summaryrefslogtreecommitdiff
path: root/texmf-dist/doc/latex/rangen/rangen_tst.tex
diff options
context:
space:
mode:
Diffstat (limited to 'texmf-dist/doc/latex/rangen/rangen_tst.tex')
-rw-r--r--texmf-dist/doc/latex/rangen/rangen_tst.tex280
1 files changed, 280 insertions, 0 deletions
diff --git a/texmf-dist/doc/latex/rangen/rangen_tst.tex b/texmf-dist/doc/latex/rangen/rangen_tst.tex
new file mode 100644
index 00000000..c89a5964
--- /dev/null
+++ b/texmf-dist/doc/latex/rangen/rangen_tst.tex
@@ -0,0 +1,280 @@
+\documentclass{article}
+\usepackage[fleqn]{amsmath}
+\usepackage[tight,designiii,usesf]{web}
+\usepackage{exerquiz}
+\usepackage[equations,ImplMulti,indefIntegral,limitArith,nodec]{dljslib}
+\usepackage[quiet,testmode]{rangen}
+
+\title{Experiments in Creating Random Problems}
+\author{D. P. Story}
+\subject{Test file for the rangen Package}
+\keywords{LaTeX, rangen, quizzes, random}
+
+\university{NORTHWEST FLORIDA STATE COLLEGE\\
+ Department of Mathematics}
+\email{dpstory@acrotex.net}
+\version{1.0}
+
+%\nocopyright
+\norevisionLabel
+\makeatletter
+\def\eq@textFont{/TiRo}
+\makeatother
+
+\everyTextField{\BG{1 1 1}}
+\everyCheckBox{\BG{1 1 1}}
+\everyRespBoxMath{\rectW{1.9in}\textSize{0}}
+\everyRespBoxTxt{\rectW{1.9in}\textSize{0}}
+
+\newcommand{\cs}[1]{\texttt{\char`\\#1}}
+
+\renewcommand\nodecAlertMsg{%
+ "A decimal answer is not acceptable here.
+ Please express your answer using a fraction."}
+\newenvironment{eqComments}[1][\strut]{\smallskip\leftskip-\labelwidth
+\item[]\textbf{\textcolor{blue}{#1}}}{\par\smallskip}
+
+\begin{document}
+
+\maketitle
+
+\begin{shortquiz}*[sq] Answer each of the following. Passing is 100\%.
+
+\begin{questions}
+
+\begin{eqComments}[Arithmetic]\end{eqComments}
+
+%% addition
+\RandomQ{\a}[9]{1/8}{6/7}\RandomQ{\b}[8]{1/16}{15/16}
+
+\item $\displaystyle \ds\a + \ds\b =
+ \RespBoxMath{ (\nOf\a * \dOf\b + \nOf\b * \dOf\a )/( \dOf\a * \dOf\b ) }{2}{.0001}{[0,2]}[{priorParse: \Array(nodec,NoAddOrSub)}]$\hfill
+ \CorrAnsButton{rFrac( rEval( \nOf\a * \dOf\b + \nOf\b * \dOf\a )/rEval( \dOf\a * \dOf\b ))}*{rngCorrAnsButton}\kern1bp\sqTallyBox
+
+% subtraction
+\RandomQ{\a}[16]{1/16}{15/16}\RandomQ[ne=\a]{\b}[16]{1/8}{15/16}
+
+\item $\displaystyle \ds\a - \ds\b =
+ \RespBoxMath{ (\nOf\a * \dOf\b - \nOf\b * \dOf\a )/( \dOf\a * \dOf\b ) }{2}{.0001}{[0,2]}[{priorParse: \Array(nodec,NoAddOrSub)}]$\hfill
+ \CorrAnsButton{rFrac( rEval( \nOf\a * \dOf\b - \nOf\b * \dOf\a )/rEval( \dOf\a * \dOf\b ) )}*{rngCorrAnsButton}\kern1bp\sqTallyBox
+
+% subtraction
+\RandomQ{\a}[16]{1/8}{15/16}\RandomQ[ne=\a]{\b}[16]{1/8}{15/16}
+
+\item $\displaystyle \ds\a - \ds\b =
+ \RespBoxMath{ (\nOf\a * \dOf\b - \nOf\b * \dOf\a )/( \dOf\a * \dOf\b ) }{2}{.0001}{[0,2]}[{priorParse: \Array(nodec,NoAddOrSub)}]$\hfill
+ \CorrAnsButton{rFrac( rEval( \nOf\a * \dOf\b - \nOf\b * \dOf\a )/rEval( \dOf\a * \dOf\b ) )}*{rngCorrAnsButton}\kern1bp\sqTallyBox
+
+\begin{eqComments}
+This next problem illustrates the use of \cs{RandomL} and \cs{RansomAS}. The summands are
+determined from a list of rational numbers. Addition or subtraction of the summands is determined
+by \cs{RandomAS}.
