity,m.shininess,m.metallic,m.fresnel0,
- PRCshininess,p,pi);
+ draw(f,v,vi,n,ni,m.p,m.opacity,m.shininess,m.metallic,m.fresnel0,p,pi);
}
// Draw triangles on a picture.
@@ -1520,40 +1491,9 @@ void draw(picture pic=currentpicture, triple[] v, int[][] vi,
pic.addPoint(v[viij]);
}
-void drawPRCsphere(frame f, transform3 t=identity4, bool half=false,
- material m, light light=currentlight,
- render render=defaultrender)
-{
- m=material(m,light);
- drawPRCsphere(f,t,half,m.p,m.opacity,PRCshininess(m.shininess),
- render.sphere);
-}
-
-void drawPRCcylinder(frame f, transform3 t=identity4, material m,
- light light=currentlight)
-{
- m=material(m,light);
- drawPRCcylinder(f,t,m.p,m.opacity,PRCshininess(m.shininess));
-}
-
-void drawPRCdisk(frame f, transform3 t=identity4, material m,
- light light=currentlight)
-{
- m=material(m,light);
- drawPRCdisk(f,t,m.p,m.opacity,PRCshininess(m.shininess));
-}
-
-void drawPRCtube(frame f, path3 center, path3 g, material m,
- light light=currentlight)
-{
- m=material(m,light);
- drawPRCtube(f,center,g,m.p,m.opacity,PRCshininess(m.shininess));
-}
-
void tensorshade(transform t=identity(), frame f, patch s,
material m, light light=currentlight, projection P)
{
-
pen[] p;
if(s.triangular) {
p=s.colorstriangular(m,light);
@@ -1574,53 +1514,62 @@ void draw(transform t=identity(), frame f, surface s, int nu=1, int nv=1,
{
bool is3D=is3D();
if(is3D) {
- bool group=name != "" || render.defaultnames;
- if(group)
- begingroup3(f,name == "" ? "surface" : name,render);
-
- // Sort patches by mean distance from camera
- triple camera=P.camera;
- if(P.infinity) {
- triple m=min(s);
- triple M=max(s);
- camera=P.target+camerafactor*(abs(M-m)+abs(m-P.target))*unit(P.vector());
- }
-
- real[][] depth=new real[s.s.length][];
- for(int i=0; i < depth.length; ++i)
- depth[i]=new real[] {dot(P.normal,camera-s.s[i].cornermean()),i};
+ bool prc=prc();
+ if(s.draw != null && (settings.outformat == "html" ||
+ (prc && s.PRCprimitive))) {
+ for(int k=0; k < s.s.length; ++k)
+ draw3D(f,s.s[k],surfacepen[k],light,primitive=true);
+ s.draw(f,s.T,surfacepen,light,render);
+ } else {
+ bool group=name != "" || render.defaultnames;
+ if(group)
+ begingroup3(f,name == "" ? "surface" : name,render);
+
+ // Sort patches by mean distance from camera
+ triple camera=P.camera;
+ if(P.infinity) {
+ triple m=min(s);
+ triple M=max(s);
+ camera=P.target+camerafactor*(abs(M-m)+abs(m-P.target))*
+ unit(P.vector());
+ }
- depth=sort(depth);
+ real[][] depth=new real[s.s.length][];
+ for(int i=0; i < depth.length; ++i)
+ depth[i]=new real[] {dot(P.normal,camera-s.s[i].cornermean()),i};
- for(int p=depth.length-1; p >= 0; --p) {
- real[] a=depth[p];
- int k=round(a[1]);
- draw3D(f,s.s[k],surfacepen[k],light);
- }
+ depth=sort(depth);
- if(group)
- endgroup3(f);
+ for(int p=depth.length-1; p >= 0; --p) {
+ real[] a=depth[p];
+ int k=round(a[1]);
+ draw3D(f,s.s[k],surfacepen[k],light);
+ }
- pen modifiers=thin()+squarecap;
- for(int p=depth.length-1; p >= 0; --p) {
- real[] a=depth[p];
- int k=round(a[1]);
- patch S=s.s[k];
- pen meshpen=meshpen[k];
- if(!invisible(meshpen) && !S.triangular) {
- if(group)
- begingroup3(f,meshname(name),render);
- meshpen=modifiers+meshpen;
- real step=nu == 0 ? 0 : 1/nu;
- for(int i=0; i <= nu; ++i)
- draw(f,S.uequals(i*step),meshpen,meshlight,partname(i,render),
- render);
- step=nv == 0 ? 0 : 1/nv;
- for(int j=0; j <= nv; ++j)
- draw(f,S.vequals(j*step),meshpen,meshlight,partname(j,render),
- render);
- if(group)
- endgroup3(f);
+ if(group)
+ endgroup3(f);
+
+ pen modifiers=thin()+squarecap;
+ for(int p=depth.length-1; p >= 0; --p) {
+ real[] a=depth[p];
+ int k=round(a[1]);
+ patch S=s.s[k];
+ pen meshpen=meshpen[k];
+ if(!invisible(meshpen) && !S.triangular) {
+ if(group)
+ begingroup3(f,meshname(name),render);
+ meshpen=modifiers+meshpen;
+ real step=nu == 0 ? 0 : 1/nu;
+ for(int i=0; i <= nu; ++i)
+ draw(f,S.uequals(i*step),meshpen,meshlight,partname(i,render),
+ render);
+ step=nv == 0 ? 0 : 1/nv;
+ for(int j=0; j <= nv; ++j)
+ draw(f,S.vequals(j*step),meshpen,meshlight,partname(j,render),
+ render);
+ if(group)
+ endgroup3(f);
+ }
}
}
}
@@ -1881,7 +1830,7 @@ void label(frame f, Label L, triple position, align align=NoAlign,
draw3D(f3,S,position,L.p,light,interaction);
// Fill subdivision cracks
if(prc && render.labelfill && opacity(L.p) == 1 && !lighton)
- _draw(f3,S.external(),position,L.p,interaction.type);
+ _draw(f3,S.external(),position,L.p,light,interaction);
}
endgroup3(f3);
if(L.defaulttransform3)
@@ -1901,7 +1850,7 @@ void label(frame f, Label L, triple position, align align=NoAlign,
draw3D(f,S,V,L.p,light,interaction);
// Fill subdivision cracks
if(prc && render.labelfill && opacity(L.p) == 1 && !lighton)
- _draw(f,S.external(),V,L.p,interaction.type);
+ _draw(f,S.external(),V,L.p,light,interaction);
}
endgroup3(f);
}
@@ -1970,7 +1919,7 @@ void label(picture pic=currentpicture, Label L, triple position,
draw3D(f3,S,v,L.p,light,interaction);
// Fill subdivision cracks
if(prc && render.labelfill && opacity(L.p) == 1 && !lighton)
- _draw(f3,S.external(),v,L.p,interaction.type);
+ _draw(f3,S.external(),v,L.p,light,interaction);
}
endgroup3(f3);
if(L.defaulttransform3)
@@ -1990,7 +1939,7 @@ void label(picture pic=currentpicture, Label L, triple position,
draw3D(f,S,V,L.p,light,interaction);
// Fill subdivision cracks
if(prc && render.labelfill && opacity(L.p) == 1 && !lighton)
- _draw(f,S.external(),V,L.p,interaction.type);
+ _draw(f,S.external(),V,L.p,light,interaction);
}
endgroup3(f);
}
@@ -2114,14 +2063,25 @@ surface surface(Label L, surface s, real uoffset, real voffset,
}
private real a=4/3*(sqrt(2)-1);
+private real f=0.5*sqrt(3)*a^2;
+
private transform3 t1=rotate(90,O,Z);
private transform3 t2=t1*t1;
private transform3 t3=t2*t1;
private transform3 i=xscale3(-1)*zscale3(-1);
-restricted patch octant1=patch(X{Y}..{-X}Y{Z}..{-Y}Z..Z{X}..{-Z}cycle,
+// Degenerate first octant
+restricted patch octant1x=patch(X{Y}..{-X}Y{Z}..{-Y}Z..Z{X}..{-Z}cycle,
new triple[] {(1,a,a),(a,1,a),(a^2,a,1),
- (a,a^2,1)});
+ (a,a^2,1)});
+private triple[][][] P=hsplit(octant1x.P,
+ intersect((1,0){N}..{W}(0,1),(0,0)--2*dir(60))[0]);
+// Nondegenerate first octant
+surface octant1=surface(patch(P[0]),
+ patch(P[1][0][0]..controls P[1][1][0] and P[1][2][0]..
+ P[1][3][0]..controls P[1][3][1] and P[1][3][2]..
+ P[1][3][3]..controls P[1][0][2] and P[1][0][1]..
+ cycle,(f,f,1)));
restricted surface unithemisphere=surface(octant1,t1*octant1,t2*octant1,
t3*octant1);
@@ -2129,33 +2089,41 @@ restricted surface unitsphere=surface(octant1,t1*octant1,t2*octant1,t3*octant1,
i*octant1,i*t1*octant1,i*t2*octant1,
i*t3*octant1);
-restricted patch unitfrustum(real t1, real t2)
+unitsphere.draw=
+ new void(frame f, transform3 t=identity4, material[] m,
+ light light=currentlight, render render=defaultrender)
+ {
+ material m=material(m[0],light);
+ drawSphere(f,t,half=false,m.p,m.opacity,m.shininess,m.metallic,m.fresnel0,
+ render.sphere);
+ };
+
+unithemisphere.draw=
+ new void(frame f, transform3 t=identity4, material[] m,
+ light light=currentlight, render render=defaultrender)
+ {
+ material m=material(m[0],light);
+ drawSphere(f,t,half=true,m.p,m.opacity,m.shininess,m.metallic,m.fresnel0,
+ render.sphere);
+ };
+
+restricted patch unitfrustum1(real ta, real tb)
{
- real s1=interp(t1,t2,1/3);
- real s2=interp(t1,t2,2/3);
- return patch(interp(Z,X,t2){Y}..{-X}interp(Z,Y,t2)--interp(Z,Y,t1){X}..{-Y}
- interp(Z,X,t1)--cycle,
+ real s1=interp(ta,tb,1/3);
+ real s2=interp(ta,tb,2/3);
+ return patch(interp(Z,X,tb){Y}..{-X}interp(Z,Y,tb)--interp(Z,Y,ta){X}..{-Y}
+ interp(Z,X,ta)--cycle,
new triple[] {(s2,s2*a,1-s2),(s2*a,s2,1-s2),(s1*a,s1,1-s1),
(s1,s1*a,1-s1)});
}
-// Return a unitcone constructed from n frusta (the final one being degenerate)
-surface unitcone(int n=6)
+restricted surface unitfrustum(real ta, real tb)
{
- surface unitcone;
- unitcone.s=new patch[4*n];
- real r=1/3;
- for(int i=0; i < n; ++i) {
- patch s=unitfrustum(i < n-1 ? r^(i+1) : 0,r^i);
- unitcone.s[i]=s;
- unitcone.s[n+i]=t1*s;
- unitcone.s[2n+i]=t2*s;
- unitcone.s[3n+i]=t3*s;
- }
- return unitcone;
+ patch p=unitfrustum1(ta,tb);
+ return surface(p,t1*p,t2*p,t3*p);
}
-restricted surface unitcone=unitcone();
+restricted surface unitcone=surface(unitfrustum(0,1));
restricted surface unitsolidcone=surface(patch(unitcircle3)...unitcone.s);
// Construct an approximate cone over an arbitrary base.
@@ -2166,6 +2134,18 @@ private patch unitcylinder1=patch(X{Y}..{-X}Y--Y+Z{X}..{-Y}X+Z--cycle);
restricted surface unitcylinder=surface(unitcylinder1,t1*unitcylinder1,
t2*unitcylinder1,t3*unitcylinder1);
+drawfcn unitcylinderDraw(bool core) {
+ return new void(frame f, transform3 t=identity4, material[] m,
+ light light=currentlight, render render=defaultrender)
+ {
+ material m=material(m[0],light);
+ drawCylinder(f,t,m.p,m.opacity,m.shininess,m.metallic,m.fresnel0,
+ m.opacity == 1 ? core : false);
+ };
+}
+
+unitcylinder.draw=unitcylinderDraw(false);
+
private patch unitplane=patch(new triple[] {O,X,X+Y,Y});
restricted surface unitcube=surface(reverse(unitplane),
rotate(90,O,X)*unitplane,
@@ -2176,24 +2156,23 @@ restricted surface unitcube=surface(reverse(unitplane),
restricted surface unitplane=surface(unitplane);
restricted surface unitdisk=surface(unitcircle3);
+unitdisk.draw=
+ new void(frame f, transform3 t=identity4, material[] m,
+ light light=currentlight, render render=defaultrender)
+ {
+ material m=material(m[0],light);
+ drawDisk(f,t,m.p,m.opacity,m.shininess,m.metallic,m.fresnel0);
+ };
+
void dot(frame f, triple v, material p=currentpen,
light light=nolight, string name="",
render render=defaultrender, projection P=currentprojection)
{
+ if(name == "" && render.defaultnames) name="dot";
pen q=(pen) p;
- if(is3D()) {
- bool group=name != "" || render.defaultnames;
- if(group)
- begingroup3(f,name == "" ? "dot" : name,render);
- real size=0.5*linewidth(dotsize(q)+q);
- transform3 T=shift(v)*scale3(size);
- for(patch s : unitsphere.s)
- draw3D(f,T*s,v,p,light,prc=false);
- if(prc())
- drawPRCsphere(f,T,p,light);
- if(group)
- endgroup3(f);
- } else dot(f,project(v,P.t),q);
+ real size=0.5*linewidth(dotsize(q)+q);
+ transform3 T=shift(v)*scale3(size);
+ draw(f,T*unitsphere,p,light,name,render,P);
}
void dot(frame f, triple[] v, material p=currentpen, light light=nolight,
@@ -2250,18 +2229,7 @@ void dot(picture pic=currentpicture, triple v, material p=currentpen,
real size=0.5*linewidth(dotsize(q)+q);
pic.add(new void(frame f, transform3 t, picture pic, projection P) {
triple V=t*v;
- if(is3D()) {
- bool group=name != "" || render.defaultnames;
- if(group)
- begingroup3(f,name == "" ? "dot" : name,render);
- transform3 T=shift(V)*scale3(size);
- for(patch s : unitsphere.s)
- draw3D(f,T*s,V,p,light,prc=false);
- if(prc())
- drawPRCsphere(f,T,p,light,render);
- if(group)
- endgroup3(f);
- }
+ dot(f,V,p,light,name,render,P);
if(pic != null)
dot(pic,project(V,P.t),q);
},true);
@@ -2450,11 +2418,8 @@ void draw(picture pic=currentpicture, triple[][] P, real[] uknot, real[] vknot,
if(group)
begingroup3(f,name == "" ? "surface" : name,render);
triple[][] P=t*P;
- real PRCshininess;
- if(prc())
- PRCshininess=PRCshininess(m.shininess);
- draw(f,P,uknot,vknot,weights,m.p,m.opacity,m.shininess,m.metallic,m.fresnel0,
- PRCshininess,colors);
+ draw(f,P,uknot,vknot,weights,m.p,m.opacity,m.shininess,m.metallic,
+ m.fresnel0,colors);
if(group)
endgroup3(f);
if(pic != null)
diff --git a/Master/texmf-dist/asymptote/three_tube.asy b/Master/texmf-dist/asymptote/three_tube.asy
index 25bb9385ec8..86451b97fa1 100644
--- a/Master/texmf-dist/asymptote/three_tube.asy
+++ b/Master/texmf-dist/asymptote/three_tube.asy
@@ -1,41 +1,15 @@
-void render(path3 s, void f(path3, real), render render=defaultrender)
-{
- real granularity=render.tubegranularity;
- void Split(triple z0, triple c0, triple c1, triple z1, real t0=0, real t1=1,
- real depth=mantissaBits) {
- if(depth > 0) {
- real S=straightness(z0,c0,c1,z1);
- if(S > 0) {
- --depth;
- if(S > max(granularity*max(abs(z0),abs(c0),abs(c1),abs(z1)))) {
- triple m0=0.5*(z0+c0);
- triple m1=0.5*(c0+c1);
- triple m2=0.5*(c1+z1);
- triple m3=0.5*(m0+m1);
- triple m4=0.5*(m1+m2);
- triple m5=0.5*(m3+m4);
- real tm=0.5*(t0+t1);
- Split(z0,m0,m3,m5,t0,tm,depth);
- Split(m5,m4,m2,z1,tm,t1,depth);
- return;
- }
- }
- }
- f(z0..controls c0 and c1..z1,t0);
- }
- Split(point(s,0),postcontrol(s,0),precontrol(s,1),point(s,1));
-}
-
-struct rmf
-{
+struct rmf {
triple p,r,t,s;
- void operator init(triple p, triple r, triple t)
- {
+ void operator init(triple p, triple r, triple t) {
this.p=p;
this.r=r;
this.t=t;
s=cross(t,r);
}
+
+ transform3 transform() {
+ return transform3(r,s,t);
+ }
}
// Rotation minimizing frame
@@ -66,344 +40,172 @@ rmf[] rmf(path3 g, real[] t)
return R;
}
-private real[][][] bispline0(real[][] z, real[][] p, real[][] q, real[][] r,
- real[] x, real[] y, bool[][] cond={})
-{ // z[i][j] is the value at (x[i],y[j])
- // p and q are the first derivatives with respect to x and y, respectively
- // r is the second derivative ddu/dxdy
- int n=x.length-1;
- int m=y.length-1;
-
- bool all=cond.length == 0;
-
- int count;
- if(all)
- count=n*m;
- else {
- count=0;
- for(int i=0; i < n; ++i) {
- bool[] condi=cond[i];
- bool[] condp=cond[i+1];
- for(int j=0; j < m; ++j)
- if(all || (condi[j] && condi[j+1] && condp[j] && condp[j+1]))
- ++count;
- }
- }
-
- real[][][] s=new real[count][][];
- int k=0;
- for(int i=0; i < n; ++i) {
- int ip=i+1;
- real xi=x[i];
- real xp=x[ip];
- real hx=(xp-xi)/3;
- real[] zi=z[i];
- real[] zp=z[ip];
- real[] ri=r[i];
- real[] rp=r[ip];
- real[] pi=p[i];
- real[] pp=p[ip];
- real[] qi=q[i];
- real[] qp=q[ip];
- bool[] condi=all ? null : cond[i];
- bool[] condp=all ? null : cond[i+1];
- for(int j=0; j < m; ++j) {
- if(all || (condi[j] && condi[j+1] && condp[j] && condp[j+1])) {
- real yj=y[j];
- int jp=j+1;
- real yp=y[jp];
- real hy=(yp-yj)/3;
- real hxy=hx*hy;
- real zij=zi[j];
- real zip=zi[jp];
- real zpj=zp[j];
- real zpp=zp[jp];
- real pij=hx*pi[j];
- real ppj=hx*pp[j];
- real qip=hy*qi[jp];
- real qpp=hy*qp[jp];
- real zippip=zip+hx*pi[jp];
- real zppmppp=zpp-hx*pp[jp];
- real zijqij=zij+hy*qi[j];
- real zpjqpj=zpj+hy*qp[j];
-
- s[k]=new real[][] {{zij,zijqij,zip-qip,zip},
- {zij+pij,zijqij+pij+hxy*ri[j],
- zippip-qip-hxy*ri[jp],zippip},
- {zpj-ppj,zpjqpj-ppj-hxy*rp[j],
- zppmppp-qpp+hxy*rp[jp],zppmppp},
- {zpj,zpjqpj,zpp-qpp,zpp}};
- ++k;
- }
+rmf[] rmf(triple z0, triple c0, triple c1, triple z1, real[] t)
+{
+ real norm=sqrtEpsilon*max(abs(z0),abs(c0),abs(c1),abs(z1));
+
+// Special case of dir for t in (0,1].
+ triple dir(real t) {
+ if(t == 1) {
+ triple dir=z1-c1;
+ if(abs(dir) > norm) return unit(dir);
+ dir=2.0*c1-c0-z1;
+ if(abs(dir) > norm) return unit(dir);
+ return unit(z1-z0+3.0*(c0-c1));
}
+ triple a=z1-z0+3.0*(c0-c1);
+ triple b=2.0*(z0+c1)-4.0*c0;
+ triple c=c0-z0;
+ triple dir=a*t*t+b*t+c;
+ if(abs(dir) > norm) return unit(dir);
+ dir=2.0*a*t+b;
+ if(abs(dir) > norm) return unit(dir);
+ return unit(a);
}
-
- return s;
-}
-// return the surface values described by a real matrix f, interpolated with
-// xsplinetype and ysplinetype.
-real[][][] bispline(real[][] f, real[] x, real[] y,
- splinetype xsplinetype=null,
- splinetype ysplinetype=xsplinetype, bool[][] cond={})
-{
- real epsilon=sqrtEpsilon*norm(y);
- if(xsplinetype == null)
- xsplinetype=(abs(x[0]-x[x.length-1]) <= epsilon) ? periodic : notaknot;
- if(ysplinetype == null)
- ysplinetype=(abs(y[0]-y[y.length-1]) <= epsilon) ? periodic : notaknot;
- int n=x.length; int m=y.length;
- real[][] ft=transpose(f);
- real[][] tp=new real[m][];
- for(int j=0; j < m; ++j)
- tp[j]=xsplinetype(x,ft[j]);
- real[][] q=new real[n][];
- for(int i=0; i < n; ++i)
- q[i]=ysplinetype(y,f[i]);
- real[][] qt=transpose(q);
- real[] d1=xsplinetype(x,qt[0]);
- real[] d2=xsplinetype(x,qt[m-1]);
- real[][] r=new real[n][];
- real[][] p=transpose(tp);
- for(int i=0; i < n; ++i)
- r[i]=clamped(d1[i],d2[i])(y,p[i]);
- return bispline0(f,p,q,r,x,y,cond);
-}
-
-bool uperiodic(real[][] a) {
- int n=a.length;
- if(n == 0) return false;
- int m=a[0].length;
- real[] a0=a[0];
- real[] a1=a[n-1];
- for(int j=0; j < m; ++j) {
- real norm=0;
- for(int i=0; i < n; ++i)
- norm=max(norm,abs(a[i][j]));
- real epsilon=sqrtEpsilon*norm;
- if(abs(a0[j]-a1[j]) > epsilon) return false;
+ rmf[] R=new rmf[t.length];
+ triple T=c0-z0;
+ if(abs(T) < norm) {
+ T=z0-2*c0+c1;
+ if(abs(T) < norm)
+ T=z1-z0+3.0*(c0-c1);
}
- return true;
-}
-bool vperiodic(real[][] a) {
- int n=a.length;
- if(n == 0) return false;
- int m=a[0].length-1;
- for(int i=0; i < n; ++i) {
- real[] ai=a[i];
- real epsilon=sqrtEpsilon*norm(ai);
- if(abs(ai[0]-ai[m]) > epsilon) return false;
+ T=unit(T);
+ triple Tp=perp(T);
+ R[0]=rmf(z0,Tp,T);
+ for(int i=1; i < t.length; ++i) {
+ rmf Ri=R[i-1];
+ real t=t[i];
+ triple p=bezier(z0,c0,c1,z1,t);
+ triple v1=p-Ri.p;
+ if(v1 != O) {
+ triple r=Ri.r;
+ triple u1=unit(v1);
+ triple ti=Ri.t;
+ triple tp=ti-2*dot(u1,ti)*u1;
+ ti=dir(t);
+ triple rp=r-2*dot(u1,r)*u1;
+ triple u2=unit(ti-tp);
+ rp=rp-2*dot(u2,rp)*u2;
+ R[i]=rmf(p,unit(rp),unit(ti));
+ } else
+ R[i]=R[i-1];
}
- return true;
+ return R;
}
-// return the surface described by a parametric function f evaluated at u and v
-// and interpolated with usplinetype and vsplinetype.
-surface surface(triple f(pair z), real[] u, real[] v,
- splinetype[] usplinetype, splinetype[] vsplinetype=Spline,
- bool cond(pair z)=null)
+surface tube(triple z0, triple c0, triple c1, triple z1, real w)
{
- int nu=u.length-1;
- int nv=v.length-1;
- real[] ipt=sequence(u.length);
- real[] jpt=sequence(v.length);
- real[][] fx=new real[u.length][v.length];
- real[][] fy=new real[u.length][v.length];
- real[][] fz=new real[u.length][v.length];
-
- bool[][] active;
- bool all=cond == null;
- if(!all) active=new bool[u.length][v.length];
-
- for(int i=0; i <= nu; ++i) {
- real ui=u[i];
- real[] fxi=fx[i];
- real[] fyi=fy[i];
- real[] fzi=fz[i];
- bool[] activei=all ? null : active[i];
- for(int j=0; j <= nv; ++j) {
- pair z=(ui,v[j]);
- if(!all) activei[j]=cond(z);
- triple f=f(z);
- fxi[j]=f.x;
- fyi[j]=f.y;
- fzi[j]=f.z;
- }
- }
-
- if(usplinetype.length == 0) {
- usplinetype=new splinetype[] {uperiodic(fx) ? periodic : notaknot,
- uperiodic(fy) ? periodic : notaknot,
- uperiodic(fz) ? periodic : notaknot};
- } else if(usplinetype.length != 3) abort("usplinetype must have length 3");
-
- if(vsplinetype.length == 0) {
- vsplinetype=new splinetype[] {vperiodic(fx) ? periodic : notaknot,
- vperiodic(fy) ? periodic : notaknot,
- vperiodic(fz) ? periodic : notaknot};
- } else if(vsplinetype.length != 3) abort("vsplinetype must have length 3");
-
- real[][][] sx=bispline(fx,ipt,jpt,usplinetype[0],vsplinetype[0],active);
- real[][][] sy=bispline(fy,ipt,jpt,usplinetype[1],vsplinetype[1],active);
- real[][][] sz=bispline(fz,ipt,jpt,usplinetype[2],vsplinetype[2],active);
-
- surface s=surface(sx.length);
- s.index=new int[nu][nv];
- int k=-1;
- for(int i=0; i < nu; ++i) {
- int[] indexi=s.index[i];
- for(int j=0; j < nv; ++j)
- indexi[j]=++k;
- }
-
- for(int k=0; k < sx.length; ++k) {
- triple[][] Q=new triple[4][];
- real[][] Px=sx[k];
- real[][] Py=sy[k];
- real[][] Pz=sz[k];
- for(int i=0; i < 4 ; ++i) {
- real[] Pxi=Px[i];
- real[] Pyi=Py[i];
- real[] Pzi=Pz[i];
- Q[i]=new triple[] {(Pxi[0],Pyi[0],Pzi[0]),
- (Pxi[1],Pyi[1],Pzi[1]),
- (Pxi[2],Pyi[2],Pzi[2]),
- (Pxi[3],Pyi[3],Pzi[3])};
+ surface s;
+ static real[] T={0,1/3,2/3,1};
+ rmf[] rmf=rmf(z0,c0,c1,z1,T);
+
+ real aw=a*w;
+ triple[] arc={(w,0,0),(w,aw,0),(aw,w,0),(0,w,0)};
+ triple[] g={z0,c0,c1,z1};
+
+ void f(transform3 R) {
+ triple[][] P=new triple[4][];
+ for(int i=0; i < 4; ++i) {
+ transform3 T=shift(g[i])*rmf[i].transform()*R;
+ P[i]=new triple[] {T*arc[0],T*arc[1],T*arc[2],T*arc[3]};
}
- s.s[k]=patch(Q);
+ s.push(patch(P,copy=false));
}
- if(usplinetype[0] == periodic && usplinetype[1] == periodic &&
- usplinetype[1] == periodic) s.ucyclic(true);
-
- if(vsplinetype[0] == periodic && vsplinetype[1] == periodic &&
- vsplinetype[1] == periodic) s.vcyclic(true);
-
+ f(identity4);
+ f(t1);
+ f(t2);
+ f(t3);
+
+ s.PRCprimitive=false;
+ s.draw=new void(frame f, transform3 t=identity4, material[] m,
+ light light=currentlight, render render=defaultrender)
+ {
+ material m=material(m[0],light);
+ drawTube(f,t*g,w,m.p,m.opacity,m.shininess,m.metallic,m.fresnel0,
+ t*min(s),t*max(s),m.opacity == 1);
+ };
return s;
}
-path3 interp(path3 a, path3 b, real t)
-{
- int n=size(a);
- return path3(sequence(new triple(int i) {
- return interp(precontrol(a,i),precontrol(b,i),t);},n),
- sequence(new triple(int i) {return interp(point(a,i),point(b,i),t);},n),
- sequence(new triple(int i) {return interp(postcontrol(a,i),
- postcontrol(b,i),t);},n),
- sequence(new bool(int i) {return straight(a,i) && straight(b,i);},n),
- cyclic(a) && cyclic(b));
+real tubethreshold=20;
+
+// Note: casting an array of surfaces to a single surface will disable
+// primitive compression.
