title

marked

enabled

return

The popupmenu Package

D. P. Story
Email: dpstory@acrotex.net

processed September 27, 2010

Contents

1 (xpackage)

This is a short package that provides environments and commands for building
a popup menu using JavaScript. The command \popUpMenu uses the Acrobat
JavaScript method app.popUpMenuEx. This latter method requires you to pass to
it a structured menu listing of the menu items to be displayed in the popup menu,
and the actions to be taken when a menu item is selected. The environments
popupmenu and submenu are defined for the purpose of creating this hierarchical
structure.

2 \RequirePackage{xkeyval}

According to the JavaScript manual, the app.popUpMenuEx method takes one or
more MenuItem objects. The I¥TEX access to the properties of this object are
documented as follows (taken verbatim from the JavaScript reference):

The menu item name, which is the string to appear on the menu item. The value
of "-" is reserved to draw a separator line in the menu.

(optional) A Boolean value specifying whether the item is to be marked with a
check. The default is false (not marked).

(optional) A Boolean value specifying whether the item is to appear enabled or
grayed out. The default is true (enabled).

(optional) A string to be returned when the menu item is selected. The default is
the value of cName.

3 \define@key{menustruct}{title} []{\def\menustruct@title{#1}}

4 \define@boolkey{menustruct}{marked} [true] {}

5 \define@boolkey{menustruct}{enabled} [true] {}

6 \def ine@key{menustruct}{return}[]{\def\menustruct@return{#1}}

We use the command \pum@holdtoks to hold the menu items as they are processed
in the environment, and use \@AddToMenuToks to add to the items.

7 \let\pum@holdtoks\Qempty
8 \newcommand{\@AddToMenuToks}{\g@addto@macro\pum@holdtoks}

popupmenu We begin by defining our menu structure using the popupmenu environment.

\itemindex

Within this environment, we list the items in the menu using \item and the
submenu menu if there are sub menus.

The popupmenu command requires one parameter, this command is used to
create both a command and a JavaScript variable. The name is passed to the
\popUpMenu command, while the command version of the name expands to the
menu structure. The menu structure can be placed at the document level, or as
part of a push button action. Here is an example of usage:

\urlPath{\aebhome}{http://www.math.uakron.edu/ dpstory}
\begin{popupmenu}{myMenu}
\item{title=AeB,return=\aebhome/webeq.html}
\item{title=-}
\begin{submenu}{title=AeB Pro Family}
\item{title=Home page, return=\aebhome/aeb_pro.html}
\item{title=Graphicxsp, return=\aebhome/graphicxsp.html}
\end{submenu}
\item{title=eqExam, return=\aebhome/eqexam.html}
\end{popupmenu}

The above definition can be conveniently placed in the preamble, though it can
appear anywhere before it is used, obviously. Now to use the menu structure, all
we need is a push button or link to create a JavaScript action:

\pushButton[\CA{Packages}\AA{\AAMouseEnter{\JS{/
\myMenu\r
var cChoice = \popUpMenu(myMenu) ;\r
if (cChoice != null) app.launchURL(cChoice);
}}}] {menu}{}{11bp}

The above example uses the eforms package, but a push button from hyperref will
do too. The app.popUpMenuEx method returns the return value, which we, in
turn, process. In this case, the return is a URL, which we launch.

If we have placed \myMenu at the document level, the line \myMenu\r would
not be needed. If you are using the same menu several times in the document,
put it at the document level to reduce file size.

Also, in the above example, you see how the name, myMenu, passed as an
argument of the popupmenu environment is used as a name and as a command:
The name is passed to \popUpMenu, while the command expands to the menu
structure that is referenced by the name.

We generate the index of each menu item. \itemindex is the index of the menu
structure array; for example, \itemindex might expand to [0], [1] .oSubMenu[3],
or [2].oSubMenu[3] .oSubMenu[0]. If \itemindex is included in the return value
(possibly as an array entry), we can know the item the use selected

var aChoice=processMenu(AeBMenu) ;
if (aChoice!=null) {
var thisChoice=aChoice[0]; // this is a string

\pum@item

var thistitle=eval("AeBMenu"+thisChoice+".cName");
app.alert(thistitle);
}

The above code gets the return array, then uses it to get the title of the item
selected,

9 \newcount\pum@cnt

10 \def\pum@updateindex{\global\advance\pum@cnt\@ne

11 \edef \pum@rc{\pum@topindex [\the\pum@cnt] }\edef\itemindex{’ \pum@rc’}}
12 \def\pum@initIndexMenu#1{\global\pum@cnt=-1\relax\edef\pum@rc{#1}/

13 \edef \pum@topindex{\pum@rc}}

We are now ready to define the popupmenu environment. The environment takes
one required parameter, a name that is used as a JavaScript variable. This name
is also used to create a command.