+\end{eqComments}
+
+%% Random add/subtr using RandomL and RandomAS
+\RandomL{\a}{1/2,2/3,5/3,2/5,6/5}\RandomL{\b}{4/3,3/4,8/7,3/2}\RandomS{\as}
+
+\item $\displaystyle \ds\a \as \ds\b =
+ \RespBoxMath{ (\nOf\a * \dOf\b \as \nOf\b * \dOf\a )/( \dOf\a * \dOf\b ) }{2}{.0001}{[0,2]}[{priorParse: \Array(nodec,NoAddOrSub)}]$\hfill
+ \CorrAnsButton{rFrac( rEval( \nOf\a * \dOf\b \as \nOf\b * \dOf\a )/rEval( \dOf\a * \dOf\b ) )}*{rngCorrAnsButton}\kern1bp\sqTallyBox
+
+
+\begin{eqComments}
+This next example illustrates how you can create a solution to a problem. This is a simple
+addition problem using the built-in command \cs{qAdd}. Solutions to more advanced problems
+might be obtained using the \textsf{fp} package.
+\end{eqComments}
+
+\begin{writeRVsTo}{quizzes}
+\RandomQ{\a}[9]{1/8}{6/7}\RandomQ{\b}[7]{1/16}{15/16}
+\end{writeRVsTo}
+
+%% addition
+\item $\displaystyle \ds\a + \ds\b =
+ \RespBoxMath{ (\nOf\a * \dOf\b + \nOf\b * \dOf\a )/( \dOf\a * \dOf\b ) }*{2}{.0001}{[0,2]}[{priorParse: \Array(nodec,NoAddOrSub)}]$\hfill
+ \CorrAnsButton{rFrac( rEval( \nOf\a * \dOf\b + \nOf\b * \dOf\a )/rEval( \dOf\a * \dOf\b ) )}*{rngCorrAnsButton}\kern1bp\sqTallyBox
+
+\begin{solution}\relax\RNGadd\a\b\defineQ{\ans}{\rfNumer}{\rfDenom}%
+The solution to this problem is
+\begin{equation*}
+ \boxed{\ds\a + \ds\b = \ds\ans}
+\end{equation*}
+\end{solution}
+
+
+\newpage
+\begin{eqComments}[Definite Integrals]\end{eqComments}
+
+\RandomQ{\a}[8]{1/4}{7/6}
+\RandomZ{\b}{1}{3}
+\RandomQ{\n}[8]{1/2}{3/2}
+\RandomZ[ne=0]{\c}{-3}{3}
+
+\item $\displaystyle\int_{\a}^{\b} \cfmt\c x^{\efmt\n}\,dx =
+ \RespBoxMath{\c((\b)^(\n+1)-(\a)^(\n+1))/(\n+1)}{3}{.0001}{[0,2]}$\hfill
+ \CorrAnsButton{rEval(\c((\b)^(\n+1)-(\a)^(\n+1))/(\n+1))}*{rngCorrAnsButton}\kern1bp\sqTallyBox
+
+
+\RandomQ{\a}{1/6}{2/9}
+\RandomZ{\b}{1}{10}
+\RandomQ[ne={0,-1}]{\n}[5]{-1}{1}
+\RandomZ[ne=0]{\c}{-3}{3}
+
+\item $\displaystyle\int_{\a}^{\b} \cfmt\c x^{\efmt\n}\,dx =
+ \RespBoxMath{\c((\b)^(\n+1)-(\a)^(\n+1))/(\n+1)}{3}{.0001}{[0,2]}$\hfill