+surface operator cast(surface[] s) {
+ surface S;
+ for(surface p : s)
+ S.append(p);
+ return S;
}
struct tube
{
- surface s;
+ surface[] s;
path3 center; // tube axis
void Null(transform3) {}
void Null(transform3, bool) {}
- void operator init(path3 p, real width, render render=defaultrender,
- void cylinder(transform3)=Null,
- void sphere(transform3, bool half)=Null,
- void pipe(path3, path3)=null) {
+ surface[] render(path3 g, real r) {
+ triple z0=point(g,0);
+ triple c0=postcontrol(g,0);
+ triple c1=precontrol(g,1);
+ triple z1=point(g,1);
+ real norm=sqrtEpsilon*max(abs(z0),abs(c0),abs(c1),abs(z1));
+ surface[] s;
+ void Split(triple z0, triple c0, triple c1, triple z1,
+ real depth=mantissaBits) {
+ if(depth > 0) {
+ pair threshold(triple z0, triple c0, triple c1) {
+ triple u=c1-z0;
+ triple v=c0-z0;
+ real x=abs(v);
+ return (x,abs(u*x^2-dot(u,v)*v));
+ }
+
+ pair a0=threshold(z0,c0,c1);
+ pair a1=threshold(z1,c1,c0);
+ real rL=r*arclength(z0,c0,c1,z1)*tubethreshold;
+ if((a0.x >= norm && rL*a0.y^2 > a0.x^8) ||
+ (a1.x >= norm && rL*a1.y^2 > a1.x^8)) {
+ triple m0=0.5*(z0+c0);
+ triple m1=0.5*(c0+c1);
+ triple m2=0.5*(c1+z1);
+ triple m3=0.5*(m0+m1);
+ triple m4=0.5*(m1+m2);
+ triple m5=0.5*(m3+m4);
+ --depth;
+ Split(z0,m0,m3,m5,depth);
+ Split(m5,m4,m2,z1,depth);
+ return;
+ }
+ }
+
+ s.push(tube(z0,c0,c1,z1,r));
+ }
+ Split(z0,c0,c1,z1);
+ return s;
+ }
+
+ void operator init(path3 p, real width) {
+ center=p;
real r=0.5*width;
void generate(path3 p) {
int n=length(p);
- if(piecewisestraight(p)) {
- for(int i=0; i < n; ++i) {
+ for(int i=0; i < n; ++i) {
+ if(straight(p,i)) {
triple v=point(p,i);
triple u=point(p,i+1)-v;
transform3 t=shift(v)*align(unit(u))*scale(r,r,abs(u));
- s.append(t*unitcylinder);
- cylinder(t);
- }
- center=center&p;
- } else {
- real[] T;
- path3 G;
- for(int i=0; i < n; ++i)
- render(subpath(p,i,i+1),
- new void(path3 g, real s) {
- G=G&g;
- T.push(i+s);
- },render);
- T.push(n);
- T.cyclic=cyclic(p);
- rmf[] rmf=rmf(p,T);
- triple f(pair t) {
- rmf R=rmf[round(t.x)];
- int n=round(t.y);
- static real[] x={1,0,-1,0};
- static real[] y={0,1,0,-1};
- return point(G,t.x)+r*(R.r*x[n]-R.s*y[n]);
- }
-
- static real[] v={0,1,2,3,0};
- static real[] circular(real[] x, real[] y) {
- static real a=8/3*(sqrt(2)-1);
- return a*periodic(x,y);
- }
-
- static splinetype[] Monotonic={monotonic,monotonic,monotonic};
- static splinetype[] Circular={circular,circular,circular};
- if(T.length > 0) {
- surface S=surface(f,sequence(T.length),v,Monotonic,Circular);
- s.append(S);
-
- // Compute center of tube:
- int n=S.index.length;
- if(T.cyclic) --n;
- triple[] pre=new triple[n+1];
- triple[] point=new triple[n+1];
- triple[] post=new triple[n+1];
-
- int[] index=S.index[0];
- triple Point;
- for(int m=0; m < 4; ++m)
- Point += S.s[index[m]].P[0][0];
- pre[0]=point[0]=0.25*Point;
-
- for(int i=0; i < n; ++i) {
- index=S.index[i];
- triple Pre,Point,Post;
- for(int m=0; m < 4; ++m) {
- triple [][] P=S.s[index[m]].P;
- Post += P[1][0];
- Pre += P[2][0];
- Point += P[3][0];
- }
- post[i]=0.25*Post;
- pre[i+1]=0.25*Pre;
- point[i+1]=0.25*Point;
-
- }
-
- index=S.index[n-1];
- triple Post;
- for(int m=0; m < 4; ++m)
- Post += S.s[index[m]].P[3][0];
- post[n]=0.25*Post;
-
- bool[] b=array(n+1,false);
- path3 Center=path3(pre,point,post,b,T.cyclic);
- center=center&Center;
-
- if(pipe != null) { // Compute path along tube
- triple[] pre=new triple[n+1];
- triple[] point=new triple[n+1];
- triple[] post=new triple[n+1];
- pre[0]=point[0]=S.s[S.index[0][0]].P[0][0];
- for(int i=0; i < n; ++i) {
- triple [][] P=S.s[S.index[i][0]].P;
- post[i]=P[1][0];
- pre[i+1]=P[2][0];
- point[i+1]=P[3][0];
- }
- post[n]=S.s[S.index[n-1][0]].P[3][0];
- pipe(Center,path3(pre,point,post,b,T.cyclic));
- }
- }
+ // Draw opaque surfaces with core for better small-scale rendering.
+ surface unittube=t*unitcylinder;
+ unittube.draw=unitcylinderDraw(core=true);
+ s.push(unittube);
+ } else
+ s.append(render(subpath(p,i,i+1),r));
}
}
@@ -416,11 +218,11 @@ struct tube
generate(subpath(p,begin,i));
triple dir=dir(p,i,-1);
transform3 T=t*align(dir);
- s.append(shift(point(p,i))*T*(dir != O ? unithemisphere : unitsphere));
- sphere(shift(point(center,length(center)))*T,
- half=straight(p,i-1) && straight(p,i));
+ s.push(shift(point(p,i))*T*(straight(p,i-1) && straight(p,i) ?
+ unithemisphere : unitsphere));
begin=i;
}
- generate(subpath(p,begin,n));
+ path3 g=subpath(p,begin,n);
+ generate(g);
}
}
diff --git a/Master/texmf-dist/asymptote/tube.asy b/Master/texmf-dist/asymptote/tube.asy
index 33e2ea3c868..cfaf458db42 100644
--- a/Master/texmf-dist/asymptote/tube.asy
+++ b/Master/texmf-dist/asymptote/tube.asy
@@ -9,6 +9,33 @@
import three;
+real tubegranularity=1e-7;
+
+void render(path3 s, real r, void f(path3, real))
+{
+ void Split(triple z0, triple c0, triple c1, triple z1, real t0=0, real t1=1,
+ real depth=mantissaBits) {
+ if(depth > 0) {
+ real S=straightness(z0,c0,c1,z1);
+ if(S > max(tubegranularity*max(abs(z0),abs(c0),abs(c1),abs(z1)))) {
+ --depth;
+ triple m0=0.5*(z0+c0);
+ triple m1=0.5*(c0+c1);
+ triple m2=0.5*(c1+z1);
+ triple m3=0.5*(m0+m1);
+ triple m4=0.5*(m1+m2);
+ triple m5=0.5*(m3+m4);
+ real tm=0.5*(t0+t1);
+ Split(z0,m0,m3,m5,t0,tm,depth);
+ Split(m5,m4,m2,z1,tm,t1,depth);
+ return;
+ }
+ }
+ f(z0..controls c0 and c1..z1,t0);
+ }
+ Split(point(s,0),postcontrol(s,0),precontrol(s,1),point(s,1));
+}
+
// A 3D version of roundedpath(path, real).
path3 roundedpath(path3 A, real r)
{
@@ -42,13 +69,8 @@ real[] sample(path3 g, real r, real relstep=0)
real[] t;
int n=length(g);
if(relstep <= 0) {
- for(int i=0; i < n; ++i) {
- real S=straightness(g,i);
- if(S < sqrtEpsilon*r)
- t.push(i);
- else
- render(subpath(g,i,i+1),new void(path3, real s) {t.push(i+s);});
- }
+ for(int i=0; i < n; ++i)
+ render(subpath(g,i,i+1),r,new void(path3, real s) {t.push(i+s);});
t.push(n);
} else {
int nb=ceil(1/relstep);
diff --git a/Master/texmf-dist/asymptote/version.asy b/Master/texmf-dist/asymptote/version.asy
index e3257e8cb62..d6ca7eb9577 100644
--- a/Master/texmf-dist/asymptote/version.asy
+++ b/Master/texmf-dist/asymptote/version.asy
@@ -1 +1 @@
-string VERSION="2.62";
+string VERSION="2.63";
diff --git a/Master/texmf-dist/asymptote/webgl/asygl.js b/Master/texmf-dist/asymptote/webgl/asygl.js
index 46aea1a377e..7c0e9edba4a 100644
--- a/Master/texmf-dist/asymptote/webgl/asygl.js
+++ b/Master/texmf-dist/asymptote/webgl/asygl.js
@@ -36,4 +36,4 @@ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.*/
-let vertex="\nattribute vec3 position;\n#ifdef WIDTH\nattribute float width;\n#endif\n#ifdef NORMAL\nattribute vec3 normal;\n#endif\nattribute float materialIndex;\n#ifdef COLOR\nattribute vec4 color;\n#endif\n\nuniform mat3 normMat;\nuniform mat4 viewMat;\nuniform mat4 projViewMat;\n\n#ifdef NORMAL\n#ifndef ORTHOGRAPHIC\nvarying vec3 ViewPosition;\n#endif\nvarying vec3 Normal;\n#endif\nvarying vec4 diffuse;\nvarying vec3 specular;\nvarying float roughness,metallic,fresnel0;\nvarying vec4 emissive;\n\nstruct Material {\n vec4 diffuse,emissive,specular;\n vec4 parameters;\n};\n\nuniform Material Materials[Nmaterials];\n\nvoid main(void)\n{\n vec4 v=vec4(position,1.0);\n gl_Position=projViewMat*v;\n#ifdef NORMAL\n#ifndef ORTHOGRAPHIC\n ViewPosition=(viewMat*v).xyz;\n#endif \n Normal=normal*normMat;\n \n Material m;\n#ifdef TRANSPARENT\n m=Materials[int(abs(materialIndex))-1];\n if(materialIndex >= 0.0) {\n diffuse=m.diffuse;\n emissive=m.emissive;\n } else {\n diffuse=color;\n#if nlights > 0\n emissive=vec4(0.0);\n#else\n emissive=color;\n#endif\n }\n#else\n m=Materials[int(materialIndex)];\n#ifdef COLOR\n diffuse=color;\n#if nlights > 0\n emissive=vec4(0.0);\n#else\n emissive=color;\n#endif\n#else\n diffuse=m.diffuse;\n emissive=m.emissive;\n#endif\n#endif\n specular=m.specular.rgb;\n vec4 parameters=m.parameters;\n roughness=1.0-parameters[0];\n metallic=parameters[1];\n fresnel0=parameters[2];\n#else\n emissive=Materials[int(materialIndex)].emissive;\n#endif\n#ifdef WIDTH\n gl_PointSize=width;\n#endif\n}\n",fragment="\n#ifdef NORMAL\n#ifndef ORTHOGRAPHIC\nvarying vec3 ViewPosition;\n#endif\nvarying vec3 Normal;\nvarying vec4 diffuse;\nvarying vec3 specular;\nvarying float roughness,metallic,fresnel0;\n\nfloat Roughness2;\nvec3 normal;\n\nstruct Light {\n vec3 direction;\n vec3 color;\n};\n\nuniform Light Lights[Nlights];\n\nfloat NDF_TRG(vec3 h)\n{\n float ndoth=max(dot(normal,h),0.0);\n float alpha2=Roughness2*Roughness2;\n float denom=ndoth*ndoth*(alpha2-1.0)+1.0;\n return denom != 0.0 ? alpha2/(denom*denom) : 0.0;\n}\n \nfloat GGX_Geom(vec3 v)\n{\n float ndotv=max(dot(v,normal),0.0);\n float ap=1.0+Roughness2;\n float k=0.125*ap*ap;\n return ndotv/((ndotv*(1.0-k))+k);\n}\n \nfloat Geom(vec3 v, vec3 l)\n{\n return GGX_Geom(v)*GGX_Geom(l);\n}\n \nfloat Fresnel(vec3 h, vec3 v, float fresnel0)\n{\n float a=1.0-max(dot(h,v),0.0);\n float b=a*a;\n return fresnel0+(1.0-fresnel0)*b*b*a;\n}\n \n// physical based shading using UE4 model.\nvec3 BRDF(vec3 viewDirection, vec3 lightDirection)\n{\n vec3 lambertian=diffuse.rgb;\n vec3 h=normalize(lightDirection+viewDirection);\n \n float omegain=max(dot(viewDirection,normal),0.0);\n float omegali=max(dot(lightDirection,normal),0.0);\n \n float D=NDF_TRG(h);\n float G=Geom(viewDirection,lightDirection);\n float F=Fresnel(h,viewDirection,fresnel0);\n \n float denom=4.0*omegain*omegali;\n float rawReflectance=denom > 0.0 ? (D*G)/denom : 0.0;\n \n vec3 dielectric=mix(lambertian,rawReflectance*specular,F);\n vec3 metal=rawReflectance*diffuse.rgb;\n \n return mix(dielectric,metal,metallic);\n}\n#endif\nvarying vec4 emissive;\n \nvoid main(void)\n{\n#if defined(NORMAL) && nlights > 0\n normal=normalize(Normal);\n normal=gl_FrontFacing ? normal : -normal;\n#ifdef ORTHOGRAPHIC\n vec3 viewDir=vec3(0.0,0.0,1.0);\n#else\n vec3 viewDir=-normalize(ViewPosition);\n#endif\n Roughness2=roughness*roughness;\n vec3 color=emissive.rgb;\n for(int i=0; i < nlights; ++i) {\n Light Li=Lights[i];\n vec3 L=Li.direction;\n float cosTheta=max(dot(normal,L),0.0);\n vec3 radiance=cosTheta*Li.color;\n color += BRDF(viewDir,L)*radiance;\n }\n gl_FragColor=vec4(color,diffuse.a);\n#else\n gl_FragColor=emissive;\n#endif\n}\n";!function(e,t){if("object"==typeof exports&&"object"==typeof module)module.exports=t();else if("function"==typeof define&&define.amd)define([],t);else{var i=t();for(var a in i)("object"==typeof exports?exports:e)[a]=i[a]}}("undefined"!=typeof self?self:this,function(){return function(e){var t={};function i(a){if(t[a])return t[a].exports;var r=t[a]={i:a,l:!1,exports:{}};return e[a].call(r.exports,r,r.exports,i),r.l=!0,r.exports}return i.m=e,i.c=t,i.d=function(e,t,a){i.o(e,t)||Object.defineProperty(e,t,{configurable:!1,enumerable:!0,get:a})},i.n=function(e){var t=e&&e.__esModule?function(){return e.default}:function(){return e};return i.d(t,"a",t),t},i.o=function(e,t){return Object.prototype.hasOwnProperty.call(e,t)},i.p="",i(i.s=1)}([function(e,t,i){"use strict";Object.defineProperty(t,"__esModule",{value:!0}),t.setMatrixArrayType=function(e){t.ARRAY_TYPE=e},t.toRadian=function(e){return e*r},t.equals=function(e,t){return Math.abs(e-t)<=a*Math.max(1,Math.abs(e),Math.abs(t))};var a=t.EPSILON=1e-6;t.ARRAY_TYPE="undefined"!=typeof Float32Array?Float32Array:Array,t.RANDOM=Math.random;var r=Math.PI/180},function(e,t,i){"use strict";Object.defineProperty(t,"__esModule",{value:!0}),t.mat4=t.mat3=void 0;var a=n(i(2)),r=n(i(3));function n(e){if(e&&e.__esModule)return e;var t={};if(null!=e)for(var i in e)Object.prototype.hasOwnProperty.call(e,i)&&(t[i]=e[i]);return t.default=e,t}t.mat3=a,t.mat4=r},function(e,t,i){"use strict";Object.defineProperty(t,"__esModule",{value:!0}),t.create=function(){var e=new a.ARRAY_TYPE(9);return e[0]=1,e[1]=0,e[2]=0,e[3]=0,e[4]=1,e[5]=0,e[6]=0,e[7]=0,e[8]=1,e},t.fromMat4=function(e,t){return e[0]=t[0],e[1]=t[1],e[2]=t[2],e[3]=t[4],e[4]=t[5],e[5]=t[6],e[6]=t[8],e[7]=t[9],e[8]=t[10],e},t.invert=function(e,t){var i=t[0],a=t[1],r=t[2],n=t[3],s=t[4],o=t[5],l=t[6],h=t[7],c=t[8],d=c*s-o*h,m=-c*n+o*l,f=h*n-s*l,u=i*d+a*m+r*f;if(!u)return null;return u=1/u,e[0]=d*u,e[1]=(-c*a+r*h)*u,e[2]=(o*a-r*s)*u,e[3]=m*u,e[4]=(c*i-r*l)*u,e[5]=(-o*i+r*n)*u,e[6]=f*u,e[7]=(-h*i+a*l)*u,e[8]=(s*i-a*n)*u,e};var a=function(e){if(e&&e.__esModule)return e;var t={};if(null!=e)for(var i in e)Object.prototype.hasOwnProperty.call(e,i)&&(t[i]=e[i]);return t.default=e,t}(i(0))},function(e,t,i){"use strict";Object.defineProperty(t,"__esModule",{value:!0}),t.create=function(){var e=new a.ARRAY_TYPE(16);return e[0]=1,e[1]=0,e[2]=0,e[3]=0,e[4]=0,e[5]=1,e[6]=0,e[7]=0,e[8]=0,e[9]=0,e[10]=1,e[11]=0,e[12]=0,e[13]=0,e[14]=0,e[15]=1,e},t.identity=function(e){return e[0]=1,e[1]=0,e[2]=0,e[3]=0,e[4]=0,e[5]=1,e[6]=0,e[7]=0,e[8]=0,e[9]=0,e[10]=1,e[11]=0,e[12]=0,e[13]=0,e[14]=0,e[15]=1,e},t.invert=function(e,t){var i=t[0],a=t[1],r=t[2],n=t[3],s=t[4],o=t[5],l=t[6],h=t[7],c=t[8],d=t[9],m=t[10],f=t[11],u=t[12],v=t[13],p=t[14],g=t[15],x=i*o-a*s,M=i*l-r*s,w=i*h-n*s,b=a*l-r*o,A=a*h-n*o,S=r*h-n*l,R=c*v-d*u,D=c*p-m*u,P=c*g-f*u,T=d*p-m*v,y=d*g-f*v,z=m*g-f*p,I=x*z-M*y+w*T+b*P-A*D+S*R;if(!I)return null;return I=1/I,e[0]=(o*z-l*y+h*T)*I,e[1]=(r*y-a*z-n*T)*I,e[2]=(v*S-p*A+g*b)*I,e[3]=(m*A-d*S-f*b)*I,e[4]=(l*P-s*z-h*D)*I,e[5]=(i*z-r*P+n*D)*I,e[6]=(p*w-u*S-g*M)*I,e[7]=(c*S-m*w+f*M)*I,e[8]=(s*y-o*P+h*R)*I,e[9]=(a*P-i*y-n*R)*I,e[10]=(u*A-v*w+g*x)*I,e[11]=(d*w-c*A-f*x)*I,e[12]=(o*D-s*T-l*R)*I,e[13]=(i*T-a*D+r*R)*I,e[14]=(v*M-u*b-p*x)*I,e[15]=(c*b-d*M+m*x)*I,e},t.multiply=r,t.translate=function(e,t,i){var a=i[0],r=i[1],n=i[2],s=void 0,o=void 0,l=void 0,h=void 0,c=void 0,d=void 0,m=void 0,f=void 0,u=void 0,v=void 0,p=void 0,g=void 0;t===e?(e[12]=t[0]*a+t[4]*r+t[8]*n+t[12],e[13]=t[1]*a+t[5]*r+t[9]*n+t[13],e[14]=t[2]*a+t[6]*r+t[10]*n+t[14],e[15]=t[3]*a+t[7]*r+t[11]*n+t[15]):(s=t[0],o=t[1],l=t[2],h=t[3],c=t[4],d=t[5],m=t[6],f=t[7],u=t[8],v=t[9],p=t[10],g=t[11],e[0]=s,e[1]=o,e[2]=l,e[3]=h,e[4]=c,e[5]=d,e[6]=m,e[7]=f,e[8]=u,e[9]=v,e[10]=p,e[11]=g,e[12]=s*a+c*r+u*n+t[12],e[13]=o*a+d*r+v*n+t[13],e[14]=l*a+m*r+p*n+t[14],e[15]=h*a+f*r+g*n+t[15]);return e},t.rotate=function(e,t,i,r){var n=r[0],s=r[1],o=r[2],l=Math.sqrt(n*n+s*s+o*o),h=void 0,c=void 0,d=void 0,m=void 0,f=void 0,u=void 0,v=void 0,p=void 0,g=void 0,x=void 0,M=void 0,w=void 0,b=void 0,A=void 0,S=void 0,R=void 0,D=void 0,P=void 0,T=void 0,y=void 0,z=void 0,I=void 0,E=void 0,O=void 0;if(Math.abs(l)<a.EPSILON)return null;n*=l=1/l,s*=l,o*=l,h=Math.sin(i),c=Math.cos(i),d=1-c,m=t[0],f=t[1],u=t[2],v=t[3],p=t[4],g=t[5],x=t[6],M=t[7],w=t[8],b=t[9],A=t[10],S=t[11],R=n*n*d+c,D=s*n*d+o*h,P=o*n*d-s*h,T=n*s*d-o*h,y=s*s*d+c,z=o*s*d+n*h,I=n*o*d+s*h,E=s*o*d-n*h,O=o*o*d+c,e[0]=m*R+p*D+w*P,e[1]=f*R+g*D+b*P,e[2]=u*R+x*D+A*P,e[3]=v*R+M*D+S*P,e[4]=m*T+p*y+w*z,e[5]=f*T+g*y+b*z,e[6]=u*T+x*y+A*z,e[7]=v*T+M*y+S*z,e[8]=m*I+p*E+w*O,e[9]=f*I+g*E+b*O,e[10]=u*I+x*E+A*O,e[11]=v*I+M*E+S*O,t!==e&&(e[12]=t[12],e[13]=t[13],e[14]=t[14],e[15]=t[15]);return e},t.fromTranslation=function(e,t){return e[0]=1,e[1]=0,e[2]=0,e[3]=0,e[4]=0,e[5]=1,e[6]=0,e[7]=0,e[8]=0,e[9]=0,e[10]=1,e[11]=0,e[12]=t[0],e[13]=t[1],e[14]=t[2],e[15]=1,e},t.fromRotation=function(e,t,i){var r=i[0],n=i[1],s=i[2],o=Math.sqrt(r*r+n*n+s*s),l=void 0,h=void 0,c=void 0;if(Math.abs(o)<a.EPSILON)return null;return r*=o=1/o,n*=o,s*=o,l=Math.sin(t),h=Math.cos(t),c=1-h,e[0]=r*r*c+h,e[1]=n*r*c+s*l,e[2]=s*r*c-n*l,e[3]=0,e[4]=r*n*c-s*l,e[5]=n*n*c+h,e[6]=s*n*c+r*l,e[7]=0,e[8]=r*s*c+n*l,e[9]=n*s*c-r*l,e[10]=s*s*c+h,e[11]=0,e[12]=0,e[13]=0,e[14]=0,e[15]=1,e},t.frustum=function(e,t,i,a,r,n,s){var o=1/(i-t),l=1/(r-a),h=1/(n-s);return e[0]=2*n*o,e[1]=0,e[2]=0,e[3]=0,e[4]=0,e[5]=2*n*l,e[6]=0,e[7]=0,e[8]=(i+t)*o,e[9]=(r+a)*l,e[10]=(s+n)*h,e[11]=-1,e[12]=0,e[13]=0,e[14]=s*n*2*h,e[15]=0,e},t.ortho=function(e,t,i,a,r,n,s){var o=1/(t-i),l=1/(a-r),h=1/(n-s);return e[0]=-2*o,e[1]=0,e[2]=0,e[3]=0,e[4]=0,e[5]=-2*l,e[6]=0,e[7]=0,e[8]=0,e[9]=0,e[10]=2*h,e[11]=0,e[12]=(t+i)*o,e[13]=(r+a)*l,e[14]=(s+n)*h,e[15]=1,e};var a=function(e){if(e&&e.__esModule)return e;var t={};if(null!=e)for(var i in e)Object.prototype.hasOwnProperty.call(e,i)&&(t[i]=e[i]);return t.default=e,t}(i(0));function r(e,t,i){var a=t[0],r=t[1],n=t[2],s=t[3],o=t[4],l=t[5],h=t[6],c=t[7],d=t[8],m=t[9],f=t[10],u=t[11],v=t[12],p=t[13],g=t[14],x=t[15],M=i[0],w=i[1],b=i[2],A=i[3];return e[0]=M*a+w*o+b*d+A*v,e[1]=M*r+w*l+b*m+A*p,e[2]=M*n+w*h+b*f+A*g,e[3]=M*s+w*c+b*u+A*x,M=i[4],w=i[5],b=i[6],A=i[7],e[4]=M*a+w*o+b*d+A*v,e[5]=M*r+w*l+b*m+A*p,e[6]=M*n+w*h+b*f+A*g,e[7]=M*s+w*c+b*u+A*x,M=i[8],w=i[9],b=i[10],A=i[11],e[8]=M*a+w*o+b*d+A*v,e[9]=M*r+w*l+b*m+A*p,e[10]=M*n+w*h+b*f+A*g,e[11]=M*s+w*c+b*u+A*x,M=i[12],w=i[13],b=i[14],A=i[15],e[12]=M*a+w*o+b*d+A*v,e[13]=M*r+w*l+b*m+A*p,e[14]=M*n+w*h+b*f+A*g,e[15]=M*s+w*c+b*u+A*x,e}}])});let canvasWidth,canvasHeight,b,B,angle,Zoom0,viewportmargin,zoomFactor,zoomPinchFactor,zoomPinchCap,zoomStep,shiftHoldDistance,shiftWaitTime,vibrateTime,embedded,canvas,gl,alpha,offscreen,context,maxMaterials,halfCanvasWidth,halfCanvasHeight,Zoom,P=[],Materials=[],Lights=[],Centers=[],Background=[1,1,1,1],absolute=!1,viewportshift=[0,0],nlights=0,Nmaterials=2,materials=[],pixel=.75,BezierFactor=.4,FillFactor=.1,maxViewportWidth=window.innerWidth,maxViewportHeight=window.innerHeight;const windowTrim=10;let lastzoom,H,zmin,zmax,size2,ArcballFactor,positionBuffer,materialBuffer,colorBuffer,indexBuffer,resizeStep=1.2,Fuzz2=1e3*Number.EPSILON,Fuzz4=Fuzz2*Fuzz2,third=1/3,rotMat=mat4.create(),projMat=mat4.create(),viewMat=mat4.create(),projViewMat=mat4.create(),normMat=mat3.create(),viewMat3=mat3.create(),rotMats=mat4.create(),cjMatInv=mat4.create(),translMat=mat4.create(),center={x:0,y:0,z:0},shift={x:0,y:0},viewParam={xmin:0,xmax:0,ymin:0,ymax:0,zmin:0,zmax:0},remesh=!0,mouseDownOrTouchActive=!1,lastMouseX=null,lastMouseY=null,touchID=null,Positions=[],Normals=[],Colors=[],Indices=[];class Material{constructor(e,t,i,a,r,n){this.diffuse=e,this.emissive=t,this.specular=i,this.shininess=a,this.metallic=r,this.fresnel0=n}setUniform(e,t){let i=i=>gl.getUniformLocation(e,"Materials["+t+"]."+i);gl.uniform4fv(i("diffuse"),new Float32Array(this.diffuse)),gl.uniform4fv(i("emissive"),new Float32Array(this.emissive)),gl.uniform4fv(i("specular"),new Float32Array(this.specular)),gl.uniform4f(i("parameters"),this.shininess,this.metallic,this.fresnel0,0)}}let indexExt,enumPointLight=1,enumDirectionalLight=2;class Light{constructor(e,t){this.direction=e,this.color=t}setUniform(e,t){let i=i=>gl.getUniformLocation(e,"Lights["+t+"]."+i);gl.uniform3fv(i("direction"),new Float32Array(this.direction)),gl.uniform3fv(i("color"),new Float32Array(this.color))}}function initShaders(){let e=gl.getParameter(gl.MAX_VERTEX_UNIFORM_VECTORS);maxMaterials=Math.floor((e-14)/4),Nmaterials=Math.min(Math.max(Nmaterials,Materials.length),maxMaterials),noNormalShader=initShader(),pixelShader=initShader(["WIDTH"]),materialShader=initShader(["NORMAL"]),colorShader=initShader(["NORMAL","COLOR"]),transparentShader=initShader(["NORMAL","COLOR","TRANSPARENT"])}function setBuffers(){positionBuffer=gl.createBuffer(),materialBuffer=gl.createBuffer(),colorBuffer=gl.createBuffer(),indexBuffer=gl.createBuffer()}function noGL(){gl||alert("Could not initialize WebGL")}function saveAttributes(){let e=window.top.document.asygl[alpha];e.gl=gl,e.nlights=Lights.length,e.Nmaterials=Nmaterials,e.maxMaterials=maxMaterials,e.noNormalShader=noNormalShader,e.pixelShader=pixelShader,e.materialShader=materialShader,e.colorShader=colorShader,e.transparentShader=transparentShader}function restoreAttributes(){let e=window.top.document.asygl[alpha];gl=e.gl,nlights=e.nlights,Nmaterials=e.Nmaterials,maxMaterials=e.maxMaterials,noNormalShader=e.noNormalShader,pixelShader=e.pixelShader,materialShader=e.materialShader,colorShader=e.colorShader,transparentShader=e.transparentShader}function initGL(){if(alpha=Background[3]<1,embedded){let e=window.top.document;null==e.asygl&&(e.asygl=Array(2)),context=canvas.getContext("2d"),(offscreen=e.offscreen)||(offscreen=e.createElement("canvas"),e.offscreen=offscreen),e.asygl[alpha]&&e.asygl[alpha].gl?(restoreAttributes(),(Lights.length!