
T
he

 ic
on

-a
pp

r
P

ac
ka

ge

AcroTEX.Net

The icon-appr Package

D. P. Story

Copyright © 2020 dpstory@acrotex.net www.acrotex.net
Prepared: June 6, 2020 Version 1.2, 2020/06/05

mailto:dpstory@acrotex.net
www.acrotex.net

T
he

 ic
on

-a
pp

r
P

ac
ka

ge

Table of Contents

1 Introduction 3
1.1 What new: Version 1.2 (2020/06/05) . 3

2 Methods for non-pdfmark drivers 4

3 Methods for pdfmark drivers 5
3.1 The JavaScript approach . 5
3.2 The purely EPS approach . 7

4 Parameters controlling the icon appearance for push buttons 8

T
he

 ic
on

-a
pp

r
P

ac
ka

ge

Introduction 3

1. Introduction

In this package, we provide commands and methods for creating icon appearances for
form field buttons, which includes push buttons, check box buttons, and radio buttons.
Below are examples of the three types of buttons having icon appearances, rather than
their customary appearances:

For the check box and radio
buttons, the Girl is ‘off’ and
the Man is ‘on’

Push button Check box Radio buttons

The two sections that follow document the environment, commands, and methods for
producing the above results. The above buttons are used in the demo files, these are
found in the examples folder:

• examples/icon-appr.exmpl.tex

• examples/pdfmark-drivers/icon-appr-pb.tex

• examples/pdfmark-drivers/icon-appr-eps.tex

• examples/pdfmark-drivers/icon-appr-eps-transp.tex.

The first one listed above is for the pdflatex, lualatex, and xelatex drivers (applications),
the latter three are designed for users of the dvips -> distiller workflow.

The eforms package, dated 2018/11/10 or later, is required to create buttons with iconeforms package
required appearances, this is because, as of this writing, the form fields produced by hyperref

do not support the necessary markup to produce icon appearances.

1.1. What new: Version 1.2 (2020/06/05)

The basic functionality of this package is unchanged, as documented in subsequent
sections. In this version, the AP entry is added to the Names dictionary of the PDF
catalog. For this manual, the following code appears, new bits are highlighted in bold.
The second line is the Names dictionary.

124 0 obj
<</AP 117 0 R/Dests 85 0 R/JavaScript 125 0 R>>
endobj
...
117 0 obj
<</Names[(girl)151 0 R(mani)137 0 R(scot)162 0 0 R]>>
endobj

The AP entry references the indirect object Names dictionary consisting of the icon
names and their indirect references. The tricky part is that the names in this Names

T
he

 ic
on

-a
pp

r
P

ac
ka

ge

Methods for non-pdfmark drivers 4

array must be listed in alphabetical order. The datatool package is used for this pur-
pose.1

This means that the names of the icons imported in the embedding environment
are known to Acrobat/Adobe Reader. It also allows the icons to be manipulated using
JavaScript methods; for example, use the button below to cycle through all icons in this
document.

The underlying JavaScript of the push button uses the this.getIcon(〈icon-name〉)
method. To use this method, the icons must be known, and now they are! All icons
appearing in this document are EPS files, BION,2 yet we can still manipulate their im-
ages using JavaScript. Adobe Reader supports Doc.getIcon(〈icon-name〉). Open
the JavaScript console, place your cursor on this.icons, and press Ctrl+Enter, Acro-
bat/Reader gives a readout of the icons known to this document. The above example
is reproduced in icon-appr-exmpl.tex and icon-appr-eps.tex.

