
T
he

 A
eB

 R
ic

hT
ex

t
M

A
N

U
A

L

AcroTEX.Net

richtext: A method of
creating rich text strings

D. P. Story

Copyright © 2016 dpstory@acrotex.net www.acrotex.net
Prepared: October 18, 2016 Version v1.0c, 2016/10/03

mailto:dpstory@acrotex.net
www.acrotex.net

T
he

 A
eB

 R
ic

hT
ex

t
M

A
N

U
A

L

Table of Contents

1 Introduction 3

2 Preamble: Required packages and options 3

3 Creating rich text strings 3
3.1 The Font and Link tabs . 6

• The Font tab . 6
• The Link tab . 9
• Miscellaneous markup of the Font classification 10

¶ Bold and italic . 10
¶ Subscripts and superscripts 10

3.2 The Paragraph tab . 11
• Miscellaneous markup for the Paragraph classification . . . 16

¶ Starting a new line using \br 16
¶ Adding spaces with \spc . 17
¶ Using the raw key . 17
¶ Special characters . 18

4 Rich text fields 18
4.1 The DS key . 19
4.2 The RV and V keys . 20

• Single paragraph fields . 20
• Multiple paragraph fields . 21

References 24

T
he

 A
eB

 R
ic

hT
ex

t
M

A
N

U
A

L

3

1. Introduction

Rich text contents for variable text (text fields and editable combo boxes)
and markup annotations was introduced into the PDF specification begin-
ning with PDF 1.5 (Acrobat and Adobe Reader version 6). The rich text
strings are difficult to create for it requires reading from a number of
sources. The richtext package provides commands and documentation
needed to “easily” produce such rich strings. We demonstrate the results
using the eforms package (the text field produced by hyperref does not
support rich text).

References for this material includes the PDF Reference [4], the XFA
specification [1], and the CSS2 specification [2]. Additionally, the JavaScript
for Acrobat API Reference [3] covers the JavaScript API for handling rich
text content.

2. Preamble: Required packages and options

The package has no options and only requires xkeyval and ifxetex pack-
ages. The package can produce rich text strings, but to actually use them,
you’ll need the eforms package.

The package works for all drivers dvips, pdflatex, xelatex, and luatex.
The eforms package can automatically detect all drivers except dvips, and
that is used by default.

3. Creating rich text strings

We begin by illustrating the result of the richtext package, consider the
rich text field below.

T
he

 A
eB

 R
ic

hT
ex

t
M

A
N

U
A

L

Creating rich text strings 4

To edit the field above, click in the field, press Ctrl+E or Cmd+E (for
Mac OS) to obtain the Form Field Text Properties toolbar. By pressing the
More button, you can see the additional properties of the field, as seen in
Figure 1.

A rich text may have any of several style attributes, many of these are
illustrated in the above example. As a guide to introducing the attributes,
we follow the Form Field Text Properties dialog box shown in Figure 1.

Figure 1: The Font, Paragraph and Link tabs

The basic command for creating a rich text paragraph is \rtpara:

\rtpara[〈Para-Font-attrs〉]{〈name〉}{〈rich-text-paragraph〉}

T
he

 A
eB

 R
ic

hT
ex

t
M

A
N

U
A

L

Creating rich text strings 5

where 〈Para-Font-attrs〉 are key-value pairs (in the LATEX sense) that
are described in Sections 3.1 and 3.2; these attributes are applied to the
paragraph as a whole. The 〈name〉 is a unique name to be associated with
〈rich-text-paragraph〉 so it can be referenced later from within a text
field. There are two types of attributes: Font and Paragraph, as guided
by Figure 1. For convenience, the Link attributes (URLs) are classified as
Font. The optional argument of \rtpara consists of usually Paragraph
attributes, most Font attributes are also recognized.

The definition of the first paragraph of the above rich text field reads
as follows:

\rtpara[indent=first]{para1}{Now is the time for
\span{style={bold,italic,strikeit},color=ff0000}{J\374rgen}
and all good men to come to the aid of \it{their}
\bf{country}. Now is the time for \span{style=italic}
{all good} women to do the same.}

In this example, the optional argument for \rtpara was used to indent the
paragraph. The rich text defined here is named para1. The third argument,
〈rich-text-string〉, consists of ordinary text, the \span command used
to insert special formatting for text, and certain other ‘short-cut’ markups
like \it and \bf. Note that the umluat (ü) is expressed as octal (\374).

