
T
he

 D
P

S
 P

ac
ka

ge

AcroTEX.Net

dps Package

Das Puzzle Spiel

D. P. Story

Abstract: Das Puzzle Spiel is a LATEX package for creating a
puzzle, a message actually, and a series of questions and
answers. The document consumer matches the questions
with the answers. With each match, another letter appears
in the puzzle. Upon completion of all questions, the mes-
sage hidden in the puzzle is revealed. The game has an
application as a classroom learning device.

Copyright © 2006-2020 dpstory@acrotex.net
Distribution Dated: 2020/06/03 http://www.acrotex.net

mailto:dpstory@acrotex.net
http://www.acrotex.net

T
he

 D
P

S
 P

ac
ka

ge

Table of Contents

1 Introduction 4

2 Requirements 4

3 Comments on the demo files 5

4 Package Options 6

5 Designing your Puzzle 10
5.1 \DeclarePuzzle . 10
5.2 Begin composing the questions and answers 12

6 Placing the Content 14
6.1 The title and instructions . 15
6.2 The puzzle . 15
6.3 The questions . 15
6.4 The answers . 16
6.5 The message field . 17
6.6 Auxiliary files . 17

7 Commands for controlling randomization 17

8 Printing and clearing the puzzle 18

9 Methods of handling long questions 18
9.1 The usebtnappr option . 19

• The puzzle file . 19
• The icons file . 21
• The workflow to build the puzzle file . 24

9.2 The uselayers option . 24
• The puzzle file . 24

9.3 Developing an end of game event . 26

10 Creating a sideshow 26
10.1 Sideshow with the usebtnappr option . 28
10.2 Sideshow with the uselayers option . 29

11 Some small degree of security 29

12 Let’s have some Fun 29

13 Checking for validity 30

14 Using the web Package 31

15 Thanks 31

T
he

 D
P

S
 P

ac
ka

ge

Table of Contents (cont.) 3

16 Appendix 32
16.1 German Umlaut (dieresis) . 32
16.2 Accents . 32

T
he

 D
P

S
 P

ac
ka

ge

4

1. Introduction

The work on this package was inspired by one of my son’s worksheets in pre-algebra.
The worksheet consisted of a series of simple algebraic expressions the student was
to simplify. The simplified form was listed somewhere in the answers column. The
answer had a letter associated with it which the student then placed in a puzzle. Upon
completion of the worksheet, the puzzle (message) is completely filled in; if the message
makes sense, the student can determine that he/she did the worksheet correctly.

I set out to duplicate this worksheet for electronic media, but also to have an option
for paper as well.

Figure 1: dps_demo.pdf: Initial layout (left) and partially worked (right)

2. Requirements

The following packages are required for dps beyond that of the standard LATEX distri-
bution:

• AeB:1 The web and eforms components of the AcroTEX eDucation Bundle are used.

• random.tex:2 A TEX/LATEX macro file to generate random numbers, the package
was written by Donald Arseneau.

• If the usebtnappr option is taken, the icon-appr package, dated 2020/06/05 or
later, is required.3

The package should work for users of dvips -> distiller, pdflatex, lualatex, and xela-
tex. A document author who owns the Acrobat application and plans to use either
the usebtnappr or uselayers option should have the aeb_pro package (completely)
installed.

1https://ctan.org/pkg/acrotex
2https://ctan.org/pkg/random
3https://ctan.org/pkg/icon-appr

https://ctan.org/pkg/random
https://ctan.org/pkg/acrotex
https://ctan.org/pkg/random
https://ctan.org/pkg/icon-appr

T
he

 D
P

S
 P

ac
ka

ge

Comments on the demo files 5

3. Comments on the demo files

The distribution comes with the following demonstration files.

• examples/basic/dps_demo.tex: A demo file that you can use to try the packagebasic folder
with different options. Build the source file for screen or for paper. Two column
format for questions, and half the answers on the left, and half on the right.

This demo file has more answers than questions.

• examples/basic/dps_d1.tex
The original file constructing during the development of this package. This puzzle
has the famous u-umlaut. Can be compiled with the forpaper/forcolorpaper
option of web. The layout is designated as “design 1” (d1): questions in center in
two column format and answer on the left and right.

This demo file illustrates the special name of cr, as well as space and punc.

• examples/basic/dps_d1_p.tex
Same as dps_d1.tex, but set up as a paper document (using the forcolorpaper
option). The font size is enlarged to make it easier for filling the puzzle out using
a pencil.

• examples/basic/dps_d2.tex
Same puzzle/questions as dps_d1.tex, but uses the layout designated as “de-
sign 2” (d2): Questions and answer in column format on left and right, puzzle in
the center. This leaves a lot of white space in the middle, perhaps for a graphic.
This example also manually inserts the answer key command \AnswerKey, which
manifests itself when the showletters option is taken.

• examples/basic/dps_d3.tex
Same puzzle/questions as dps_d1.tex, but uses the layout designated as “de-
sign 3” (d3): Puzzle and questions vertically aligned (questions in two column
format), answer in single column. This file uses many of the formatting com-
mands mentioned in the documentation.

• examples/basic/dps_signin.tex
Demonstrates how to require the player to enter his/her name, useful when puzzle
is to be handed in for extra credit.

• examples/basic/dps_demo.tex
Indicates how to change the appearance of some of the form elements of the
puzzle.

• examples/basic/stat_match1.tex
An example of a puzzle with extended length questions. Demo can be used as a
paper assignment or a digital assignment.

• examples/basic/stat_match1-print.tex
A layout with long questions designed for paper.

T
he

 D
P

S
 P

ac
ka

ge

6

There are several “advanced examples” that demonstrate two methods of posing ex-
tended length questions; these two methods correspond to the two options usebtnappr
and uselayers.

• examples/advanced/usebtnappr/basic/stat_match1.texusebtnappr folder
Uses the usebtnappr to create icon pushbutton appearances of the extended
length questions. This example works for all common workflows: pdflatex, luala-
tex, xelatex, and dvips -> distiller.

• examples/advanced/usebtnappr/sideshow/first_date.tex
A file developed from by cyber buddy, who I’ve never met, to offer advice for
going on a date mit eine Frälein. This example works for all common workflows:
pdflatex, lualatex, xelatex, and dvips -> distiller. Uses a graphical sideshow.

• examples/advanced/uselayers/basic/stat_math1-tb.texuselayers folder
Uses the uselayers option and the textpos package.

An extra credit assignment given to my statistics class in 2006. The questions are
placed in separate layers and appear when a question checkbox is selected; this
allows for more wordy questions without taking up a lot of space in the question
part of the puzzle.

• examples/advanced/uselayers/basic/stat_math1-ep.tex
Same as puzzle as stat_math1-tb.tex but uses the eso-pic package.

• examples/advanced/uselayers/basic/stat_math1_g.tex
Same as a stat_math1-tb.tex, but more graphical. If memory serves, this ver-
sion was developed my good cyber friend Jürgen.

• examples/advanced/uselayers/sideshow/first_data.tex
A file developed from by cyber buddy, who I’ve never met, to offer advice for going
on a date mit eine Frälein. Uses a graphical sideshow.

• examples/advanced/uselayers/sideshow/first_data_g.tex
More graphical version of first_data.tex, but with different design and graph-
ical sideshow.