2. Methods for non-pdfmark drivers

The supported ‘non-pdfmark’ drivers are pdflatex, lualatex, and xelatex. To createpdflatex
lualatex
xelatex

icon appearances, embed the icon files with the \embedIcon command from within the
embedding environment. This occurs in the preamble of the document.

\begin{embedding}
\embedIcon[〈KV-pairs〉]{〈path〉}
...
\end{embedding}

The \embedIcon embeds the icon file (〈path〉) in the document; it can then be refer-
enced multiple times without significantly increasing the file size. The two relevant key-
values (〈KV-pairs〉) are name=〈name〉 and hyopts={〈various〉}. Internally, 〈name〉 isThe name key
made into a control sequence (\〈name〉) which is used to reference the embedded icon
file in the form field markup. Normally, 〈name〉 consists of letters, no active char-
acters allowed; if 〈name〉 contains non-letters, its name may be referenced using the
\csOf command (\csOf{〈name〉}). The other key-value pair is hyopts={〈various〉},The \csOf cmd

The hyopts key 1https://ctan.org/pkg/datatool
2Believe it or not

https://ctan.org/pkg/datatool

T
he

 ic
on

-a
pp

r
P

ac
ka

ge

Methods for pdfmark drivers 5

the value 〈various〉 are key-values of the \includegraphics command, which is used
in the background. Passing any key-value through to \includegraphics may or may
not have an effect. One useful key is the page key; when 〈path〉 leads to a multi-page
PDF file, and xelatex is not being used, page=〈num〉 retrieves page 〈num〉 from the PDF
document.

Example. We reproduce part of the file icon-app-exmpl.tex. First, in the preamble,
embed all icon files to be used.

\begin{embedding}
\embedIcon[name=mani]{graphics/man1.pdf}
\embedIcon[name=girl]{graphics/girl.pdf}
\embedIcon[name=scot]{graphics/scot.pdf}
\end{embedding}

From these declarations, the commands \mani, \girl, and \scot are defined. Now in
the body of the document, we create a push button:

\pushButton[%
\TP{1}\BG{}\S{S}
\I{\csOf{mani}} % normal appearance, where we use \csOf to demonstrate its use
\RI{\girl} % rollover appearance, here, we reference the icon using \girl
\IX{\scot} % down appearance, we reference the icon using \scot

]{myButton}{50bp}{50bp}

The same techniques work for choice boxes and radio button fields. Refer to sample
file icon-appr-exmpl.tex for a working example.

3. Methods for pdfmark drivers

For the pdfmark driver dvips, there are two techniques that have been developed. Thesedvips
techniques were developed because EPS files are the only graphics files dvips work with.

• JavaScript approach: Acrobat JavaScript has a method for embedding a number
of graphics file formats as icons, which can then be used as icon appearance faces.
This method requires the Acrobat application to open the newly created PDF file,
after Distiller (or ps2pdf) has created the PDF file. Any supported graphics file
format can be used. The method is explained in detail in Section 3.1.

• Purely EPS approach: We can use exclusively EPS files for icon appearances; in
fact, the examples given in the Introduction section on page 3 were created by
this method. Details are found in Section 3.2.

3.1. The JavaScript approach

Requirements: The LATEX package aeb_pro is required as it supplies the JavaScriptaeb_pro package
code. Distiller or ps2pdf is used to create the PDF. Open the file in Acrobat whereDistiller or ps2pdf,

and Acrobat the JavaScript is executed to embed referenced files as icon objects and associate icon
files with push button appearances.

This method only applies to push buttons, not to check box or radio button fields.push buttons only

T
he

 ic
on

-a
pp

r
P

ac
ka

ge

Methods for pdfmark drivers 6

Again, the basic elements to use are the embedding environment in the preamble and
the \embedIcon command.

\begin{embedding}
\embedIcon[〈KV-pairs〉]{〈path〉}
...
\end{embedding}

The set of key-value pairs (〈KV-pairs〉) of \embedIcon is a little different than the ones
listed in Section 2, these are (1) the placement key informs the underlying JavaScriptplacement key
where to place the icon file; (2) the page key can be used for multi-page PDF icons filespage key
to specify the number of the page to be used, this is a 0-based page number.

Syntax for the value of the placement key: The placement key “places” the im-
age on the button faces of the field names listed (myButton). A push button has three
appearance faces: normal appearance, rollover appearance, and down appearance. As
a result of this, there is an optional argument that precedes the field name that deter-
mines the face of the button the icon is to appear on; the values are [0] (default, normal
icon);3 [1] (down icon); and [2] (rollover icon). The optional argument precedes the
field name, and is shown in the example below. There must be no space between the
optional argument and the field name; if you type ‘[2]�myButton’, for example, the
field name is interpreted as ‘�myButton’, which is incorrect.