The \span command is used to format individual sentence fragments.
Its syntax is,

\span[〈Font-attrs〉]{〈rich-text-string〉}

where 〈Font-attrs〉 are Font attributes as described in Sections 3.1; these
attributes are applied to the string 〈rich-text-string〉 only. The \span
command, as described here, is only defined within the third argument
(〈rich-text-paragraph〉) of \rtpara. This is necessary because \span
is a TEX primitive command, and we must not overwrite its definition.

When you create a rich text string there is a parallel development of a
plain text string, the string without its rich text markup, these two (rich and
plain strings) are used to populate the values of the RV and V keys of a text
field. When you define a rich text paragraph string under its own 〈name〉,
you can typeset it (to check the syntax) and its plain text counterpart using
the \useRV{〈name〉} and \useV{〈name〉} commands. For example,

T
he

 A
eB

 R
ic

hT
ex

t
M

A
N

U
A

L

Creating rich text strings 6

\useRV{para1}: <p dir="ltr" style="text-indent:12pt;
margin-top:0pt;margin-bottom:0pt;">Now is the time
for <span style="text-decoration:line-through;
font-weight:bold;font-style:italic;color:#ff0000;
">J\374rgen and all good men to come to the
aid of <i>their</i> country. Now is the
time for all
good women to do the same.</p>

\useV{para1}: Now is the time for J\374rgen and all
good men to come to the aid of their country. Now
is the time for all good women to do the same.

These commands may also be used to insert the strings into the RV and V
keys, respectively; though the richtext package offers an alternative tech-
nique.

3.1. The Font and Link tabs

In this section, we cover the Font and Link tabs, as well as other attributes
not listed on any tab.

• The Font tab

We discuss the Font tab of Figure 1. The key-value for each of the at-
tributes is given and described briefly. These key-values may appear as
〈Font-attrs〉 or 〈Para-Font-attrs〉.

Font: font=〈font_name〉 A font name or a list of font names to be used to
display the enclosed text. The first entry is the font name of the font
to use. The second font name is typically a generic family name to use
if an exact match is not found. The generic family names are symbol,
serif, sans-serif, cursive, monospace, and fantasy. The default
is sans-serif. If a typeface name contains white space, enclose it
within single quotes (’).

\rtpara[font={Arial,sans-serif}]{para1}{This is Arial or a
san-serif substitute.}

T
he

 A
eB

 R
ic

hT
ex

t
M

A
N

U
A

L

Creating rich text strings 7

\rtpara{para2}{This is \span{font=’Myriad Pro’}
{Myriad Pro} font.}

In the second example, only ‘Myriad Pro’ is actually set in the Myr-
iad Pro font; the rest of the sentence is typeset in the default font,
Helvetica in this case. Use Ctrl+E (Cmd+E) to inspect the properties
of these two fields and verify the fonts are Arial, Myriad Pro, and
Helvetica.

Size: size=〈dec_num〉 The size of the font to be used. The value of size
is 〈dec_num〉, a (positive) decimal number.

\rtpara[size=12]{para1}{This is 12pt font, while
\span{size=8}{this is 8pt font.} OK?}

Baseline Shift: raise=〈def_num〉 The position of the baseline of the text is
determined by the raise key. raise=6.6 raises the baseline 6.6pt,
while raise=-4 lowers it 4pt.

\rtpara{para1}{This text \span{raise=6.6}{is raised by
6.6pt} while this text \span{raise=-4}
{is lowed by 4pt.} Back to normal baselines.}

Underline: ulstyle=〈none|ul|2ul|wul|2wul〉 The ulstyle key deter-
mines the style of underlining, possible values are none (no under-
lining), ul (underlining), 2ul (double-line underlining), wul (word un-
derlining), and 2wul (double-line word underlining).

\rtpara{para1}{We can \span{ulstyle=ul}{underline in a}
\span{ulstyle=2ul}{number of different ways}
\span{ulstyle=wul}{that catch the}
\span{ulstyle=2wul}{attention of the reader}.