14 \newenvironment{popupmenu} [1]{\pum@initIndexMenu{}%

15 \let\pum@holdtoks\@empty

16 \toks@={\pum@mytab}\@makeother\~

We initialize with a \@gobble, which eats up the leading comma (,) that is placed
there by the code below.

17 \gdef\msarg{#1}\0@AddToMenuToks{\@gobblel}y,

18 \let\item\pum@item

19 H%

20 \expandafter\xdef\csname\msarg\endcsname{’

21 var \msarg\space = [\pum@holdtoks~"J];}%
22 }

At the startup of the popupmenu environment, we \let\item\pum@item. The
definition of \pum@item takes one argument, the properties described above.

23 \newcommand{\pum@item} [1] {\pum@updateindex

24 \edef\tmpQ@exp{\noexpand

25 \setkeys{menustruct}{title,marked=false,enabled,return,#1}}\tmpQexp
26 \edef\tmpQexp{, "~ J\the\toks@

27 {cName: "\menustruct@title"}

28 \ifKV@menustruct@marked, bMarked: true\fil

29 \ifKV@menustruct@enabled\else, bEnabled: false\fi},

30 \ifx\menustruct@return\Qempty\else,

31 cReturn: "\menustruct@return"\fi}}%

32 \expandafter\@AddToMenuToks\expandafter{\tmpQexp}%

33 }

Some technical matters, we need unmatched braces, so we define \pum@lbrace
and \pum@rbrace.

34 \begingroup

35 \catcode ‘<=1 \catcode‘\>=2 \O@makeother\{ \@makeother\}

36 \gdef \pum@lbrace<{>\gdef\pum@rbrace<}>

37 \endgroup

38 \def \pum@mytab{\space\space\space\space}

submenu

\popUpMenu

\urlPath

Used to create a submenu of a menu item. The top level menu item has no return
value, it can be marked but cannot be dis-enabled (enabled=false).

The argument of submenu are any of the menu item properties, however, only
title and marked will be recognized.

The JavaScript property, oSubMenu, of the menu structure passed to the
method app.popUpMenuEx has no ETEX counterpart. This property key-value
pair is automatically inserted by the submenu environment.

39 \newenvironment{submenu} [1] {\pum@updateindex

40 \xdef\saved@pum@cnt{\the\pum@cnt}y,

41 \pum@initIndexMenu{\pum@rc.oSubMenu}\edef \temp@toks{\the\toks@l}},
42 \toks@=\expandafter{\temp@toks\pum@mytabl}

43 \setkeys{menustruct}{title,marked=false,enabled,return,#1}}
44 \edef\tmpQexp{, ~~J\the\toks@

45 \noexpand\pum@lbrace cName: "\menustruct@title"’

46 \ifKV@menustruct@marked, bMarked: true\fiY

47 \ifKV@menustruct@enabled\else, bEnabled: false\fi,

48 oSubMenu: "~ J\the\toks@[}%

Again, we \@gobble up the leading comma (,).

49 \expandafter\0@AddToMenuToks\expandafter{\tmp@exp\@gobblel}’,
50 3%

51 \edef\tmp@exp{~~J\the\toks@]\pum@rbrace}’

52 \expandafter\@AddToMenuToks\expandafter{\tmp@exp}/
53 \global\pum@cnt\saved@pum@cnt

54 }

The \popUpMenu command takes one argument, the name pass to a popupmenu
environment. The command expands to the app.popUpMenuEx method. The
document author must then process the return value in some way. The argument
is enclosed in parentheses, this is so we can use \popUpMenu at the document level,
we can pass it an argument there.

55 \def \popUpMenu (#1) {app . popUpMenuEx.apply(app, #1)}

A convenience command to save a url path. The string is normalized using the hy-
perref command \hyper@normalise. Though we don’t require any other packages,
you can’t do much unless you use hyperref as well.

56 \providecommand{\urlPath} [1]{\def\pum@urlName{#1}J

57 \hyper@normalise\pum@urlPath}

58 \def\pum@urlPath#1{\expandafter\xdef\pum@urlName{#1}}

59 (/package)