Example. This is a modified version of the example that appears in the sample file
icon-appr-pb.tex. We begin by embedding the icon files in the document. The target
field has name ‘myButton’ and we place the images on it: man1.pdf is the normal ap-
pearance; scot.gif is the down appearance; and girl.png is the rollover appearance.

\begin{embedding}
\embedIcon[placement=myButton]{graphics/man1.pdf}
\embedIcon[placement={[1]myButton}]{graphics/scot.gif}
\embedIcon[placement={[2]myButton}]{graphics/girl.png}
\end{embedding}

Note the variety of icon file formats used.
In the body of the document, we create a push button. At the time the button is

created, the icon files have not been imported or embedded, but we indicate that this
button uses icon appearances by passing \importIcons{y} as an optional argument,
this is important.Important!

\pushButton[\BC{}\BG{}\S{S}\importIcons{y}
\FB{true}\TP{1}]{myButton}{50bp}{50bp}

When the newly created PDF is first opened in Acrobat some JavaScript will execute
and embed the icon files in the PDF, then populate the specified button faces with the
specified icons.

By the way, a single \embedIcon command can provide multiple push buttons with
its icon; the value of placement can be a comma-delimited list of field names (with
optional argument preceding). For example,

3When no optional argument precedes the field name, it is understood to be the normal appearance.

T
he

 ic
on

-a
pp

r
P

ac
ka

ge

Methods for pdfmark drivers 7

\begin{embedding}
\embedIcon[placement={myButton,[1]myOtherButton}]{graphics/man1.pdf}
...
\end{embedding}

Refer to icon-appr-pb.tex for a working example.

3.2. The purely EPS approach

Requirements. The EPS method requires the use of the graphicxsp package, datedgraphicxsp
required 2018/11/20 or later. Distiller or ps2pdf can be used to produce the PDF file; Acrobat

is not required (unless another package requires it). It is strongly recommended that
when creating check boxes or radio button fields that the newly created PDF be opened
in Adobe Reader DC (or, optionally Acrobat itself) and saved . This will enable users ofsave the PDF!
PDF-XChange Viewer/Editor to view these buttons correctly.

The technique is similar to that of the non-pdfmark drivers. Again, we use the
embedding environment in the preamble, but the \embedEPS command within the en-
vironment is used instead of \embedIcon.

\begin{embedding}
\embedEPS[〈KV-pairs〉]{〈path〉}
...
\end{embedding}

Where 〈path〉 points to an EPS file. The name=〈name〉 key-value is required in the op-name key required
tional argument 〈KV-pairs〉, other key-value pairs are passed to \includegraphics.

Internally, 〈name〉 is made into a control sequence (\〈name〉) which is used to ref-
erence the embedded icon file in the form field markup. Normally, 〈name〉 consists of
letters, no active characters; if 〈name〉 contains non-letters, its name may be referenced
using the \csOf command (\csOf{〈name〉}).The \csOf cmd

Example. This is a modified version of the example that appears in the sample file
icon-appr-eps.tex.

\begin{embedding}
\embedEPS[hiresbb,name=mani]{graphics/man1}
\embedEPS[hiresbb,name=girl]{graphics/girl}
\embedEPS[hiresbb,name=scot]{graphics/scot}
\end{embedding}

Here, we pass the hiresbb key to \includegraphics. From this declarations, the
command \mani, \girl, and \scot are defined. Now in the body of the document, we
create a push button:

\pushButton[%
\TP{1}\BG{}\S{S}
\I{\csOf{mani}} % normal appearance, where we use \csOf to demonstrate its use
\RI{\girl} % rollover appearance, here, we reference the icon using \girl
\IX{\scot} % down appearance, we reference the icon using \scot

]{myButton}{50bp}{50bp}

T
he

 ic
on

-a
pp

r
P

ac
ka

ge

8

Note that this is the same markup as was presented in Section 2. The same techniques
work for choice boxes and radio button fields. Refer to sample file icon-appr-eps.tex
for a working example.

When EPS methods are used, the Adobe transparency model can be used (Distiller
required). See the sample file icon-appr-eps-transp.tex.