T
he

 A
eB

 R
ic

hT
ex

t
M

A
N

U
A

L

Creating rich text strings 8

Style: style={[bold,][italic,][strikeit]} Unlike some of the other
(choice) keys, the value of the style key is any subset of the values
listed: for example, style=bold paints the underlying text in bold,
style={bold,italic} yields bold-italic font, and, for a final exam-
ple, style={italic,strikeit} typesets its text in strike-through
italic. Multiple values must be enclosed in braces ({}) so that xkeyval
can correctly parse them.

\rtpara{para1}{To \span{style=bold}{boldly to go} where
\span{style={bold,italic}}{no man has gone}
\span{style={italic,strikeit}}{prior}
\span{style={italic,bold}}{before.}

Color: color=〈rrggbb|{rgb(rrr,ggg,bbb)}〉 Use this key to color the
effected text. There are two methods of defining color:

(1) rrggbb uses a 2-digit hexadecimal value for each component;

(2) rgb(rrr,ggg,bbb) uses a decimal value (0–255) for each com-
ponent.

Because the second form contains commas, it must necessarily be
enclosed in braces ({}) to be correctly parsed by xkeyval.

\rtpara{para1}{This is \span{color={rgb(255,0,0)}}{red} and
this is \span{color=0000ff}{blue}.

Things are not as bad as it seems. The xcolor package has the won-
derful command \convertcolorspec that converts colors between
color models. For example, we might define:

T
he

 A
eB

 R
ic

hT
ex

t
M

A
N

U
A

L

Creating rich text strings 9

\convertcolorspec{named}{red}{RGB}{\rgbRed}
\convertcolorspec{named}{blue}{HTML}{\htmlBlue}
\convertcolorspec{named}{magenta}{RGB}{\rgbMagenta}
\convertcolorspec{named}{magenta}{HTML}{\htmlMagenta}

We can then use these named colors.

\rtpara{para1}{This is \span{color={rgb(\rgbRed)}}{red} and
this is \span{color=\htmlBlue}{blue}. We can do magenta two
ways, using \span{color={rgb(\rgbMagenta)}}{decimal
components} or using \span{color=\htmlMagenta}{hexadecimal
components}.}

Notice that color={rgb(\rgbMagenta)}, the value of color, is still
enclosed in braces since the expansion of \rgbMagenta contains
commas.

• The Link tab

We can create a link within rich text by using the url key from within the
first argument of the \span command. The syntax is url=〈URL〉.
\rtpara{para1}{Visit me at \span{url={http://www.acrotex.net},

font=’Courier New’}{http://www.acrotex.net}}

It appears the Acrobat/Reader applications format a URL in underlined
blue. We can override this however.

\rtpara{para1}{Visit me at \span{url={http://www.acrotex.net},
color=\htmlMagenta,ulstyle=none,font=’Courier New’}
{http://www.acrotex.net}}

T
he

 A
eB

 R
ic

hT
ex

t
M

A
N

U
A

L

Creating rich text strings 10

Special characters are no problem, with the exception of wrapping a long
URL around to a different line (usually needed for display purposes):

\rtpara{para1}{Visit me at
\span{url={http://www.math.uakron.edu/˜dpstory/%
acrotex.html#technical}}{AcroTeX at The University
of Akron}}

• Miscellaneous markup of the Font classification

There are several other attributes that are not key-values, but are imple-
mented through LATEX commands.

¶ Bold and italic. There are a couple of XHTML elements that can also be
used for bold and italic.

• \bf{〈text〉} expands to 〈text〉 and places 〈text〉 in bold
font. May be used within a \span command.

• \it{〈text〉} expands to <i>〈text〉</i> and places 〈text〉 in italic
font. May be used within a \span command.

Both \bf and \it are local commands, undefined outside of the third argu-
ment of \rtpara. Do not code 〈text〉 or <i>〈text〉</i> directly,
rather, always use the LATEX commands \bf and \it. \bf and \it may be
nested.

\rtpara{para1}{We \bf{boldly} say that \it{italic} is used for
emphasis, but both \bf{\it{drive home the point}}.}

¶ Subscripts and superscripts. Subscripts and superscripts are imple-
mented through LATEX commands \sub and \sup.

• \sub{〈text〉} expands to _{〈text〉} and places 〈text〉 as
a subscript.

T
he

 A
eB

 R
ic

hT
ex

t
M

A
N

U
A

L

Creating rich text strings 11

• \sup{〈text〉} expands to ^{〈text〉} and places 〈text〉 as
a superscript.

Both \sub and \sup are local commands, undefined outside of the third
argument of \rtpara. Do not code these raw markups, rather always use
\sub and \sup.

\rtpara{para1}{When we compile $x_2ˆ3$ we get
\it{x}\sub{2}\sup{3}, nicely typeset or would you prefer
\it{x}\sup{3}\sub{2}?}

3.2. The Paragraph tab

We begin by following the Paragraph tab of Figure 1. The top-most region
on the Paragraph tab is labeled Alignment. It consists of two separated
regions, the one on the left is Horizontal Alignment, the one on the right
is Vertical Alignment.

Alignment:

Horizontal Alignment: halign=〈left|center|right|justify〉
The meaning of these key-values are obvious, we’ll illustrate
with examples.

\rtpara[halign=left]{para1}{This paragraph is left
aligned or flush left. Let’s have a few more words
to wrap around.}

\rtpara[halign=center]{para2}{This paragraph is
centered. Let’s have a few more words to wrap
around.}

\rtpara[halign=right]{para3}{This paragraph is right
aligned or flush right. Let’s have a few more words
to wrap around.}

\rtpara[halign=justify]{para4}{This paragraph is
justified. Space between words are stretched a
little to make this happen. It is adequate for
our purposes.}

T
he

 A
eB

 R
ic

hT
ex

t
M

A
N

U
A

L

Creating rich text strings 12

Horizontal alignment is applied to individual paragraph, unlike
vertical alignment.

Vertical Alignment: valign=〈top|middle|bottom〉 Again, we shall
illustrate by example.

\rtpara[valign=top]{para1}{This paragraph is vertically
aligned at the top.}

\rtpara[valign=middle]{para2}{This paragraph is
vertically aligned at the middle.}

\rtpara[valign=bottom]{para3}{This paragraph is
vertically aligned at the bottom.}

The valign key seems to apply to all paragraphs in the rich text
form field, as illustrated below.

T
he

 A
eB

 R
ic

hT
ex

t
M

A
N

U
A

L

Creating rich text strings 13

The vertical alignment for the whole rich text field obeys the
valign key of the first paragraph.

Indents: Through the Indents region of the Paragraph tab, left and
right margins may be set, as well as the amount of indent.

Left: margleft={dec} The value of {dec} is a nonnegative dec-
imal number, it represents the number of points to make the
left margin.

Right: margright={dec} The value of {dec} is a nonnegative
decimal number, it represents the number of points to make
the right margin.

Below is an example for both margleft and margright.
\rtpara[margleft=10,margright=40,halign=justify

]{para1}{This is the first paragraph, it has
a left margin of 10pt and a right margin of
40pt.}

\rtpara[halign=justify]{para2}{This is the second
paragraph. We demonstrate that the left and
margins can be applied separately to
paragraphs.}

T
he

 A
eB

 R
ic

hT
ex

t
M

A
N

U
A

L

Creating rich text strings 14

First & By: Two key-values: indent=〈none|first|hanging〉 &
indentby=〈dec〉When indent key is set to indent=first,
the first line is indented by an amount of 〈dec〉pt; similarly,
if indent=hanging, there is a hang indent on the first line
by an amount of -〈dec〉pt (the minus sign (-) is automati-
cally applied. The default indent amount it 12pt.

\rtpara[indent=first]{para1}{This paragraph is
indented by the default amount of 12pt.}

\rtpara[indent=first,indentby=24]{para2}{In this
second paragraph, we indent by 24pt, twice
as wide as the default.}

\rtpara[indent=hanging]{par3}{Here we have a third
paragraph, separated from the other two, with
the default hanging indentation.}

Spacing: Above: margtop=〈dec〉A value of 〈dec〉 (positive, negative,
or zero) adds vertical space above the paragraph.

\rtpara[margtop=12]{para1}{We put 12pt of extra
space above this paragraph.}

\rtpara[margtop=24]{para2}{Extra space above this
paragraph (24pt).}

T
he

 A
eB

 R
ic

hT
ex

t
M

A
N

U
A

L

Creating rich text strings 15

Below: margbottom=〈dec〉 A value of 〈dec〉 (positive, negative,
or zero) adds vertical space below the paragraph.

\rtpara[valign=bottom,margbottom=12]{para1}{We put
\span{font=Courier,style=bold}{valign=bottom},
but bring the paragraph up 12pt from there.}

Line Spacing Sets the amount of vertical space between base-
lines. The key-values are

linespacing=〈single|oneandhalf|double|exact〉

When linespacing=exact, use lineheight=〈dec〉 to set
the space between baselines.

T
he

 A
eB

 R
ic

hT
ex

t
M

A
N

U
A

L

Creating rich text strings 16

The paragraph declarations for the above rich text field are,
\rtpara[linespacing=oneandhalf]{para1}{This

paragraph has line spacing of oneandhalf. We
will prattle on to get some wraparound to the
next line.}

\rtpara[linespacing=double]{para2}{This paragraph
has double spacing. Once again, we’ll ramble,
not prattle, on for several more words.}

\rtpara[linespacing=exact,lineheight=30]{para3}
{Let’s see what we get here, with
linespacing=exact, lineheight=30. Do we
get significant separation between sentences?}

The value of lineheight, which gives a ‘squeezing’ effect
between lines of the paragraph.

• Miscellaneous markup for the Paragraph classification

There are several other features that do not fit conveniently anywhere else,
so here they are.

¶ Starting a new line using \br. The \br command expands to
. It
should not be put within the second argument of the \span command. As
was the case with \bf, \it, \sub, and \sup, do not directly code in
 for you will fail.

\rtpara{para1}{Let’s begin a sentence,\br then we’ll
start a new line for no apparent reason.\br\br

T
he

 A
eB

 R
ic

hT
ex

t
M

A
N

U
A

L

Creating rich text strings 17

Let’s double down on the new lines shall we?}

¶ Adding spaces with \spc. As with TEX multiple spaces are ignored. To
insert additional ‘hard’ spaces into the data stream, use the \spc com-
mand. (This is a local command that is undefined outside \rtpara.

\rtpara{para1}{Way to go!\spc\spc\spc\spc The Coach}

Here we induce four hard spaces.

¶ Using the raw key. There is another key, the raw key, that can be used
within the optional argument of \rtpara or within the first argument of
\span. Using this key, you can pass raw CSS2 markup.

\rtpara{para1}{We test the letter-spacing
attribute:\br\br\span{raw=letter-spacing:0.25em;}
{We test the letter-spacing attribute.}}

The syntax for a CSS2 attribute is ‘〈key〉:〈value〉;’, that is, keys and values
are separated by a colon (:) and the value is terminated with a semi-colon
(;).

It appears that tab stops work as well, these can be specified using the
raw key as well. Refer to the XFA Specifications [1].

T
he

 A
eB

 R
ic

hT
ex

t
M

A
N

U
A

L

18

¶ Special characters. The richtext handles special characters pretty well.
Before \rtpara reads its third argument (〈rich-text-paragraph〉), a
number of changes in \catcodes and redefinitions occur. Within \rtpara,
the following characters do not need to be escaped: $, #, and ˜ (tilde). The
following characters need to be escaped: \<, \>, \&, \% (the comment char-
acter (%) retains its LATEX meaning), \{, and \} (the left and right braces have
their usual TEX/LaTeX meaning). The single quote (’) and double quote (")
may be optionally escaped (to \’ and \"). Escape them if something goes
wrong. Use the command \cs{〈text〉} to obtain a literal backslash (‘\’);
for example \cs{LaTeX}, shown below, expands to ‘\LaTeX’.

\rtpara{para1}{We \"test\" \’special\’ \bf{characters:}
\<\>\&\{ #\% in \cs{LaTeX} $xˆ2_4$ becomes
\it{x}\sup{2}\sub{4} \{\}}

The above \rtpara paragraph has two forms the RV form and the V form;
these can be seen by using the \useRV and \useV commands.

\useRV{para1}: <p dir="ltr" style="margin-top:0pt;
margin-bottom:0pt;">We "test" ’special’
characters: <>&\{ #% in \\LaTeX
$xˆ2_4$ becomes <i>x</i>²₄
\{\}</p>

\useV{para1}: We "test" ’special’ characters: <>&\{ #%
in \134LaTeX $xˆ2_4$ becomes x24 \{\}

The resulting rich text form field is seen below:

That’s pretty cool!

4. Rich text fields

Up to this point in the manual, the discussion has focused on creating rich
text strings. They may be fun to create and look at, but usually we want to

T
he

 A
eB

 R
ic

hT
ex

t
M

A
N

U
A

L

Rich text fields 19

insert them into a text field. The comments here are for eforms package,
having checked with hyperref to see if there is a RV key, there is not.

To create a rich text field, use the \textField command of eforms:

\textField[\Ff{\FfRichText}\Ff{\FfMultiline}
\DS{〈defaultstyle〉}\RV{〈rich-value〉}\V{〈value〉}

]{〈fld-name〉}{〈width〉}{〈height〉}

Remove \Ff{\FfMultiline} if the field is only a single line. We discuss
the DS key (\DS) key first, followed by the keys RV and V (\RV and \V).

4.1. The DS key

The value of the DS key sets the formatting for the text field as a whole.
Most importantly, use it to set the font, text size, and color. There is a
built-in default style, defined below:

\newcommand\useDefaultDS{font-family:Helvetica,sans-serif;
font-size:12.0pt;font-style:normal;font-weight:normal;
text-align:left;color:#000000}

You may redefine it to suit your purposes, but this is what Acrobat/Adobe
Reader sets as the default style. I would recommend \setDefaultStyle
to define your own custom default style. \useDefaultDS is the reason
why most all rich text fields in this document use Helvetica at 12pt! Use
\useDefaultDS as follows, shown in bold font:

\textField[\Ff{\FfRichText}\Ff{\FfMultiline}
\DS{\useDefaultDS}\RV{〈rich-value〉}\V{〈value〉}

]{〈fld-name〉}{〈width〉}{〈height〉}
To create a custom default style use \setDefaultStyle.

\setDefaultStyle{〈name〉}{〈Font-Para-attrs〉}
\useDS{〈name〉}

Typically, the key-values associated with the Font tab, Section 3.1, may be
used, some key-values are removed, such as ul, raise, and url. When
you’ve defined a custom default style using \setDefaultStyle, insert
\useDS{〈name〉} as the value of the DS key.

T
he

 A
eB

 R
ic

hT
ex

t
M

A
N

U
A

L

Rich text fields 20

\rtpara{para1}{The font should be \’Myriad Pro\’ at 10pt
and the default color of the field is webbrown, a color
defined in the web package.}

\setDefaultStyle{myStyle}{font=’Myriad Pro’,size=10,
color=990000}

\textField[\Ff{\FfRichText}\Ff{\FfMultiline}
\DS{\useDS{myStyle}}\RV{\useRV{para1}}\V{\useV{para1}}

]{rtFld30}{3in}{16bp*3}

Note the use of \useRV and \useV in the RV and V fields. These are dis-
cussed in the next section.

4.2. The RV and V keys

The techniques to handle multiple paragraph fields are more complex (but
not discouragingly so), that topic will be taken up after the discussion of
single paragraph fields.

• Single paragraph fields

For a single paragraph field, there is only one \repara defined prior to the
field. This string data (both rich and plain) are inserted into the \RV and \V
keys using \useRV and \useV. We repeat the previous example, but with
the emphasis on \RV and \V, and not on \DS.

\rtpara{para1}{The font should be \’Myriad Pro\’ at 10pt
and the default color of the field is webbrown, a
color defined in the web package.}

\setDefaultStyle{myStyle}{font=’Myriad Pro’,size=10,
color=990000}

\textField[\Ff{\FfRichText}\Ff{\FfMultiline}
\DS{\useDS{myStyle}}\RV{\useRV{para1}}\V{\useV{para1}}

]{rtFld30}{3in}{16bp*3}

T
he

 A
eB

 R
ic

hT
ex

t
M

A
N

U
A

L

Rich text fields 21

We declare our rich paragraph string using \rtpara and name it para1.
We insert two data streams, one into the rich text key (\RV{useRV{para}})
and the other into the (plain) text key (\V{useV{para}}).