4. Package Options

Here we list the options of package dps.

nonrandomized: The default behavior is to randomize the questions and to randomize
the answers. With this option, the questions and answer are listed in the order that
they appear in the Composing environment. This makes it easy for the document
author to quickly solve the puzzle and to see if the check marks and letters appear
as they should.

!nonrandomized: (Convenience option) Cancels the effects of nonrandomized; in this
case, the answers are randomized (the default).

T
he

 D
P

S
 P

ac
ka

ge

Package Options 7

viewmode: Useful when using a dvi previewer or a PDF previewer. Here you can see
the placement of the puzzle (with the letters to the puzzle filled in) and the boxes
were the checkboxes go. Useful in the designing the layout of your game phase.

Figure 2: Compiled with viewmode option

!viewmode: (Convenience option) Cancels the effects of viewmode, this same as not
specifying viewmode.

showletters: Sets up a visual relation between the questions, the answers and the
puzzle elements. Useful in design phase, can be used with viewmode. Refer to
Figure 3.

When showletters, the command \AnswerKey is populated with the answer key
to the puzzle. \AnswerKey is automatically inserted into the running footer when\AnswerKey
the showanswerkey option is taken; otherwise, it can be manually inserted into the
document by expanding \AnswerKey in a location somewhere after the building
of the puzzle, the questions and the answers.

!showletters: (Convenience option) Cancels the effects of showletters; in this case,
the letters are not shown (the default).

showanswerkey: Shows the answer key in the footer of the document. If the graphicx
package is loaded, the answer key is rotated 180◦. This option is meant to be used
when the forpaper option is taken in the web package. Refer to Figure 4.

The positioning of the running footer may be adjust using the convenience com-
mand \setdpsfootskip{〈skip〉}. When there is no paper option for web (neither\setdpsfootskip

T
he

 D
P

S
 P

ac
ka

ge

Package Options 8

Figure 3: Compiled with showletters option

forpaper or forcolorpaper), 〈skip〉 is the distance up from the bottom edge of
the screen page. The default is \setdpsfootskip{.25in}. When there is a paper
option, this command does nothing; location of the running footer is determined
by the LATEX \footskip register.

!showanswerkey: (Convenience option) Turns off the showanswerkey option.

savedata: Saves three pieces of information to the local hard drive : (1) the seed value
used by the random package to randomize the questions and answers; (2) the
value of the last number generated; and (3) the answer key. This information is
saved to the file \jobname_data.sav.

• The seed value can be used to reproduce the exact randomization at a later
time. Open the file \jobname_data.sav in your editor, it might look like
this:

\randomi=482053344 % Initial seed:
\dpsLastSeed{271256117}
% Answer Key: 1--e; 2--s; 3--i; 4--u; 5--l; 6--d; 7--a; 8--z; 9--p;

Copy the number indicated as the Initial seed and paste it into the argument
\useRandomSeed{482053344}. Place this command in the preamble, below
the \usepackage{dps} line. This should reproduce the same randomiza-
tion.

T
he

 D
P

S
 P

ac
ka

ge

Package Options 9

Figure 4: Compiled with showanswerkey option

• The second line is use when the \useLastSeed command appears in the
preamble. This is the last number generated by the current compile.

• The third line in the above verbatim listing is the answer key, for the ran-
domization initiated by the seed on the first line. You can copy and paste
this second line into the TEX/LATEX document and publish the solution in a
separate document, at a later time. This is useful when publishing for paper.

!savedata: (Convenience option) Turns off the savedata option.

usebtnappr Use this option to provide support for longer questions without taking up
anymore space on the digital page. The option uses icon appearances of a push
button. Refer to Section 9.1.

uselayers Use this option to provide support for longer questions without taking up
anymore space on the digital page. The option places the long question in separate
layers (OCGs). Refer to Section 9.2.

lang=english|german|custom: Currently, there are only two language options. The
value of custom allows you to create your own language strings.

To use the lang=custom option, you must create the file dps_str_cus.def. Do
this by taking the file dps_str_us.def (or dps_str_de.def, if you prefer), copy-
ing the file and changing its name to dps_str_cus.def. Open dps_str_cus.def

T
he

 D
P

S
 P

ac
ka

ge

10

in your favorite editor and change the text strings to a language of your choice, or
change the strings that tickle your funny bone more than the ones provided.4 To
represent accented characters, use the octal encoding defined in pd1enc.def, as
distributed with the hyperref bundle. The u-umlaut, for example, should appear
in the file as \string\374 and not as \"{u}.

Change notification: If you have already written your own dps_str_cus.def for
an earlier version of dps; there is a change your should attend to: In the definition
of \regretPleased change (nMissed > n) to read (nMissed > nPassing).

� For your convenience, the ‘Appendix’ on page 32 contains a listing of the octal
codes for accented letters. Here is an important option of web package.

forpaper/forcolorpaper: These are options of the web package, not the dps pack-
age. Then this option is taken, the puzzle created is meant for paper publication.
No Acrobat forms will be created, the showletters option of dps is automatically
taken. If you originally designed the game for the screen, you may have to rework
the sizing and design of the game to fit everything into the constraint of a piece
of paper. Landscape is an option to think about, depending on your design and
the number of questions and answers.

5. Designing your Puzzle

There are several test files that you can use as basis of constructing your own puzzle.5

The files themselves illustrate adequately the structure of the puzzle, but a few remarks
are in order.

5.1. \DeclarePuzzle

The first step is to have a message, either funny, serious, or whatever. For the purpose of
illustration, suppose your message is “Hello, Jürgen!” This message has all the elements
that need to be discussed, letters, punctuation, spaces, capitalized letters, and accented
letters.

\DeclarePuzzle{〈puzzle-args〉}: The 〈puzzle-args〉 consists of a series of paired
parameters:

\nPuzzleCols{〈nCols〉} % optional
\DeclarePuzzle{%

{〈letter1〉}{〈name1〉}
{〈letter2〉}{〈name2〉}
…
…
{〈lettern〉}{〈namen〉}

}

4Or tickle your funny bone less, if you are a crusty one.
5My apologies, this game is more properly described as a matching game with message, but my friend

insisted that I call it a puzzle so that the package could be named Das Puzzle Spiel, or dps, which are my
initials. DPS

T
he

 D
P

S
 P

ac
ka

ge

Designing your Puzzle 11

\nPuzzleCols{〈nCols〉} is a convenience command for setting the number of columns
in the puzzle; 〈nCols〉 is passed to \insertPuzzle{〈nCols〉}, which appears in the
body of the document.

Parameter description for \DeclarePuzzle. The argument 〈letter〉 represents a
letter in the puzzle; 〈letter〉 plays two roles: (1) it is used to typeset the letters into
the document when certain options, such as viewmode, are used; (2) it is used as the
default value of a text fields that is created (when the puzzle is built to be interactive).
This creates a problem for special characters, such as ü; it is a typeset letter, and is
\string\374 when placed into a text field (\341) is the (octal) PDFDocEncoding of u-
umlaut. The way around this conundrum is to use \texorpdfstring: use 〈letter〉 to
be,

\texorpdfstring{\protect\"{u}}{\ifxetex ü\else\string\374\fi}

Notice the use of \protect to protect this moving argument. Also included above
is a special case for xelatex, which does not support the octal notation; in this case,
using the capabilities of your editor, simply type in an u-umlaut. The above complex
expression is normally not needed. Here, we try to provide guidance for all PDF creators.
If you stick to one, the \ifxetex conditional is not needed.