=nlights||Math.min(Materials.length,maxMaterials)>Nmaterials)&&(initShaders(),saveAttributes())):((gl=offscreen.getContext("webgl",{alpha:alpha}))||noGL(),initShaders(),e.asygl[alpha]={},saveAttributes())}else(gl=canvas.getContext("webgl",{alpha:alpha}))||noGL(),initShaders();setBuffers(),indexExt=gl.getExtension("OES_element_index_uint")}function getShader(e,t,i,a=[]){let r=`#version 100\n#ifdef GL_FRAGMENT_PRECISION_HIGH\n precision highp float;\n#else\n precision mediump float;\n#endif\n #define nlights ${Lights.length}\n\n const int Nlights=${Math.max(Lights.length,1)};\n\n #define Nmaterials ${Nmaterials}\n`;orthographic&&(r+="#define ORTHOGRAPHIC\n"),a.forEach(e=>r+="#define "+e+"\n");let n=e.createShader(i);return e.shaderSource(n,r+t),e.compileShader(n),e.getShaderParameter(n,e.COMPILE_STATUS)?n:(alert(e.getShaderInfoLog(n)),null)}function drawBuffer(e,t,i=e.indices){if(0==e.indices.length)return;let a=t==pixelShader,r=t!=noNormalShader&&!a;setUniforms(e,t),gl.bindBuffer(gl.ARRAY_BUFFER,positionBuffer),gl.bufferData(gl.ARRAY_BUFFER,new Float32Array(e.vertices),gl.STATIC_DRAW),gl.vertexAttribPointer(positionAttribute,3,gl.FLOAT,!1,r?24:a?16:12,0),r&&Lights.length>0?gl.vertexAttribPointer(normalAttribute,3,gl.FLOAT,!1,24,12):a&&gl.vertexAttribPointer(widthAttribute,1,gl.FLOAT,!1,16,12),gl.bindBuffer(gl.ARRAY_BUFFER,materialBuffer),gl.bufferData(gl.ARRAY_BUFFER,new Int16Array(e.materialIndices),gl.STATIC_DRAW),gl.vertexAttribPointer(materialAttribute,1,gl.SHORT,!1,2,0),t!=colorShader&&t!=transparentShader||(gl.bindBuffer(gl.ARRAY_BUFFER,colorBuffer),gl.bufferData(gl.ARRAY_BUFFER,new Uint8Array(e.colors),gl.STATIC_DRAW),gl.vertexAttribPointer(colorAttribute,4,gl.UNSIGNED_BYTE,!0,0,0)),gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER,indexBuffer),gl.bufferData(gl.ELEMENT_ARRAY_BUFFER,indexExt?new Uint32Array(i):new Uint16Array(i),gl.STATIC_DRAW),gl.drawElements(r?gl.TRIANGLES:a?gl.POINTS:gl.LINES,i.length,indexExt?gl.UNSIGNED_INT:gl.UNSIGNED_SHORT,0)}class vertexBuffer{constructor(){this.clear()}clear(){this.vertices=[],this.materialIndices=[],this.colors=[],this.indices=[],this.nvertices=0,this.materials=[],this.materialTable=[]}vertex(e,t){return this.vertices.push(e[0]),this.vertices.push(e[1]),this.vertices.push(e[2]),this.vertices.push(t[0]),this.vertices.push(t[1]),this.vertices.push(t[2]),this.materialIndices.push(materialIndex),this.nvertices++}Vertex(e,t,i=[0,0,0,0]){return this.vertices.push(e[0]),this.vertices.push(e[1]),this.vertices.push(e[2]),this.vertices.push(t[0]),this.vertices.push(t[1]),this.vertices.push(t[2]),this.materialIndices.push(materialIndex),this.colors.push(i[0]),this.colors.push(i[1]),this.colors.push(i[2]),this.colors.push(i[3]),this.nvertices++}vertex1(e){return this.vertices.push(e[0]),this.vertices.push(e[1]),this.vertices.push(e[2]),this.materialIndices.push(materialIndex),this.nvertices++}vertex0(e,t){return this.vertices.push(e[0]),this.vertices.push(e[1]),this.vertices.push(e[2]),this.vertices.push(t),this.materialIndices.push(materialIndex),this.nvertices++}iVertex(e,t,i,a=[0,0,0,0]){let r=6*e;this.vertices[r]=t[0],this.vertices[r+1]=t[1],this.vertices[r+2]=t[2],this.vertices[r+3]=i[0],this.vertices[r+4]=i[1],this.vertices[r+5]=i[2],this.materialIndices[e]=materialIndex;let n=4*e;this.colors[n]=a[0],this.colors[n+1]=a[1],this.colors[n+2]=a[2],this.colors[n+3]=a[3],this.indices.push(e)}append(e){append(this.vertices,e.vertices),append(this.materialIndices,e.materialIndices),append(this.colors,e.colors),appendOffset(this.indices,e.indices,this.nvertices),this.nvertices+=e.nvertices}}let materialIndex,material0Data=new vertexBuffer,material1Data=new vertexBuffer,materialData=new vertexBuffer,colorData=new vertexBuffer,transparentData=new vertexBuffer,triangleData=new vertexBuffer;function append(e,t){let i=e.length,a=t.length;e.length+=a;for(let r=0;r<a;++r)e[i+r]=t[r]}function appendOffset(e,t,i){let a=e.length,r=t.length;e.length+=t.length;for(let n=0;n<r;++n)e[a+n]=t[n]+i}class Geometry{constructor(){this.data=new vertexBuffer,this.Onscreen=!1,this.m=[]}offscreen(e){let t=projViewMat,i=e[0],a=i[0],r=i[1],n=i[2],s=1/(t[3]*a+t[7]*r+t[11]*n+t[15]);this.x=this.X=(t[0]*a+t[4]*r+t[8]*n+t[12])*s,this.y=this.Y=(t[1]*a+t[5]*r+t[9]*n+t[13])*s;for(let i=1,a=e.length;i<a;++i){let a=e[i],r=a[0],n=a[1],s=a[2],o=1/(t[3]*r+t[7]*n+t[11]*s+t[15]),l=(t[0]*r+t[4]*n+t[8]*s+t[12])*o,h=(t[1]*r+t[5]*n+t[9]*s+t[13])*o;l<this.x?this.x=l:l>this.X&&(this.X=l),h<this.y?this.y=h:h>this.Y&&(this.Y=h)}return(this.X<-1.01||this.x>1.01||this.Y<-1.01||this.y>1.01)&&(this.Onscreen=!1,!0)}T(e){let t=this.c[0],i=this.c[1],a=this.c[2],r=e[0]-t,n=e[1]-i,s=e[2]-a;return[r*normMat[0]+n*normMat[3]+s*normMat[6]+t,r*normMat[1]+n*normMat[4]+s*normMat[7]+i,r*normMat[2]+n*normMat[5]+s*normMat[8]+a]}Tcorners(e,t){return[this.T(e),this.T([e[0],e[1],t[2]]),this.T([e[0],t[1],e[2]]),this.T([e[0],t[1],t[2]]),this.T([t[0],e[1],e[2]]),this.T([t[0],e[1],t[2]]),this.T([t[0],t[1],e[2]]),this.T(t)]}setMaterial(e,t){null==e.materialTable[this.MaterialIndex]&&(e.materials.length>=Nmaterials&&t(),e.materialTable[this.MaterialIndex]=e.materials.length,e.materials.push(Materials[this.MaterialIndex])),materialIndex=e.materialTable[this.MaterialIndex]}render(){let e;if(this.setMaterialIndex(),0==this.CenterIndex?e=corners(this.Min,this.Max):(this.c=Centers[this.CenterIndex-1],e=this.Tcorners(this.Min,this.Max)),this.offscreen(e))return void this.data.clear();let t,i=this.controlpoints;if(0==this.CenterIndex){if(!remesh&&this.Onscreen)return void this.append();t=i}else{let e=i.length;t=Array(e);for(let a=0;a<e;++a)t[a]=this.T(i[a])}let a=orthographic?1:this.Min[2]/B[2],r=pixel*Math.hypot(a*(viewParam.xmax-viewParam.xmin),a*(viewParam.ymax-viewParam.ymin))/size2;this.res2=r*r,this.Epsilon=FillFactor*r,this.data.clear(),this.Onscreen=!0,this.process(t)}}class BezierPatch extends Geometry{constructor(e,t,i,a,r,n){super(),this.controlpoints=e,this.Min=a,this.Max=r,this.color=n,this.CenterIndex=t;let s=e.length;if(n){let e=n[0][3]+n[1][3]+n[2][3];this.transparent=16==s||4==s?e+n[3][3]<1020:e<765}else this.transparent=Materials[i].diffuse[3]<1;this.MaterialIndex=i,this.vertex=this.transparent?this.data.Vertex.bind(this.data):this.data.vertex.bind(this.data),this.L2norm(this.controlpoints)}setMaterialIndex(){this.transparent?this.setMaterial(transparentData,drawTransparent):this.color?this.setMaterial(colorData,drawColor):this.setMaterial(materialData,drawMaterial)}L2norm(e){let t=e[0];this.epsilon=0;let i=e.length;for(let a=1;a<i;++a)this.epsilon=Math.max(this.epsilon,abs2([e[a][0]-t[0],e[a][1]-t[1],e[a][2]-t[2]]));this.epsilon*=Fuzz4}processTriangle(e){let t=e[0],i=e[1],a=e[2],r=unit(cross([i[0]-t[0],i[1]-t[1],i[2]-t[2]],[a[0]-t[0],a[1]-t[1],a[2]-t[2]]));this.offscreen([t,i,a])||(this.color?(this.data.indices.push(this.data.Vertex(t,r,this.color[0])),this.data.indices.push(this.data.Vertex(i,r,this.color[1])),this.data.indices.push(this.data.Vertex(a,r,this.color[2]))):(this.data.indices.push(this.vertex(t,r)),this.data.indices.push(this.vertex(i,r)),this.data.indices.push(this.vertex(a,r))),this.append())}processQuad(e){let t=e[0],i=e[1],a=e[2],r=e[3],n=cross([i[0]-t[0],i[1]-t[1],i[2]-t[2]],[a[0]-i[0],a[1]-i[1],a[2]-i[2]]),s=cross([a[0]-r[0],a[1]-r[1],a[2]-r[2]],[r[0]-t[0],r[1]-t[1],r[2]-t[2]]),o=unit([n[0]+s[0],n[1]+s[1],n[2]+s[2]]);if(!this.offscreen([t,i,a,r])){let e,n,s,l;this.color?(e=this.data.Vertex(t,o,this.color[0]),n=this.data.Vertex(i,o,this.color[1]),s=this.data.Vertex(a,o,this.color[2]),l=this.data.Vertex(r,o,this.color[3])):(e=this.vertex(t,o),n=this.vertex(i,o),s=this.vertex(a,o),l=this.vertex(r,o)),this.data.indices.push(e),this.data.indices.push(n),this.data.indices.push(s),this.data.indices.push(e),this.data.indices.push(s),this.data.indices.push(l),this.append()}}process(e){if(this.transparent&&(materialIndex=this.color?-1-materialIndex:1+materialIndex),10==e.length)return this.process3(e);if(3==e.length)return this.processTriangle(e);if(4==e.length)return this.processQuad(e);let t=e[0],i=e[3],a=e[12],r=e[15],n=this.normal(i,e[2],e[1],t,e[4],e[8],a);iszero(n)&&iszero(n=this.normal(i,e[2],e[1],t,e[13],e[14],r))&&(n=this.normal(r,e[11],e[7],i,e[4],e[8],a));let s=this.normal(t,e[4],e[8],a,e[13],e[14],r);iszero(s)&&iszero(s=this.normal(t,e[4],e[8],a,e[11],e[7],i))&&(s=this.normal(i,e[2],e[1],t,e[13],e[14],r));let o=this.normal(a,e[13],e[14],r,e[11],e[7],i);iszero(o)&&iszero(o=this.normal(a,e[13],e[14],r,e[2],e[1],t))&&(o=this.normal(t,e[4],e[8],a,e[11],e[7],i));let l=this.normal(r,e[11],e[7],i,e[2],e[1],t);if(iszero(l)&&iszero(l=this.normal(r,e[11],e[7],i,e[4],e[8],a))&&(l=this.normal(a,e[13],e[14],r,e[2],e[1],t)),this.color){let h=this.color[0],c=this.color[1],d=this.color[2],m=this.color[3],f=this.data.Vertex(t,n,h),u=this.data.Vertex(a,s,c),v=this.data.Vertex(r,o,d),p=this.data.Vertex(i,l,m);this.Render(e,f,u,v,p,t,a,r,i,!1,!1,!1,!1,h,c,d,m)}else{let h=this.vertex(t,n),c=this.vertex(a,s),d=this.vertex(r,o),m=this.vertex(i,l);this.Render(e,h,c,d,m,t,a,r,i,!1,!1,!1,!1)}this.data.indices.length>0&&this.append()}append(){this.transparent?transparentData.append(this.data):this.color?colorData.append(this.data):materialData.append(this.data)}Render(e,t,i,a,r,n,s,o,l,h,c,d,m,f,u,v,p){if(this.Distance(e)<this.res2)this.offscreen([n,s,o])||(this.data.indices.push(t),this.data.indices.push(i),this.data.indices.push(a)),this.offscreen([n,o,l])||(this.data.indices.push(t),this.data.indices.push(a),this.data.indices.push(r));else{if(this.offscreen(e))return;let g=e[0],x=e[3],M=e[12],w=e[15],b=new Split3(g,e[1],e[2],x),A=new Split3(e[4],e[5],e[6],e[7]),S=new Split3(e[8],e[9],e[10],e[11]),R=new Split3(M,e[13],e[14],w),D=new Split3(g,e[4],e[8],M),P=new Split3(b.m0,A.m0,S.m0,R.m0),T=new Split3(b.m3,A.m3,S.m3,R.m3),y=new Split3(b.m5,A.m5,S.m5,R.m5),z=new Split3(b.m4,A.m4,S.m4,R.m4),I=new Split3(b.m2,A.m2,S.m2,R.m2),E=new Split3(x,e[7],e[11],w),O=[g,b.m0,b.m3,b.m5,D.m0,P.m0,T.m0,y.m0,D.m3,P.m3,T.m3,y.m3,D.m5,P.m5,T.m5,y.m5],_=[D.m5,P.m5,T.m5,y.m5,D.m4,P.m4,T.m4,y.m4,D.m2,P.m2,T.m2,y.m2,M,R.m0,R.m3,R.m5],L=[y.m5,z.m5,I.m5,E.m5,y.m4,z.m4,I.m4,E.m4,y.m2,z.m2,I.m2,E.m2,R.m5,R.m4,R.m2,w],N=[b.m5,b.m4,b.m2,x,y.m0,z.m0,I.m0,E.m0,y.m3,z.m3,I.m3,E.m3,y.m5,z.m5,I.m5,E.m5],B=O[15],C=this.normal(O[0],O[4],O[8],O[12],O[13],O[14],O[15]);iszero(C)&&iszero(C=this.normal(O[0],O[4],O[8],O[12],O[11],O[7],O[3]))&&(C=this.normal(O[3],O[2],O[1],O[0],O[13],O[14],O[15]));let F=this.normal(_[12],_[13],_[14],_[15],_[11],_[7],_[3]);iszero(F)&&iszero(F=this.normal(_[12],_[13],_[14],_[15],_[2],_[1],_[0]))&&(F=this.normal(_[0],_[4],_[8],_[12],_[11],_[7],_[3]));let V=this.normal(L[15],L[11],L[7],L[3],L[2],L[1],L[0]);iszero(V)&&iszero(V=this.normal(L[15],L[11],L[7],L[3],L[4],L[8],L[12]))&&(V=this.normal(L[12],L[13],L[14],L[15],L[2],L[1],L[0]));let H=this.normal(N[3],N[2],N[1],N[0],N[4],N[8],N[12]);iszero(H)&&iszero(H=this.normal(N[3],N[2],N[1],N[0],N[13],N[14],N[15]))&&(H=this.normal(N[15],N[11],N[7],N[3],N[4],N[8],N[12]));let G=this.normal(L[3],L[2],L[1],B,L[4],L[8],L[12]),U=this.Epsilon,W=[.5*(n[0]+s[0]),.5*(n[1]+s[1]),.5*(n[2]+s[2])];if(!h)if(h=Straightness(g,e[4],e[8],M)<this.res2){let e=unit(this.derivative(_[0],_[1],_[2],_[3]));W=[W[0]-U*e[0],W[1]-U*e[1],W[2]-U*e[2]]}else W=O[12];let Y=[.5*(s[0]+o[0]),.5*(s[1]+o[1]),.5*(s[2]+o[2])];if(!c)if(c=Straightness(M,e[13],e[14],w)<this.res2){let e=unit(this.derivative(L[12],L[8],L[4],L[0]));Y=[Y[0]-U*e[0],Y[1]-U*e[1],Y[2]-U*e[2]]}else Y=_[15];let j=[.5*(o[0]+l[0]),.5*(o[1]+l[1]),.5*(o[2]+l[2])];if(!d)if(d=Straightness(w,e[11],e[7],x)<this.res2){let e=unit(this.derivative(N[15],L[14],L[13],_[12]));j=[j[0]-U*e[0],j[1]-U*e[1],j[2]-U*e[2]]}else j=L[3];let k=[.5*(l[0]+n[0]),.5*(l[1]+n[1]),.5*(l[2]+n[2])];if(!m)if(m=Straightness(g,e[1],e[2],x)<this.res2){let e=unit(this.derivative(O[3],O[7],O[11],O[15]));k=[k[0]-U*e[0],k[1]-U*e[1],k[2]-U*e[2]]}else k=N[0];if(f){let e=Array(4),g=Array(4),x=Array(4),M=Array(4),w=Array(4);for(let t=0;t<4;++t)e[t]=.5*(f[t]+u[t]),g[t]=.5*(u[t]+v[t]),x[t]=.5*(v[t]+p[t]),M[t]=.5*(p[t]+f[t]),w[t]=.5*(e[t]+x[t]);let b=this.data.Vertex(W,C,e),A=this.data.Vertex(Y,F,g),S=this.data.Vertex(j,V,x),R=this.data.Vertex(k,H,M),D=this.data.Vertex(B,G,w);this.Render(O,t,b,D,R,n,W,B,k,h,!1,!1,m,f,e,w,M),this.Render(_,b,i,A,D,W,s,Y,B,h,c,!1,!1,e,u,g,w),this.Render(L,D,A,a,S,B,Y,o,j,!1,c,d,!1,w,g,v,x),this.Render(N,R,D,S,r,k,B,j,l,!1,!1,d,m,M,w,x,p)}else{let e=this.vertex(W,C),f=this.vertex(Y,F),u=this.vertex(j,V),v=this.vertex(k,H),p=this.vertex(B,G);this.Render(O,t,e,p,v,n,W,B,k,h,!1,!1,m),this.Render(_,e,i,f,p,W,s,Y,B,h,c,!1,!1),this.Render(L,p,f,a,u,B,Y,o,j,!1,c,d,!1),this.Render(N,v,p,u,r,k,B,j,l,!1,!1,d,m)}}}process3(e){this.Res2=BezierFactor*BezierFactor*this.res2;let t=e[0],i=e[6],a=e[9],r=this.normal(a,e[5],e[2],t,e[1],e[3],i),n=this.normal(t,e[1],e[3],i,e[7],e[8],a),s=this.normal(i,e[7],e[8],a,e[5],e[2],t);if(this.color){let o=this.color[0],l=this.color[1],h=this.color[2],c=this.data.Vertex(t,r,o),d=this.data.Vertex(i,n,l),m=this.data.Vertex(a,s,h);this.Render3(e,c,d,m,t,i,a,!1,!1,!1,o,l,h)}else{let o=this.vertex(t,r),l=this.vertex(i,n),h=this.vertex(a,s);this.Render3(e,o,l,h,t,i,a,!1,!1,!1)}this.data.indices.length>0&&this.append()}Render3(e,t,i,a,r,n,s,o,l,h,c,d,m){if(this.Distance3(e)<this.Res2)this.offscreen([r,n,s])||(this.data.indices.push(t),this.data.indices.push(i),this.data.indices.push(a));else{if(this.offscreen(e))return;let f=e[0],u=e[1],v=e[2],p=e[3],g=e[4],x=e[5],M=e[6],w=e[7],b=e[8],A=e[9],S=[.5*(A[0]+x[0]),.5*(A[1]+x[1]),.5*(A[2]+x[2])],R=[.5*(A[0]+b[0]),.5*(A[1]+b[1]),.5*(A[2]+b[2])],D=[.5*(x[0]+v[0]),.5*(x[1]+v[1]),.5*(x[2]+v[2])],P=[.5*(b[0]+g[0]),.5*(b[1]+g[1]),.5*(b[2]+g[2])],T=[.5*(b[0]+w[0]),.5*(b[1]+w[1]),.5*(b[2]+w[2])],y=[.5*(v[0]+g[0]),.5*(v[1]+g[1]),.5*(v[2]+g[2])],z=[.5*(v[0]+f[0]),.5*(v[1]+f[1]),.5*(v[2]+f[2])],I=[.5*(g[0]+p[0]),.5*(g[1]+p[1]),.5*(g[2]+p[2])],E=[.5*(w[0]+M[0]),.5*(w[1]+M[1]),.5*(w[2]+M[2])],O=[.5*(f[0]+u[0]),.5*(f[1]+u[1]),.5*(f[2]+u[2])],_=[.5*(u[0]+p[0]),.5*(u[1]+p[1]),.5*(u[2]+p[2])],L=[.5*(p[0]+M[0]),.5*(p[1]+M[1]),.5*(p[2]+M[2])],N=[.5*(S[0]+D[0]),.5*(S[1]+D[1]),.5*(S[2]+D[2])],B=[.5*(R[0]+T[0]),.5*(R[1]+T[1]),.5*(R[2]+T[2])],C=[.5*(D[0]+z[0]),.5*(D[1]+z[1]),.5*(D[2]+z[2])],F=[.5*P[0]+.25*(g[0]+u[0]),.5*P[1]+.25*(g[1]+u[1]),.5*P[2]+.25*(g[2]+u[2])],V=[.5*(T[0]+E[0]),.5*(T[1]+E[1]),.5*(T[2]+E[2])],H=[.5*y[0]+.25*(g[0]+w[0]),.5*y[1]+.25*(g[1]+w[1]),.5*y[2]+.25*(g[2]+w[2])],G=[.25*(x[0]+g[0])+.5*I[0],.25*(x[1]+g[1])+.5*I[1],.25*(x[2]+g[2])+.5*I[2]],U=[.5*(O[0]+_[0]),.5*(O[1]+_[1]),.5*(O[2]+_[2])],W=[.5*(_[0]+L[0]),.5*(_[1]+L[1]),.5*(_[2]+L[2])],Y=[.5*(H[0]+U[0]),.5*(H[1]+U[1]),.5*(H[2]+U[2])],j=[.5*(H[0]+W[0]),.5*(H[1]+W[1]),.5*(H[2]+W[2])],k=[.5*(U[0]+W[0]),.5*(U[1]+W[1]),.5*(U[2]+W[2])],Z=[.5*(G[0]+V[0]),.5*(G[1]+V[1]),.5*(G[2]+V[2])],X=[.5*(B[0]+G[0]),.5*(B[1]+G[1]),.5*(B[2]+G[2])],q=[.5*(B[0]+V[0]),.5*(B[1]+V[1]),.5*(B[2]+V[2])],K=[.5*(N[0]+F[0]),.5*(N[1]+F[1]),.5*(N[2]+F[2])],$=[.5*(C[0]+F[0]),.5*(C[1]+F[1]),.5*(C[2]+F[2])],Q=[.5*(N[0]+C[0]),.5*(N[1]+C[1]),.5*(N[2]+C[2])],J=[f,O,z,U,[.5*(y[0]+O[0]),.5*(y[1]+O[1]),.5*(y[2]+O[2])],C,k,Y,$,Q],ee=[k,W,j,L,[.5*(I[0]+E[0]),.5*(I[1]+E[1]),.5*(I[2]+E[2])],Z,M,E,V,q],te=[Q,K,N,X,[.5*(S[0]+P[0]),.5*(S[1]+P[1]),.5*(S[2]+P[2])],S,q,B,R,A],ie=[q,X,Z,K,[.25*(D[0]+T[0]+_[0]+g[0]),.25*(D[1]+T[1]+_[1]+g[1]),.25*(D[2]+T[2]+_[2]+g[2])],j,Q,$,Y,k],ae=this.normal(k,j,Z,q,X,K,Q),re=this.normal(q,X,K,Q,$,Y,k),ne=this.normal(Q,$,Y,k,j,Z,q),se=this.Epsilon,oe=[.5*(n[0]+s[0]),.5*(n[1]+s[1]),.5*(n[2]+s[2])];if(!o)if(o=Straightness(M,w,b,A)<this.res2){let e=unit(this.sumderivative(ie[0],ie[2],ie[5],ie[9],ie[1],ie[3],ie[6]));oe=[oe[0]-se*e[0],oe[1]-se*e[1],oe[2]-se*e[2]]}else oe=q;let le=[.5*(s[0]+r[0]),.5*(s[1]+r[1]),.5*(s[2]+r[2])];if(!l)if(l=Straightness(f,v,x,A)<this.res2){let e=unit(this.sumderivative(ie[6],ie[3],ie[1],ie[0],ie[7],ie[8],ie[9]));le=[le[0]-se*e[0],le[1]-se*e[1],le[2]-se*e[2]]}else le=Q;let he=[.5*(r[0]+n[0]),.5*(r[1]+n[1]),.5*(r[2]+n[2])];if(!h)if(h=Straightness(f,u,p,M)<this.res2){let e=unit(this.sumderivative(ie[9],ie[8],ie[7],ie[6],ie[5],ie[2],ie[0]));he=[he[0]-se*e[0],he[1]-se*e[1],he[2]-se*e[2]]}else he=k;if(c){let e=Array(4),f=Array(4),u=Array(4);for(let t=0;t<4;++t)e[t]=.5*(d[t]+m[t]),f[t]=.5*(m[t]+c[t]),u[t]=.5*(c[t]+d[t]);let v=this.data.Vertex(oe,ae,e),p=this.data.Vertex(le,re,f),g=this.data.Vertex(he,ne,u);this.Render3(J,t,g,p,r,he,le,!1,l,h,c,u,f),this.Render3(ee,g,i,v,he,n,oe,o,!1,h,u,d,e),this.Render3(te,p,v,a,le,oe,s,o,l,!1,f,e,m),this.Render3(ie,v,p,g,oe,le,he,!1,!1,!1,e,f,u)}else{let e=this.vertex(oe,ae),c=this.vertex(le,re),d=this.vertex(he,ne);this.Render3(J,t,d,c,r,he,le,!1,l,h),this.Render3(ee,d,i,e,he,n,oe,o,!1,h),this.Render3(te,c,e,a,le,oe,s,o,l,!1),this.Render3(ie,e,c,d,oe,le,he,!1,!1,!1)}}}Distance(e){let t=e[0],i=e[3],a=e[12],r=e[15],n=Distance2(r,t,this.normal(i,e[2],e[1],t,e[4],e[8],a));return n=Math.max(n,Straightness(t,e[1],e[2],i)),n=Math.max(n,Straightness(t,e[4],e[8],a)),n=Math.max(n,Straightness(i,e[7],e[11],r)),n=Math.max(n,Straightness(a,e[13],e[14],r)),n=Math.max(n,Straightness(e[4],e[5],e[6],e[7])),n=Math.max(n,Straightness(e[8],e[9],e[10],e[11])),n=Math.max(n,Straightness(e[1],e[5],e[9],e[13])),Math.max(n,Straightness(e[2],e[6],e[10],e[14]))}Distance3(e){let t=e[0],i=e[4],a=e[6],r=e[9],n=abs2([(t[0]+a[0]+r[0])*third-i[0],(t[1]+a[1]+r[1])*third-i[1],(t[2]+a[2]+r[2])*third-i[2]]);return n=Math.max(n,Straightness(t,e[1],e[3],a)),n=Math.max(n,Straightness(t,e[2],e[5],r)),Math.max(n,Straightness(a,e[7],e[8],r))}derivative(e,t,i,a){let r=[t[0]-e[0],t[1]-e[1],t[2]-e[2]];if(abs2(r)>this.epsilon)return r;let n=bezierPP(e,t,i);return abs2(n)>this.epsilon?n:bezierPPP(e,t,i,a)}sumderivative(e,t,i,a,r,n,s){let o=this.derivative(e,t,i,a),l=this.derivative(e,r,n,s);return[o[0]+l[0],o[1]+l[1],o[2]+l[2]]}normal(e,t,i,a,r,n,s){let o=r[0]-a[0],l=r[1]-a[1],h=r[2]-a[2],c=i[0]-a[0],d=i[1]-a[1],m=i[2]-a[2],f=[l*m-h*d,h*c-o*m,o*d-l*c];if(abs2(f)>this.epsilon)return unit(f);let u=[c,d,m],v=[o,l,h],p=bezierPP(a,i,t),g=bezierPP(a,r,n),x=cross(g,u),M=cross(v,p);if(abs2(f=[x[0]+M[0],x[1]+M[1],x[2]+M[2]])>this.epsilon)return unit(f);let w=bezierPPP(a,i,t,e),b=bezierPPP(a,r,n,s);x=cross(g,p),M=cross(v,w);let A=cross(b,u),S=cross(b,p),R=cross(g,w),D=cross(b,w);return unit([9*x[0]+3*(M[0]+A[0]+S[0]+R[0])+D[0],9*x[1]+3*(M[1]+A[1]+S[1]+R[1])+D[1],9*x[2]+3*(M[2]+A[2]+S[2]+R[2])+D[2]])}}class BezierCurve extends Geometry{constructor(e,t,i,a,r){super(),this.controlpoints=e,this.Min=a,this.Max=r,this.CenterIndex=t,this.MaterialIndex=i}setMaterialIndex(){this.setMaterial(material1Data,drawMaterial1)}processLine(e){let t=e[0],i=e[1];this.offscreen([t,i])||(this.data.indices.push(this.data.vertex1(t)),this.data.indices.push(this.data.vertex1(i)),this.append())}process(e){if(2==e.length)return this.processLine(e);let t=this.data.vertex1(e[0]),i=this.data.vertex1(e[3]);this.Render(e,t,i),this.data.indices.length>0&&this.append()}append(){material1Data.append(this.data)}Render(e,t,i){let a=e[0],r=e[1],n=e[2],s=e[3];if(Straightness(a,r,n,s)<this.res2)this.offscreen([a,s])||(this.data.indices.push(t),this.data.indices.push(i));else{if(this.offscreen(e))return;let o=[.5*(a[0]+r[0]),.5*(a[1]+r[1]),.5*(a[2]+r[2])],l=[.5*(r[0]+n[0]),.5*(r[1]+n[1]),.5*(r[2]+n[2])],h=[.5*(n[0]+s[0]),.5*(n[1]+s[1]),.5*(n[2]+s[2])],c=[.5*(o[0]+l[0]),.5*(o[1]+l[1]),.5*(o[2]+l[2])],d=[.5*(l[0]+h[0]),.5*(l[1]+h[1]),.5*(l[2]+h[2])],m=[.5*(c[0]+d[0]),.5*(c[1]+d[1]),.5*(c[2]+d[2])],f=[a,o,c,m],u=[m,d,h,s],v=this.data.vertex1(m);this.Render(f,t,v),this.Render(u,v,i)}}}class Pixel extends Geometry{constructor(e,t,i,a,r){super(),this.controlpoint=e,this.width=t,this.CenterIndex=0,this.MaterialIndex=i,this.Min=a,this.Max=r}setMaterialIndex(){this.setMaterial(material0Data,drawMaterial0)}process(e){this.data.indices.push(this.data.vertex0(this.controlpoint,this.width)),this.append()}append(){material0Data.append(this.data)}}class Triangles extends Geometry{constructor(e,t,i){super(),this.CenterIndex=0,this.MaterialIndex=e,this.Min=t,this.Max=i,this.Positions=Positions,this.Normals=Normals,this.Colors=Colors,this.Indices=Indices,Positions=[],Normals=[],Colors=[],Indices=[],this.transparent=Materials[e].diffuse[3]<1}setMaterialIndex(){this.transparent?this.setMaterial(transparentData,drawTransparent):this.setMaterial(triangleData,drawTriangle)}process(e){materialIndex=this.Colors.length>0?-1-materialIndex:1+materialIndex;for(let e=0,t=this.Indices.length;e<t;++e){let t=this.Indices[e],i=t[0],a=this.Positions[i[0]],r=this.Positions[i[1]],n=this.Positions[i[2]];if(!this.offscreen([a,r,n])){let e=t.length>1?t[1]:i;if(e&&0!=e.length||(e=i),this.Colors.length>0){let s=t.length>2?t[2]:i;s&&0!=s.length||(s=i);let o=this.Colors[s[0]],l=this.Colors[s[1]],h=this.Colors[s[2]];this.transparent|=o[3]+l[3]+h[3]<765,this.data.iVertex(i[0],a,this.Normals[e[0]],o),this.data.iVertex(i[1],r,this.Normals[e[1]],l),this.data.iVertex(i[2],n,this.Normals[e[2]],h)}else this.data.iVertex(i[0],a,this.Normals[e[0]]),this.data.iVertex(i[1],r,this.Normals[e[1]]),this.data.iVertex(i[2],n,this.Normals[e[2]])}}this.data.nvertices=this.Positions.length,this.data.indices.length>0&&this.append()}append(){this.transparent?transparentData.append(this.data):triangleData.append(this.data)}}function home(){mat4.identity(rotMat),initProjection(),setProjection(),remesh=!0,draw()}let positionAttribute=0,normalAttribute=1,materialAttribute=2,colorAttribute=3,widthAttribute=4;function initShader(e=[]){let t=getShader(gl,vertex,gl.VERTEX_SHADER,e),i=getShader(gl,fragment,gl.FRAGMENT_SHADER,e),a=gl.createProgram();return gl.attachShader(a,t),gl.attachShader(a,i),gl.bindAttribLocation(a,positionAttribute,"position"),gl.bindAttribLocation(a,normalAttribute,"normal"),gl.bindAttribLocation(a,materialAttribute,"materialIndex"),gl.bindAttribLocation(a,colorAttribute,"color"),gl.bindAttribLocation(a,widthAttribute,"width"),gl.linkProgram(a),gl.getProgramParameter(a,gl.LINK_STATUS)||alert("Could not initialize shaders"),a}class Split3{constructor(e,t,i,a){this.m0=[.5*(e[0]+t[0]),.5*(e[1]+t[1]),.5*(e[2]+t[2])];let r=.5*(t[0]+i[0]),n=.5*(t[1]+i[1]),s=.5*(t[2]+i[2]);this.m2=[.5*(i[0]+a[0]),.5*(i[1]+a[1]),.5*(i[2]+a[2])],this.m3=[.5*(this.m0[0]+r),.5*(this.m0[1]+n),.5*(this.m0[2]+s)],this.m4=[.5*(r+this.m2[0]),.5*(n+this.m2[1]),.5*(s+this.m2[2])],this.m5=[.5*(this.m3[0]+this.m4[0]),.5*(this.m3[1]+this.m4[1]),.5*(this.m3[2]+this.m4[2])]}}function iszero(e){return 0==e[0]&&0==e[1]&&0==e[2]}function unit(e){let t=1/(Math.sqrt(e[0]*e[0]+e[1]*e[1]+e[2]*e[2])||1);return[e[0]*t,e[1]*t,e[2]*t]}function abs2(e){return e[0]*e[0]+e[1]*e[1]+e[2]*e[2]}function dot(e,t){return e[0]*t[0]+e[1]*t[1]+e[2]*t[2]}function cross(e,t){return[e[1]*t[2]-e[2]*t[1],e[2]*t[0]-e[0]*t[2],e[0]*t[1]-e[1]*t[0]]}function bezierPP(e,t,i){return[e[0]+i[0]-2*t[0],e[1]+i[1]-2*t[1],e[2]+i[2]-2*t[2]]}function bezierPPP(e,t,i,a){return[a[0]-e[0]+3*(t[0]-i[0]),a[1]-e[1]+3*(t[1]-i[1]),a[2]-e[2]+3*(t[2]-i[2])]}function Straightness(e,t,i,a){let r=[third*(a[0]-e[0]),third*(a[1]-e[1]),third*(a[2]-e[2])];return Math.max(abs2([t[0]-r[0]-e[0],t[1]-r[1]-e[1],t[2]-r[2]-e[2]]),abs2([a[0]-r[0]-i[0],a[1]-r[1]-i[1],a[2]-r[2]-i[2]]))}function Distance2(e,t,i){let a=dot([e[0]-t[0],e[1]-t[1],e[2]-t[2]],i);return a*a}function corners(e,t){return[e,[e[0],e[1],t[2]],[e[0],t[1],e[2]],[e[0],t[1],t[2]],[t[0],e[1],e[2]],[t[0],e[1],t[2]],[t[0],t[1],e[2]],t]}function COBTarget(e,t){mat4.fromTranslation(translMat,[center.x,center.y,center.z]),mat4.invert(cjMatInv,translMat),mat4.multiply(e,t,cjMatInv),mat4.multiply(e,translMat,e)}function setUniforms(e,t){let i=t==pixelShader;gl.useProgram(t),gl.enableVertexAttribArray(positionAttribute),i&&gl.enableVertexAttribArray(widthAttribute);let a=t!=noNormalShader&&!i&&Lights.length>0;if(a&&gl.enableVertexAttribArray(normalAttribute),gl.enableVertexAttribArray(materialAttribute),t.projViewMatUniform=gl.getUniformLocation(t,"projViewMat"),t.viewMatUniform=gl.getUniformLocation(t,"viewMat"),t.normMatUniform=gl.getUniformLocation(t,"normMat"),t!=colorShader&&t!=transparentShader||gl.enableVertexAttribArray(colorAttribute),a)for(let e=0;e<Lights.length;++e)Lights[e].setUniform(t,e);for(let i=0;i<e.materials.length;++i)e.materials[i].setUniform(t,i);gl.uniformMatrix4fv(t.projViewMatUniform,!1,projViewMat),gl.uniformMatrix4fv(t.viewMatUniform,!1,viewMat),gl.uniformMatrix3fv(t.normMatUniform,!1,normMat)}function handleMouseDown(e){zoomEnabled||enableZoom(),mouseDownOrTouchActive=!0,lastMouseX=e.clientX,lastMouseY=e.clientY}let pinchStart,touchStartTime,pinch=!1;function pinchDistance(e){return Math.hypot(e[0].pageX-e[1].pageX,e[0].pageY-e[1].pageY)}function handleTouchStart(e){e.preventDefault(),zoomEnabled||enableZoom();let t=e.targetTouches;swipe=rotate=pinch=!1,zooming||(1!=t.length||mouseDownOrTouchActive||(touchStartTime=(new Date).getTime(),touchId=t[0].identifier,lastMouseX=t[0].pageX,lastMouseY=t[0].pageY),2!=t.length||mouseDownOrTouchActive||(touchId=t[0].identifier,pinchStart=pinchDistance(t),pinch=!0))}function handleMouseUpOrTouchEnd(e){mouseDownOrTouchActive=!1}function rotateScene(e,t,i,a,r){if(e==i&&t==a)return;let[n,s]=arcball([e,-t],[i,-a]);mat4.fromRotation(rotMats,2*r*ArcballFactor*n/lastzoom,s),mat4.multiply(rotMat,rotMats,rotMat)}function shiftScene(e,t,i,a){let r=1/lastzoom;shift.x+=(i-e)*r*halfCanvasWidth,shift.y-=(a-t)*r*halfCanvasHeight}function panScene(e,t,i,a){orthographic?shiftScene(e,t,i,a):(center.x+=(i-e)*(viewParam.xmax-viewParam.xmin),center.y-=(a-t)*(viewParam.ymax-viewParam.ymin))}function updateViewMatrix(){COBTarget(viewMat,rotMat),mat4.translate(viewMat,viewMat,[center.x,center.y,0]),mat3.fromMat4(viewMat3,viewMat),mat3.invert(normMat,viewMat3),mat4.multiply(projViewMat,projMat,viewMat)}function capzoom(){let e=Math.sqrt(Number.MAX_VALUE),t=1/e;Zoom<=t&&(Zoom=t),Zoom>=e&&(Zoom=e),Zoom!=lastzoom&&(remesh=!0),lastzoom=Zoom}function zoomImage(e){let t=zoomStep*halfCanvasHeight*e;const i=Math.log(.1*Number.MAX_VALUE)/Math.log(zoomFactor);Math.abs(t)<i&&(Zoom*=zoomFactor**t,capzoom())}function normMouse(e){let t=e[0],i=e[1],a=Math.hypot(t,i);return a>1&&(denom=1/a,t*=denom,i*=denom),[t,i,Math.sqrt(Math.max(1-i*i-t*t,0))]}function arcball(e,t){let i=normMouse(e),a=normMouse(t),r=dot(i,a);return r>1?r=1:r<-1&&(r=-1),[Math.acos(r),unit(cross(i,a))]}function zoomScene(e,t,i,a){zoomImage(t-a)}const DRAGMODE_ROTATE=1,DRAGMODE_SHIFT=2,DRAGMODE_ZOOM=3,DRAGMODE_PAN=4;function processDrag(e,t,i,a=1){let r;switch(i){case DRAGMODE_ROTATE:r=rotateScene;break;case DRAGMODE_SHIFT:r=shiftScene;break;case DRAGMODE_ZOOM:r=zoomScene;break;case DRAGMODE_PAN:r=panScene;break;default:r=((e,t,i,a)=>{})}r((lastMouseX-halfCanvasWidth)/halfCanvasWidth,(lastMouseY-halfCanvasHeight)/halfCanvasHeight,(e-halfCanvasWidth)/halfCanvasWidth,(t-halfCanvasHeight)/halfCanvasHeight,a),lastMouseX=e,lastMouseY=t,setProjection(),draw()}let zoomEnabled=0;function enableZoom(){zoomEnabled=1,canvas.addEventListener("wheel",handleMouseWheel,!1)}function disableZoom(){zoomEnabled=0,canvas.removeEventListener("wheel",handleMouseWheel,!1)}function handleKey(e){if(zoomEnabled||enableZoom(),embedded&&zoomEnabled&&27==e.keyCode)return void disableZoom();let t=[];switch(e.key){case"x":t=[1,0,0];break;case"y":t=[0,1,0];break;case"z":t=[0,0,1];break;case"h":home();break;case"+":case"=":case">":expand();break;case"-":case"_":case"<":shrink()}t.length>0&&(mat4.rotate(rotMat,rotMat,.1,t),updateViewMatrix(),draw())}function handleMouseWheel(e){e.preventDefault(),e.deltaY<0?Zoom*=zoomFactor:Zoom/=zoomFactor,capzoom(),setProjection(),draw()}function handleMouseMove(e){if(!mouseDownOrTouchActive)return;let t;processDrag(e.clientX,e.clientY,t=e.getModifierState("Control")?DRAGMODE_SHIFT:e.getModifierState("Shift")?DRAGMODE_ZOOM:e.getModifierState("Alt")?DRAGMODE_PAN:DRAGMODE_ROTATE)}let zooming=!1,swipe=!1,rotate=!1;function handleTouchMove(e){if(e.preventDefault(),zooming)return;let t=e.targetTouches;if(!pinch&&1==t.length&&touchId==t[0].identifier){let e=t[0].pageX,i=t[0].pageY,a=e-lastMouseX,r=i-lastMouseY,n=a*a+r*r<=shiftHoldDistance*shiftHoldDistance;if(n&&!swipe&&!rotate&&(new Date).getTime()-touchStartTime>shiftWaitTime&&(navigator.vibrate&&window.navigator.vibrate(vibrateTime),swipe=!0),swipe)processDrag(e,i,DRAGMODE_SHIFT);else if(!n){rotate=!0,processDrag(t[0].pageX,t[0].pageY,DRAGMODE_ROTATE,.5)}}if(pinch&&!swipe&&2==t.length&&touchId==t[0].identifier){let e=pinchDistance(t),i=e-pinchStart;zooming=!0,(i*=zoomPinchFactor)>zoomPinchCap&&(i=zoomPinchCap),i<-zoomPinchCap&&(i=-zoomPinchCap),zoomImage(i/size2),pinchStart=e,swipe=rotate=zooming=!1,setProjection(),draw()}}let pixelShader,noNormalShader,materialShader,colorShader,transparentShader,zbuffer=[];function transformVertices(e){let t=viewMat[2],i=viewMat[6],a=viewMat[10];zbuffer.length=e.length;for(let r=0;r<e.length;++r){let n=6*r;zbuffer[r]=t*e[n]+i*e[n+1]+a*e[n+2]}}function drawMaterial0(){drawBuffer(material0Data,pixelShader),material0Data.clear()}function drawMaterial1(){drawBuffer(material1Data,noNormalShader),material1Data.clear()}function drawMaterial(){drawBuffer(materialData,materialShader),materialData.clear()}function drawColor(){drawBuffer(colorData,colorShader),colorData.clear()}function drawTriangle(){drawBuffer(triangleData,transparentShader),triangleData.clear()}function drawTransparent(){let e=transparentData.indices;if(e.length>0){transformVertices(transparentData.vertices);let t=e.length/3,i=Array(t).fill().map((e,t)=>t);i.sort(function(t,i){let a=3*t;Ia=e[a],Ib=e[a+1],Ic=e[a+2];let r=3*i;return IA=e[r],IB=e[r+1],IC=e[r+2],zbuffer[Ia]+zbuffer[Ib]+zbuffer[Ic]<zbuffer[IA]+zbuffer[IB]+zbuffer[IC]?-1:1});let a=Array(e.length);for(let r=0;r<t;++r){let t=3*i[r];a[3*r]=e[t],a[3*r+1]=e[t+1],a[3*r+2]=e[t+2]}gl.depthMask(!1),drawBuffer(transparentData,transparentShader,a),gl.depthMask(!0)}transparentData.clear()}function drawBuffers(){drawMaterial0(),drawMaterial1(),drawMaterial(),drawColor(),drawTriangle(),drawTransparent()}function draw(){embedded&&(offscreen.width=canvas.width,offscreen.height=canvas.height,setViewport()),gl.clearColor(Background[0],Background[1],Background[2],Background[3]),gl.clear(gl.COLOR_BUFFER_BIT|gl.DEPTH_BUFFER_BIT);for(let e=0;e<P.length;++e)P[e].render();drawBuffers(),embedded&&(context.clearRect(0,0,canvas.width,canvas.height),context.drawImage(offscreen,0,0)),remesh=!1}function setDimensions(e,t,i,a){let r=e/t,n=1/lastzoom,s=(i/e+viewportshift[0])*lastzoom,o=(a/t+viewportshift[1])*lastzoom;if(orthographic){let e=B[0]-b[0],t=B[1]-b[1];if(e<t*r){let e=.5*t*r*n,i=2*e*s,a=t*n*o;viewParam.xmin=-e-i,viewParam.xmax=e-i,viewParam.ymin=b[1]*n-a,viewParam.ymax=B[1]*n-a}else{let t=.5*e/(r*Zoom),i=e*n*s,a=2*t*o;viewParam.xmin=b[0]*n-i,viewParam.xmax=B[0]*n-i,viewParam.ymin=-t-a,viewParam.ymax=t-a}}else{let e=H*n,t=e*r,i=2*t*s,a=2*e*o;viewParam.xmin=-t-i,viewParam.xmax=t-i,viewParam.ymin=-e-a,viewParam.ymax=e-a}}function setProjection(){setDimensions(canvasWidth,canvasHeight,shift.x,shift.y),(orthographic?mat4.ortho:mat4.frustum)(projMat,viewParam.xmin,viewParam.xmax,viewParam.ymin,viewParam.ymax,-viewParam.zmax,-viewParam.zmin),updateViewMatrix()}function initProjection(){H=-Math.tan(.5*angle)*B[2],center.x=center.y=0,center.z=.5*(b[2]+B[2]),lastzoom=Zoom=Zoom0,viewParam.zmin=b[2],viewParam.zmax=B[2],shift.x=shift.y=0}function setViewport(){gl.viewportWidth=canvasWidth,gl.viewportHeight=canvasHeight,gl.viewport(0,0,gl.viewportWidth,gl.viewportHeight),gl.scissor(0,0,gl.viewportWidth,gl.viewportHeight)}function setCanvas(){canvas.width=canvasWidth,canvas.height=canvasHeight,embedded&&(offscreen.width=canvasWidth,offscreen.height=canvasHeight),size2=Math.hypot(canvasWidth,canvasHeight),halfCanvasWidth=.5*canvasWidth,halfCanvasHeight=.5*canvasHeight}function setsize(e,t){e>maxViewportWidth&&(e=maxViewportWidth),t>maxViewportHeight&&(t=maxViewportHeight),shift.x*=e/canvasWidth,shift.y*=t/canvasHeight,canvasWidth=e,canvasHeight=t,setCanvas(),setViewport(),home()}function expand(){setsize(canvasWidth*resizeStep+.5,canvasHeight*resizeStep+.5)}function shrink(){setsize(Math.max(canvasWidth/resizeStep+.5,1),Math.max(canvasHeight/resizeStep+.5,1))}function webGLStart(){if(canvas=document.getElementById("Asymptote"),embedded=window.top.document!=document,initGL(),absolute&&!embedded)canvasWidth*=window.devicePixelRatio,canvasHeight*=window.devicePixelRatio;else{canvas.width=Math.max(window.innerWidth-windowTrim,windowTrim),canvas.height=Math.max(window.innerHeight-windowTrim,windowTrim);let e=canvasWidth/canvasHeight;canvas.width>canvas.height*e?canvas.width=Math.min(canvas.height*e,canvas.width):canvas.height=Math.min(canvas.width/e,canvas.height),canvas.width>0&&(canvasWidth=canvas.width),canvas.height>0&&(canvasHeight=canvas.height)}setCanvas(),ArcballFactor=1+8*Math.hypot(viewportmargin[0],viewportmargin[1])/size2,viewportshift[0]/=Zoom0,viewportshift[1]/=Zoom0,gl.enable(gl.BLEND),gl.blendFunc(gl.SRC_ALPHA,gl.ONE_MINUS_SRC_ALPHA),gl.enable(gl.DEPTH_TEST),gl.enable(gl.SCISSOR_TEST),setViewport(),home(),canvas.onmousedown=handleMouseDown,document.onmouseup=handleMouseUpOrTouchEnd,document.onmousemove=handleMouseMove,canvas.onkeydown=handleKey,embedded||enableZoom(),canvas.addEventListener("touchstart",handleTouchStart,!1),canvas.addEventListener("touchend",handleMouseUpOrTouchEnd,!1),canvas.addEventListener("touchcancel",handleMouseUpOrTouchEnd,!1),canvas.addEventListener("touchleave",handleMouseUpOrTouchEnd,!1),canvas.addEventListener("touchmove",handleTouchMove,!1),document.addEventListener("keydown",handleKey,!1)}
+let vertex="\nattribute vec3 position;\n#ifdef WIDTH\nattribute float width;\n#endif\n#ifdef NORMAL\nattribute vec3 normal;\n#endif\nattribute float materialIndex;\n#ifdef COLOR\nattribute vec4 color;\n#endif\n\nuniform mat3 normMat;\nuniform mat4 viewMat;\nuniform mat4 projViewMat;\n\n#ifdef NORMAL\n#ifndef ORTHOGRAPHIC\nvarying vec3 ViewPosition;\n#endif\nvarying vec3 Normal;\n#endif\nvarying vec4 diffuse;\nvarying vec3 specular;\nvarying float roughness,metallic,fresnel0;\nvarying vec4 emissive;\n\nstruct Material {\n vec4 diffuse,emissive,specular;\n vec4 parameters;\n};\n\nuniform Material Materials[Nmaterials];\n\nvoid main(void)\n{\n vec4 v=vec4(position,1.0);\n gl_Position=projViewMat*v;\n#ifdef NORMAL\n#ifndef ORTHOGRAPHIC\n ViewPosition=(viewMat*v).xyz;\n#endif \n Normal=normalize(normal*normMat);\n \n Material m;\n#ifdef TRANSPARENT\n m=Materials[int(abs(materialIndex))-1];\n emissive=m.emissive;\n if(materialIndex >= 0.0) {\n diffuse=m.diffuse;\n } else {\n diffuse=color;\n#if nlights == 0\n emissive += color;\n#endif\n }\n#else\n m=Materials[int(materialIndex)];\n emissive=m.emissive;\n#ifdef COLOR\n diffuse=color;\n#if nlights == 0\n emissive += color;\n#endif\n#else\n diffuse=m.diffuse;\n#endif\n#endif\n specular=m.specular.rgb;\n vec4 parameters=m.parameters;\n roughness=1.0-parameters[0];\n metallic=parameters[1];\n fresnel0=parameters[2];\n#else\n emissive=Materials[int(materialIndex)].emissive;\n#endif\n#ifdef WIDTH\n gl_PointSize=width;\n#endif\n}\n",fragment="\n#ifdef NORMAL\n#ifndef ORTHOGRAPHIC\nvarying vec3 ViewPosition;\n#endif\nvarying vec3 Normal;\nvarying vec4 diffuse;\nvarying vec3 specular;\nvarying float roughness,metallic,fresnel0;\n\nfloat Roughness2;\nvec3 normal;\n\nstruct Light {\n vec3 direction;\n vec3 color;\n};\n\nuniform Light Lights[Nlights];\n\nfloat NDF_TRG(vec3 h)\n{\n float ndoth=max(dot(normal,h),0.0);\n float alpha2=Roughness2*Roughness2;\n float denom=ndoth*ndoth*(alpha2-1.0)+1.0;\n return denom != 0.0 ? alpha2/(denom*denom) : 0.0;\n}\n \nfloat GGX_Geom(vec3 v)\n{\n float ndotv=max(dot(v,normal),0.0);\n float ap=1.0+Roughness2;\n float k=0.125*ap*ap;\n return ndotv/((ndotv*(1.0-k))+k);\n}\n \nfloat Geom(vec3 v, vec3 l)\n{\n return GGX_Geom(v)*GGX_Geom(l);\n}\n \nfloat Fresnel(vec3 h, vec3 v, float fresnel0)\n{\n float a=1.0-max(dot(h,v),0.0);\n float b=a*a;\n return fresnel0+(1.0-fresnel0)*b*b*a;\n}\n \n// physical based shading using UE4 model.\nvec3 BRDF(vec3 viewDirection, vec3 lightDirection)\n{\n vec3 lambertian=diffuse.rgb;\n vec3 h=normalize(lightDirection+viewDirection);\n \n float omegain=max(dot(viewDirection,normal),0.0);\n float omegali=max(dot(lightDirection,normal),0.0);\n \n float D=NDF_TRG(h);\n float G=Geom(viewDirection,lightDirection);\n float F=Fresnel(h,viewDirection,fresnel0);\n \n float denom=4.0*omegain*omegali;\n float rawReflectance=denom > 0.0 ? (D*G)/denom : 0.0;\n \n vec3 dielectric=mix(lambertian,rawReflectance*specular,F);\n vec3 metal=rawReflectance*diffuse.rgb;\n \n return mix(dielectric,metal,metallic);\n}\n#endif\nvarying vec4 emissive;\n \nvoid main(void)\n{\n#if defined(NORMAL) && nlights > 0\n normal=normalize(Normal);\n normal=gl_FrontFacing ? normal : -normal;\n#ifdef ORTHOGRAPHIC\n vec3 viewDir=vec3(0.0,0.0,1.0);\n#else\n vec3 viewDir=-normalize(ViewPosition);\n#endif\n Roughness2=roughness*roughness;\n vec3 color=emissive.rgb;\n for(int i=0; i < nlights; ++i) {\n Light Li=Lights[i];\n vec3 L=Li.direction;\n float cosTheta=max(dot(normal,L),0.0);\n vec3 radiance=cosTheta*Li.color;\n color += BRDF(viewDir,L)*radiance;\n }\n gl_FragColor=vec4(color,diffuse.a);\n#else\n gl_FragColor=emissive;\n#endif\n}\n";!function(t,e){if("object"==typeof exports&&"object"==typeof module)module.exports=e();else if("function"==typeof define&&define.amd)define([],e);else{var i=e();for(var a in i)("object"==typeof exports?exports:t)[a]=i[a]}}("undefined"!=typeof self?self:this,function(){return function(t){var e={};function i(a){if(e[a])return e[a].exports;var r=e[a]={i:a,l:!1,exports:{}};return t[a].call(r.exports,r,r.exports,i),r.l=!0,r.exports}return i.m=t,i.c=e,i.d=function(t,e,a){i.o(t,e)||Object.defineProperty(t,e,{configurable:!1,enumerable:!0,get:a})},i.n=function(t){var e=t&&t.__esModule?function(){return t.default}:function(){return t};return i.d(e,"a",e),e},i.o=function(t,e){return Object.prototype.hasOwnProperty.call(t,e)},i.p="",i(i.s=1)}([function(t,e,i){"use strict";Object.defineProperty(e,"__esModule",{value:!0}),e.setMatrixArrayType=function(t){e.ARRAY_TYPE=t},e.toRadian=function(t){return t*r},e.equals=function(t,e){return Math.abs(t-e)<=a*Math.max(1,Math.abs(t),Math.abs(e))};var a=e.EPSILON=1e-6;e.ARRAY_TYPE="undefined"!=typeof Float32Array?Float32Array:Array,e.RANDOM=Math.random;var r=Math.PI/180},function(t,e,i){"use strict";Object.defineProperty(e,"__esModule",{value:!0}),e.mat4=e.mat3=void 0;var a=n(i(2)),r=n(i(3));function n(t){if(t&&t.__esModule)return t;var e={};if(null!=t)for(var i in t)Object.prototype.hasOwnProperty.call(t,i)&&(e[i]=t[i]);return e.default=t,e}e.mat3=a,e.mat4=r},function(t,e,i){"use strict";Object.defineProperty(e,"__esModule",{value:!0}),e.create=function(){var t=new a.ARRAY_TYPE(9);return t[0]=1,t[1]=0,t[2]=0,t[3]=0,t[4]=1,t[5]=0,t[6]=0,t[7]=0,t[8]=1,t},e.fromMat4=function(t,e){return t[0]=e[0],t[1]=e[1],t[2]=e[2],t[3]=e[4],t[4]=e[5],t[5]=e[6],t[6]=e[8],t[7]=e[9],t[8]=e[10],t},e.invert=function(t,e){var i=e[0],a=e[1],r=e[2],n=e[3],s=e[4],o=e[5],h=e[6],l=e[7],d=e[8],c=d*s-o*l,m=-d*n+o*h,f=l*n-s*h,u=i*c+a*m+r*f;if(!u)return null;return u=1/u,t[0]=c*u,t[1]=(-d*a+r*l)*u,t[2]=(o*a-r*s)*u,t[3]=m*u,t[4]=(d*i-r*h)*u,t[5]=(-o*i+r*n)*u,t[6]=f*u,t[7]=(-l*i+a*h)*u,t[8]=(s*i-a*n)*u,t};var a=function(t){if(t&&t.__esModule)return t;var e={};if(null!=t)for(var i in t)Object.prototype.hasOwnProperty.call(t,i)&&(e[i]=t[i]);return e.default=t,e}(i(0))},function(t,e,i){"use strict";Object.defineProperty(e,"__esModule",{value:!0}),e.create=function(){var t=new a.ARRAY_TYPE(16);return t[0]=1,t[1]=0,t[2]=0,t[3]=0,t[4]=0,t[5]=1,t[6]=0,t[7]=0,t[8]=0,t[9]=0,t[10]=1,t[11]=0,t[12]=0,t[13]=0,t[14]=0,t[15]=1,t},e.identity=function(t){return t[0]=1,t[1]=0,t[2]=0,t[3]=0,t[4]=0,t[5]=1,t[6]=0,t[7]=0,t[8]=0,t[9]=0,t[10]=1,t[11]=0,t[12]=0,t[13]=0,t[14]=0,t[15]=1,t},e.invert=function(t,e){var i=e[0],a=e[1],r=e[2],n=e[3],s=e[4],o=e[5],h=e[6],l=e[7],d=e[8],c=e[9],m=e[10],f=e[11],u=e[12],p=e[13],v=e[14],g=e[15],w=i*o-a*s,x=i*h-r*s,M=i*l-n*s,b=a*h-r*o,A=a*l-n*o,S=r*l-n*h,P=d*p-c*u,R=d*v-m*u,T=d*g-f*u,y=c*v-m*p,D=c*g-f*p,I=m*g-f*v,z=w*I-x*D+M*y+b*T-A*R+S*P;if(!z)return null;return z=1/z,t[0]=(o*I-h*D+l*y)*z,t[1]=(r*D-a*I-n*y)*z,t[2]=(p*S-v*A+g*b)*z,t[3]=(m*A-c*S-f*b)*z,t[4]=(h*T-s*I-l*R)*z,t[5]=(i*I-r*T+n*R)*z,t[6]=(v*M-u*S-g*x)*z,t[7]=(d*S-m*M+f*x)*z,t[8]=(s*D-o*T+l*P)*z,t[9]=(a*T-i*D-n*P)*z,t[10]=(u*A-p*M+g*w)*z,t[11]=(c*M-d*A-f*w)*z,t[12]=(o*R-s*y-h*P)*z,t[13]=(i*y-a*R+r*P)*z,t[14]=(p*x-u*b-v*w)*z,t[15]=(d*b-c*x+m*w)*z,t},e.multiply=r,e.translate=function(t,e,i){var a=i[0],r=i[1],n=i[2],s=void 0,o=void 0,h=void 0,l=void 0,d=void 0,c=void 0,m=void 0,f=void 0,u=void 0,p=void 0,v=void 0,g=void 0;e===t?(t[12]=e[0]*a+e[4]*r+e[8]*n+e[12],t[13]=e[1]*a+e[5]*r+e[9]*n+e[13],t[14]=e[2]*a+e[6]*r+e[10]*n+e[14],t[15]=e[3]*a+e[7]*r+e[11]*n+e[15]):(s=e[0],o=e[1],h=e[2],l=e[3],d=e[4],c=e[5],m=e[6],f=e[7],u=e[8],p=e[9],v=e[10],g=e[11],t[0]=s,t[1]=o,t[2]=h,t[3]=l,t[4]=d,t[5]=c,t[6]=m,t[7]=f,t[8]=u,t[9]=p,t[10]=v,t[11]=g,t[12]=s*a+d*r+u*n+e[12],t[13]=o*a+c*r+p*n+e[13],t[14]=h*a+m*r+v*n+e[14],t[15]=l*a+f*r+g*n+e[15]);return t},e.rotate=function(t,e,i,r){var n=r[0],s=r[1],o=r[2],h=Math.sqrt(n*n+s*s+o*o),l=void 0,d=void 0,c=void 0,m=void 0,f=void 0,u=void 0,p=void 0,v=void 0,g=void 0,w=void 0,x=void 0,M=void 0,b=void 0,A=void 0,S=void 0,P=void 0,R=void 0,T=void 0,y=void 0,D=void 0,I=void 0,z=void 0,E=void 0,O=void 0;if(Math.abs(h)<a.EPSILON)return null;n*=h=1/h,s*=h,o*=h,l=Math.sin(i),d=Math.cos(i),c=1-d,m=e[0],f=e[1],u=e[2],p=e[3],v=e[4],g=e[5],w=e[6],x=e[7],M=e[8],b=e[9],A=e[10],S=e[11],P=n*n*c+d,R=s*n*c+o*l,T=o*n*c-s*l,y=n*s*c-o*l,D=s*s*c+d,I=o*s*c+n*l,z=n*o*c+s*l,E=s*o*c-n*l,O=o*o*c+d,t[0]=m*P+v*R+M*T,t[1]=f*P+g*R+b*T,t[2]=u*P+w*R+A*T,t[3]=p*P+x*R+S*T,t[4]=m*y+v*D+M*I,t[5]=f*y+g*D+b*I,t[6]=u*y+w*D+A*I,t[7]=p*y+x*D+S*I,t[8]=m*z+v*E+M*O,t[9]=f*z+g*E+b*O,t[10]=u*z+w*E+A*O,t[11]=p*z+x*E+S*O,e!==t&&(t[12]=e[12],t[13]=e[13],t[14]=e[14],t[15]=e[15]);return t},e.fromTranslation=function(t,e){return t[0]=1,t[1]=0,t[2]=0,t[3]=0,t[4]=0,t[5]=1,t[6]=0,t[7]=0,t[8]=0,t[9]=0,t[10]=1,t[11]=0,t[12]=e[0],t[13]=e[1],t[14]=e[2],t[15]=1,t},e.fromRotation=function(t,e,i){var r=i[0],n=i[1],s=i[2],o=Math.sqrt(r*r+n*n+s*s),h=void 0,l=void 0,d=void 0;if(Math.abs(o)<a.EPSILON)return null;return r*=o=1/o,n*=o,s*=o,h=Math.sin(e),l=Math.cos(e),d=1-l,t[0]=r*r*d+l,t[1]=n*r*d+s*h,t[2]=s*r*d-n*h,t[3]=0,t[4]=r*n*d-s*h,t[5]=n*n*d+l,t[6]=s*n*d+r*h,t[7]=0,t[8]=r*s*d+n*h,t[9]=n*s*d-r*h,t[10]=s*s*d+l,t[11]=0,t[12]=0,t[13]=0,t[14]=0,t[15]=1,t},e.frustum=function(t,e,i,a,r,n,s){var o=1/(i-e),h=1/(r-a),l=1/(n-s);return t[0]=2*n*o,t[1]=0,t[2]=0,t[3]=0,t[4]=0,t[5]=2*n*h,t[6]=0,t[7]=0,t[8]=(i+e)*o,t[9]=(r+a)*h,t[10]=(s+n)*l,t[11]=-1,t[12]=0,t[13]=0,t[14]=s*n*2*l,t[15]=0,t},e.ortho=function(t,e,i,a,r,n,s){var o=1/(e-i),h=1/(a-r),l=1/(n-s);return t[0]=-2*o,t[1]=0,t[2]=0,t[3]=0,t[4]=0,t[5]=-2*h,t[6]=0,t[7]=0,t[8]=0,t[9]=0,t[10]=2*l,t[11]=0,t[12]=(e+i)*o,t[13]=(r+a)*h,t[14]=(s+n)*l,t[15]=1,t};var a=function(t){if(t&&t.__esModule)return t;var e={};if(null!=t)for(var i in t)Object.prototype.hasOwnProperty.call(t,i)&&(e[i]=t[i]);return e.default=t,e}(i(0));function r(t,e,i){var a=e[0],r=e[1],n=e[2],s=e[3],o=e[4],h=e[5],l=e[6],d=e[7],c=e[8],m=e[9],f=e[10],u=e[11],p=e[12],v=e[13],g=e[14],w=e[15],x=i[0],M=i[1],b=i[2],A=i[3];return t[0]=x*a+M*o+b*c+A*p,t[1]=x*r+M*h+b*m+A*v,t[2]=x*n+M*l+b*f+A*g,t[3]=x*s+M*d+b*u+A*w,x=i[4],M=i[5],b=i[6],A=i[7],t[4]=x*a+M*o+b*c+A*p,t[5]=x*r+M*h+b*m+A*v,t[6]=x*n+M*l+b*f+A*g,t[7]=x*s+M*d+b*u+A*w,x=i[8],M=i[9],b=i[10],A=i[11],t[8]=x*a+M*o+b*c+A*p,t[9]=x*r+M*h+b*m+A*v,t[10]=x*n+M*l+b*f+A*g,t[11]=x*s+M*d+b*u+A*w,x=i[12],M=i[13],b=i[14],A=i[15],t[12]=x*a+M*o+b*c+A*p,t[13]=x*r+M*h+b*m+A*v,t[14]=x*n+M*l+b*f+A*g,t[15]=x*s+M*d+b*u+A*w,t}}])});let canvasWidth,canvasHeight,b,B,angle,Zoom0,viewportmargin,zoomFactor,zoomPinchFactor,zoomPinchCap,zoomStep,shiftHoldDistance,shiftWaitTime,vibrateTime,embedded,canvas,gl,alpha,offscreen,context,maxMaterials,halfCanvasWidth,halfCanvasHeight,Zoom,P=[],Materials=[],Lights=[],Centers=[],Background=[1,1,1,1],absolute=!1,viewportshift=[0,0],nlights=0,Nmaterials=2,materials=[],pixel=.75,FillFactor=.1,maxViewportWidth=window.innerWidth,maxViewportHeight=window.innerHeight;const windowTrim=10;let lastzoom,H,zmin,zmax,size2,ArcballFactor,positionBuffer,materialBuffer,colorBuffer,indexBuffer,resizeStep=1.2,third=1/3,rotMat=mat4.create(),projMat=mat4.create(),viewMat=mat4.create(),projViewMat=mat4.create(),normMat=mat3.create(),viewMat3=mat3.create(),cjMatInv=mat4.create(),T=mat4.create(),center={x:0,y:0,z:0},shift={x:0,y:0},viewParam={xmin:0,xmax:0,ymin:0,ymax:0,zmin:0,zmax:0},remesh=!0,wireframe=0,mouseDownOrTouchActive=!1,lastMouseX=null,lastMouseY=null,touchID=null,Positions=[],Normals=[],Colors=[],Indices=[];class Material{constructor(t,e,i,a,r,n){this.diffuse=t,this.emissive=e,this.specular=i,this.shininess=a,this.metallic=r,this.fresnel0=n}setUniform(t,e){let i=i=>gl.getUniformLocation(t,"Materials["+e+"]."+i);gl.uniform4fv(i("diffuse"),new Float32Array(this.diffuse)),gl.uniform4fv(i("emissive"),new Float32Array(this.emissive)),gl.uniform4fv(i("specular"),new Float32Array(this.specular)),gl.uniform4f(i("parameters"),this.shininess,this.metallic,this.fresnel0,0)}}let indexExt,TRIANGLES,material0Data,material1Data,materialData,colorData,transparentData,triangleData,materialIndex,enumPointLight=1,enumDirectionalLight=2;class Light{constructor(t,e){this.direction=t,this.color=e}setUniform(t,e){let i=i=>gl.getUniformLocation(t,"Lights["+e+"]."+i);gl.uniform3fv(i("direction"),new Float32Array(this.direction)),gl.uniform3fv(i("color"),new Float32Array(this.color))}}function initShaders(){let t=gl.getParameter(gl.MAX_VERTEX_UNIFORM_VECTORS);maxMaterials=Math.floor((t-14)/4),Nmaterials=Math.min(Math.max(Nmaterials,Materials.length),maxMaterials),pixelShader=initShader(["WIDTH"]),materialShader=initShader(["NORMAL"]),colorShader=initShader(["NORMAL","COLOR"]),transparentShader=initShader(["NORMAL","COLOR","TRANSPARENT"])}function deleteShaders(){gl.deleteProgram(transparentShader),gl.deleteProgram(colorShader),gl.deleteProgram(materialShader),gl.deleteProgram(pixelShader)}function setBuffers(){positionBuffer=gl.createBuffer(),materialBuffer=gl.createBuffer(),colorBuffer=gl.createBuffer(),indexBuffer=gl.createBuffer()}function noGL(){gl||alert("Could not initialize WebGL")}function saveAttributes(){let t=window.top.document.asygl[alpha];t.gl=gl,t.nlights=Lights.length,t.Nmaterials=Nmaterials,t.maxMaterials=maxMaterials,t.pixelShader=pixelShader,t.materialShader=materialShader,t.colorShader=colorShader,t.transparentShader=transparentShader}function restoreAttributes(){let t=window.top.document.asygl[alpha];gl=t.gl,nlights=t.nlights,Nmaterials=t.Nmaterials,maxMaterials=t.maxMaterials,pixelShader=t.pixelShader,materialShader=t.materialShader,colorShader=t.colorShader,transparentShader=t.transparentShader}function initGL(){if(alpha=Background[3]<1,embedded){let t=window.top.document;null==t.asygl&&(t.asygl=Array(2)),context=canvas.getContext("2d"),(offscreen=t.offscreen)||(offscreen=t.createElement("canvas"),t.offscreen=offscreen),t.asygl[alpha]&&t.asygl[alpha].gl?(restoreAttributes(),(Lights.length!=nlights||Math.min(Materials.length,maxMaterials)>Nmaterials)&&(initShaders(),saveAttributes())):((gl=offscreen.getContext("webgl",{alpha:alpha}))||noGL(),initShaders(),t.asygl[alpha]={},saveAttributes())}else(gl=canvas.getContext("webgl",{alpha:alpha}))||noGL(),initShaders();setBuffers(),indexExt=gl.getExtension("OES_element_index_uint"),TRIANGLES=gl.TRIANGLES,material0Data=new vertexBuffer(gl.POINTS),material1Data=new vertexBuffer(gl.LINES),materialData=new vertexBuffer,colorData=new vertexBuffer,transparentData=new vertexBuffer,triangleData=new vertexBuffer}function getShader(t,e,i,a=[]){let r=`#version 100\n#ifdef GL_FRAGMENT_PRECISION_HIGH\n precision highp float;\n#else\n precision mediump float;\n#endif\n #define nlights ${0==wireframe?Lights.length:0}\n\n const int Nlights=${Math.max(Lights.length,1)};\n\n #define Nmaterials ${Nmaterials}\n`;orthographic&&(r+="#define ORTHOGRAPHIC\n"),a.forEach(t=>r+="#define "+t+"\n");let n=t.createShader(i);return t.shaderSource(n,r+e),t.compileShader(n),t.getShaderParameter(n,t.COMPILE_STATUS)?n:(alert(t.getShaderInfoLog(n)),null)}function drawBuffer(t,e,i=t.indices){if(0==t.indices.length)return;let a=e!=pixelShader;setUniforms(t,e),gl.bindBuffer(gl.ARRAY_BUFFER,positionBuffer),gl.bufferData(gl.ARRAY_BUFFER,new Float32Array(t.vertices),gl.STATIC_DRAW),gl.vertexAttribPointer(positionAttribute,3,gl.FLOAT,!1,a?24:16,0),a&&Lights.length>0?gl.vertexAttribPointer(normalAttribute,3,gl.FLOAT,!1,24,12):pixel&&gl.vertexAttribPointer(widthAttribute,1,gl.FLOAT,!1,16,12),gl.bindBuffer(gl.ARRAY_BUFFER,materialBuffer),gl.bufferData(gl.ARRAY_BUFFER,new Int16Array(t.materialIndices),gl.STATIC_DRAW),gl.vertexAttribPointer(materialAttribute,1,gl.SHORT,!1,2,0),e!=colorShader&&e!=transparentShader||(gl.bindBuffer(gl.ARRAY_BUFFER,colorBuffer),gl.bufferData(gl.ARRAY_BUFFER,new Uint8Array(t.colors),gl.STATIC_DRAW),gl.vertexAttribPointer(colorAttribute,4,gl.UNSIGNED_BYTE,!0,0,0)),gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER,indexBuffer),gl.bufferData(gl.ELEMENT_ARRAY_BUFFER,indexExt?new Uint32Array(i):new Uint16Array(i),gl.STATIC_DRAW),gl.drawElements(a?wireframe?gl.LINES:t.type:gl.POINTS,i.length,indexExt?gl.UNSIGNED_INT:gl.UNSIGNED_SHORT,0)}class vertexBuffer{constructor(t){this.type=t||TRIANGLES,this.clear()}clear(){this.vertices=[],this.materialIndices=[],this.colors=[],this.indices=[],this.nvertices=0,this.materials=[],this.materialTable=[]}vertex(t,e){return this.vertices.push(t[0]),this.vertices.push(t[1]),this.vertices.push(t[2]),this.vertices.push(e[0]),this.vertices.push(e[1]),this.vertices.push(e[2]),this.materialIndices.push(materialIndex),this.nvertices++}Vertex(t,e,i=[0,0,0,0]){return this.vertices.push(t[0]),this.vertices.push(t[1]),this.vertices.push(t[2]),this.vertices.push(e[0]),this.vertices.push(e[1]),this.vertices.push(e[2]),this.materialIndices.push(materialIndex),this.colors.push(i[0]),this.colors.push(i[1]),this.colors.push(i[2]),this.colors.push(i[3]),this.nvertices++}vertex0(t,e){return this.vertices.push(t[0]),this.vertices.push(t[1]),this.vertices.push(t[2]),this.vertices.push(e),this.materialIndices.push(materialIndex),this.nvertices++}iVertex(t,e,i,a=[0,0,0,0]){let r=6*t;this.vertices[r]=e[0],this.vertices[r+1]=e[1],this.vertices[r+2]=e[2],this.vertices[r+3]=i[0],this.vertices[r+4]=i[1],this.vertices[r+5]=i[2],this.materialIndices[t]=materialIndex;let n=4*t;this.colors[n]=a[0],this.colors[n+1]=a[1],this.colors[n+2]=a[2],this.colors[n+3]=a[3],this.indices.push(t)}append(t){append(this.vertices,t.vertices),append(this.materialIndices,t.materialIndices),append(this.colors,t.colors),appendOffset(this.indices,t.indices,this.nvertices),this.nvertices+=t.nvertices}}function append(t,e){let i=t.length,a=e.length;t.length+=a;for(let r=0;r<a;++r)t[i+r]=e[r]}function appendOffset(t,e,i){let a=t.length,r=e.length;t.length+=e.length;for(let n=0;n<r;++n)t[a+n]=e[n]+i}class Geometry{constructor(){this.data=new vertexBuffer,this.Onscreen=!1,this.m=[]}offscreen(t){let e=projViewMat,i=t[0],a=i[0],r=i[1],n=i[2],s=1/(e[3]*a+e[7]*r+e[11]*n+e[15]);this.x=this.X=(e[0]*a+e[4]*r+e[8]*n+e[12])*s,this.y=this.Y=(e[1]*a+e[5]*r+e[9]*n+e[13])*s;for(let i=1,a=t.length;i<a;++i){let a=t[i],r=a[0],n=a[1],s=a[2],o=1/(e[3]*r+e[7]*n+e[11]*s+e[15]),h=(e[0]*r+e[4]*n+e[8]*s+e[12])*o,l=(e[1]*r+e[5]*n+e[9]*s+e[13])*o;h<this.x?this.x=h:h>this.X&&(this.X=h),l<this.y?this.y=l:l>this.Y&&(this.Y=l)}return(this.X<-1.01||this.x>1.01||this.Y<-1.01||this.y>1.01)&&(this.Onscreen=!1,!0)}T(t){let e=this.c[0],i=this.c[1],a=this.c[2],r=t[0]-e,n=t[1]-i,s=t[2]-a;return[r*normMat[0]+n*normMat[3]+s*normMat[6]+e,r*normMat[1]+n*normMat[4]+s*normMat[7]+i,r*normMat[2]+n*normMat[5]+s*normMat[8]+a]}Tcorners(t,e){return[this.T(t),this.T([t[0],t[1],e[2]]),this.T([t[0],e[1],t[2]]),this.T([t[0],e[1],e[2]]),this.T([e[0],t[1],t[2]]),this.T([e[0],t[1],e[2]]),this.T([e[0],e[1],t[2]]),this.T(e)]}setMaterial(t,e){null==t.materialTable[this.MaterialIndex]&&(t.materials.length>=Nmaterials&&e(),t.materialTable[this.MaterialIndex]=t.materials.length,t.materials.push(Materials[this.MaterialIndex])),materialIndex=t.materialTable[this.MaterialIndex]}render(){let t;if(this.setMaterialIndex(),0==this.CenterIndex?t=corners(this.Min,this.Max):(this.c=Centers[this.CenterIndex-1],t=this.Tcorners(this.Min,this.Max)),this.offscreen(t))return void this.data.clear();let e,i=this.controlpoints;if(0==this.CenterIndex){if(!remesh&&this.Onscreen)return void this.append();e=i}else{let t=i.length;e=Array(t);for(let a=0;a<t;++a)e[a]=this.T(i[a])}let a=orthographic?1:this.Min[2]/B[2],r=pixel*Math.hypot(a*(viewParam.xmax-viewParam.xmin),a*(viewParam.ymax-viewParam.ymin))/size2;this.res2=r*r,this.Epsilon=FillFactor*r,this.data.clear(),this.Onscreen=!0,this.process(e)}}class BezierPatch extends Geometry{constructor(t,e,i,a,r,n){super(),this.controlpoints=t,this.Min=a,this.Max=r,this.color=n,this.CenterIndex=e;let s=t.length;if(n){let t=n[0][3]+n[1][3]+n[2][3];this.transparent=16==s||4==s?t+n[3][3]<1020:t<765}else this.transparent=Materials[i].diffuse[3]<1;this.MaterialIndex=i,this.vertex=this.transparent?this.data.Vertex.bind(this.data):this.data.vertex.bind(this.data),this.L2norm(this.controlpoints)}setMaterialIndex(){this.transparent?this.setMaterial(transparentData,drawTransparent):this.color?this.setMaterial(colorData,drawColor):this.setMaterial(materialData,drawMaterial)}L2norm(t){let e=t[0];this.epsilon=0;let i=t.length;for(let a=1;a<i;++a)this.epsilon=Math.max(this.epsilon,abs2([t[a][0]-e[0],t[a][1]-e[1],t[a][2]-e[2]]));this.epsilon*=Number.EPSILON}processTriangle(t){let e=t[0],i=t[1],a=t[2],r=unit(cross([i[0]-e[0],i[1]-e[1],i[2]-e[2]],[a[0]-e[0],a[1]-e[1],a[2]-e[2]]));if(!this.offscreen([e,i,a])){let t,n,s;this.color?(t=this.data.Vertex(e,r,this.color[0]),n=this.data.Vertex(i,r,this.color[1]),s=this.data.Vertex(a,r,this.color[2])):(t=this.vertex(e,r),n=this.vertex(i,r),s=this.vertex(a,r)),0==wireframe?(this.data.indices.push(t),this.data.indices.push(n),this.data.indices.push(s)):(this.data.indices.push(t),this.data.indices.push(n),this.data.indices.push(n),this.data.indices.push(s),this.data.indices.push(s),this.data.indices.push(t)),this.append()}}processQuad(t){let e=t[0],i=t[1],a=t[2],r=t[3],n=cross([i[0]-e[0],i[1]-e[1],i[2]-e[2]],[a[0]-i[0],a[1]-i[1],a[2]-i[2]]),s=cross([a[0]-r[0],a[1]-r[1],a[2]-r[2]],[r[0]-e[0],r[1]-e[1],r[2]-e[2]]),o=unit([n[0]+s[0],n[1]+s[1],n[2]+s[2]]);if(!this.offscreen([e,i,a,r])){let t,n,s,h;this.color?(t=this.data.Vertex(e,o,this.color[0]),n=this.data.Vertex(i,o,this.color[1]),s=this.data.Vertex(a,o,this.color[2]),h=this.data.Vertex(r,o,this.color[3])):(t=this.vertex(e,o),n=this.vertex(i,o),s=this.vertex(a,o),h=this.vertex(r,o)),0==wireframe?(this.data.indices.push(t),this.data.indices.push(n),this.data.indices.push(s),this.data.indices.push(t),this.data.indices.push(s),this.data.indices.push(h)):(this.data.indices.push(t),this.data.indices.push(n),this.data.indices.push(n),this.data.indices.push(s),this.data.indices.push(s),this.data.indices.push(h),this.data.indices.push(h),this.data.indices.push(t)),this.append()}}curve(t,e,i,a,r){new BezierCurve([t[e],t[i],t[a],t[r]],0,materialIndex,this.Min,this.Max).render()}process(t){if(this.transparent&&1!=wireframe&&(materialIndex=this.color?-1-materialIndex:1+materialIndex),10==t.length)return this.process3(t);if(3==t.length)return this.processTriangle(t);if(4==t.length)return this.processQuad(t);if(1==wireframe)return this.curve(t,0,4,8,12),this.curve(t,12,13,14,15),this.curve(t,15,11,7,3),void this.curve(t,3,2,1,0);let e=t[0],i=t[3],a=t[12],r=t[15],n=this.normal(i,t[2],t[1],e,t[4],t[8],a);abs2(n)<this.epsilon&&abs2(n=this.normal(i,t[2],t[1],e,t[13],t[14],r))<this.epsilon&&(n=this.normal(r,t[11],t[7],i,t[4],t[8],a));let s=this.normal(e,t[4],t[8],a,t[13],t[14],r);abs2(s)<this.epsilon&&abs2(s=this.normal(e,t[4],t[8],a,t[11],t[7],i))<this.epsilon&&(s=this.normal(i,t[2],t[1],e,t[13],t[14],r));let o=this.normal(a,t[13],t[14],r,t[11],t[7],i);abs2(o)<this.epsilon&&abs2(o=this.normal(a,t[13],t[14],r,t[2],t[1],e))<this.epsilon&&(o=this.normal(e,t[4],t[8],a,t[11],t[7],i));let h=this.normal(r,t[11],t[7],i,t[2],t[1],e);if(abs2(h)<this.epsilon&&abs2(h=this.normal(r,t[11],t[7],i,t[4],t[8],a))<this.epsilon&&(h=this.normal(a,t[13],t[14],r,t[2],t[1],e)),this.color){let l=this.color[0],d=this.color[1],c=this.color[2],m=this.color[3],f=this.data.Vertex(e,n,l),u=this.data.Vertex(a,s,d),p=this.data.Vertex(r,o,c),v=this.data.Vertex(i,h,m);this.Render(t,f,u,p,v,e,a,r,i,!1,!1,!1,!1,l,d,c,m)}else{let l=this.vertex(e,n),d=this.vertex(a,s),c=this.vertex(r,o),m=this.vertex(i,h);this.Render(t,l,d,c,m,e,a,r,i,!1,!1,!1,!1)}this.data.indices.length>0&&this.append()}append(){this.transparent?transparentData.append(this.data):this.color?colorData.append(this.data):materialData.append(this.data)}Render(t,e,i,a,r,n,s,o,h,l,d,c,m,f,u,p,v){let g=this.Distance(t);if(g[0]<this.res2&&g[1]<this.res2)this.offscreen([n,s,o])||(0==wireframe?(this.data.indices.push(e),this.data.indices.push(i),this.data.indices.push(a)):(this.data.indices.push(e),this.data.indices.push(i),this.data.indices.push(i),this.data.indices.push(a))),this.offscreen([n,o,h])||(0==wireframe?(this.data.indices.push(e),this.data.indices.push(a),this.data.indices.push(r)):(this.data.indices.push(a),this.data.indices.push(r),this.data.indices.push(r),this.data.indices.push(e)));else{if(this.offscreen(t))return;let w=t[0],x=t[3],M=t[12],b=t[15];if(g[0]<this.res2){let g=new Split3(w,t[1],t[2],x),A=new Split3(t[4],t[5],t[6],t[7]),S=new Split3(t[8],t[9],t[10],t[11]),P=new Split3(M,t[13],t[14],b),R=[w,g.m0,g.m3,g.m5,t[4],A.m0,A.m3,A.m5,t[8],S.m0,S.m3,S.m5,M,P.m0,P.m3,P.m5],T=[g.m5,g.m4,g.m2,x,A.m5,A.m4,A.m2,t[7],S.m5,S.m4,S.m2,t[11],P.m5,P.m4,P.m2,b],y=this.normal(R[12],R[13],R[14],R[15],R[11],R[7],R[3]);abs2(y)<=this.epsilon&&abs2(y=this.normal(R[12],R[13],R[14],R[15],R[2],R[1],R[0]))<=this.epsilon&&(y=this.normal(R[0],R[4],R[8],R[12],R[11],R[7],R[3]));let D=this.normal(T[3],T[2],T[1],T[0],T[4],T[8],T[12]);abs2(D)<=this.epsilon&&abs2(D=this.normal(T[3],T[2],T[1],T[0],T[13],T[14],T[15]))<=this.epsilon&&(D=this.normal(T[15],T[11],T[7],T[3],T[4],T[8],T[12]));let I=this.Epsilon,z=[.5*(s[0]+o[0]),.5*(s[1]+o[1]),.5*(s[2]+o[2])];if(!d)if(d=Straightness(M,t[13],t[14],b)<this.res2){let t=unit(this.differential(T[12],T[8],T[4],T[0]));z=[z[0]-I*t[0],z[1]-I*t[1],z[2]-I*t[2]]}else z=R[15];let E=[.5*(h[0]+n[0]),.5*(h[1]+n[1]),.5*(h[2]+n[2])];if(!m)if(m=Straightness(w,t[1],t[2],x)<this.res2){let t=unit(this.differential(R[3],R[7],R[11],R[15]));E=[E[0]-I*t[0],E[1]-I*t[1],E[2]-I*t[2]]}else E=T[0];if(f){let t=Array(4),g=Array(4);for(let e=0;e<4;++e)t[e]=.5*(u[e]+p[e]),g[e]=.5*(v[e]+f[e]);let w=this.data.Vertex(z,y,t),x=this.data.Vertex(E,D,g);this.Render(R,e,i,w,x,n,s,z,E,l,d,!1,m,f,u,t,g),this.Render(T,x,w,a,r,E,z,o,h,!1,d,c,m,g,t,p,v)}else{let t=this.vertex(z,y),f=this.vertex(E,D);this.Render(R,e,i,t,f,n,s,z,E,l,d,!1,m),this.Render(T,f,t,a,r,E,z,o,h,!1,d,c,m)}return}if(g[1]<this.res2){let g=new Split3(w,t[4],t[8],M),A=new Split3(t[1],t[5],t[9],t[13]),S=new Split3(t[2],t[6],t[10],t[14]),P=new Split3(x,t[7],t[11],b),R=[w,t[1],t[2],x,g.m0,A.m0,S.m0,P.m0,g.m3,A.m3,S.m3,P.m3,g.m5,A.m5,S.m5,P.m5],T=[g.m5,A.m5,S.m5,P.m5,g.m4,A.m4,S.m4,P.m4,g.m2,A.m2,S.m2,P.m2,M,t[13],t[14],b],y=this.normal(R[0],R[4],R[8],R[12],R[13],R[14],R[15]);abs2(y)<=this.epsilon&&abs2(y=this.normal(R[0],R[4],R[8],R[12],R[11],R[7],R[3]))<=this.epsilon&&(y=this.normal(R[3],R[2],R[1],R[0],R[13],R[14],R[15]));let D=this.normal(T[15],T[11],T[7],T[3],T[2],T[1],T[0]);abs2(D)<=this.epsilon&&abs2(D=this.normal(T[15],T[11],T[7],T[3],T[4],T[8],T[12]))<=this.epsilon&&(D=this.normal(T[12],T[13],T[14],T[15],T[2],T[1],T[0]));let I=this.Epsilon,z=[.5*(n[0]+s[0]),.5*(n[1]+s[1]),.5*(n[2]+s[2])];if(!l)if(l=Straightness(w,t[4],t[8],M)<this.res2){let t=unit(this.differential(T[0],T[1],T[2],T[3]));z=[z[0]-I*t[0],z[1]-I*t[1],z[2]-I*t[2]]}else z=R[12];let E=[.5*(o[0]+h[0]),.5*(o[1]+h[1]),.5*(o[2]+h[2])];if(!c)if(c=Straightness(b,t[11],t[7],x)<this.res2){let t=unit(this.differential(R[15],R[14],R[13],R[12]));E=[E[0]-I*t[0],E[1]-I*t[1],E[2]-I*t[2]]}else E=T[3];if(f){let t=Array(4),g=Array(4);for(let e=0;e<4;++e)t[e]=.5*(f[e]+u[e]),g[e]=.5*(p[e]+v[e]);let w=this.data.Vertex(z,y,t),x=this.data.Vertex(E,D,g);this.Render(R,e,w,x,r,n,z,E,h,l,!1,c,m,f,t,g,v),this.Render(T,w,i,a,x,z,s,o,E,l,d,c,!1,t,u,p,g)}else{let t=this.vertex(z,y),f=this.vertex(E,D);this.Render(R,e,t,f,r,n,z,E,h,l,!1,c,m),this.Render(T,t,i,a,f,z,s,o,E,l,d,c,!1)}return}let A=new Split3(w,t[1],t[2],x),S=new Split3(t[4],t[5],t[6],t[7]),P=new Split3(t[8],t[9],t[10],t[11]),R=new Split3(M,t[13],t[14],b),T=new Split3(w,t[4],t[8],M),y=new Split3(A.m0,S.m0,P.m0,R.m0),D=new Split3(A.m3,S.m3,P.m3,R.m3),I=new Split3(A.m5,S.m5,P.m5,R.m5),z=new Split3(A.m4,S.m4,P.m4,R.m4),E=new Split3(A.m2,S.m2,P.m2,R.m2),O=new Split3(x,t[7],t[11],b),L=[w,A.m0,A.m3,A.m5,T.m0,y.m0,D.m0,I.m0,T.m3,y.m3,D.m3,I.m3,T.m5,y.m5,D.m5,I.m5],N=[T.m5,y.m5,D.m5,I.m5,T.m4,y.m4,D.m4,I.m4,T.m2,y.m2,D.m2,I.m2,M,R.m0,R.m3,R.m5],_=[I.m5,z.m5,E.m5,O.m5,I.m4,z.m4,E.m4,O.m4,I.m2,z.m2,E.m2,O.m2,R.m5,R.m4,R.m2,b],B=[A.m5,A.m4,A.m2,x,I.m0,z.m0,E.m0,O.m0,I.m3,z.m3,E.m3,O.m3,I.m5,z.m5,E.m5,O.m5],V=L[15],C=this.normal(L[0],L[4],L[8],L[12],L[13],L[14],L[15]);abs2(C)<this.epsilon&&abs2(C=this.normal(L[0],L[4],L[8],L[12],L[11],L[7],L[3]))<this.epsilon&&(C=this.normal(L[3],L[2],L[1],L[0],L[13],L[14],L[15]));let F=this.normal(N[12],N[13],N[14],N[15],N[11],N[7],N[3]);abs2(F)<this.epsilon&&abs2(F=this.normal(N[12],N[13],N[14],N[15],N[2],N[1],N[0]))<this.epsilon&&(F=this.normal(N[0],N[4],N[8],N[12],N[11],N[7],N[3]));let H=this.normal(_[15],_[11],_[7],_[3],_[2],_[1],_[0]);abs2(H)<this.epsilon&&abs2(H=this.normal(_[15],_[11],_[7],_[3],_[4],_[8],_[12]))<this.epsilon&&(H=this.normal(_[12],_[13],_[14],_[15],_[2],_[1],_[0]));let G=this.normal(B[3],B[2],B[1],B[0],B[4],B[8],B[12]);abs2(G)<this.epsilon&&abs2(G=this.normal(B[3],B[2],B[1],B[0],B[13],B[14],B[15]))<this.epsilon&&(G=this.normal(B[15],B[11],B[7],B[3],B[4],B[8],B[12]));let U=this.normal(_[3],_[2],_[1],V,_[4],_[8],_[12]),W=this.Epsilon,Y=[.5*(n[0]+s[0]),.5*(n[1]+s[1]),.5*(n[2]+s[2])];if(!l)if(l=Straightness(w,t[4],t[8],M)<this.res2){let t=unit(this.differential(N[0],N[1],N[2],N[3]));Y=[Y[0]-W*t[0],Y[1]-W*t[1],Y[2]-W*t[2]]}else Y=L[12];let j=[.5*(s[0]+o[0]),.5*(s[1]+o[1]),.5*(s[2]+o[2])];if(!d)if(d=Straightness(M,t[13],t[14],b)<this.res2){let t=unit(this.differential(_[12],_[8],_[4],_[0]));j=[j[0]-W*t[0],j[1]-W*t[1],j[2]-W*t[2]]}else j=N[15];let k=[.5*(o[0]+h[0]),.5*(o[1]+h[1]),.5*(o[2]+h[2])];if(!c)if(c=Straightness(b,t[11],t[7],x)<this.res2){let t=unit(this.differential(B[15],B[14],B[13],B[12]));k=[k[0]-W*t[0],k[1]-W*t[1],k[2]-W*t[2]]}else k=_[3];let Z=[.5*(h[0]+n[0]),.5*(h[1]+n[1]),.5*(h[2]+n[2])];if(!m)if(m=Straightness(w,t[1],t[2],x)<this.res2){let t=unit(this.differential(L[3],L[7],L[11],L[15]));Z=[Z[0]-W*t[0],Z[1]-W*t[1],Z[2]-W*t[2]]}else Z=B[0];if(f){let t=Array(4),g=Array(4),w=Array(4),x=Array(4),M=Array(4);for(let e=0;e<4;++e)t[e]=.5*(f[e]+u[e]),g[e]=.5*(u[e]+p[e]),w[e]=.5*(p[e]+v[e]),x[e]=.5*(v[e]+f[e]),M[e]=.5*(t[e]+w[e]);let b=this.data.Vertex(Y,C,t),A=this.data.Vertex(j,F,g),S=this.data.Vertex(k,H,w),P=this.data.Vertex(Z,G,x),R=this.data.Vertex(V,U,M);this.Render(L,e,b,R,P,n,Y,V,Z,l,!1,!1,m,f,t,M,x),this.Render(N,b,i,A,R,Y,s,j,V,l,d,!1,!1,t,u,g,M),this.Render(_,R,A,a,S,V,j,o,k,!1,d,c,!1,M,g,p,w),this.Render(B,P,R,S,r,Z,V,k,h,!1,!1,c,m,x,M,w,v)}else{let t=this.vertex(Y,C),f=this.vertex(j,F),u=this.vertex(k,H),p=this.vertex(Z,G),v=this.vertex(V,U);this.Render(L,e,t,v,p,n,Y,V,Z,l,!1,!1,m),this.Render(N,t,i,f,v,Y,s,j,V,l,d,!1,!1),this.Render(_,v,f,a,u,V,j,o,k,!1,d,c,!1),this.Render(B,p,v,u,r,Z,V,k,h,!1,!1,c,m)}}}process3(t){if(1==wireframe)return this.curve(t,0,1,3,6),this.curve(t,6,7,8,9),void this.curve(t,9,5,2,0);let e=t[0],i=t[6],a=t[9],r=this.normal(a,t[5],t[2],e,t[1],t[3],i),n=this.normal(e,t[1],t[3],i,t[7],t[8],a),s=this.normal(i,t[7],t[8],a,t[5],t[2],e);if(this.color){let o=this.color[0],h=this.color[1],l=this.color[2],d=this.data.Vertex(e,r,o),c=this.data.Vertex(i,n,h),m=this.data.Vertex(a,s,l);this.Render3(t,d,c,m,e,i,a,!1,!1,!1,o,h,l)}else{let o=this.vertex(e,r),h=this.vertex(i,n),l=this.vertex(a,s);this.Render3(t,o,h,l,e,i,a,!1,!1,!1)}this.data.indices.length>0&&this.append()}Render3(t,e,i,a,r,n,s,o,h,l,d,c,m){if(this.Distance3(t)<this.res2)this.offscreen([r,n,s])||(0==wireframe?(this.data.indices.push(e),this.data.indices.push(i),this.data.indices.push(a)):(this.data.indices.push(e),this.data.indices.push(i),this.data.indices.push(i),this.data.indices.push(a),this.data.indices.push(a),this.data.indices.push(e)));else{if(this.offscreen(t))return;let f=t[0],u=t[1],p=t[2],v=t[3],g=t[4],w=t[5],x=t[6],M=t[7],b=t[8],A=t[9],S=[.5*(A[0]+w[0]),.5*(A[1]+w[1]),.5*(A[2]+w[2])],P=[.5*(A[0]+b[0]),.5*(A[1]+b[1]),.5*(A[2]+b[2])],R=[.5*(w[0]+p[0]),.5*(w[1]+p[1]),.5*(w[2]+p[2])],T=[.5*(b[0]+g[0]),.5*(b[1]+g[1]),.5*(b[2]+g[2])],y=[.5*(b[0]+M[0]),.5*(b[1]+M[1]),.5*(b[2]+M[2])],D=[.5*(p[0]+g[0]),.5*(p[1]+g[1]),.5*(p[2]+g[2])],I=[.5*(p[0]+f[0]),.5*(p[1]+f[1]),.5*(p[2]+f[2])],z=[.5*(g[0]+v[0]),.5*(g[1]+v[1]),.5*(g[2]+v[2])],E=[.5*(M[0]+x[0]),.5*(M[1]+x[1]),.5*(M[2]+x[2])],O=[.5*(f[0]+u[0]),.5*(f[1]+u[1]),.5*(f[2]+u[2])],L=[.5*(u[0]+v[0]),.5*(u[1]+v[1]),.5*(u[2]+v[2])],N=[.5*(v[0]+x[0]),.5*(v[1]+x[1]),.5*(v[2]+x[2])],_=[.5*(S[0]+R[0]),.5*(S[1]+R[1]),.5*(S[2]+R[2])],B=[.5*(P[0]+y[0]),.5*(P[1]+y[1]),.5*(P[2]+y[2])],V=[.5*(R[0]+I[0]),.5*(R[1]+I[1]),.5*(R[2]+I[2])],C=[.5*T[0]+.25*(g[0]+u[0]),.5*T[1]+.25*(g[1]+u[1]),.5*T[2]+.25*(g[2]+u[2])],F=[.5*(y[0]+E[0]),.5*(y[1]+E[1]),.5*(y[2]+E[2])],H=[.5*D[0]+.25*(g[0]+M[0]),.5*D[1]+.25*(g[1]+M[1]),.5*D[2]+.25*(g[2]+M[2])],G=[.25*(w[0]+g[0])+.5*z[0],.25*(w[1]+g[1])+.5*z[1],.25*(w[2]+g[2])+.5*z[2]],U=[.5*(O[0]+L[0]),.5*(O[1]+L[1]),.5*(O[2]+L[2])],W=[.5*(L[0]+N[0]),.5*(L[1]+N[1]),.5*(L[2]+N[2])],Y=[.5*(H[0]+U[0]),.5*(H[1]+U[1]),.5*(H[2]+U[2])],j=[.5*(H[0]+W[0]),.5*(H[1]+W[1]),.5*(H[2]+W[2])],k=[.5*(U[0]+W[0]),.5*(U[1]+W[1]),.5*(U[2]+W[2])],Z=[.5*(G[0]+F[0]),.5*(G[1]+F[1]),.5*(G[2]+F[2])],X=[.5*(B[0]+G[0]),.5*(B[1]+G[1]),.5*(B[2]+G[2])],q=[.5*(B[0]+F[0]),.5*(B[1]+F[1]),.5*(B[2]+F[2])],K=[.5*(_[0]+C[0]),.5*(_[1]+C[1]),.5*(_[2]+C[2])],$=[.5*(V[0]+C[0]),.5*(V[1]+C[1]),.5*(V[2]+C[2])],Q=[.5*(_[0]+V[0]),.5*(_[1]+V[1]),.5*(_[2]+V[2])],J=[f,O,I,U,[.5*(D[0]+O[0]),.5*(D[1]+O[1]),.5*(D[2]+O[2])],V,k,Y,$,Q],tt=[k,W,j,N,[.5*(z[0]+E[0]),.5*(z[1]+E[1]),.5*(z[2]+E[2])],Z,x,E,F,q],et=[Q,K,_,X,[.5*(S[0]+T[0]),.5*(S[1]+T[1]),.5*(S[2]+T[2])],S,q,B,P,A],it=[q,X,Z,K,[.25*(R[0]+y[0]+L[0]+g[0]),.25*(R[1]+y[1]+L[1]+g[1]),.25*(R[2]+y[2]+L[2]+g[2])],j,Q,$,Y,k],at=this.normal(k,j,Z,q,X,K,Q),rt=this.normal(q,X,K,Q,$,Y,k),nt=this.normal(Q,$,Y,k,j,Z,q),st=this.Epsilon,ot=[.5*(n[0]+s[0]),.5*(n[1]+s[1]),.5*(n[2]+s[2])];if(!o)if(o=Straightness(x,M,b,A)<this.res2){let t=unit(this.sumdifferential(it[0],it[2],it[5],it[9],it[1],it[3],it[6]));ot=[ot[0]-st*t[0],ot[1]-st*t[1],ot[2]-st*t[2]]}else ot=q;let ht=[.5*(s[0]+r[0]),.5*(s[1]+r[1]),.5*(s[2]+r[2])];if(!h)if(h=Straightness(f,p,w,A)<this.res2){let t=unit(this.sumdifferential(it[6],it[3],it[1],it[0],it[7],it[8],it[9]));ht=[ht[0]-st*t[0],ht[1]-st*t[1],ht[2]-st*t[2]]}else ht=Q;let lt=[.5*(r[0]+n[0]),.5*(r[1]+n[1]),.5*(r[2]+n[2])];if(!l)if(l=Straightness(f,u,v,x)<this.res2){let t=unit(this.sumdifferential(it[9],it[8],it[7],it[6],it[5],it[2],it[0]));lt=[lt[0]-st*t[0],lt[1]-st*t[1],lt[2]-st*t[2]]}else lt=k;if(d){let t=Array(4),f=Array(4),u=Array(4);for(let e=0;e<4;++e)t[e]=.5*(c[e]+m[e]),f[e]=.5*(m[e]+d[e]),u[e]=.5*(d[e]+c[e]);let p=this.data.Vertex(ot,at,t),v=this.data.Vertex(ht,rt,f),g=this.data.Vertex(lt,nt,u);this.Render3(J,e,g,v,r,lt,ht,!1,h,l,d,u,f),this.Render3(tt,g,i,p,lt,n,ot,o,!1,l,u,c,t),this.Render3(et,v,p,a,ht,ot,s,o,h,!1,f,t,m),this.Render3(it,p,v,g,ot,ht,lt,!1,!1,!1,t,f,u)}else{let t=this.vertex(ot,at),d=this.vertex(ht,rt),c=this.vertex(lt,nt);this.Render3(J,e,c,d,r,lt,ht,!1,h,l),this.Render3(tt,c,i,t,lt,n,ot,o,!1,l),this.Render3(et,d,t,a,ht,ot,s,o,h,!1),this.Render3(it,t,d,c,ot,ht,lt,!1,!1,!1)}}}Distance(t){let e=t[0],i=t[3],a=t[12],r=t[15],n=Flatness(e,a,i,r);n=Math.max(Straightness(e,t[4],t[8],a)),n=Math.max(n,Straightness(t[1],t[5],t[9],t[13])),n=Math.max(n,Straightness(i,t[7],t[11],r)),n=Math.max(n,Straightness(t[2],t[6],t[10],t[14]));let s=Flatness(e,i,a,r);return s=Math.max(s,Straightness(e,t[1],t[2],i)),s=Math.max(s,Straightness(t[4],t[5],t[6],t[7])),s=Math.max(s,Straightness(t[8],t[9],t[10],t[11])),[n,s=Math.max(s,Straightness(a,t[13],t[14],r))]}Distance3(t){let e=t[0],i=t[4],a=t[6],r=t[9],n=abs2([(e[0]+a[0]+r[0])*third-i[0],(e[1]+a[1]+r[1])*third-i[1],(e[2]+a[2]+r[2])*third-i[2]]);return n=Math.max(n,Straightness(e,t[1],t[3],a)),n=Math.max(n,Straightness(e,t[2],t[5],r)),Math.max(n,Straightness(a,t[7],t[8],r))}differential(t,e,i,a){let r=[3*(e[0]-t[0]),3*(e[1]-t[1]),3*(e[2]-t[2])];return abs2(r)>this.epsilon?r:abs2(r=bezierPP(t,e,i))>this.epsilon?r:bezierPPP(t,e,i,a)}sumdifferential(t,e,i,a,r,n,s){let o=this.differential(t,e,i,a),h=this.differential(t,r,n,s);return[o[0]+h[0],o[1]+h[1],o[2]+h[2]]}normal(t,e,i,a,r,n,s){let o=3*(r[0]-a[0]),h=3*(r[1]-a[1]),l=3*(r[2]-a[2]),d=3*(i[0]-a[0]),c=3*(i[1]-a[1]),m=3*(i[2]-a[2]),f=[h*m-l*c,l*d-o*m,o*c-h*d];if(abs2(f)>this.epsilon)return f;let u=[d,c,m],p=[o,h,l],v=bezierPP(a,i,e),g=bezierPP(a,r,n),w=cross(g,u),x=cross(p,v);if(abs2(f=[w[0]+x[0],w[1]+x[1],w[2]+x[2]])>this.epsilon)return f;let M=bezierPPP(a,i,e,t),b=bezierPPP(a,r,n,s);w=cross(p,M),x=cross(b,u);let A=cross(g,v);return abs2(f=[w[0]+x[0]+A[0],w[1]+x[1]+A[1],w[2]+x[2]+A[2]])>this.epsilon?f:(w=cross(b,v),x=cross(g,M),abs2(f=[w[0]+x[0],w[1]+x[1],w[2]+x[2]])>this.epsilon?f:cross(b,M))}}class BezierCurve extends Geometry{constructor(t,e,i,a,r){super(),this.controlpoints=t,this.Min=a,this.Max=r,this.CenterIndex=e,this.MaterialIndex=i}setMaterialIndex(){this.setMaterial(material1Data,drawMaterial1)}processLine(t){let e=t[0],i=t[1];if(!this.offscreen([e,i])){let t=[0,0,1];this.data.indices.push(this.data.vertex(e,t)),this.data.indices.push(this.data.vertex(i,t)),this.append()}}process(t){if(2==t.length)return this.processLine(t);let e=t[0],i=t[1],a=t[2],r=t[3],n=this.normal(bezierP(e,i),bezierPP(e,i,a)),s=this.normal(bezierP(a,r),bezierPP(r,a,i)),o=this.data.vertex(e,n),h=this.data.vertex(r,s);this.Render(t,o,h),this.data.indices.length>0&&this.append()}append(){material1Data.append(this.data)}Render(t,e,i){let a=t[0],r=t[1],n=t[2],s=t[3];if(Straightness(a,r,n,s)<this.res2)this.offscreen([a,s])||(this.data.indices.push(e),this.data.indices.push(i));else{if(this.offscreen(t))return;let o=[.5*(a[0]+r[0]),.5*(a[1]+r[1]),.5*(a[2]+r[2])],h=[.5*(r[0]+n[0]),.5*(r[1]+n[1]),.5*(r[2]+n[2])],l=[.5*(n[0]+s[0]),.5*(n[1]+s[1]),.5*(n[2]+s[2])],d=[.5*(o[0]+h[0]),.5*(o[1]+h[1]),.5*(o[2]+h[2])],c=[.5*(h[0]+l[0]),.5*(h[1]+l[1]),.5*(h[2]+l[2])],m=[.5*(d[0]+c[0]),.5*(d[1]+c[1]),.5*(d[2]+c[2])],f=[a,o,d,m],u=[m,c,l,s],p=this.normal(bezierPh(a,r,n,s),bezierPPh(a,r,n,s)),v=this.data.vertex(m,p);this.Render(f,e,v),this.Render(u,v,i)}}normal(t,e){let i=dot(t,t),a=dot(t,e);return[i*e[0]-a*t[0],i*e[1]-a*t[1],i*e[2]-a*t[2]]}}class Pixel extends Geometry{constructor(t,e,i,a,r){super(),this.controlpoint=t,this.width=e,this.CenterIndex=0,this.MaterialIndex=i,this.Min=a,this.Max=r}setMaterialIndex(){this.setMaterial(material0Data,drawMaterial0)}process(t){this.data.indices.push(this.data.vertex0(this.controlpoint,this.width)),this.append()}append(){material0Data.append(this.data)}}class Triangles extends Geometry{constructor(t,e,i){super(),this.CenterIndex=0,this.MaterialIndex=t,this.Min=e,this.Max=i,this.Positions=Positions,this.Normals=Normals,this.Colors=Colors,this.Indices=Indices,Positions=[],Normals=[],Colors=[],Indices=[],this.transparent=Materials[t].diffuse[3]<1}setMaterialIndex(){this.transparent?this.setMaterial(transparentData,drawTransparent):this.setMaterial(triangleData,drawTriangle)}process(t){materialIndex=this.Colors.length>0?-1-materialIndex:1+materialIndex;for(let t=0,e=this.Indices.length;t<e;++t){let e=this.Indices[t],i=e[0],a=this.Positions[i[0]],r=this.Positions[i[1]],n=this.Positions[i[2]];if(!this.offscreen([a,r,n])){let t=e.length>1?e[1]:i;if(t&&0!=t.length||(t=i),this.Colors.length>0){let s=e.length>2?e[2]:i;s&&0!=s.length||(s=i);let o=this.Colors[s[0]],h=this.Colors[s[1]],l=this.Colors[s[2]];this.transparent|=o[3]+h[3]+l[3]<765,0==wireframe?(this.data.iVertex(i[0],a,this.Normals[t[0]],o),this.data.iVertex(i[1],r,this.Normals[t[1]],h),this.data.iVertex(i[2],n,this.Normals[t[2]],l)):(this.data.iVertex(i[0],a,this.Normals[t[0]],o),this.data.iVertex(i[1],r,this.Normals[t[1]],h),this.data.iVertex(i[1],r,this.Normals[t[1]],h),this.data.iVertex(i[2],n,this.Normals[t[2]],l),this.data.iVertex(i[2],n,this.Normals[t[2]],l),this.data.iVertex(i[0],a,this.Normals[t[0]],o))}else 0==wireframe?(this.data.iVertex(i[0],a,this.Normals[t[0]]),this.data.iVertex(i[1],r,this.Normals[t[1]]),this.data.iVertex(i[2],n,this.Normals[t[2]])):(this.data.iVertex(i[0],a,this.Normals[t[0]]),this.data.iVertex(i[1],r,this.Normals[t[1]]),this.data.iVertex(i[1],r,this.Normals[t[1]]),this.data.iVertex(i[2],n,this.Normals[t[2]]),this.data.iVertex(i[2],n,this.Normals[t[2]]),this.data.iVertex(i[0],a,this.Normals[t[0]]))}}this.data.nvertices=this.Positions.length,this.data.indices.length>0&&this.append()}append(){this.transparent?transparentData.append(this.data):triangleData.append(this.data)}}function home(){mat4.identity(rotMat),initProjection(),setProjection(),remesh=!0,draw()}let positionAttribute=0,normalAttribute=1,materialAttribute=2,colorAttribute=3,widthAttribute=4;function initShader(t=[]){let e=getShader(gl,vertex,gl.VERTEX_SHADER,t),i=getShader(gl,fragment,gl.FRAGMENT_SHADER,t),a=gl.createProgram();return gl.attachShader(a,e),gl.attachShader(a,i),gl.bindAttribLocation(a,positionAttribute,"position"),gl.bindAttribLocation(a,normalAttribute,"normal"),gl.bindAttribLocation(a,materialAttribute,"materialIndex"),gl.bindAttribLocation(a,colorAttribute,"color"),gl.bindAttribLocation(a,widthAttribute,"width"),gl.linkProgram(a),gl.getProgramParameter(a,gl.LINK_STATUS)||alert("Could not initialize shaders"),a}class Split3{constructor(t,e,i,a){this.m0=[.5*(t[0]+e[0]),.5*(t[1]+e[1]),.5*(t[2]+e[2])];let r=.5*(e[0]+i[0]),n=.5*(e[1]+i[1]),s=.5*(e[2]+i[2]);this.m2=[.5*(i[0]+a[0]),.5*(i[1]+a[1]),.5*(i[2]+a[2])],this.m3=[.5*(this.m0[0]+r),.5*(this.m0[1]+n),.5*(this.m0[2]+s)],this.m4=[.5*(r+this.m2[0]),.5*(n+this.m2[1]),.5*(s+this.m2[2])],this.m5=[.5*(this.m3[0]+this.m4[0]),.5*(this.m3[1]+this.m4[1]),.5*(this.m3[2]+this.m4[2])]}}function unit(t){let e=1/(Math.sqrt(t[0]*t[0]+t[1]*t[1]+t[2]*t[2])||1);return[t[0]*e,t[1]*e,t[2]*e]}function abs2(t){return t[0]*t[0]+t[1]*t[1]+t[2]*t[2]}function dot(t,e){return t[0]*e[0]+t[1]*e[1]+t[2]*e[2]}function cross(t,e){return[t[1]*e[2]-t[2]*e[1],t[2]*e[0]-t[0]*e[2],t[0]*e[1]-t[1]*e[0]]}function bezierP(t,e){return[e[0]-t[0],e[1]-t[1],e[2]-t[2]]}function bezierPP(t,e,i){return[3*(t[0]+i[0])-6*e[0],3*(t[1]+i[1])-6*e[1],3*(t[2]+i[2])-6*e[2]]}function bezierPPP(t,e,i,a){return[a[0]-t[0]+3*(e[0]-i[0]),a[1]-t[1]+3*(e[1]-i[1]),a[2]-t[2]+3*(e[2]-i[2])]}function bezierPh(t,e,i,a){return[i[0]+a[0]-t[0]-e[0],i[1]+a[1]-t[1]-e[1],i[2]+a[2]-t[2]-e[2]]}function bezierPPh(t,e,i,a){return[3*t[0]-5*e[0]+i[0]+a[0],3*t[1]-5*e[1]+i[1]+a[1],3*t[2]-5*e[2]+i[2]+a[2]]}function Straightness(t,e,i,a){let r=[third*(a[0]-t[0]),third*(a[1]-t[1]),third*(a[2]-t[2])];return Math.max(abs2([e[0]-r[0]-t[0],e[1]-r[1]-t[1],e[2]-r[2]-t[2]]),abs2([a[0]-r[0]-i[0],a[1]-r[1]-i[1],a[2]-r[2]-i[2]]))}function Flatness(t,e,i,a){let r=[e[0]-t[0],e[1]-t[1],e[2]-t[2]],n=[a[0]-i[0],a[1]-i[1],a[2]-i[2]];return Math.max(abs2(cross(r,unit(n))),abs2(cross(n,unit(r))))/9}function corners(t,e){return[t,[t[0],t[1],e[2]],[t[0],e[1],t[2]],[t[0],e[1],e[2]],[e[0],t[1],t[2]],[e[0],t[1],e[2]],[e[0],e[1],t[2]],e]}function minbound(t){return[Math.min(t[0][0],t[1][0],t[2][0],t[3][0],t[4][0],t[5][0],t[6][0],t[7][0]),Math.min(t[0][1],t[1][1],t[2][1],t[3][1],t[4][1],t[5][1],t[6][1],t[7][1]),Math.min(t[0][2],t[1][2],t[2][2],t[3][2],t[4][2],t[5][2],t[6][2],t[7][2])]}function maxbound(t){return[Math.max(t[0][0],t[1][0],t[2][0],t[3][0],t[4][0],t[5][0],t[6][0],t[7][0]),Math.max(t[0][1],t[1][1],t[2][1],t[3][1],t[4][1],t[5][1],t[6][1],t[7][1]),Math.max(t[0][2],t[1][2],t[2][2],t[3][2],t[4][2],t[5][2],t[6][2],t[7][2])]}function COBTarget(t,e){mat4.fromTranslation(T,[center.x,center.y,center.z]),mat4.invert(cjMatInv,T),mat4.multiply(t,e,cjMatInv),mat4.multiply(t,T,t)}function setUniforms(t,e){let i=e==pixelShader;gl.useProgram(e),gl.enableVertexAttribArray(positionAttribute),i&&gl.enableVertexAttribArray(widthAttribute);let a=!i&&Lights.length>0;if(a&&gl.enableVertexAttribArray(normalAttribute),gl.enableVertexAttribArray(materialAttribute),e.projViewMatUniform=gl.getUniformLocation(e,"projViewMat"),e.viewMatUniform=gl.getUniformLocation(e,"viewMat"),e.normMatUniform=gl.getUniformLocation(e,"normMat"),e!=colorShader&&e!=transparentShader||gl.enableVertexAttribArray(colorAttribute),a)for(let t=0;t<Lights.length;++t)Lights[t].setUniform(e,t);for(let i=0;i<t.materials.length;++i)t.materials[i].setUniform(e,i);gl.uniformMatrix4fv(e.projViewMatUniform,!1,projViewMat),gl.uniformMatrix4fv(e.viewMatUniform,!1,viewMat),gl.uniformMatrix3fv(e.normMatUniform,!1,normMat)}function handleMouseDown(t){zoomEnabled||enableZoom(),mouseDownOrTouchActive=!0,lastMouseX=t.clientX,lastMouseY=t.clientY}let pinchStart,touchStartTime,pinch=!1;function pinchDistance(t){return Math.hypot(t[0].pageX-t[1].pageX,t[0].pageY-t[1].pageY)}function handleTouchStart(t){t.preventDefault(),zoomEnabled||enableZoom();let e=t.targetTouches;swipe=rotate=pinch=!1,zooming||(1!=e.length||mouseDownOrTouchActive||(touchStartTime=(new Date).getTime(),touchId=e[0].identifier,lastMouseX=e[0].pageX,lastMouseY=e[0].pageY),2!=e.length||mouseDownOrTouchActive||(touchId=e[0].identifier,pinchStart=pinchDistance(e),pinch=!0))}function handleMouseUpOrTouchEnd(t){mouseDownOrTouchActive=!1}function rotateScene(t,e,i,a,r){if(t==i&&e==a)return;let[n,s]=arcball([t,-e],[i,-a]);mat4.fromRotation(T,2*r*ArcballFactor*n/lastzoom,s),mat4.multiply(rotMat,T,rotMat)}function shiftScene(t,e,i,a){let r=1/lastzoom;shift.x+=(i-t)*r*halfCanvasWidth,shift.y-=(a-e)*r*halfCanvasHeight}function panScene(t,e,i,a){orthographic?shiftScene(t,e,i,a):(center.x+=(i-t)*(viewParam.xmax-viewParam.xmin),center.y-=(a-e)*(viewParam.ymax-viewParam.ymin))}function updateViewMatrix(){COBTarget(viewMat,rotMat),mat4.translate(viewMat,viewMat,[center.x,center.y,0]),mat3.fromMat4(viewMat3,viewMat),mat3.invert(normMat,viewMat3),mat4.multiply(projViewMat,projMat,viewMat)}function capzoom(){let t=Math.sqrt(Number.MAX_VALUE),e=1/t;Zoom<=e&&(Zoom=e),Zoom>=t&&(Zoom=t),Zoom!=lastzoom&&(remesh=!0),lastzoom=Zoom}function zoomImage(t){let e=zoomStep*halfCanvasHeight*t;const i=Math.log(.1*Number.MAX_VALUE)/Math.log(zoomFactor);Math.abs(e)<i&&(Zoom*=zoomFactor**e,capzoom())}function normMouse(t){let e=t[0],i=t[1],a=Math.hypot(e,i);return a>1&&(denom=1/a,e*=denom,i*=denom),[e,i,Math.sqrt(Math.max(1-i*i-e*e,0))]}function arcball(t,e){let i=normMouse(t),a=normMouse(e),r=dot(i,a);return r>1?r=1:r<-1&&(r=-1),[Math.acos(r),unit(cross(i,a))]}function zoomScene(t,e,i,a){zoomImage(e-a)}const DRAGMODE_ROTATE=1,DRAGMODE_SHIFT=2,DRAGMODE_ZOOM=3,DRAGMODE_PAN=4;function processDrag(t,e,i,a=1){let r;switch(i){case DRAGMODE_ROTATE:r=rotateScene;break;case DRAGMODE_SHIFT:r=shiftScene;break;case DRAGMODE_ZOOM:r=zoomScene;break;case DRAGMODE_PAN:r=panScene;break;default:r=((t,e,i,a)=>{})}r((lastMouseX-halfCanvasWidth)/halfCanvasWidth,(lastMouseY-halfCanvasHeight)/halfCanvasHeight,(t-halfCanvasWidth)/halfCanvasWidth,(e-halfCanvasHeight)/halfCanvasHeight,a),lastMouseX=t,lastMouseY=e,setProjection(),draw()}let zoomEnabled=0;function enableZoom(){zoomEnabled=1,canvas.addEventListener("wheel",handleMouseWheel,!1)}function disableZoom(){zoomEnabled=0,canvas.removeEventListener("wheel",handleMouseWheel,!1)}function handleKey(t){if(zoomEnabled||enableZoom(),embedded&&zoomEnabled&&27==t.keyCode)return void disableZoom();let e=[];switch(t.key){case"x":e=[1,0,0];break;case"y":e=[0,1,0];break;case"z":e=[0,0,1];break;case"h":home();break;case"m":3==++wireframe&&(wireframe=0),2!=wireframe&&(embedded||deleteShaders(),initShaders()),remesh=!0,draw();break;case"+":case"=":case">":expand();break;case"-":case"_":case"<":shrink()}e.length>0&&(mat4.rotate(rotMat,rotMat,.1,e),updateViewMatrix(),draw())}function handleMouseWheel(t){t.preventDefault(),t.deltaY<0?Zoom*=zoomFactor:Zoom/=zoomFactor,capzoom(),setProjection(),draw()}function handleMouseMove(t){if(!mouseDownOrTouchActive)return;let e;processDrag(t.clientX,t.clientY,e=t.getModifierState("Control")?DRAGMODE_SHIFT:t.getModifierState("Shift")?DRAGMODE_ZOOM:t.getModifierState("Alt")?DRAGMODE_PAN:DRAGMODE_ROTATE)}let zooming=!1,swipe=!1,rotate=!1;function handleTouchMove(t){if(t.preventDefault(),zooming)return;let e=t.targetTouches;if(!pinch&&1==e.length&&touchId==e[0].identifier){let t=e[0].pageX,i=e[0].pageY,a=t-lastMouseX,r=i-lastMouseY,n=a*a+r*r<=shiftHoldDistance*shiftHoldDistance;if(n&&!swipe&&!rotate&&(new Date).getTime()-touchStartTime>shiftWaitTime&&(navigator.vibrate&&window.navigator.vibrate(vibrateTime),swipe=!0),swipe)processDrag(t,i,DRAGMODE_SHIFT);else if(!n){rotate=!0,processDrag(e[0].pageX,e[0].pageY,DRAGMODE_ROTATE,.5)}}if(pinch&&!swipe&&2==e.length&&touchId==e[0].identifier){let t=pinchDistance(e),i=t-pinchStart;zooming=!0,(i*=zoomPinchFactor)>zoomPinchCap&&(i=zoomPinchCap),i<-zoomPinchCap&&(i=-zoomPinchCap),zoomImage(i/size2),pinchStart=t,swipe=rotate=zooming=!1,setProjection(),draw()}}let pixelShader,materialShader,colorShader,transparentShader,zbuffer=[];function transformVertices(t){let e=viewMat[2],i=viewMat[6],a=viewMat[10];zbuffer.length=t.length;for(let r=0;r<t.length;++r){let n=6*r;zbuffer[r]=e*t[n]+i*t[n+1]+a*t[n+2]}}function drawMaterial0(){drawBuffer(material0Data,pixelShader),material0Data.clear()}function drawMaterial1(){drawBuffer(material1Data,materialShader),material1Data.clear()}function drawMaterial(){drawBuffer(materialData,materialShader),materialData.clear()}function drawColor(){drawBuffer(colorData,colorShader),colorData.clear()}function drawTriangle(){drawBuffer(triangleData,transparentShader),triangleData.clear()}function drawTransparent(){let t=transparentData.indices;if(wireframe>0)return drawBuffer(transparentData,transparentShader,t),void transparentData.clear();if(t.length>0){transformVertices(transparentData.vertices);let e=t.length/3,i=Array(e).fill().map((t,e)=>e);i.sort(function(e,i){let a=3*e;Ia=t[a],Ib=t[a+1],Ic=t[a+2];let r=3*i;return IA=t[r],IB=t[r+1],IC=t[r+2],zbuffer[Ia]+zbuffer[Ib]+zbuffer[Ic]<zbuffer[IA]+zbuffer[IB]+zbuffer[IC]?-1:1});let a=Array(t.length);for(let r=0;r<e;++r){let e=3*i[r];a[3*r]=t[e],a[3*r+1]=t[e+1],a[3*r+2]=t[e+2]}gl.depthMask(!1),drawBuffer(transparentData,transparentShader,a),gl.depthMask(!0)}transparentData.clear()}function drawBuffers(){drawMaterial0(),drawMaterial1(),drawMaterial(),drawColor(),drawTriangle(),drawTransparent()}function draw(){embedded&&(offscreen.width=canvas.width,offscreen.height=canvas.height,setViewport()),gl.clearColor(Background[0],Background[1],Background[2],Background[3]),gl.clear(gl.COLOR_BUFFER_BIT|gl.DEPTH_BUFFER_BIT);for(let t=0;t<P.length;++t)P[t].render();drawBuffers(),embedded&&(context.clearRect(0,0,canvas.width,canvas.height),context.drawImage(offscreen,0,0)),0==wireframe&&(remesh=!1)}function setDimensions(t,e,i,a){let r=t/e,n=1/lastzoom,s=(i/t+viewportshift[0])*lastzoom,o=(a/e+viewportshift[1])*lastzoom;if(orthographic){let t=B[0]-b[0],e=B[1]-b[1];if(t<e*r){let t=.5*e*r*n,i=2*t*s,a=e*n*o;viewParam.xmin=-t-i,viewParam.xmax=t-i,viewParam.ymin=b[1]*n-a,viewParam.ymax=B[1]*n-a}else{let e=.5*t/(r*Zoom),i=t*n*s,a=2*e*o;viewParam.xmin=b[0]*n-i,viewParam.xmax=B[0]*n-i,viewParam.ymin=-e-a,viewParam.ymax=e-a}}else{let t=H*n,e=t*r,i=2*e*s,a=2*t*o;viewParam.xmin=-e-i,viewParam.xmax=e-i,viewParam.ymin=-t-a,viewParam.ymax=t-a}}function setProjection(){setDimensions(canvasWidth,canvasHeight,shift.x,shift.y),(orthographic?mat4.ortho:mat4.frustum)(projMat,viewParam.xmin,viewParam.xmax,viewParam.ymin,viewParam.ymax,-viewParam.zmax,-viewParam.zmin),updateViewMatrix()}function initProjection(){H=-Math.tan(.5*angle)*B[2],center.x=center.y=0,center.z=.5*(b[2]+B[2]),lastzoom=Zoom=Zoom0,viewParam.zmin=b[2],viewParam.zmax=B[2],shift.x=shift.y=0}function setViewport(){gl.viewportWidth=canvasWidth,gl.viewportHeight=canvasHeight,gl.viewport(0,0,gl.viewportWidth,gl.viewportHeight),gl.scissor(0,0,gl.viewportWidth,gl.viewportHeight)}function setCanvas(){canvas.width=canvasWidth,canvas.height=canvasHeight,embedded&&(offscreen.width=canvasWidth,offscreen.height=canvasHeight),size2=Math.hypot(canvasWidth,canvasHeight),halfCanvasWidth=.5*canvasWidth,halfCanvasHeight=.5*canvasHeight}function setsize(t,e){t>maxViewportWidth&&(t=maxViewportWidth),e>maxViewportHeight&&(e=maxViewportHeight),shift.x*=t/canvasWidth,shift.y*=e/canvasHeight,canvasWidth=t,canvasHeight=e,setCanvas(),setViewport(),home()}function expand(){setsize(canvasWidth*resizeStep+.5,canvasHeight*resizeStep+.5)}function shrink(){setsize(Math.max(canvasWidth/resizeStep+.5,1),Math.max(canvasHeight/resizeStep+.5,1))}function webGLInit(){if(canvas=document.getElementById("Asymptote"),embedded=window.top.document!=document,initGL(),absolute&&!embedded)canvasWidth*=window.devicePixelRatio,canvasHeight*=window.devicePixelRatio;else{canvas.width=Math.max(window.innerWidth-windowTrim,windowTrim),canvas.height=Math.max(window.innerHeight-windowTrim,windowTrim);let t=canvasWidth/canvasHeight;canvas.width>canvas.height*t?canvas.width=Math.min(canvas.height*t,canvas.width):canvas.height=Math.min(canvas.width/t,canvas.height),canvas.width>0&&(canvasWidth=canvas.width),canvas.height>0&&(canvasHeight=canvas.height)}setCanvas(),ArcballFactor=1+8*Math.hypot(viewportmargin[0],viewportmargin[1])/size2,viewportshift[0]/=Zoom0,viewportshift[1]/=Zoom0,gl.enable(gl.BLEND),gl.blendFunc(gl.SRC_ALPHA,gl.ONE_MINUS_SRC_ALPHA),gl.enable(gl.DEPTH_TEST),gl.enable(gl.SCISSOR_TEST),setViewport(),home(),canvas.onmousedown=handleMouseDown,document.onmouseup=handleMouseUpOrTouchEnd,document.onmousemove=handleMouseMove,canvas.onkeydown=handleKey,embedded||enableZoom(),canvas.addEventListener("touchstart",handleTouchStart,!1),canvas.addEventListener("touchend",handleMouseUpOrTouchEnd,!1),canvas.addEventListener("touchcancel",handleMouseUpOrTouchEnd,!1),canvas.addEventListener("touchleave",handleMouseUpOrTouchEnd,!1),canvas.addEventListener("touchmove",handleTouchMove,!1),document.addEventListener("keydown",handleKey,!1)}let listen=!1;class Align{constructor(t,e){if(this.center=t,e){let t=e[0],i=e[1];this.ct=Math.cos(t),this.st=Math.sin(t),this.cp=Math.cos(i),this.sp=Math.sin(i)}}T0(t){return[t[0]+this.center[0],t[1]+this.center[1],t[2]+this.center[2]]}T(t){let e=t[0],i=t[1],a=t[2],r=e*this.ct+a*this.st;return[r*this.cp-i*this.sp+this.center[0],r*this.sp+i*this.cp+this.center[1],-e*this.st+a*this.ct+this.center[2]]}}function Tcorners(t,e,i){let a=[t(e),t([e[0],e[1],i[2]]),t([e[0],i[1],e[2]]),t([e[0],i[1],i[2]]),t([i[0],e[1],e[2]]),t([i[0],e[1],i[2]]),t([i[0],i[1],e[2]]),t(i)];return[minbound(a),maxbound(a)]}function sphere(t,e,i,a,r){let n,s,o,h,l,d,c=[[[1,0,0],[1,0,.370106805057161],[.798938033457256,0,.6932530716149],[.500083269410627,0,.866169630634358],[1,.552284749830793,0],[1,.552284749830793,.370106805057161],[.798938033457256,.441241291938247,.6932530716149],[.500083269410627,.276188363341013,.866169630634358],[.552284749830793,1,0],[.552284749830793,1,.370106805057161],[.441241291938247,.798938033457256,.6932530716149],[.276188363341013,.500083269410627,.866169630634358],[0,1,0],[0,1,.370106805057161],[0,.798938033457256,.6932530716149],[0,.500083269410627,.866169630634358]],[[.500083269410627,0,.866169630634358],[.500083269410627,.276188363341013,.866169630634358],[.35297776917154,0,.951284475617087],[.276188363341013,.500083269410627,.866169630634358],[.264153721902467,.264153721902467,1],[.182177944773632,0,1],[0,.500083269410627,.866169630634358],[0,.35297776917154,.951284475617087],[0,.182177944773632,1],[0,0,1]]],m=new Align(t,r);function f(t){let e=Array(t.length);for(let i=0;i<t.length;++i){let a=t[i];e[i]=l([n*a[0],s*a[1],o*a[2]])}return e}r?(h=1,d=0,l=m.T.bind(m)):(h=-1,d=-e,l=m.T0.bind(m));let u=Tcorners(l,[-e,-e,d],[e,e,e]),p=u[0],v=u[1];for(let t=-1;t<=1;t+=2){n=t*e;for(let t=-1;t<=1;t+=2){s=t*e;for(let t=h;t<=1;t+=2){o=t*e;for(let t=0;t<2;++t)P.push(new BezierPatch(f(c[t]),i,a,p,v))}}}}let a=4/3*(Math.sqrt(2)-1);function disk(t,e,i,r,n){let s=1-2*a/3,o=[[1,0,0],[1,-a,0],[a,-1,0],[0,-1,0],[1,a,0],[s,0,0],[0,-s,0],[-a,-1,0],[a,1,0],[0,s,0],[-s,0,0],[-1,-a,0],[0,1,0],[-a,1,0],[-1,a,0],[-1,0,0]],h=new Align(t,n);let l=Tcorners(h.T.bind(h),[-e,-e,0],[e,e,0]);P.push(new BezierPatch(function(t){let i=Array(t.length);for(let a=0;a<t.length;++a){let r=t[a];i[a]=h.T([e*r[0],e*r[1],0])}return i}(o),i,r,l[0],l[1]))}function cylinder(t,e,i,r,n,s,o){let h,l,d=[[1,0,0],[1,0,1/3],[1,0,2/3],[1,0,1],[1,a,0],[1,a,1/3],[1,a,2/3],[1,a,1],[a,1,0],[a,1,1/3],[a,1,2/3],[a,1,1],[0,1,0],[0,1,1/3],[0,1,2/3],[0,1,1]],c=new Align(t,s);function m(t){let e=Array(t.length);for(let a=0;a<t.length;++a){let r=t[a];e[a]=c.T([h*r[0],l*r[1],i*r[2]])}return e}let f=Tcorners(c.T.bind(c),[-e,-e,0],[e,e,i]),u=f[0],p=f[1];for(let t=-1;t<=1;t+=2){h=t*e;for(let t=-1;t<=1;t+=2)l=t*e,P.push(new BezierPatch(m(d),r,n,u,p))}if(o){let e=c.T([0,0,i]);P.push(new BezierCurve([t,e],r,n,t,e))}}function rmf(t,e,i,a,r){class n{constructor(t,e,i){this.p=t,this.r=e,this.t=i,this.s=cross(i,e)}}let s=Number.EPSILON*Math.max(abs2(t),abs2(e),abs2(i),abs2(a));function o(r){if(1==r){let r=[a[0]-i[0],a[1]-i[1],a[2]-i[2]];return abs2(r)>s?unit(r):abs2(r=[2*i[0]-e[0]-a[0],2*i[1]-e[1]-a[1],2*i[2]-e[2]-a[2]])>s?unit(r):[a[0]-t[0]+3*(e[0]-i[0]),a[1]-t[1]+3*(e[1]-i[1]),a[2]-t[2]+3*(e[2]-i[2])]}let n=[a[0]-t[0]+3*(e[0]-i[0]),a[1]-t[1]+3*(e[1]-i[1]),a[2]-t[2]+3*(e[2]-i[2])],o=[2*(t[0]+i[0])-4*e[0],2*(t[1]+i[1])-4*e[1],2*(t[2]+i[2])-4*e[2]],h=[e[0]-t[0],e[1]-t[1],e[2]-t[2]],l=r*r,d=[n[0]*l+o[0]*r+h[0],n[1]*l+o[1]*r+h[1],n[2]*l+o[2]*r+h[2]];return abs2(d)>s?unit(d):abs2(d=[n[0]*(l=2*r)+o[0],n[1]*l+o[1],n[2]*l+o[2]])>s?unit(d):unit(n)}let h=Array(r.length),l=[e[0]-t[0],e[1]-t[1],e[2]-t[2]];abs2(l)<s&&abs2(l=[t[0]-2*e[0]+i[0],t[1]-2*e[1]+i[1],t[2]-2*e[2]+i[2]])<s&&(l=[a[0]-t[0]+3*(e[0]-i[0]),a[1]-t[1]+3*(e[1]-i[1]),a[2]-t[2]+3*(e[2]-i[2])]);let d=function(t){let e=cross(t,[0,1,0]),i=Number.EPSILON*abs2(t);return abs2(e)>i?unit(e):abs2(e=cross(t,[0,0,1]))>i?unit(e):[1,0,0]}(l=unit(l));h[0]=new n(t,d,l);for(let s=1;s<r.length;++s){let l=h[s-1],d=r[s],c=1-d,m=c*c,f=m*c,u=3*d;m*=u,c*=u*d;let p=d*d*d,v=[f*t[0]+m*e[0]+c*i[0]+p*a[0],f*t[1]+m*e[1]+c*i[1]+p*a[1],f*t[2]+m*e[2]+c*i[2]+p*a[2]],g=[v[0]-l.p[0],v[1]-l.p[1],v[2]-l.p[2]];if(0!=g[0]||0!=g[1]||0!=g[2]){let t=l.r,e=unit(g),i=l.t,a=dot(e,i),r=[i[0]-2*a*e[0],i[1]-2*a*e[1],i[2]-2*a*e[2]];i=o(d);let c=2*dot(e,t),m=[t[0]-c*e[0],t[1]-c*e[1],t[2]-c*e[2]],f=unit([i[0]-r[0],i[1]-r[1],i[2]-r[2]]),u=2*dot(f,m);m=[m[0]-u*f[0],m[1]-u*f[1],m[2]-u*f[2]],h[s]=new n(v,unit(m),unit(i))}else h[s]=h[s-1]}return h}function tube(t,e,i,r,n,s,o){let h=rmf(t[0],t[1],t[2],t[3],[0,1/3,2/3,1]),l=a*e,d=[[e,0],[e,l],[l,e],[0,e]];function c(e,a,o,l){let c=Array(16);for(let i=0;i<4;++i){let r=h[i],n=r.r[0],s=r.s[0],m=n*e+s*a,f=n*o+s*l,u=(n=r.r[1])*e+(s=r.s[1])*a,p=n*o+s*l,v=(n=r.r[2])*e+(s=r.s[2])*a,g=n*o+s*l,w=t[i],x=w[0];w1=w[1],w2=w[2];for(let t=0;t<4;++t){let e=d[t],a=e[0],r=e[1];c[4*i+t]=[m*a+f*r+x,u*a+p*r+w1,v*a+g*r+w2]}}P.push(new BezierPatch(c,i,r,n,s))}c(1,0,0,1),c(0,-1,1,0),c(-1,0,0,-1),c(0,1,-1,0),o&&P.push(new BezierCurve(t,i,r,n,s))}function webGLStart(){0==window.innerWidth||0==window.innerHeight?listen||(listen=!0,window.addEventListener("resize",webGLStart,!1)):(listen&&(window.removeEventListener("resize",webGLStart,!1),listen=!1),webGLInit())}
diff --git a/Master/texmf-dist/doc/asymptote/CAD.pdf b/Master/texmf-dist/doc/asymptote/CAD.pdf
index c9a74481eda..069c76e08c3 100644
--- a/Master/texmf-dist/doc/asymptote/CAD.pdf
+++ b/Master/texmf-dist/doc/asymptote/CAD.pdf
Binary files differ
diff --git a/Master/texmf-dist/doc/asymptote/TeXShopAndAsymptote.pdf b/Master/texmf-dist/doc/asymptote/TeXShopAndAsymptote.pdf
index e7640a8a465..3149f8360a5 100644
--- a/Master/texmf-dist/doc/asymptote/TeXShopAndAsymptote.pdf
+++ b/Master/texmf-dist/doc/asymptote/TeXShopAndAsymptote.pdf
Binary files differ
diff --git a/Master/texmf-dist/doc/asymptote/asy-latex.pdf b/Master/texmf-dist/doc/asymptote/asy-latex.pdf
index 76985adb425..66cef1793c9 100644
--- a/Master/texmf-dist/doc/asymptote/asy-latex.pdf
+++ b/Master/texmf-dist/doc/asymptote/asy-latex.pdf
Binary files differ
diff --git a/Master/texmf-dist/doc/asymptote/asyRefCard.pdf b/Master/texmf-dist/doc/asymptote/asyRefCard.pdf
index cb67f691c12..fc4991af75c 100644
--- a/Master/texmf-dist/doc/asymptote/asyRefCard.pdf
+++ b/Master/texmf-dist/doc/asymptote/asyRefCard.pdf
Binary files differ
diff --git a/Master/texmf-dist/doc/asymptote/asymptote.pdf b/Master/texmf-dist/doc/asymptote/asymptote.pdf
index 4407bf3decd..0aff63e5c6d 100644
--- a/Master/texmf-dist/doc/asymptote/asymptote.pdf
+++ b/Master/texmf-dist/doc/asymptote/asymptote.pdf
Binary files differ
diff --git a/Master/texmf-dist/doc/asymptote/examples/cylinder.asy b/Master/texmf-dist/doc/asymptote/examples/cylinder.asy
index 88ff1394bac..07c59f35d8d 100644
--- a/Master/texmf-dist/doc/asymptote/examples/cylinder.asy
+++ b/Master/texmf-dist/doc/asymptote/examples/cylinder.asy
@@ -1,8 +1,17 @@
-import solids;
-
size(0,100);
+import solids;
currentlight=Viewport;
-revolution r=cylinder(O,1,1.5,Y+Z);
-draw(surface(r),green,render(merge=true));
-draw(r,blue);
+triple v=O;
+real r=1;
+real h=1.5;
+triple axis=Y+Z;
+
+// Optimized cylinder
+surface cylinder=shift(v)*align(unit(axis))*scale(r,r,h)*unitcylinder;
+draw(cylinder,green,render(merge=true));
+
+// Skeleton
+revolution r=cylinder(v,r,h,axis);
+//draw(surface(r),green,render(merge=true));
+draw(r,blue+0.15mm);
diff --git a/Master/texmf-dist/doc/asymptote/examples/pipes.asy b/Master/texmf-dist/doc/asymptote/examples/pipes.asy
index 6b2025f6b35..383fda80fd5 100644
--- a/Master/texmf-dist/doc/asymptote/examples/pipes.asy
+++ b/Master/texmf-dist/doc/asymptote/examples/pipes.asy
@@ -90,7 +90,7 @@ void DrawLink(transform3 TBase, transform3 TEnd, pen objStyle,string s)
// draw two cylinders
draw(TBase*objSurface,objStyle,render);
- draw(TEnd*shift((0,0,-h))*objSurface,objStyle,render);
+ draw(TEnd*shift((0,0,-h+1e-5))*objSurface,objStyle,render);
// draw the link between two cylinders
triple pStart=TBase*(0.5*h*Z);
diff --git a/Master/texmf-dist/doc/asymptote/examples/randompath3.asy b/Master/texmf-dist/doc/asymptote/examples/randompath3.asy
index b6666570b36..4141eeae923 100644
--- a/Master/texmf-dist/doc/asymptote/examples/randompath3.asy
+++ b/Master/texmf-dist/doc/asymptote/examples/randompath3.asy
@@ -1,4 +1,5 @@
import three;
size(300);
-draw(randompath3(100),red);
+path3 g=randompath3(100);
+draw(g,red,currentlight);
diff --git a/Master/texmf-dist/doc/asymptote/examples/sphere.asy b/Master/texmf-dist/doc/asymptote/examples/sphere.asy
index 8d1b5fe50cd..8902dd0621b 100644
--- a/Master/texmf-dist/doc/asymptote/examples/sphere.asy
+++ b/Master/texmf-dist/doc/asymptote/examples/sphere.asy
@@ -1,6 +1,6 @@
import three;
size(200);
-currentprojection=orthographic(5,4,3);
+//currentprojection=orthographic(5,4,3);
-draw(unitsphere,green,render(compression=Zero,merge=true));
+draw(unitsphere,green+opacity(0.5),render(compression=Zero,merge=true));
diff --git a/Master/texmf-dist/doc/asymptote/examples/unitoctant.asy b/Master/texmf-dist/doc/asymptote/examples/unitoctant.asy
index 89f851f6a23..e84fdd537c3 100644
--- a/Master/texmf-dist/doc/asymptote/examples/unitoctant.asy
+++ b/Master/texmf-dist/doc/asymptote/examples/unitoctant.asy
@@ -3,7 +3,7 @@ import graph3;
currentprojection=orthographic(5,4,2);
size(0,150);
-patch s=octant1;
+patch s=octant1x;
draw(surface(s),green+opacity(0.5));
draw(s.external(),blue);
diff --git a/Master/texmf-dist/doc/asymptote/examples/vertexshading.asy b/Master/texmf-dist/doc/asymptote/examples/vertexshading.asy
index fd5e9b2df84..4a35e09559b 100644
--- a/Master/texmf-dist/doc/asymptote/examples/vertexshading.asy
+++ b/Master/texmf-dist/doc/asymptote/examples/vertexshading.asy
@@ -4,7 +4,10 @@ size(200);
currentprojection=perspective(4,5,5);
-//draw(shift(2Z)*surface(O--X--Y--cycle),blue);
+draw(shift(2Z)*surface(O--X--Y--cycle,
+ new pen[] {red+opacity(0.5),green,blue}));
+draw(shift(2Y+2Z)*surface(O--X--Y--cycle),blue);
+draw(shift(2Y+Z)*surface(unitsquare3),green);
draw(surface(unitcircle3,new pen[] {red,green,blue,black}));
draw(surface(shift(Z)*unitsquare3,
diff --git a/Master/texmf-dist/doc/asymptote/examples/workcone.asy b/Master/texmf-dist/doc/asymptote/examples/workcone.asy
index 5d102d86214..594758bba64 100644
--- a/Master/texmf-dist/doc/asymptote/examples/workcone.asy
+++ b/Master/texmf-dist/doc/asymptote/examples/workcone.asy
@@ -18,9 +18,11 @@ real x2=r*s2/h;
render render=render(compression=0,merge=true);
-path3 p=(0,0,0)--(x,0,s);
+draw(scale(x1,x1,-s1)*shift(-Z)*unitcone,lightblue+opacity(0.5),render);
+
+path3 p=(x2,0,s2)--(x,0,s+0.005);
revolution a=revolution(p,Z);
-draw(surface(a,4),lightblue+opacity(0.5),render);
+draw(surface(a),lightblue+opacity(0.5),render);
path3 q=(x,0,s)--(r,0,h);
revolution b=revolution(q,Z);
diff --git a/Master/texmf-dist/doc/info/asy-faq.info b/Master/texmf-dist/doc/info/asy-faq.info
index f1ff8cb1e13..7cd97b0e593 100644
--- a/Master/texmf-dist/doc/info/asy-faq.info
+++ b/Master/texmf-dist/doc/info/asy-faq.info
@@ -10,7 +10,7 @@ END-INFO-DIR-ENTRY
File: asy-faq.info, Node: Top, Next: Question 1.1, Up: (dir)
ASYMPTOTE FREQUENTLY ASKED QUESTIONS
- 14 Jan 2020
+ 02 Mar 2020
This is the list of Frequently Asked Questions about Asymptote (asy).
diff --git a/Master/texmf-dist/doc/info/asymptote.info b/Master/texmf-dist/doc/info/asymptote.info
index 29d7282ef65..03ea489302e 100644
--- a/Master/texmf-dist/doc/info/asymptote.info
+++ b/Master/texmf-dist/doc/info/asymptote.info
@@ -1,9 +1,9 @@
This is asymptote.info, produced by makeinfo version 6.6 from
asymptote.texi.
-This file documents 'Asymptote', version 2.62.
+This file documents 'Asymptote', version 2.63.
- <http://asymptote.sourceforge.net>
+ <https://asymptote.sourceforge.io>
Copyright (C) 2004-19 Andy Hammerlindl, John Bowman, and Tom Prince.
@@ -22,9 +22,9 @@ File: asymptote.info, Node: Top, Next: Description, Prev: (dir), Up: (dir)
Asymptote
*********
-This file documents 'Asymptote', version 2.62.
+This file documents 'Asymptote', version 2.63.
- <http://asymptote.sourceforge.net>
+ <https://asymptote.sourceforge.io>
Copyright (C) 2004-19 Andy Hammerlindl, John Bowman, and Tom Prince.
@@ -240,16 +240,16 @@ mathematics typesetting needs, one can write 'Asymptote' modules that
tailor it to specific applications; for example, a scientific graphing
module is available (*note graph::). Examples of 'Asymptote' code and
output, including animations, are available at
- <http://asymptote.sourceforge.net/gallery/>
+ <https://asymptote.sourceforge.io/gallery/>
Clicking on an example file name in this manual, like 'Pythagoras', will
display the PDF output, whereas clicking on its '.asy' extension will
show the corresponding 'Asymptote' code in a separate window.
Links to many external resources, including an excellent user-written
'Asymptote' tutorial can be found at
- <http://asymptote.sourceforge.net/links.html>
+ <https://asymptote.sourceforge.io/links.html>
A quick reference card for 'Asymptote' is available at
- <http://asymptote.sourceforge.net/asyRefCard.pdf>
+ <https://asymptote.sourceforge.io/asyRefCard.pdf>

File: asymptote.info, Node: Installation, Next: Tutorial, Prev: Description, Up: Top
@@ -273,9 +273,9 @@ After following the instructions for your specific distribution, please
see also *note Configuring::.
We recommend subscribing to new release announcements at
- <http://sourceforge.net/projects/asymptote>
+ <https://sourceforge.net/projects/asymptote>
Users may also wish to monitor the 'Asymptote' forum:
- <http://sourceforge.net/p/asymptote/discussion/409349>
+ <https://sourceforge.net/p/asymptote/discussion/409349>

File: asymptote.info, Node: UNIX binary distributions, Next: MacOS X binary distributions, Prev: Installation, Up: Installation
@@ -313,7 +313,7 @@ File: asymptote.info, Node: MacOS X binary distributions, Next: Microsoft Wind
Compiling from UNIX source::) or install the 'Asymptote' binary
available at
- <http://www.macports.org/>
+ <https://www.macports.org/>
Note that many 'MacOS X' (and FreeBSD) systems lack the GNU 'readline'
library. For full interactive functionality, GNU 'readline' version 4.3
@@ -339,11 +339,11 @@ Ghostscript' version 9.14 or later from
available from <http://www.cs.wisc.edu/~ghost/gsview/>.
The 'ImageMagick' package from
-<http://www.imagemagick.org/script/binary-releases.php>
+<https://www.imagemagick.org/script/binary-releases.php>
is required to support output formats other than HTML, PDF, SVG, and PNG
(*note convert::). The 'Python 3' interpreter from
-<http://www.python.org> is only required if you wish to try out the
+<https://www.python.org> is only required if you wish to try out the
graphical user interface (*note GUI::).
Example code will be installed by default in the 'examples' subdirectory
@@ -363,7 +363,7 @@ automatically invoke the 'PostScript' viewer 'gv' (under 'UNIX') or
viewer should be capable of automatically redrawing whenever the output
file is updated. The default 'UNIX' 'PostScript' viewer 'gv' supports
this (via a 'SIGHUP' signal). Version 'gv-3.6.3' or later (from
-<http://ftp.gnu.org/gnu/gv/>) is required for interactive mode to work
+<https://ftp.gnu.org/gnu/gv/>) is required for interactive mode to work
properly. Users of 'ggv' will need to enable 'Watch file' under
'Edit/Postscript Viewer Preferences'. Users of 'gsview' will need to
enable 'Options/Auto Redisplay' (however, under 'MSDOS' it is still
@@ -485,7 +485,7 @@ File: asymptote.info, Node: Compiling from UNIX source, Next: Editing modes,
To compile and install a 'UNIX' executable from the source release
'asymptote-x.xx.src.tgz' in the subdirectory 'x.xx' under
- <http://sourceforge.net/projects/asymptote/files/>
+ <https://sourceforge.net/projects/asymptote/files/>
execute the commands:
gunzip asymptote-x.xx.src.tgz
@@ -500,7 +500,7 @@ in the 'Asymptote' source directory.