• Multiple paragraph fields

The strategy is to use several \rtpara commands to declare several rich
text paragraph. What is the best way to ‘paste’ these paragraphs together?
The method developed is to use \setRVVContent command.

\setRVVContent{〈name〉}{ {〈name1〉}{〈name2〉}...{〈namek〉} }

where 〈namei〉 is the name of a rich text paragraph string, or is the keyword
skipline. The keyword skipline is case-sensitive, it must be typed ex-
actly. The role skipline plays is to insert a blank line between paragraphs;
{skipline} inserts one blank line between paragraphs.
Having composed how the strings are to be put together, we need to insert
them into RV and V.

\useRVContent{〈name〉}
\useVContent{〈name〉}

where 〈name〉 is the name given in a previous \setRVVContent command.
Insert \useRVContent as the value of the RV key, and \useVContent as
the value of the V key.
We take as an example, the one from Section 3.

\rtpara[indent=first]{para1}{Now is the time for
\span{style={bold,italic,strikeit},color=ff0000}{J\374rgen}
and all good men to come to the aid of \it{their}
\bf{country}. Now is the time for \span{style=italic}
{all good} women to do the same.}

\rtpara[indent=first]{para2}{With rich text, we can format the
text within the text field. As a reader of this rich text
field, you can edit the contents of the box, feel free to
do so.}

\rtpara[halign=right]{para3}{D. P. Story
\span{url=http://www.acrotex.net}{AcroTeX.Net}}

Now set the content with \setRVVContent, naming it myContent.

T
he

 A
eB

 R
ic

hT
ex

t
M

A
N

U
A

L

Rich text fields 22

\setRVVContent{myContent}{{para1}{para2}{skipline}{para3}}

Having done all that, we create our rich text field:

\begin{center}
\textField[\Ff{\FfRichText}\Ff{\FfMultiline}

\DS{\useDefaultDS}
\RV{\useRVContent{myContent}}
\V{\useVContent{myContent}}

]{rtFld31}{4in}{10\baselineskip}
\end{center}

where, the \RV and \V keys are highlighted in bold for your viewing plea-
sure. The rich text field the result of these declarations.

The argument of \setRVVContent is pretty robust. In making our decla-
rations, we can type:

\setRVVContent{myContent}
{

{para1}
{para2}
{skipline}
{skipline}
{para3}

}

Note that I’ve added a skipline so that are two blank lines after the sec-
ond paragraph and before the third paragraph.

That’s about it! Now, back to my retirement. DPS (See next page)

T
he

 A
eB

 R
ic

hT
ex

t
M

A
N

U
A

L

Rich text fields 23

Did I say that you can write captions to figures using rich text?

T
he

 A
eB

 R
ic

hT
ex

t
M

A
N

U
A

L

Rich text fields 24

References

[1] Adobe XML Forms Architecture (XFA) Specification, Version 3.3,
Adobe Systems, Inc., Jan. 2012

partners.adobe.com/public/developer/xml/index_arch.html

[2] Cascading Style Sheets (CSS 2.2) Specification, Editors: Bert Bos et al.,
World Wide Web Consortium (W3C), June 2011

https://www.w3.org/TR/CSS2/

[3] JavaScript for Acrobat API Reference, Adobe Systems, Inc., May 2015
adobe.com/devnet/acrobat/documentation.html

[4] PDF Reference, Sixth Edition, Version 1.7, Adobe Systems, Inc., 2006
adobe.com/devnet/pdf/pdf_reference_archive.html

partners.adobe.com/public/developer/xml/index_arch.html
https://www.w3.org/TR/CSS2/
adobe.com/devnet/acrobat/documentation.html
adobe.com/devnet/pdf/pdf_reference_archive.html

	Table of Contents
	1 Introduction
	2 Preamble: Required packages and options
	3 Creating rich text strings
	3.1 The Font and Link tabs
	• The Font tab
	• The Link tab
	• Miscellaneous markup of the Font classification
	¶ Bold and italic
	¶ Subscripts and superscripts

	3.2 The Paragraph tab
	• Miscellaneous markup for the Paragraph classification
	¶ Starting a new line using \br
	¶ Adding spaces with \spc
	¶ Using the raw key
	¶ Special characters

	4 Rich text fields
	4.1 The DS key
	4.2 The RV and V keys
	• Single paragraph fields
	• Multiple paragraph fields

	 References

	rtFld1: Now is the time for Jürgen and all good men to come to the aid of their country. Now is the time for all good women to do the same.
With rich text, we can format the text within the text field. As a reader of this rich text field, you can edit the contents of the box, feel free to do so.