The second argument pair is 〈name〉, this is a unique name that is used in the con-
struction of the underlying text field name: the field name becomes puzzle.〈name〉.
As a result, 〈name〉 needs to be a JavaScript identifier (or, basically consist of letters
and numbers). In the case of special characters such as our umlaut problem, we can
assign a name like so:

\texorpdfstring{\protect\"{u}}{\ifxetex ü\else\string\374\fi}{uml}
or

\tops{\protect\"{u}}{\ifxetex ü\else\string\374\fi}{uml}

where \tops is an alias for \texorpdfstring. This argument pair is seen several times\tops
in the demonstration files. There are three special names, these are space, punc, and
cr; as a argument pair, these should appear as follows: {}{space}, {,}{punc}, andspace

punc {}{cr}, respectively. Spaces and punctuation are not normally part of the puzzle to
cr be discovered by answering questions, though they could be. The special name cr

terminates a row.

In the design of the puzzle there are three sets of form fields to manage: checkboxes
for the questions, checkboxes for the answers, and text fields for the puzzle. The
checkboxes and puzzle letter are all tied together by a common base field name, which
is the second parameter in the parameter pairs.

In our puzzle, “Hello, Jürgen!”, we place the \DeclarePuzzle in the preamble, as
shown in Figure 5. For letters, the second parameter in the pair can simply be the same,
as in {H}{H} and {e}{e}.

Rule: As a general rule, and this rule will be repeated later, there should be
one question for each distinct second argument (〈name〉). There should be no
question corresponding to the names space, punc, and cr.

T
he

 D
P

S
 P

ac
ka

ge

Designing your Puzzle 12

\DeclarePuzzle{%
{H}{H}
{e}{e}
{l}{l}
{l}{l}
{o}{o}
{,}{punc}
{}{space}
{J}{J}
{\tops{\protect\"{u}}%
{\ifxetex ü\else\string\374}\fi}{uml}

{r}{r}
{g}{g}
{e}{e}
{n}{n}
{!}{punc}

}

Figure 5: The “Hello, Jürgen” Puzzle

In the example of Figure 5, letters like e and l appear more than once in the puzzle.
Note that the second argument of each of these two e’s is the same. There should be
only one for this e, and when the question associated with e is correctly answered, both
e’s in the puzzle will appear. (If you want a question for each e, then you need to name
the fields differently, {e}{e1} and {e}{e2}, for example.)

5.2. Begin composing the questions and answers

We create questions and answers for the puzzle within the Composing environment.
Questions are posed within the cQ environment and answers are written within the cA
environment.

\DeclarePuzzle{〈puzzle-args〉}
\begin{Composing}
\begin{cQ}{〈name〉}

〈some question〉
\end{cQ}
\begin{cA}[〈alt-letter〉]{〈name〉}

〈some answer〉
\end{cA}
...
\end{Composing}

Composing: You compose the questions and answers within the Composing environ-
ment. At the top of the environment, certain counters are initialized. All the work
is done at the end of the environment: The number of questions and answers are
known, at which point, the order of the questions and answers are randomized.

The Composing environment follows \DeclarePuzzle.

T
he

 D
P

S
 P

ac
ka

ge

Designing your Puzzle 13

cQ and cA: Within the Composing environment, you compose your questions and an-
swers within the cQ and cA environments, respectively. Each question must be fol-
lowed by its answer. You can have more answers than questions, but these answers
must be listed last.

Each of these environments has one required argument, and cA has one optional ar-
gument. The required argument, 〈name〉, is the field name to which this answer corre-
sponds. (The second argument of the paired arguments of \DeclarePuzzle.)

This optional argument, 〈alt-letter〉, of the cA environment is only relevant when
the document is compiled with the showletters option. The value of the argument is
a letter to appear in the answers column (and in the answer key). Normally, one of the
first entries in the \DeclarePuzzle command is used. Cases where you would want
to include this optional argument are,

(1) when giving an answer that does not correspond to a question. For example,
in dps_demo.tex, there are several answers that are distractions

\begin{cA}[w]{fake1}
$14x+10$
\end{cA}

In the puzzle this answer appears in the list of answers but does not corre-
spond to any question. The letter associated with this answer is ‘w’.

(2) the letter is capitalized, suggesting a proper name or the beginning of a
sentence, use the optional argument to list the letter in lower case. For
example,

\begin{cA}[h]{H}
$-2x-2$
\end{cA}

Easily set up the Composing environment. Once you decide on your puzzle (this is
easy), you need to set up the corresponding environments Composing, cQ, and cA.

Rule: As a general rule, and this rule will be repeated later, there should be one
question for each distinct second argument, that is, for each distinct 〈name〉,
with the exception of the names space, punc, and cr.

Because of human errors, sometimes we have questions/answer pairs that correspond
to a duplicate field name—perhaps this letter occurs multiple times. No, no, that vi-
olates the red rule above. After having made this same error several times myself, I
decided to let TEX do the work for me.

Just after the end of the argument of \DeclarePuzzle, prior to authoring the questions
and answers, place the \writeComposingEnv:

\writeComposingEnv

Remember, \DeclarePuzzle is in the preamble and the beginning of document has
not been encountered; the command writes an outline for the puzzle—based on the

T
he

 D
P

S
 P

ac
ka

ge

14

arguments of \DeclarePuzzle—to the file \jobname_comp.def and ends the docu-
ment. Once this file is created, copy and paste its contents into your source file. It
should look like this:

\begin{Composing}

\begin{cQ}{M}
\end{cQ}
\begin{cA}{M}
\end{cA}

\begin{cQ}{a}
\end{cQ}
\begin{cA}{a}
\end{cA}
...
\end{Composing}

The correct number of environments should be there, with the correct argument in-
serted for each environment. Cool! Now, just compose your questions and answers.

After \jobname_comp.def is created and copied into the puzzle document, delete
the command \writeComposingEnv. This command is not part of the puzzle, but
a helper command. As an option, rather than pasting the contents into your docu-
ment following the \DeclarePuzzle, you can fill in your questions and answers to
your puzzle within the \jobname_comp.def, input the file \jobname_comp.def with
\input{\jobname_comp.def}. Warning: If you leave your questions and answers
in the auxiliary file \jobname_comp.def you may overwrite them by un-commenting
\writeComposingEnv and compiling your puzzle document.

Another rule:

Rule: You must have one correct answer per question. Each answer is unique in
the list of all answers (no two answers can be the same). You can have more an-
swers than questions (distractions—answers “close” in appearance to the correct
answer). Each of the distractions must have a unique 〈name〉.

6. Placing the Content

The content consists of five parts, plus whatever you wish to include in the document:

1. The title and instructions.

2. The puzzle

3. The questions

4. The answers

5. The message field

Each of these is discussed the the sections that follow.

T
he

 D
P

S
 P

ac
ka

ge

Placing the Content 15

6.1. The title and instructions

The title and instructions are your bailiwick, see package demo files for suggestions.

6.2. The puzzle

\insertPuzzle{empty|〈nCols〉}: The puzzle, which consists of the first of the paired
arguments declared in the \DeclarePuzzle command, is laid out in a tabular for-
mat. The one required argument of \insertPuzzle is either the empty argument
({}) or 〈nCols〉, the number of columns per row to be used.

If you say \insertPuzzle{}, then \nPuzzleCols{〈nCols〉} is expected to appear
in the preamble. If the argument of \insertPuzzle is empty and \nPuzzleCols
does not appear in the preamble, a warning is issued and 〈nCols〉 is set to 10.

In the demo files, \insertPuzzle is enclosed in a minipage environment (and in a
\fbox as well). By placing \insertPuzzle in this way, you can control the width of
the table, and it may help fit it with the other components of the game.

\PuzzleAppearance: Use this command to change the appearance of the Acrobat text
field that comprise the interactive puzzle. The command takes one argument, this
argument consists of one or more commands from the eForms package that change
the appearance of a field. For example,

\PuzzleAppearance{\BC{1 0 0}}
\PuzzleAppearance{\BC{red}} % if xcolor is loaded

changes the boundary color to red. See the eforms documentation.

\rowsep{〈skip〉}: By setting \rowsep, you can adjust the vertical space between tab-
ular rows. The commands takes one argument, the amount of vertical skip, for
example,

\rowsep{2ex}

\wdPuzzleFields{〈length〉} Sets the width of a puzzle field to 〈length〉. The default
is 1.6em

\htPuzzleFields{〈length〉} Sets the height of the puzzle field to 〈length〉. The
default is 11bp.

6.3. The questions

\displayRandomizedQuestions: The questions are inserted by this command. This
command must be placed in an enumerate environment. This will number the
questions, so when, for example, the showletters, discussed later, is taken, there
is a visual mapping between the questions, the answers and the puzzle.

If the number of questions is not great, you can list the questions in a single column;
however, in the examples that I have done, I’ve determined that a two column format
(using the multicol package) seems to me to be the best layout for the questions.

T
he

 D
P

S
 P

ac
ka

ge

Placing the Content 16

\QuesAppearance: Use this command to change the appearance of the Acrobat check-
boxes for the questions that appear in the label margin. The command takes one
argument, this argument consists of one or more commands from the eForms pack-
age that change the appearance of a field. For example,

\QuesAppearance{\BC{gray}} % assumes xcolor pkg or just \BC{.5 .5 .5}

changes the boundary color to a gray color. See the eforms documentation.

\widestFmtdQNum{〈str〉} Sets the width of the checkbox for the questions. The ar-
gument 〈str〉 is a string whose width determines the width of the checkboxes.
The default is \widestFmtdQNum{00.}. If the numbers are typeset in bold, then
\widestFmtdQNum{\textbf{00.}} is a little wider to account for the bold font.

\htOfQ{〈length〉} Sets the height of the checkbox for the question. The default is
\htOfQ{13bp}.

6.4. The answers

\displayRandomizedAnswers: As with the questions, the answer are displayed in by a
similar command. Again, this command should be in a list environment, preferably
the itemize. The list label is suppressed by placing \item[] before each answer.
When the showletters option is taken, the letter this answer corresponds to will
be the label.

One of the design layouts in the demo files has the questions in a two column
format in the center with two columns of answers, half the answers to the left of
the questions, and the other half to the right. The two commands

\displayRandomizedAnswersLeftPanel
\displayRandomizedAnswersRightPanel

are used for that purpose.6 As with \displayRandomizedAnswers, each of these
commands should be in an itemize environment.

\AnsAppearance: Use this command to change the appearance of the Acrobat check-
boxes for the answers that appear in the label margin. The command takes one
argument, this argument consists of one or more commands from the eForms pack-
age that change the appearance of a field. For example,

\AnsAppearance{\BC{gray}} % assumes xcolor pkg, or \BC{.5 .5 .5}

changes the boundary color to a gray color. See the eforms documentation.

\ltrFmtA{〈\cmd{#1}〉} Formats the letters in the list of answers when the option
showletters is active. In the argument, #1 references the current letter to be type-
set. For example, \ltrFmtA{\textbf{\textcolor{blue}{#1}}} typesets the let-
ters in bold and blue.

6TEX doesn’t know his left from his right, so you can actually place the left panel listing on the right.
TEX will not object!

T
he

 D
P

S
 P

ac
ka

ge

17

\widestFmtdALtr{〈str〉} Sets the width of the checkbox for the answers. The argu-
ment 〈str〉 is a string whose width determines the width of the checkboxes. The
default is \widestFmtdALtr{w}.

\htOfA{〈length〉} Sets the height of the checkbox for the answer. The default is
\htOfA{13bp}.

6.5. The message field

\placeMessageField[〈opts〉]{〈wd〉}{〈ht〉}: This Acrobat text field is used to write
messages to the user. If the user tries to choose an answer before selecting an
answer, s/he gets the message

"You must choose a question to answer before you answer!"

For the interactive version of this game7, there is a language option for dps to change
the messages from English, the default, to German, for example.

The parameters are 〈wd〉 (the width of the text field), 〈ht〉 (the height of the text
field and 〈opt〉 (the optional argument for changing the appearance of the field, as
described in the documentation of the eforms package.

The message field is automatically removed when the document is compiled in the
forpaper option of the web package.

6.6. Auxiliary files

Developing a puzzle file creates a number of auxiliary files, in addition to the usual
ones of a typical LATEX file. The dps package creates a large number of CUT files and
a few SAV files. If you create a sideshow (page 26), additional PDF files are created as
well. As a general rule, do not delete these files until you are finished building your
puzzle and you have verified that is working correctly.

7. Commands for controlling randomization

When randomizing is to be used (that is, the option !nonrandomized is in effect, or
the nonrandomized option is not specified), there are several commands to control the
initial seed of the random number generator.

\useRandomSeed{〈seed〉} % eg, \useRandomSeed{187968637}
\inputRandomSeed
\useLastSeed

All commands are placed in the preamble. Only one of the three should appear during
any compile.

\useRandomSeed{〈seed〉} initializes the random number generator to 〈seed〉.
7Does that mean there is also a non-interactive version of this game, sir? Yes, yes there is. DPS

T
he

 D
P

S
 P

ac
ka

ge

Printing and clearing the puzzle 18

\inputRandomSeed inputs the seed value saved by the savedata option; as a re-
sult, the same randomization sequence is obtained each time the file is compiled.8

In effect, this command freezes the randomization sequence as long as the file
\jobname_data.sav has not been deleted. To continue to use this random se-
quence after \jobname_data.sav is deleted, save the value of the initial seed first,
as described in the description of the savedata option on page 8.

\useLastSeed initializes the random number generator with the last random number
generated in the previous compile. In this way, you get a new randomization each
time you compile the file.

The last two commands assume \jobname_data.sav exists; otherwise they take an
initial seed based on the current date and time.

8. Printing and clearing the puzzle

The dps package provides the following two commands, which produce push buttons:

\printDPS[〈form-options〉]{〈wd〉}{〈ht〉} % prints the document
\resetDPS[〈form-options〉]{〈wd〉}{〈ht〉} % clears the document

The 〈wd〉 and 〈ht〉 are the width and height of the push button; the optional argument
〈form-options〉 are key-value pairs to change the appearance of the buttons. Famil-
iarity with the eforms package is needed.