On 'UNIX' platforms (other than 'MacOS X'), we recommend using
version '3.0.0' of the 'freeglut' library. To compile 'freeglut',
download
- <http://prdownloads.sourceforge.net/freeglut/freeglut-3.0.0.tar.gz>
+ <https://prdownloads.sourceforge.net/freeglut/freeglut-3.0.0.tar.gz>
and type (as the root user):
gunzip freeglut-3.0.0.tar.gz
tar -xf freeglut-3.0.0.tar
@@ -519,7 +519,7 @@ Be sure to use GNU 'make' (on non-GNU systems this command may be called
'gmake'). To build the documentation, you may need to install the
'texinfo-tex' package. If you get errors from a broken 'texinfo' or
'pdftex' installation, simply put
- <http://asymptote.sourceforge.net/asymptote.pdf>
+ <https://asymptote.sourceforge.io/asymptote.pdf>
in the directory 'doc' and repeat the command 'make all'.
For a (default) system-wide installation, the last command should be
@@ -571,7 +571,7 @@ compiles and displays the current buffer, and the key binding 'C-c ?',
which shows the available function prototypes for the command at the
cursor. For full functionality you should also install the Apache
Software Foundation package 'two-mode-mode':
- <http://www.dedasys.com/freesoftware/files/two-mode-mode.el>
+ <https://www.dedasys.com/freesoftware/files/two-mode-mode.el>
Once installed, you can use the hybrid mode 'lasy-mode' to edit a LaTeX
file containing embedded 'Asymptote' code (*note LaTeX usage::). This
mode can be enabled within 'latex-mode' with the key sequence 'M-x
@@ -652,12 +652,12 @@ A concise introduction to 'Asymptote' is given here. For a more
thorough introduction, see the excellent 'Asymptote' tutorial written by
Charles Staats:
- <http://math.uchicago.edu/~cstaats/Charles_Staats_III/Notes_and_papers_files/asymptote_tutorial.pdf>
+ <https://math.uchicago.edu/~cstaats/Charles_Staats_III/Notes_and_papers_files/asymptote_tutorial.pdf>
Another 'Asymptote' tutorial is available as a wiki, with images
rendered by an online Asymptote engine:
- <http://www.artofproblemsolving.com/wiki/?title=Asymptote_(Vector_Graphics_Language)>
+ <https://www.artofproblemsolving.com/wiki/?title=Asymptote_(Vector_Graphics_Language)>

File: asymptote.info, Node: Drawing in batch mode, Next: Drawing in interactive mode, Prev: Tutorial, Up: Tutorial
@@ -841,7 +841,7 @@ label("(0,0,1)",(0,0,1),Z);
[./cube]
See section *note graph:: (or the online 'Asymptote' gallery and
-external links posted at <http://asymptote.sourceforge.net>) for further
+external links posted at <https://asymptote.sourceforge.io>) for further
examples, including two-dimensional and interactive three-dimensional
scientific graphs. Additional examples have been posted by Philippe
Ivaldi at <http://www.piprime.fr/asymptote>.
@@ -3937,7 +3937,7 @@ generator 'Gaussrand' and a collection of statistics routines, including
returns n!/(k!(n-k)!), are also defined.
When configured with the GNU Scientific Library (GSL), available from
-<http://www.gnu.org/software/gsl/>, 'Asymptote' contains an internal
+<https://www.gnu.org/software/gsl/>, 'Asymptote' contains an internal
module 'gsl' that defines the airy functions 'Ai(real)', 'Bi(real)',
'Ai_deriv(real)', 'Bi_deriv(real)', 'zero_Ai(int)', 'zero_Bi(int)',
'zero_Ai_deriv(int)', 'zero_Bi_deriv(int)', the Bessel functions 'I(int,
@@ -4228,6 +4228,14 @@ of type 'T[]'.
write();
write(f/n);
+'pair[][] fft(pair[][] a, int sign=1)'
+ returns the unnormalized two-dimensional Fourier transform of 'a'
+ using the given 'sign'.
+
+'pair[][][] fft(pair[][][] a, int sign=1)'
+ returns the unnormalized three-dimensional Fourier transform of 'a'
+ using the given 'sign'.
+
'real dot(real[] a, real[] b)'
returns the dot product of the vectors 'a' and 'b'.
@@ -4810,12 +4818,12 @@ process, this method also tends to use less memory. To store the
figures in a separate directory named 'asy', one can define
\def\asydir{asy}
in 'latexusage.tex' and put the contents of
-<http://sourceforge.net/p/asymptote/code/HEAD/tree/trunk/asymptote/doc/latexmkrc_asydir>
+<https://raw.githubusercontent.com/vectorgraphics/asymptote/HEAD/doc/latexmkrc_asydir>
in a file 'latexmkrc' in the same directory. External 'Asymptote' code
can be included with
\asyinclude[<options>]{<filename.asy>}
so that 'latexmk' will recognize when the code is changed. Note that
-'latemk' requires 'perl', available from <http://www.perl.org/>.
+'latemk' requires 'perl', available from <https://www.perl.org/>.
One can specify 'width', 'height', 'keepAspect', 'viewportwidth',
'viewportheight', 'attach', and 'inline'. 'keyval'-style options to the
@@ -5062,10 +5070,6 @@ functions such as
returns the four complex roots of the quartic equation
ax^4+bx^3+cx^2+dx+e=0.
-'pair[][] fft(pair[][] a, int sign=1)'
- returns the two-dimensional Fourier transform of a using the given
- 'sign'.
-
'real time(path g, real x, int n=0)'
returns the 'n'th intersection time of path 'g' with the vertical
line through x.
@@ -5128,7 +5132,7 @@ File: asymptote.info, Node: geometry, Next: trembling, Prev: interpolate, Up
This module, written by Philippe Ivaldi, provides an extensive set of
geometry routines, including 'perpendicular' symbols and a 'triangle'
structure. Link to the documentation for the 'geometry' module are
-posted here: <http://asymptote.sourceforge.net/links.html>, including an
+posted here: <https://asymptote.sourceforge.io/links.html>, including an
extensive set of examples,
<http://www.piprime.fr/files/asymptote/geometry/>, and an index:
<http://www.piprime.fr/files/asymptote/geometry/modules/geometry.asy.index.type.html>
@@ -8140,7 +8144,7 @@ Options (negate by replacing - with -no):
-c,-command string Command to autoexecute
-compact Conserve memory at the expense of speed [false]
-d,-debug Enable debugging messages [false]
--digits n Default output file precision [6]
+-digits n Default output file precision [7]
-divisor n Garbage collect using purge(divisor=n) [2]
-embed Embed rendered preview image [true]
-envmap Enable environment map image-based lighting (Experimental) [false]
@@ -8269,8 +8273,8 @@ and 'lualatex' tex engines. Alternative output formats may be produced
using the '-f' option (or 'outformat' setting).
To produce SVG output, you will need 'dvisvgm' (version 2.6.3 or
-later) from <http://dvisvgm.sourceforge.net>. You might need to adjust
-the configuration variable 'libgs' to point to the location of your
+later) from <https://dvisvgm.de>. You might need to adjust the
+configuration variable 'libgs' to point to the location of your
'Ghostscript' library 'libgs.so' (or to an empty string, depending on
how 'dvisvgm' was configured). The 2.8 version of 'dvisvgm' can display
SVG output (used by the 'xasy' editor) for external vector EPS and PDF
@@ -8409,7 +8413,7 @@ returns control to the interactive prompt.
Interactive mode is implemented with the GNU 'readline' library, with
command history and auto-completion. To customize the key bindings,
-see: <http://cnswww.cns.cwru.edu/php/chet/readline/readline.html>
+see: <https://tiswww.case.edu/php/chet/readline/readline.html>
The file 'asymptote.py' in the 'Asymptote' system directory provides
an alternative way of entering 'Asymptote' commands interactively,
@@ -8447,7 +8451,7 @@ File: asymptote.info, Node: GUI installation, Next: GUI usage, Prev: GUI, Up
=====================
As 'xasy' is written in the interactive scripting language 'Python/Qt',
-it requires 'Python' (<http://www.python.org>), along with the 'Python'
+it requires 'Python' (<https://www.python.org>), along with the 'Python'
packages 'pyqt5', 'cson', and 'numpy':
pip3 install cson numpy pyqt5 PyQt5.sip
@@ -8491,7 +8495,7 @@ File: asymptote.info, Node: PostScript to Asymptote, Next: Help, Prev: GUI,
******************************
The excellent 'PostScript' editor 'pstoedit' (version 3.50 or later;
-available from <http://sourceforge.net/projects/pstoedit/>) includes an
+available from <https://sourceforge.net/projects/pstoedit/>) includes an
'Asymptote' backend. Unlike virtually all other 'pstoedit' backends,
this driver includes native clipping, even-odd fill rule, 'PostScript'
subpath, and full image support. Here is an example: 'asy -V
@@ -8510,31 +8514,31 @@ File: asymptote.info, Node: Help, Next: Debugger, Prev: PostScript to Asympto
*******
A list of frequently asked questions (FAQ) is maintained at
- <http://asymptote.sourceforge.net/FAQ>
+ <https://asymptote.sourceforge.io/FAQ>
Questions on installing and using 'Asymptote' that are not addressed in
the FAQ should be sent to the 'Asymptote' forum:
- <http://sourceforge.net/p/asymptote/discussion/409349>
+ <https://sourceforge.net/p/asymptote/discussion/409349>
Including an example that illustrates what you are trying to do will
help you get useful feedback. 'LaTeX' problems can often be diagnosed
with the '-vv' or '-vvv' command-line options. Contributions in the
form of patches or 'Asymptote' modules can be posted here:
- <http://sourceforge.net/p/asymptote/patches>
+ <https://sourceforge.net/p/asymptote/patches>
To receive announcements of upcoming releases, please subscribe to
'Asymptote' at
- <http://freecode.com/projects/asy>
+ <https://sourceforge.net/projects/asymptote/>
If you find a bug in 'Asymptote', please check (if possible) whether the
bug is still present in the latest 'git' developmental code (*note
Git::) before submitting a bug report. New bugs can be reported at
<https://github.com/vectorgraphics/asymptote/issues>
To see if the bug has already been fixed, check bugs with Status
'Closed' and recent lines in
- <http://asymptote.sourceforge.net/ChangeLog>
+ <https://asymptote.sourceforge.io/ChangeLog>
'Asymptote' can be configured with the optional GNU library
-'libsigsegv', available from <http://libsigsegv.sourceforge.net>, which
-allows one to distinguish user-generated 'Asymptote' stack overflows
-(*note stack overflow::) from true segmentation faults (due to internal
-C++ programming errors; please submit the 'Asymptote' code that
+'libsigsegv', available from <https://www.gnu.org/software/libsigsegv/>,
+which allows one to distinguish user-generated 'Asymptote' stack
+overflows (*note stack overflow::) from true segmentation faults (due to
+internal C++ programming errors; please submit the 'Asymptote' code that
generates such segmentation faults along with your bug report).

@@ -8750,7 +8754,7 @@ Index
* alias <1>: Arrays. (line 174)
* Align: label. (line 12)
* aligndir: Options. (line 186)
-* all: Arrays. (line 325)
+* all: Arrays. (line 333)
* Allow: Pens. (line 346)
* and: Bezier curves. (line 56)
* AND: Arithmetic & logical.
@@ -8973,7 +8977,7 @@ Index
* colorless: Pens. (line 57)
* colors: Pens. (line 54)
* comma: Files. (line 61)
-* comma-separated-value mode: Arrays. (line 357)
+* comma-separated-value mode: Arrays. (line 365)
* command-line options: Configuring. (line 89)
* command-line options <1>: Options. (line 6)
* comment character: Files. (line 16)
@@ -9021,10 +9025,10 @@ Index
* cross <2>: graph. (line 480)
* crossframe: markers. (line 22)
* crosshatch: Pens. (line 285)
-* csv: Arrays. (line 357)
+* csv: Arrays. (line 365)
* CTZ: Arithmetic & logical.
(line 68)
-* cubicroots: Arrays. (line 314)
+* cubicroots: Arrays. (line 322)
* curl: Bezier curves. (line 66)
* curl <1>: three. (line 6)
* curlSpecifier: Paths and guides. (line 408)
@@ -9074,11 +9078,11 @@ Index
* delete: Files. (line 150)
* delete <1>: Arrays. (line 39)
* description: Description. (line 6)
-* diagonal: Arrays. (line 299)
+* diagonal: Arrays. (line 307)
* diamond: flowchart. (line 54)
* diffuse: three. (line 76)
* diffusepen: three. (line 66)
-* dimension: Arrays. (line 362)
+* dimension: Arrays. (line 370)
* dir: Search paths. (line 9)
* dir <1>: Data types. (line 90)
* dir <2>: Data types. (line 180)
@@ -9095,8 +9099,8 @@ Index
* dot: draw. (line 82)
* dot <1>: Data types. (line 103)
* dot <2>: Data types. (line 193)
-* dot <3>: Arrays. (line 254)
-* dot <4>: Arrays. (line 257)
+* dot <3>: Arrays. (line 262)
+* dot <4>: Arrays. (line 265)
* DotMargin: draw. (line 42)
* DotMargin3: three. (line 619)
* DotMargins: draw. (line 42)
@@ -9156,9 +9160,9 @@ Index
(line 25)
* environment variables: Configuring. (line 93)
* eof: Files. (line 93)
-* eof <1>: Arrays. (line 339)
+* eof <1>: Arrays. (line 347)
* eol: Files. (line 93)
-* eol <1>: Arrays. (line 339)
+* eol <1>: Arrays. (line 347)
* EPS: label. (line 78)
* EPS <1>: Options. (line 155)
* erase: Drawing in interactive mode.
@@ -9209,7 +9213,8 @@ Index
(line 15)
* feynman: feynman. (line 6)
* fft: Arrays. (line 240)
-* fft <1>: math. (line 26)
+* fft <1>: Arrays. (line 254)
+* fft <2>: Arrays. (line 258)
* FFTW: Compiling from UNIX source.
(line 63)
* file: Files. (line 6)
@@ -9336,7 +9341,7 @@ Index
* identity: Transforms. (line 24)
* identity <1>: Mathematical functions.
(line 6)
-* identity <2>: Arrays. (line 296)
+* identity <2>: Arrays. (line 304)
* identity4: three. (line 475)
* if: Programming. (line 26)
* IgnoreAspect: Frames and pictures.
@@ -9356,7 +9361,7 @@ Index
* incircle: Data types. (line 120)
* include: Import. (line 126)
* including images: label. (line 78)
-* increasing: math. (line 59)
+* increasing: math. (line 55)
* inf: Data types. (line 35)
* inheritance: Structures. (line 181)
* initialized: Arrays. (line 39)
@@ -9408,7 +9413,7 @@ Index
* intMax: Data types. (line 30)
* intMin: Data types. (line 30)
* inverse: Transforms. (line 16)
-* inverse <1>: Arrays. (line 302)
+* inverse <1>: Arrays. (line 310)
* invert: three. (line 465)
* invisible: Pens. (line 43)
* isnan: Data types. (line 35)
@@ -9479,8 +9484,8 @@ Index
* length <5>: Arrays. (line 39)
* length <6>: three. (line 537)
* letter: Configuring. (line 66)
-* lexorder: math. (line 67)
-* lexorder <1>: math. (line 70)
+* lexorder: math. (line 63)
+* lexorder <1>: math. (line 66)
* libgs: Options. (line 160)
* libm routines: Mathematical functions.
(line 6)
@@ -9488,9 +9493,9 @@ Index
* libsigsegv <1>: Help. (line 27)
* light: three. (line 76)
* limits: graph. (line 639)
-* line: Arrays. (line 339)
-* line <1>: Arrays. (line 343)
-* line mode: Arrays. (line 339)
+* line: Arrays. (line 347)
+* line <1>: Arrays. (line 351)
+* line mode: Arrays. (line 347)
* Linear: graph. (line 690)
* linecap: Pens. (line 139)
* linejoin: Pens. (line 149)
@@ -9687,8 +9692,8 @@ Index
* parallelogram: flowchart. (line 47)
* parametric surface: graph3. (line 99)
* parametrized curve: graph. (line 639)
-* partialsum: math. (line 53)
-* partialsum <1>: math. (line 56)
+* partialsum: math. (line 49)
+* partialsum <1>: math. (line 52)
* patch-dependent colors: three. (line 107)
* path: Paths. (line 6)
* path <1>: Paths and guides. (line 7)
@@ -9766,8 +9771,8 @@ Index
* public: Structures. (line 6)
* push: Arrays. (line 39)
* Python usage: Interactive mode. (line 72)
-* quadraticroots: Arrays. (line 305)
-* quadraticroots <1>: Arrays. (line 310)
+* quadraticroots: Arrays. (line 313)
+* quadraticroots <1>: Arrays. (line 318)
* quarticroots: math. (line 22)
* quick reference: Description. (line 84)
* quit: Drawing in interactive mode.
@@ -9791,9 +9796,9 @@ Index
(line 39)
* randMax: Mathematical functions.
(line 39)
-* read: Arrays. (line 379)
+* read: Arrays. (line 387)
* reading: Files. (line 12)
-* reading string arrays: Arrays. (line 349)
+* reading string arrays: Arrays. (line 357)
* readline: Files. (line 135)
* real: Data types. (line 35)
* realDigits: Data types. (line 35)
@@ -9879,7 +9884,7 @@ Index
* seconds: Data types. (line 329)
* seek: Files. (line 93)
* seekeof: Files. (line 93)
-* segment: math. (line 50)
+* segment: math. (line 46)
* segmentation fault: Help. (line 27)
* self operators: Self & prefix operators.
(line 6)
@@ -9938,16 +9943,16 @@ Index
* slice <1>: Paths and guides. (line 262)
* slices: Slices. (line 6)
* slide: slide. (line 6)
-* slope: math. (line 44)
-* slope <1>: math. (line 47)
+* slope: math. (line 40)
+* slope <1>: math. (line 43)
* slopefield: slopefield. (line 6)
* smoothcontour3: smoothcontour3. (line 6)
* sncndn: Mathematical functions.
(line 48)
* solid: Pens. (line 102)
* solids: solids. (line 6)
-* solve: Arrays. (line 274)
-* solve <1>: Arrays. (line 290)
+* solve: Arrays. (line 282)
+* solve <1>: Arrays. (line 298)
* sort: Arrays. (line 177)
* sort <1>: Arrays. (line 181)
* sort <2>: Arrays. (line 196)
@@ -10052,8 +10057,8 @@ Index
* tilings: Pens. (line 254)
* time: Data types. (line 320)
* time <1>: Data types. (line 345)
-* time <2>: math. (line 30)
-* time <3>: math. (line 34)
+* time <2>: math. (line 26)
+* time <3>: math. (line 30)
* times: Paths and guides. (line 220)
* times <1>: Paths and guides. (line 224)
* Top: graph. (line 135)
@@ -10072,7 +10077,7 @@ Index
* triangle: geometry. (line 6)
* triangles: three. (line 142)
* triangulate: contour. (line 149)
-* tridiagonal: Arrays. (line 261)
+* tridiagonal: Arrays. (line 269)
* trigonometric integrals: Mathematical functions.
(line 48)
* triple: Data types. (line 137)
@@ -10095,7 +10100,7 @@ Index
* unicode: unicode. (line 6)
* uniform: Arrays. (line 145)
* uninstall: Uninstall. (line 6)
-* unique: math. (line 63)
+* unique: math. (line 59)
* unit: Data types. (line 83)
* unit <1>: Data types. (line 173)
* unitbox: Paths. (line 44)
@@ -10124,8 +10129,8 @@ Index
* user-defined operators: User-defined operators.
(line 6)
* usleep: Data types. (line 378)
-* value: math. (line 38)
-* value <1>: math. (line 41)
+* value: math. (line 34)
+* value <1>: math. (line 37)
* var: Variable initializers.
(line 55)
* variable initializers: Variable initializers.
@@ -10133,7 +10138,7 @@ Index
* vectorfield: graph. (line 1004)
* vectorfield <1>: graph. (line 1043)
* vectorfield3: graph3. (line 157)
-* vectorization: Arrays. (line 318)
+* vectorization: Arrays. (line 326)
* verbatim: Frames and pictures.
(line 297)
* vertex-dependent colors: three. (line 107)
@@ -10154,12 +10159,12 @@ Index
* wheel mouse: GUI. (line 6)
* while: Programming. (line 48)
* White: three. (line 76)
-* white-space string delimiter mode: Arrays. (line 349)
+* white-space string delimiter mode: Arrays. (line 357)
* width: LaTeX usage. (line 50)
* windingnumber: Paths and guides. (line 283)
-* word: Arrays. (line 349)
+* word: Arrays. (line 357)
* write: Files. (line 53)
-* write <1>: Arrays. (line 388)
+* write <1>: Arrays. (line 396)
* X: three. (line 312)
* xasy: GUI. (line 6)
* xaxis3: graph3. (line 7)
@@ -10229,148 +10234,148 @@ Tag Table:
Node: Top570
Node: Description7280
Node: Installation11190
-Node: UNIX binary distributions12234
-Node: MacOS X binary distributions13364
-Node: Microsoft Windows13918
-Node: Configuring15123
-Node: Search paths19585
-Node: Compiling from UNIX source20424
-Node: Editing modes23484
-Node: Git25905
-Node: Uninstall26305
-Node: Tutorial26651
-Node: Drawing in batch mode27540
-Node: Drawing in interactive mode28416
-Node: Figure size29448
-Node: Labels31043
-Node: Paths31871
-Ref: unitcircle32487
-Node: Drawing commands34389
-Node: draw36104
-Ref: arrows37286
-Node: fill42784
-Ref: gradient shading43830
-Node: clip48346
-Node: label48933
-Ref: Label49533
-Node: Bezier curves55365
-Node: Programming59265
-Ref: array iteration61018
-Node: Data types61185
-Ref: format71847
-Node: Paths and guides76293
-Ref: circle76547
-Ref: extension86247
-Node: Pens93057
-Ref: fillrule100748
-Ref: basealign101652
-Ref: transparency104486
-Ref: makepen108080
-Ref: overwrite108964
-Node: Transforms110178
-Node: Frames and pictures112010
-Ref: envelope113168
-Ref: size114261
-Ref: unitsize115248
-Ref: shipout116321
-Ref: filltype118672
-Ref: add122085
-Ref: add about123027
-Ref: tex126057
-Node: Files126953
-Ref: cd127940
-Ref: scroll132625
-Node: Variable initializers135543
-Node: Structures138260
-Node: Operators145762
-Node: Arithmetic & logical146076
-Node: Self & prefix operators148446
-Node: User-defined operators149240
-Node: Implicit scaling150153
-Node: Functions150716
-Ref: stack overflow153858
-Node: Default arguments154140
-Node: Named arguments154896
-Node: Rest arguments157466
-Node: Mathematical functions160588
-Node: Arrays165244
-Ref: sort172352
-Ref: tridiagonal174977
-Ref: solve176208
-Node: Slices180348
-Node: Casts184256
-Node: Import186526
-Node: Static191784
-Node: LaTeX usage194677
-Node: Base modules201173
-Node: plain203730
-Node: simplex204404
-Node: math204678
-Node: interpolate207387
-Node: geometry207666
-Node: trembling208260
-Node: stats208529
-Node: patterns208789
-Node: markers209025
-Node: tree210887
-Node: binarytree211072
-Node: drawtree211739
-Node: syzygy211940
-Node: feynman212214
-Node: roundedpath212489
-Node: animation212772
-Ref: animate213193
-Node: embed214306
-Node: slide215260
-Node: MetaPost215592
-Node: unicode216311
-Node: latin1217185
-Node: babel217554
-Node: labelpath217784
-Node: labelpath3218605
-Node: annotate218916
-Node: CAD219386
-Node: graph219697
-Ref: ticks226858
-Ref: pathmarkers240596
-Ref: marker241067
-Ref: markuniform241421
-Ref: errorbars243229
-Ref: automatic scaling247708
-Node: palette259469
-Ref: images259587
-Ref: image263761
-Ref: logimage264282
-Ref: penimage265388
-Ref: penfunctionimage265651
-Node: three266423
-Ref: PostScript3D295720
-Node: obj297459
-Node: graph3297708
-Ref: GaussianSurface302991
-Node: grid3304141
-Node: solids304926
-Node: tube305919
-Node: flowchart308150
-Node: contour312759
-Node: contour3318079
-Node: smoothcontour3318392
-Node: slopefield320113
-Node: ode321603
-Node: Options321860
-Ref: configuration file328645
-Ref: settings328645
-Ref: texengines329909
-Ref: convert329909
-Node: Interactive mode333431
-Ref: history335581
-Node: GUI336887
-Node: GUI installation337438
-Node: GUI usage338168
-Node: PostScript to Asymptote339231
-Node: Help339989
-Node: Debugger341643
-Node: Credits343399
-Node: Index344416
+Node: UNIX binary distributions12236
+Node: MacOS X binary distributions13366
+Node: Microsoft Windows13921
+Node: Configuring15128
+Node: Search paths19591
+Node: Compiling from UNIX source20430
+Node: Editing modes23492
+Node: Git25914
+Node: Uninstall26314
+Node: Tutorial26660
+Node: Drawing in batch mode27551
+Node: Drawing in interactive mode28427
+Node: Figure size29459
+Node: Labels31054
+Node: Paths31882
+Ref: unitcircle32498
+Node: Drawing commands34400
+Node: draw36115
+Ref: arrows37297
+Node: fill42795
+Ref: gradient shading43841
+Node: clip48357
+Node: label48944
+Ref: Label49544
+Node: Bezier curves55376
+Node: Programming59276
+Ref: array iteration61029
+Node: Data types61196
+Ref: format71858
+Node: Paths and guides76304
+Ref: circle76558
+Ref: extension86258
+Node: Pens93068
+Ref: fillrule100759
+Ref: basealign101663
+Ref: transparency104497
+Ref: makepen108091
+Ref: overwrite108975
+Node: Transforms110189
+Node: Frames and pictures112021
+Ref: envelope113179
+Ref: size114272
+Ref: unitsize115259
+Ref: shipout116332
+Ref: filltype118683
+Ref: add122096
+Ref: add about123038
+Ref: tex126068
+Node: Files126964
+Ref: cd127951
+Ref: scroll132636
+Node: Variable initializers135554
+Node: Structures138271
+Node: Operators145773
+Node: Arithmetic & logical146087
+Node: Self & prefix operators148457
+Node: User-defined operators149251
+Node: Implicit scaling150164
+Node: Functions150727
+Ref: stack overflow153869
+Node: Default arguments154151
+Node: Named arguments154907
+Node: Rest arguments157477
+Node: Mathematical functions160599
+Node: Arrays165256
+Ref: sort172364
+Ref: tridiagonal175275
+Ref: solve176506
+Node: Slices180646
+Node: Casts184554
+Node: Import186824
+Node: Static192082
+Node: LaTeX usage194975
+Node: Base modules201470
+Node: plain204027
+Node: simplex204701
+Node: math204975
+Node: interpolate207559
+Node: geometry207838
+Node: trembling208432
+Node: stats208701
+Node: patterns208961
+Node: markers209197
+Node: tree211059
+Node: binarytree211244
+Node: drawtree211911
+Node: syzygy212112
+Node: feynman212386
+Node: roundedpath212661
+Node: animation212944
+Ref: animate213365
+Node: embed214478
+Node: slide215432
+Node: MetaPost215764
+Node: unicode216483
+Node: latin1217357
+Node: babel217726
+Node: labelpath217956
+Node: labelpath3218777
+Node: annotate219088
+Node: CAD219558
+Node: graph219869
+Ref: ticks227030
+Ref: pathmarkers240768
+Ref: marker241239
+Ref: markuniform241593
+Ref: errorbars243401
+Ref: automatic scaling247880
+Node: palette259641
+Ref: images259759
+Ref: image263933
+Ref: logimage264454
+Ref: penimage265560
+Ref: penfunctionimage265823
+Node: three266595
+Ref: PostScript3D295892
+Node: obj297631
+Node: graph3297880
+Ref: GaussianSurface303163
+Node: grid3304313
+Node: solids305098
+Node: tube306091
+Node: flowchart308322
+Node: contour312931
+Node: contour3318251
+Node: smoothcontour3318564
+Node: slopefield320285
+Node: ode321775
+Node: Options322032
+Ref: configuration file328817
+Ref: settings328817
+Ref: texengines330081
+Ref: convert330081
+Node: Interactive mode333591
+Ref: history335741
+Node: GUI337044
+Node: GUI installation337595
+Node: GUI usage338326
+Node: PostScript to Asymptote339389
+Node: Help340148
+Node: Debugger341822
+Node: Credits343578
+Node: Index344595

End Tag Table
diff --git a/Master/texmf-dist/doc/man/man1/asy.1 b/Master/texmf-dist/doc/man/man1/asy.1
index c720cd72976..bd81c767421 100644
--- a/Master/texmf-dist/doc/man/man1/asy.1
+++ b/Master/texmf-dist/doc/man/man1/asy.1
@@ -92,7 +92,7 @@ Conserve memory at the expense of speed [false].
Enable debugging messages [false].
.TP
.B \-digits n
-Default output file precision [6].
+Default output file precision [7].
.TP
.B \-divisor n
Garbage collect using purge(divisor=n) [2].
diff --git a/Master/texmf-dist/doc/man/man1/asy.man1.pdf b/Master/texmf-dist/doc/man/man1/asy.man1.pdf
index 7d4b4edaf84..b77334e6489 100644
--- a/Master/texmf-dist/doc/man/man1/asy.man1.pdf
+++ b/Master/texmf-dist/doc/man/man1/asy.man1.pdf
Binary files differ
diff --git a/Master/texmf-dist/doc/man/man1/xasy.man1.pdf b/Master/texmf-dist/doc/man/man1/xasy.man1.pdf
index 351604bb550..a250ec42fe7 100644
--- a/Master/texmf-dist/doc/man/man1/xasy.man1.pdf
+++ b/Master/texmf-dist/doc/man/man1/xasy.man1.pdf
Binary files differ
diff --git a/Master/tlpkg/asymptote/asy.exe b/Master/tlpkg/asymptote/asy.exe
index 865e964387e..c8bc19a0b60 100755
--- a/Master/tlpkg/asymptote/asy.exe
+++ b/Master/tlpkg/asymptote/asy.exe
Binary files differ
diff --git a/Master/tlpkg/asymptote64/asy.exe b/Master/tlpkg/asymptote64/asy.exe
index 55c29d0b8b0..04cb52537d8 100755
--- a/Master/tlpkg/asymptote64/asy.exe
+++ b/Master/tlpkg/asymptote64/asy.exe
Binary files differ
diff --git a/Master/tlpkg/bin/tl-update-asy b/Master/tlpkg/bin/tl-update-asy
index 377211d215d..c9d454a7ab8 100755
--- a/Master/tlpkg/bin/tl-update-asy
+++ b/Master/tlpkg/bin/tl-update-asy
@@ -99,8 +99,7 @@ elif false && $update_runtime_from_ainst; then
$cp latex/asymptote/* $xist/tex/latex/asymptote/
$cp context*/asymptote/* $xist/tex/context/third/asymptote/
- cd $xist/doc/man
- make
+ make -C $xist/doc/man
ci="$xu/README \
$xy \