D. P. Story AcroTeX.Net
	rtFld2: This is Arial or a san-serif substitute.
	rtFld3: This is Myriad Pro font.
	rtFld4: This is 12pt font, while this is 8pt font. OK?
	rtFld5: This text is raised by 6.6pt while this text is lowed by 4pt. Back to normal baselines.
	rtFld6: We can underline in a number of different ways that catch the attention of the reader.
	rtFld7: To boldly to go where no man has gone priorbefore.
	rtFld8: This is red and this is blue.
	rtFld9: This is red and this is blue. We can do magenta two ways, using decimal components or using hexadecimal components.
	rtFld10: Visit me at http://www.acrotex.net
	rtFld11: Visit me at http://www.acrotex.net
	rtFld12: Visit me at AcroTeX at The University of Akron
	rtFld13: We boldly say that italic is used for emphasis, but both drive home the point.
	rtFld14: When we compile x_2^3 we get x23, nicely typeset or would you prefer x32?
	rtFld15: This paragraph is left aligned or flush left. Let's have a few more words to wrap around.

This paragraph is centered. Let's have a few more words to wrap around.

This paragraph is right aligned or flush right. Let's have a few more words to wrap around.

This paragraph is justified. Space between words are stretched a little to make this happen. It is adequate for our purposes.
	rtFld16: This paragraph is vertically aligned at the top.
	rtFld17: This paragraph is vertically aligned at the middle.
	rtFld18: This paragraph is vertically aligned at the bottom.
	rtFld19: This paragraph is vertically aligned at the top.

This paragraph is vertically aligned at the middle.

This paragraph is vertically aligned at the bottom.
	rtFld20: This paragraph is vertically aligned at the middle.

This paragraph is vertically aligned at the top.

This paragraph is vertically aligned at the bottom.
	rtFld21: This is the first paragraph, it has a left margin of 10pt and a right margin of 40pt.

This is the second paragraph. We demonstrate that the left and margins can be applied separately to paragraphs.
	rtFld22: This paragraph is indented by the default amount of 12pt.
In this second paragraph, we indent by 24pt, twice as wide as the default.

Here we have a third paragraph, separated from the other two, with the default hanging indentation.
	rtFld23: We put 12pt of extra space above this paragraph.
Extra space above this paragraph (24pt).
	rtFld24: We put valign=bottom, but bring the paragraph up 12pt from there.
	rtFld25: This paragraph has line spacing of oneandhalf. We will prattle on to get some wraparound to the next line.
This paragraph has double spacing. Once again, we'll ramble, not prattle, on for several more words.
Let's see what we get here, with linespacing=exact, lineheight=30. Do we get significant separation between sentences?
	rtFld26: Let's begin a sentence,
then we'll start a new line for no apparent reason.

Let's double down on the new lines shall we?
	rtFld27: Way to go! The Coach
	rtFld28: We test the letter-spacing attribute:

We test the letter-spacing attribute.
	rtFld29: We "test" 'special' characters: <>&{ #% in \LaTeX x^2_4 becomes x24 {}
	rtFld30: The font should be 'Myriad Pro' at 10pt and the default color of the field is webbrown, a color defined in the web package.
	rtFld32: Now is the time for Jürgen and all good men to come to the aid of their country. Now is the time for all good women to do the same.
With rich text, we can format the text within the text field. As a reader of this rich text field, you can edit the contents of the box, feel free to do so.

D. P. Story AcroTeX.Net
	rtFld33: Thank you for reviewing the richtext package, I hope you will enjoy exploring it. Did I say that AcroTeX Rocks! dps