The dps provides the command \dpsResetHook to add JavaScript lines to the ac-
tion of \resetDPS. The command takes one argument to pass the JavaScript lines
to \resetDPS; for example, \dpsResetHook{dpsHideFld("btnEmoji");} appears in\dpsHideFld
several of the example file. This hides the btnEmoji image.

9. Methods of handling long questions

All the basic examples (those in the folder examples/basic) feature short questions
that conveniently fit into the space provided.9 More complex questions require longer
questions. The problem, then, is to develop a method of posing long questions, without
disturbing the puzzle design, for an interactive puzzle.

In this section, we detail two methods of posing long questions, while saving space
on a one page puzzle document; these are (1) place the long questions into an appear-
ance of an push button (yes, you can do that); and (2) place the long questions into a
layer (optional content group, OCG). All LATEX workflows are supported by method (1),
while method (2) requires the dvips -> distiller workflow.

Both methods are designed for an interactive puzzle, not a paper puzzle.interactive puzzles

8This assumes that randomized items are neither added or deleted.
9With the one exception of stat_match1-print.tex in the basic folder.

T
he

 D
P

S
 P

ac
ka

ge

Methods of handling long questions 19

9.1. The usebtnappr option

Demo file. The demonstration file for this subsection is stat_match1.tex, found in
the examples/advanced/icon-appr folder.

This solution requires two files: (1) the puzzle file; and the (2) icon file.

• The puzzle file

Within the puzzle file, the usebtnappr option is specified. The \usepackage command
for dps below specifies the minimal options:

\usepackage[%
usebtnappr,
nonrandomized,
savedata

]{dps}

In the preamble. We place two environments; embedding, to embed the icons; and
setContent, to pose the long questions.

Embedding the icons. The usebtnappr brings in the icon-appr package,10 whichicon-appr package
defines the embedding environment and the \embedIcon command. The dps pack-
age defines \dpsEmbedIcons. This command embeds all the dynamically created PDF
graphics that comprise the long questions. \dpsEmbedIcons is followed by other op-
tional \embedIcon commands.

\begin{embedding}
\dpsEmbedIcons
〈other-embeds〉
\end{embedding}

Below is the example from the demo file.

\begin{embedding}
\dpsEmbedIcons
\embedIcon[name=Emoji,placement=btnEmoji]{MyEmoji.pdf}
\end{embedding}

The second line is the optional one; here, we explicitly embed, using the syntax of
icon-appr, an additional graphic for use by the puzzle.

Special note for xelatex users. The embedding environment is placed in the pream-
ble but the indirect references (a PDF term) of the embedded graphics are not calculated
until the first page is shipped out (a LATEX term); therefore, the puzzle should be on the
second page when the textpos package is used to position the graphics. This issue doestextpos pkg
not arise when using the eso-pic package.

10https://ctan.org/pkg/icon-appr

https://ctan.org/pkg/icon-appr

T
he

 D
P

S
 P

ac
ka

ge

Methods of handling long questions 20

Posing long questions. Following the embedding environment comes the usual con-
tent for designing the puzzle: the \DeclarePuzzle data structure, followed by the
Composing environment. It is within the cQ environment of the Composing environ-
ment that there is a change in content.

The usebtnappr option defines the setContent environment, which is placed inposing long
question the cQ environment.

\begin{cQ}{〈name〉}
〈question-prompt〉

\begin{setContent}{〈name〉}
〈long-question〉

\end{setContent}
\end{cQ}

The 〈name〉 argument of setContent is same as the argument of the enclosing cQ en-
vironment. setContent is a verbatim write environment; \begin{setContent} can
follow the end of the question-prompt (one or more words that suggest what the ques-
tion is about), but the \end{setContent} must be in the left-most margin, as shown
above. We illustrate first with an example taken from the demo file:

\begin{Composing}
\begin{cQ}{R}
Branches of Statistics\begin{setContent}{R}
The two branches of statistics are descriptive and
\underbar{\hspace{.5in}}.
\end{setContent}
\end{cQ}
\begin{cA}[r]{R}
inferential
\end{cA}
...
\end{Composing}

A long question is not required, in the demo file most have long questions and some
do not.

The setContent environment writes its content verbatim to a CUT file (named
\jobname-sc(〈num〉).cut). For example, the CUT file for the first question of the
demo file reads,

\textbf{Problem 1}\newline
The two branches of statistics
are descriptive and \underbar{\hspace{.5in}}.

The first line seen above can be modified using the following two commands.

\newcommand{\quesNumTxt}[1]{\protect\textbf{Problem #1}}
\newcommand{\quesNumTxTPost}{\protect\newline}

These may be redefined.

T
he

 D
P

S
 P

ac
ka

ge

Methods of handling long questions 21

On the puzzle page. Aside from the layout of the puzzle, questions, and answers com-
mands, above all these, place the following commands:

\placeQuesIcon{〈placement-cmds〉}
\placeOtherIcon{〈placement-cmds〉}
The nature of the 〈placement-cmds〉 depends on the “placement” package used. The
demo files use either the eso-pic or textpos package. The 〈placement-cmds〉 place theeso-pic, textpos

packages text field \dpsQuesIcon{#1}{〈wd〉{〈ht〉}}. The following is taken from the demo file,
it uses the eso-pic package.

\placeQuesIcon{\AddToShipoutPictureFG*{\AtTextCenter{\put(-72,0)
{\dpsQuesIcon{#1}{2.25in}{9\baselineskip}}}}}

If other icons were embedded in the embedding environment, those icons can be placed
using the \placeOtherIcon command.

\placeOtherIcon{\AddToShipoutPictureFG*{\AtTextCenter{\put(-72,0)
{\dpsOtherIcon[\I{\csOf{Emoji}}]{btnEmoji}{2.25in}{9\baselineskip}}}}}

• The icons file

The usebtnappr option requires the use of a second file, named icons.tex.11 The
icons.tex file in the examples/advanced/icon-appr. The icons file (icons.tex) is
a very short file and is placed in the same folder as the puzzle file.

\documentclass{article}
\usepackage[!useacrobat]{icon-doc}
\margins{3pt}{3pt}{3pt}{3pt} % left,right,top,bottom (web command)
\screensize{9\baselineskip}{2.25in} % height,width (web command)
\begin{document}
\small
\createRequiredIcons{12}{stat_match1}
\end{document}

The icons file is placed in the came folder as the puzzle file. The dps distribution has
the icon-doc package, a short package designed for the icons file. The package hasicon-doc package
two options useacrobat and !useacrobat, the default is !useacrobat. Document
authors who use pdflatex, lualatex, or dvips -> distiller need not bother with this option;
the option is designed for xelatex users.

Use the \margins command to adjust the boundary margins of icons file. Use the
\screensize to adjust the height of the icons file and the width of the icons file. The
dimensions shown above are the ones used by the demo file.

The \createRequiredIcons{〈num-ques〉}{〈puzzle-file〉} command has two ar-
guments: 〈num-ques〉 is the number of questions in the puzzle file; 〈puzzle-file〉 is
the base name of the puzzle file. The command has two behaviors:

1. For xelatex authors that do not have Acrobat. When the icon file is compiled,
the result is 〈num-ques〉 PDFs, each PDF contains a single long question. Since
the author does not have Acrobat, the icons file is compiled with the !useacrobat

T
he

 D
P

S
 P

ac
ka

ge

Methods of handling long questions 22

option. This case requires the shellesc package and that your LATEX editor be setup toshellesc pkg
use the shell-escape switch of your editor. Refer to Figure 6 to see how to do this
for the WinEdt editor. Other editors/TEX systems may support the shell-escape
switch.

Figure 6: Setting shell-escape on WinEdt

2. For all other cases of workflow. When the icons file is compiled, the result is a single
PDF (icons.pdf) with a page for each long question in the puzzle file, in an order
determined by the randomization option (!nonrandomized or nonrandomized).

For a xelatex author who has Acrobat, the useacrobat needs to be used.

Additional comments for xelatex authors. In the case the author does not own Ac-
robat, when the icons file is compiled, each of the files \jobname-sc(〈num〉).cut is
wrapped in a document template, compiled, and saved as icon-〈num〉.pdf. The docu-
ment wrapper is determined by the contents of the icondoc environment. The defaulticondoc env
declaration of icon-body is,

\begin{icondoc}
\documentclass{article}
\usepackage{web}
\margins{3pt}{3pt}{3pt}{3pt}
\screensize{9\baselineskip}{2.25in}
\begin{document}
\small
\dpsInputContent % required, defined in icon-doc

11The name of the file is hard-wired into the package and cannot be changed at this time.

T
he

 D
P

S
 P

ac
ka

ge

Methods of handling long questions 23

\end{document}
\end{icondoc}

Notice that this markup is similar to the source file for icons.tex; they differ in two
respects, however: (1) the icon-doc package is not used; and (2) in the body, we use
\dpsInputContent rather than \createRequiredIcons. If you use multiple work-
flows, the layout of the icons file and the declarations of the icondoc environment
should be the same. Changes to the icondoc environment are made in the icons file.
For example,

% icons.tex
% modify a design parameters
\documentclass{article}
\usepackage[!useacrobat]{icon-doc}
\margins{4pt}{4pt}{4pt}{4pt} % left,right,top,bottom (web command)
\screensize{10\baselineskip}{3in} % height,width (web command)
% change icondoc to reflect changes above
\begin{icondoc}
\documentclass{article}
\usepackage{web}
\margins{4pt}{4pt}{4pt}{4pt}
\screensize{10\baselineskip}{3in}
\begin{document}
\small
\dpsInputContent % required, defined in icon-doc
\end{document}
\end{icondoc}
\begin{document}
\small
\createRequiredIcons{12}{stat_match1}
\end{document}

Why is xelatex so special (such a problem)? The basic problem when dealing with
xelatex is that it does not obey the page key of \includegrapics. When a graphic is
embedded in a document we say,

\embedIcon[name=Q\n,hyopts={page=\n}]{icons.pdf}

where, \n is question number; in this case, \n is also the page number where the ques-
tion is located in icons.pdf. Since, the key is not obeyed, we cannot bundle all the
questions in a single PDF and pull out the page we want; no, the questions must be
their own PDF, the embedding command is then,

\embedIcon[name=Q\n]{icons-\n.pdf}

where \n is the question number.

Hey, we’re almost done with this option!

T
he

 D
P

S
 P

ac
ka

ge

Methods of handling long questions 24

• The workflow to build the puzzle file

Let’s summarize the workflow to build a puzzle file that uses icon appearances to
display the long questions. We assume you have jumped through all the hoops of the
previous section, your puzzle file and icons file are ready to go.

1. Compile the puzzle file, using the compiler of your choice. If you require a random-
ized listing of the questions and answers, either compile with !nonrandomized,
or the nonrandomize option commented out or deleted. If you are randomizing,
compile with the command \inputRandomSeed in the preamble to input that same
initial seed back in when your later compile the puzzle file in step 3.12

2. Compile the icons file, using your favorite compiler. If you are a xelatex user, the
option useacrobat and !useacrobat as appropriate. (Refer to Additional com-
ments for xelatex authors on page 22 for more details.)

3. Return to the puzzle file. Compile the puzzle file again to obtain the final version.

4. Bring your PDF into Adobe Reader DC (or Adobe Acrobat DC if you have it) and save
the file. After saving, test the puzzle to be sure the icons are displayed with the
long questions. If it does not work, repeat steps 1–3 more carefully.

To familiarize yourself to the procedure, build the demo file stat_match1.tex using
your favorite PDF creator. Try it with several PDF creators, just for fun. The process is
straight forward once everything is properly set up.

9.2. The uselayers option

Demo files. There are several example files in the examples/advanced/ocgs folder,
but in this discussion, we’ll reference, once again, stat_match1 found in the ex1 folder.
There are two versions of this file stat_match1-ep.tex and stat_match1-tb.tex.
The latter uses the textpos package, the latter uses the eso-pic package. For variety,
we’ll reference the textpos version.

The uselayers option is actually a simpler approach (no icon file needed), but there
has more restrictions on the workflow. This option requires the aeb_pro package (withaeb_pro pkg
correctly installed JS files aeb.js and aeb_pro.js) and requires a dvips->distiller PDFAcrobat required
creator workflow.

• The puzzle file

A minimal specification for the aeb_pro and dps packages is listed below:

\usepackage[%
web={extended,tight},
eforms,
uselayers

]{aeb_pro}
\usepackage[uselayers,

12Or, you can open the SAV file and copy and paste the initial seed into the argument of \useRandomSeed.

T
he

 D
P

S
 P

ac
ka

ge

Methods of handling long questions 25

nonrandomized,
savedata

]{dps}

Posing long questions. The \DeclarePuzzle is as described in Section 5.1. As in the
case of Section 9.1, the setContent environment is used to pose long questions.

\begin{cQ}{〈name〉}
〈question-prompt〉

\begin{setContent}{〈name〉}
〈long-question〉

\end{setContent}
\end{cQ}

The definition of setContent differs from that of setContent for the usebtnappr
option. A long question is not required.

The setContent environment writes its content verbatim to a CUT file (named
\jobname-sc(〈name〉-〈num〉).cut). For example, the CUT file for the first question
of the demo file reads,

\textbf{Problem 1}\newline
The two branches of statistics
are descriptive and \underbar{\hspace{.5in}}.

The first line, which is not part of the setContent content, seen above can be modified
using the following two commands.

\newcommand{\quesNumTxt}[1]{\protect\textbf{Problem #1}}
\newcommand{\quesNumTxTPost}{\protect\newline}

These may be redefined.

In the body of the puzzle page. The following three commands are placed on the same
page as the puzzle is to appear. They precede the layout of the puzzle, questions, and
answers.

\fmtOCGQues{〈formatting-comm〉}
\placeQuesLayer{〈placement-cmds〉}
\placeOtherLayer{〈placement-cmds〉}
The argument of \fmtOCGQues is a convenient way of designing how your long ques-\fmtOCGQues
tion appears on the page. Within the argument, use \dpsQuesLayer#1 to symbolically
reference the question. For example, from the demo file,

\fmtOCGQues{%
\parbox[t][9\baselineskip][t]{2.25in}{\kern0pt\small\hfuzz11pt
\psshadowbox[framesep=0pt]{\fcolorbox{red}{cornsilk}{%
\parbox{\linewidth}{\dpsQuesLayer{#1}\vskip3pt}}}}

}

T
he

 D
P

S
 P

ac
ka

ge

Creating a sideshow 26

Here, we’ve used \psshadowbox from pstricks-add,
The nature of the 〈placement-cmds〉 depends on the “placement” package used.

The demo files use either the eso-pic or textpos package. The 〈placement-cmds〉 ar-eso-pic, textpos
packages gument places the question \insertQuesLayer{#1}.

For the command \placeQuesLayer places the question layer, symbolically repre-\placeQuesLayer
sented by \insertQuesLayer{#1}. For example, from the demo file,

\placeQuesLayer{%
\begin{textblock*}{2.25in}[0,0]2.5in+.725in,3in
\insertQuesLayer{#1}
\end{textblock*}%

}

\insertQuesLayer sets the layer and inputs the formatted content.
Use \placeOtherLayer to place other non-question content in a layer. For example,\placeOtherLayer

from the demo file,

\placeOtherLayer{%
\begin{textblock*}{2.25in}[0,0]2.5in+.725in,3in\centering
\xBld{owclogo}\parbox{2.25in}

{\includegraphics[width=2.25in]{owc_self}}\eBld
\end{textblock*}%

}

Here, you must use the aeb_pro commands to create a named layer, using the \xBld/
\eBld command pair. The argument of \xBld is the name of the layer. Within the
\xBld/\eBld pair, we create our content of a graphic.

9.3. Developing an end of game event

There are commands and JavaScript hooks to enable a knowledgable author to create
a special end-of-game event. For example, the graphic placed by \placeOtherIcon or
\placeOtherLayer, becomes visible when the player finishes the puzzle. All the demo
files in the advanced folder have end of game events. The dps provides the command
\dpsFinishedEvent to add JavaScript lines to the action to the end of game event. The
command takes one argument to pass the JavaScript lines to the end of game event; for
example, \dpsFinishedEvent{dpsShowFld("btnEmoji");} appears in several of the\dpsFinishedEvent
example file. This shows the btnEmoji image when the player has finished the puzzle.

10. Creating a sideshow

Some of the advanced examples use a sideshow; as the player progresses through the
puzzle, with each success, a new piece of a graphic is revealed. A partially worked
puzzle is shown in Figure 7.

There are two commands, placed in the preamble, that control the behavior of the
sideshow.

\randomizePicMappings
\sortPicMappings

T
he

 D
P

S
 P

ac
ka

ge

Creating a sideshow 27

Figure 7: Puzzle with sideshow, shown on left

The order the sideshow pictures appears can be in their natural order, or in a random-
ized order. To randomize the order, insert \randomizePicMappings in the preamble;
otherwise, the pictures appear in their natural order.

Second command, \sortPicMappings implies \randomizePicMappings, but with
a twist. The pictures are placed in random positions as they appear; at the end of the
puzzle, a bubble sort is applied, and the pictures are sorted to their natural order. Cool.

In all cases, pressing the Clear button creates a new randomization of the sideshow.

Tiled graphics. A sideshow appears in pieces, called tiles, that appear one at a time
as the puzzle is solved, see Figure 7. The graphic to be used must have been broken
down into a series of tiled sub-graphics. These tiles must be created in a certain way
and labeled in a specific manner. Use the tile-graphic package to tile the graphic intotile-graphic pkg
either individual PDF tiled sub-graphics or as a single package of tiled graphics.13

The base name of the graphic. The tile-graphic has a naming convention that this
package respects:

• When the tiled graphics are individual files, they are named, for example, mypic_01,
mypic_02, mypic_03, …. The base name of this example is mypic. The graphical file
format of the tiles is any format the PDF creator supports for graphical inclusion.
It is usually most convenient for the tiled files to be PDF files.

13https://ctan.org/pkg/tile-graphic

https://ctan.org/pkg/tile-graphic

T
he

 D
P

S
 P

ac
ka

ge

Creating a sideshow 28

• When the tiled graphics are packaged,14 the tile-graphic package names the package
file, for example, mypic_package.pdf. When packaged, the graphical file format
for the tiles are always PDFs. The base name of this example is mypic.

Additional details of how to create a sideshow are dependent on whether the option
usebtnappr or uselayers is taken.

10.1. Sideshow with the usebtnappr option

Demo file. The demo file for this feature is first_date.tex found in the folder
examples/advanced/usebtnappr/sideshow.

First we embed the pictures of the sideshow in the embedding environment.

\begin{embedding}
\dpsEmbedIcons
〈other-embedding commands〉
\sideshowPackaged % optional
\dpsEmbedSideShow[〈ext〉]{〈n-pics〉}{〈path〉}
\end{embedding}

There are two ways to present the sideshow pictures, as described in the paragraph
Tiled graphics above, to the \dpsEmbedSideShow command: (1) as individual tiled
graphics; or (2) as a packaged graphic, the pages of which are the tiled graphics. The
form of how the picture is presented is signaled to the \dpsEmbedSideShow command
by the command \sideshowPackage, as indicated above. The first argument is 〈ext〉,
the file extension of the graphic, this usually not needed; when there is no 〈ext〉 spec-
ified, the extension is assumed to be pdf. The second argument is 〈n-pics〉, the num-
ber of tile sub-graphics in the sideshow. The third argument, 〈path〉, is the path to
the sideshow graphic. At the end of the 〈path〉 is the base name of the graphic, as
described in The base name of the graphic on page 27; for example, graphics/mypic
indicates the tile files are in the graphics sub-folder, with base name of mypic.

After embedding the sideshow graphics, insert them into the puzzle board using,

\insertSideshow{〈nRows〉}{〈nCols〉}{〈width〉}{〈height〉}
where, 〈nRows〉 is the number of rows of the tiled graphic; 〈nCols〉 is the number of
columns of the tiled graphic; 〈width〉 is the width of the tile; and 〈height〉 is the height
of the tile. These latter two are adjusted so the tile fits into the space allotted and the
aspect ratio is preserved.

Remark. When compiling a puzzle with the usebtnappr option, the puzzle file com-
piles in two “modes,” depending on the state of the switch \ifwrtContent. Each
time the document is compiled, the package looks for the file icons-pglst.sav, if
it exists, the switch \ifwrtContent is set false; otherwise, it is set to true. The file
icons-pglst.sav is created by icons.tex, the existence of icons-pglst.sav means
icons.tex has been built. Once the puzzle file knows the icons.tex is built, the

14xelatex does not support packaged files, the tiles should be individual PDFs, as describe previously.

T
he

 D
P

S
 P

ac
ka

ge

29

switch \ifwrtContent is set to false, and its behavior is changed slightly. If some-
thing goes wrong, delete icons-pglst.sav, and rebuild the puzzle file first, the icons
file next, then finally the puzzle file again.

10.2. Sideshow with the uselayers option

Demo file. The two TEX files in the examples/advanced/uselayers/sideshow folder.

When the uselayers option is specified, only EPS files are supported.

\insertSideshow{〈nRows〉}{〈nCols〉}[〈hy-opts〉]{〈path〉}

11. Some small degree of security

If a puzzle is create for a class of students to take for credit; then some security is
appropriate. Typically, you post the puzzle with a print button (see \printDPS above.
After the student completes the puzzle, he/she prints the results and hands it in for
some credit. The dps package also provides \clearOnCloseOrSave:

\clearOnCloseOrSave

Place this command in the preamble. Now, when the puzzle is built, a student tries to
close or save the puzzle, the puzzle is cleared before closing or saving. The only record
is the printed version.15

12. Let’s have some Fun

In order to make answering the questions “fun,” and in addition to the puzzle (or
message), I implemented a point system. Each time the user checks an incorrect answer,
that is recorded as a miss. After completion of the game, the JavaScript determines if
the user has passed the test. To make it more interesting, a penalty point system is
also used: If the user incorrectly answer the same questions multiple times (guessing!),
penalty points are given.

The document author can set the various parameters of this aspect of the game.

\threshold{〈n〉}: The number, 〈n〉, of times a person is allowed to miss the same
question before being “awarded” penalty points. The command \thresholdwith its
one argument defines the command \dsthreshold which expands to the argument,
n, of \threshold. Set \threshold in the preamble, and use \dsthreshold as part
of the instructions or description of the game. The default: \threshold{3}.

\penaltypoints{〈n〉}: The number, 〈n〉, of penalty points to be added into the final
score. Penalty points are “awarded” for missing the same question more than the
number specified by the argument of \threshold. The command \penaltypoints
with its one argument defines the command \dspenaltypoints which expands to
the argument, n, of \penaltypoints. Set \penaltypoints in the preamble, and use

15Perhaps this is a mere nuisance, the student can make many copies of the printed puzzle, and hand it
around to others in the class. Nothing is foolproof.

T
he

 D
P

S
 P

ac
ka

ge

30

\dspenaltypoints as part of the instructions or description of the game. Default:
\penaltypoints{3}.

\passing{〈n〉}: The maximum number, 〈n〉, of questions the user needs to miss and
still pass the test. Passing or not does not depend on the number of penalty points.
The command \passing with its one argument defines the command \dspassing
which expands to the argument, 〈n〉, of \passing. Set \passing in the preamble,
and use \dspassing as part of the instructions or description of the game. The
default is \passing{4}.

The number of incorrect answers and the total penalty points are combined. Based
on the combined score, a final evaluation of the user’s knowledge on the subject is
displayed.

13. Checking for validity

When creating the game, human error can sneak in. The most critical part is the
\DeclarePuzzle command and getting the names of your fields set up the way you
want. Letters with the same field name (the second parameter of the pair) will only
need one question, they will all “light up” when the question is answered.

As explained earlier, after you’ve decided on your puzzle and the field names, you
can then create your Composing environment using the \writeComposingEnv helper
command. Review the discussion in ‘Begin composing the questions and answers’ on
page 12.

To help you lay out your design, use the viewmode option, possibly along with the
showletter option. This gives you a nice preview and you can see where everything
is located. You may have to adjust the parameter for \insertPuzzle to fit the puzzle
into the allotted space. If enclosing puzzle, questions and answer in frames, there may
have to be some adjustment of the depth of the controlling minipage environments,
and so on, etc., etc., etc., and, of course, etc.

Assuming you have successfully posed questions and answers, and designed a lay-
out for your puzzle, the questions, and the answers, you are ready to test it. Using the
nonrandomized option is nice for checking your puzzle; the questions and answers are
listed in the same order.

If you have customized the text using the lang=custom option, you need to check
that your text displays correctly; this is especially important if your new text contains
accented characters, such as our old friend ü. To test your customized string, open your
puzzle document in Acrobat (Reader will not do here) and execute these JavaScript lines
in the console:16

this.resetForm()
nMissed = 0;
nPenaltyPoints = 0;
nPassing = 4;
checkForFinished();

16To execute from the console, open the console window by pressing Ctrl+J, paste in the code, highlight
all the lines and press the Enter key on the keyboard, or Ctrl+Enter on the keypad.

T
he

 D
P

S
 P

ac
ka

ge

31

By changing the variables nMissed, nPenaltyPoints and nPassing, and executing,
you get the different messages appearing in the message text field.

14. Using the web Package

The web package has a many features that can be utilized as a part of your overall
puzzle design.

The package has a powerful template management system for inserting background
graphics into a document, and a system for painting the background a color other than
the default white.

Use the \margins and \screensize commands to set the dimensions of your puz-
zle game page:

\margins{〈left〉}{〈right〉}{〈top〉}{〈bottom〉}
\screensize{〈height〉}{〈width〉}
Enter the title and author’s name, as well as other metadata:

\title{〈doc-title〉}
\author{〈doc-author〉}
See the documentation, aeb_man.pdf, of the AeB distribution for details.

15. Thanks

My thanks to Jürgen Gilg, of u-umlaut fame, for his help and kind suggestions during
the development of this game.

That’s all for now. Hope you enjoy Das Puzzle Spiel and find it a useful learning
tool.

Now, I simply must get back to my retirement. DPS

http://www.ctan.org/pkg/acrotex

T
he

 D
P

S
 P

ac
ka

ge

32

16. Appendix

The following is a subset of the PDFDocEncoding character set for PDF, these are useful
for creating your custom localization file dps_str_cust.def, as discussed in ‘Package
Options’ on page 6.

16.1. German Umlaut (dieresis)

Here a little tabular how to substitute the German Umlaut (dieresis) in PD1.

Ä \string\304 Ö \string\326 Ü \string\334
ä \string\344 ö \string\366 ü \string\374
ß \string\337

16.2. Accents

Here a little tabular how to substitute accents in PD1.

À \string\300 È \string\310 Ì \string\314
à \string\340 è \string\350 ì \string\354
Á \string\301 É \string\311 Í \string\315
á \string\341 é \string\351 í \string\355
Â \string\302 Ê \string\312 Î \string\316
â \string\342 ê \string\352 î \string\356
Ò \string\322 Ù \string\331 ë \string\353
ò \string\362 ù \string\371 Ç \string\307
Ó \string\323 Ú \string\332 ç \string\347
ó \string\363 ú \string\372
Ô \string\324 Û \string\333
ô \string\364 û \string\373

	Table of Contents
	1 Introduction
	2 Requirements
	3 Comments on the demo files
	4 Package Options
	5 Designing your Puzzle
	5.1 \DeclarePuzzle
	5.2 Begin composing the questions and answers

	6 Placing the Content
	6.1 The title and instructions
	6.2 The puzzle
	6.3 The questions
	6.4 The answers
	6.5 The message field
	6.6 Auxiliary files

	7 Commands for controlling randomization
	8 Printing and clearing the puzzle
	9 Methods of handling long questions
	9.1 The usebtnappr option
	• The puzzle file
	• The icons file
	• The workflow to build the puzzle file

	9.2 The uselayers option
	• The puzzle file

	9.3 Developing an end of game event

	10 Creating a sideshow
	10.1 Sideshow with the usebtnappr option
	10.2 Sideshow with the uselayers option

	11 Some small degree of security
	12 Let's have some Fun
	13 Checking for validity
	14 Using the web Package
	15 Thanks
	16 Appendix
	16.1 German Umlaut (dieresis)
	16.2 Accents