4. Parameters controlling the icon appearance for push buttons

The MK entry is used to provide an appearance characteristic dictionary containing
additional information for constructing the annotation’s appearance. The eforms pack-
age has key-value pairs that populates the MK dictionary; we describe the entries in the
dictionary, these entries are entered through the optional argument of a \pushButton
command. In the listing below, we give the key-value pairs, the first is the original key
scheme, the second is the more user-friendly key. Additional details can be found in
eformman.pdf, the documentation of the eform package.

I Indirect reference to the normal appearance of an icon. The keys used by eforms
are \I and normalappr.

RI Indirect reference to the rollover appearance of an icon. The keys are \RI and
rollappr.

IX Indirect reference to the down appearance of an icon. The keys are \IX and
downappr.

Note. When importing icon appearances using JavaScript (Section 3.1), the above three
keys are not used explicitly (JavaScript sets these key-value entries); use instead the
key-value pair \importIcons{y}, as seen in the example given in Section 3.1.

IF The icon fit dictionary. The entries of the IF follow:

SW (name; optional) The circumstances under which the icon should be scaled
inside the annot rectangle. The key is either \SW or scalewhen.

A always scale (the default value).
KVP: \SW{A} or scalewhen=always.

B Scale only when the icon is bigger than the annotation rectangle.
KVP: \SW{B} of scalewhen=iconbig.

S Scale only when the icon is smaller than the rectangle.
KVP: \SW{S} or scalewhen=iconsmall.

N Never Scale.
KVP: \SW{N} or scalewhen=never.

S (name; optional) The type of scaling to use the annot rectangle. The key to
use is \ST or scale.

A Anamorphic scaling: Scale the icon to fill the annotation exactly, without
regard to the original aspect ratio.
KVP: \ST{A} or scale=nonproportional.

T
he

 ic
on

-a
pp

r
P

ac
ka

ge

Parameters controlling the icon appearance for push buttons 9

P Proportional scaling: Scale the icon to fit the width or height of the rect-
angle while maintaining the icon’s original aspect ratio (ratio width to
height) (the default).
KVP: \ST{P} or scale=proportional.

A (array; optional) An array of two numbers between 0.0 and 1.0 indicating the
fraction of the left over space to allocate at the left and bottom of the icon.
A value of [0.0 0.0] positions the icon at the bottom-left corner; a value of
[0.5 0.5] centers it within the rectangle. This entry is only used of the icon is
scaled proportionally. The default is [0.5 0.5] the annot rectangle. The key
is either \PA or position. The default is \PA{.5 .5} (no comma between
numbers), in the user friendly style position={.5 .5} (no comma between
numbers).

FB (Boolean; optional) If true, indicates that the button appearance should be
scaled to fit fully within the bounds of the annotation without taking into
consideration the line width of the border. The default is false. The key is
\FB or fitbounds; the default is \FB{false} or fitbounds=false.

TP a code indicating position of text relative to icon. The key is either \TP or layout.

0 No icon; caption only. KVP: \TP{0} or layout=labelonly.

1 No caption; icon only. KVP: \TP{1} or layout=icononly.

2 Caption below icon. KVP: \TP{2} or layout=icontop.

3 Caption above icon. KVP: \TP{3} or layout=iconbottom.

4 Caption to the right of icon. KVP: \TP{4} or layout=iconleft.

5 Caption to the left of icon. KVP: \TP{5} or layout=iconright.

6 Caption overlaid on the icon. KVP: \TP{6} or layout=labelover.

That’s it, now, back to my retirement!

	Title Page
	Links to AcroTeX.Net
	http://www.acrotex.net
	http://blog.acrotex.net

	Table of Contents
	1 Introduction
	1.1 What new: Version 1.2 (2020/06/05)

	2 Methods for non-pdfmark drivers
	3 Methods for pdfmark drivers
	3.1 The JavaScript approach
	3.2 The purely EPS approach

	4 Parameters controlling the icon appearance for push buttons

	myButton:
	myCkBx: Off
	myRadBtn: Off
	reset:
	iconContainer:
	cycleBtn:
	clearBtn:

