NORTHWEST FLORIDA STATE COLLEGE

Department of Mathematics
AcroTEX eDucation Bundle
Exercises and Quizzes
D. P. Story
Legend: In Section 5 , a $\boldsymbol{\imath}$ indicates that the
student gave the correct response; a \boldsymbol{X}, indi-
cates an incorrect response, in this case, the
correct answer is marked with a -
(C) 1999-2019

May 22, 2019

Table of Contents

1. Introduction
2. Online Exercises
3. Short Quizzes with or without Solutions
4. Graded Quizzes with JavaScript
5. Correcting Quizzes with JavaScript
6. Objective-Style Questions

Solutions to Exercises
Solutions to Quizzes

1. Introduction

This is a sample file to give templates of the environments defined in exerquiz. The file illustrates the exercise, the shortquiz and quiz environments.

In the case of the quiz environments, only multiple-choice questions are illustrated. Open ended, or objective style questions are demonstrated in other sample files.

2. Online Exercises

A well-designed sequences of exercises can be of aid to the student. The exercise environment makes it easy to produce electronic exercises. By using the forpaper option, you can also make a paper version of your exercises. See the aeb_man.pdf reference manual.

Exercise 1. Evaluate the integral $\int x^{2} e^{2 x} d x$.
In the preamble of this document, we defined a problem environment with its own counter. Here is an example of it.

Problem 2.1. Is $F(t)=\sin (t)$ an antiderivative of $f(x)=\cos (x)$? Explain your reasoning.

Problem 2.2. Is $F(t)=\sin (t)$ an antiderivative of $f(x)=\cos (x)$? Explain your reasoning.

By modifying the exercise environment, you can also create an example environment. The one defined in the preamble of this document has no associated counter.

Example. Give an example of a set that is clopen.
Solution: The real number line is both closed and open in the usual topology of the real line.

There is an exercise* environment, using it signals the presence of a multiple part exercise question. The following exercise illustrates this environment.

Exercise 2. Suppose a particle is moving along the s-axis, and that its position at any time t is given by $s=t^{2}-5 t+1$.
(a) Find the velocity, v, of the particle at any time t.
(b) Find the acceleration, a, of the particle at any time t.

References can be made to a particular part of an exercise; for example, "see Exercise 2(a)." Part (a) is in blue; the solutions for that part is "hidden". This is a new option for the exercise environment.

There is now an option for listing multi-part question in tabular form. This problem style does not obey the solutionsafter option. Exercise 3. Simplify each of the following expressions in the complex number system. Note: \bar{z} is the conjugate of $z ; \operatorname{Re} z$ is the real part of z and $\operatorname{Im} z$ is the imaginary part of z.
(a) i^{2}
(b) i^{3}
(c) $z+\bar{z}$
(d) $1 / z$

3. Short Quizzes with or without Solutions

Short quizzes are quizzes with immediate response. As soon as the user enters an answer, that answer is immediately evaluated, the results of the evaluation are communicated to the user.

Solutions can optionally be included in each question. Below is a shortquiz without solution.

Quiz Was it in Xanadu did Kubla Kahn a stately pleasure dome decree?
\square True \square False

Below is a shortquiz with a solution.

Quiz In what year did Columbus sail the ocean blue?

$\square 1492$
$\square 1493$
These two types can be bundled together using the questions environment.

Quiz Answer each of the following. Passing is 100%.

1. Was it in Xanadu did Kubla Kahn a stately pleasure dome decree? \square True $\quad \square$ False
2. In what year did Columbus sail the ocean blue?

Try using the proofing option of exerquiz. In this case, the correct answer is indicated to the side; useful, perhaps, for proof-reading the document

4. Graded Quizzes with JavaScript

You can create graded quizzes using the quiz environment. Here is a graded quiz using simple links. This might be suitable for a limited number of questions.

Begin Quiz Using the discriminant，$b^{2}-4 a c$ ，respond to each of the following questions．
1．Is the quadratic polynomial $x^{2}-4 x+3$ irreducible？
〇Yes
〇No

2．Is the quadratic polynomial $2 x^{2}-4 x+3$ irreducible？
〇Yes
○ No
3．How many solutions does the equation $2 x^{2}-3 x-2=0$ have？
Onone
○one
Otwo

End Quiz

Score：

By using the＊－option，you can create a multiple choice set of question using check boxes．

Begin Quiz Using the discriminant，$b^{2}-4 a c$ ，respond to each of the following questions．
1．Is the quadratic polynomial $x^{2}-4 x+3$ irreducible？
〇Yes
○ No

2．Is the quadratic polynomial $2 x^{2}-4 x+3$ irreducible？
〇Yes
〇No

3．How many solutions does the equation $2 x^{2}-3 x-2=0$ have？
Onone ○one 〇two

End Quiz Score：

The proofing option of exerquiz can be used to mark the correct answer to the side；useful，perhaps，for proof－reading the document

5．Correcting Quizzes with JavaScript

Beginning with version 1.2 of exerquiz，you can now grade the quizzes created by the quiz environment．In this section，we illustrate the quiz environment with corrections．

There are two types：link－style and form－style．This is the link－ style format：

Begin Quiz Answer each of the following．Passing is 100% ．
1．Who created $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ ？
OKnuth 〇Lamport 〇 Carlisle 〇Rahtz
2．Who originally wrote LATEX？

OKnuth | QLamport |
| :--- |
| Quiz Score： |
| Sarlisle |
| Sorrect | Rahtz

End Quiz

We can obtain the forms－style quiz simply by inserting an＊before the quiz field name．Important！Be sure to name each quiz field differently！

Begin Quiz Answer each of the following．Passing is 100% ．
1．Who created $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ ？
OKnuth 〇Lamport 〇 Carlisle 〇Rahtz
2．Who originally wrote $\mathrm{LT}_{\mathrm{E}} \mathrm{X}$ ？

OKnuth 〇Lamport 〇Carlisle 〇Rahtz | | | |
| :--- | :--- | :--- |

The＂corrections＂button can be modified to fit your needs．The quiz below queries your knowledge of the people who maintain various freeware TEX Systems．${ }^{1}$ The corrections button has been modified to take on a different look．

Begin Quiz Answer each of the following．Passing is 100% ．
1．What TEX System does Thomas Esser maintain？
〇MikTEX ○csTEX OteTEX OfpTEX
${ }^{1}$ This quiz is a bit out of date．
2. What $T_{E} X$ System does Fabrice Popineau maintain?
〇MikTEX
OcsTEX
OteTEX
$\mathrm{Ofp}_{\mathrm{fp}} \mathrm{X}$
3. What $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ System does Christian Schenk maintain?
〇MikTEX
OcsTEX
Ote $\mathrm{T}_{\mathrm{E}} \mathrm{X}$
$\mathrm{Ofp}_{\mathrm{fp}} \mathrm{X} \mathrm{X}$

	End Quiz
	Score:

6. Objective-Style Questions

It is possible to pose objective-style questions (fill-in-the-blank). The demo file for this style question is called jquiztst.pdf (relative link: jquiztst.pdf). Click on the link to review this demo file.

Solutions to Exercises

Exercise 1. We evaluate by integration by parts:

$$
\begin{aligned}
\int x^{2} e^{2 x} d x & =\frac{1}{2} x^{2} e^{2 x}-\int x e^{2 x} d x & & u=x^{2}, d v=e^{2 x} d x \\
& =\frac{1}{2} x^{2} e^{2 x}-\left[\frac{1}{2} x e^{2 x}-\int \frac{1}{2} e^{2 x} d x\right] & & \text { integration by parts } \\
& =\frac{1}{2} x^{2} e^{2 x}-\frac{1}{2} x e^{2 x}+\frac{1}{2} \int e^{2 x} d x & & u=x^{2}, d v=e^{2 x} d x \\
& =\frac{1}{2} x^{2} e^{2 x}-\frac{1}{2} x e^{2 x}+\frac{1}{4} e^{2 x} & & \text { integration by parts } \\
& =\frac{1}{4}\left(2 x^{2}-2 x+1\right) e^{2 x} & & \text { simplify! }
\end{aligned}
$$

Problem 2.1. The answer is yes. The definition states that F is an antiderivative of f if $F^{\prime}(x)=f(x)$. Note that

$$
F(t)=\sin (t) \Longrightarrow F^{\prime}(t)=\cos (t)
$$

hence, $F(x)=\cos (x)=f(x)$.

Problem 2.2. The answer is yes. The definition states that F is an antiderivative of f if $F^{\prime}(x)=f(x)$. Note that

$$
F(t)=\sin (t) \Longrightarrow F^{\prime}(t)=\cos (t)
$$

hence, $F(x)=\cos (x)=f(x)$.

Exercise 2(b) Acceleration is the rate of change of velocity with respect to time. Thus,

$$
a=\frac{d v}{d t}
$$

For our problem, we have

$$
a=\frac{d v}{d t}=\frac{d}{d t}(2 t-5)=2 .
$$

The acceleration at time t is constant: $a=2$.

Exercise 3(a) $i^{2}=-1$

Solutions to Exercises
Exercise 3(b) $i^{3}=i i^{2}=-i$

Exercise 3(c) $z+\bar{z}=\operatorname{Re} z$

Solutions to Quizzes

Solution to Quiz:

In 1492,
Columbus sailed the ocean blue.
Profound was the logic in his quest, to get to the east, he headed west. ${ }^{2}$
${ }^{2}$ This poem was obtained by personal communication from Leonard A. Stefanski, Department of Statistics, North Carolina State University.

Solution to Quiz:

In 1492,
Columbus sailed the ocean blue. Profound was the logic in his quest, to get to the east, he headed west. ${ }^{3}$
${ }^{3}$ This poem was obtained by personal communication from Leonard A. Stefanski, Department of Statistics, North Carolina State University.

Solution to Quiz: Yes, it was Donald Knuth who first created $\mathrm{T}_{\mathrm{E}} \mathrm{X}$.

Solution to Quiz: Yes, it was Leslie Lamport who first created TEX.