+ \CorrAnsButton{rEval(\c((\b)^(\n+1)-(\a)^(\n+1))/(\n+1))}*{rngCorrAnsButton}\kern1bp\sqTallyBox
+
+\RandomZ{\a}{1}{6}
+\RandomZ{\b}{\a*}{8}
+\RandomZ{\n}{1}{5}
+\RandomZ[ne=0]{\c}{-3}{3}
+
+\item $\displaystyle\int_{\a}^{\b} \cfmt\c x^{\efmt\n}\,dx =
+ \RespBoxMath{\c((\b)^(\n+1)-(\a)^(\n+1))/(\n+1)}{3}{.0001}{[0,2]}$\hfill
+ \CorrAnsButton{rFrac(rEval(\c ( (\b)^(\n+1)-(\a)^(\n+1)))/rEval(\n+1))}*{rngCorrAnsButton}\kern1bp\sqTallyBox
+
+\RandomZ{\a}{1}{5}
+\RandomZ{\b}{\a*}{10}
+\RandomQ[ne={0,-1}]{\n}{-3}{2/3}
+\RandomZ[ne=0]{\c}{-3}{3}
+
+\item $\displaystyle\int_{\a}^{\b} \cfmt\c x^{\efmt\n}\,dx =
+ \RespBoxMath{\c((\b)^(\n+1)-(\a)^(\n+1))/(\n+1)}{3}{.0001}{[0,2]}$\hfill
+ \CorrAnsButton{rEval(\c((\b)^(\n+1)-(\a)^(\n+1))/(\n+1))}*{rngCorrAnsButton}\kern1bp\sqTallyBox
+
+\RandomQ{\a}{1/4}{2/3}
+\RandomQ{\b}{\a*}{7/6}
+\RandomQ[ne={0,-1}]{\n}{-3}{2/3}
+\RandomZ[ne=0]{\c}{-3}{3}
+
+\item $\displaystyle\int_{\a}^{\b} \cfmt\c x^{\efmt\n}\,dx =
+ \RespBoxMath{\c((\b)^(\n+1)-(\a)^(\n+1))/(\n+1)}{3}{.0001}{[0,2]}$\hfill
+ \CorrAnsButton{rEval(\c((\b)^(\n+1)-(\a)^(\n+1))/(\n+1))}*{rngCorrAnsButton}\kern1bp\sqTallyBox
+
+\begin{eqComments}
+This next problem was created from random lists of values using \cs{RandomL}.
+\end{eqComments}
+
+\RandomL{\c}{1/6,1/4,1/6,1/2}
+\RandomL{\a}{1,2,3,4,5,6}
+\ifnum\a=1
+ \def\strAns{sin(PI/\dOf\c)}
+\else
+ \def\strAns{(1/\a)(sin(\a*PI/\dOf\c))}
+\fi
+
+\item $\displaystyle\int_0^{\pi/\dOf\c} \cos(\cfmt\a x) \,dx =
+ \RespBoxMath{(1/\a)(sin(\a*PI/\dOf\c))}{3}{.0001}{[0,2]}$\hfill
+ \CorrAnsButton{rEval(\strAns)}*{rngCorrAnsButton\RNGprintf{\%.4f}}\kern1bp\sqTallyBox
+
+
+\newpage
+\begin{eqComments}[Indefinite Integration]\end{eqComments}
+
+\RandomQ{\a}{1/6}{3/2}
+\RandomQ{\b}{1/6}{3/2}
+\RandomZ{\c}{1}{3}
+
+\item $\displaystyle\int \cds\a x^2 + \ds\b x + \c\,dx =
+ \RespBoxMath{(\a/3)x^3+(\b/2) x^2 + \c x}{3}{.0001}{[0,2]}$\hfill
+ \CorrAnsButton{(rFrac(rEval(\nOf\a)/rEval(3*\dOf\a))) x^3
+ + (rFrac(rEval(\nOf\b)/rEval(2*\dOf\b))) x^2
+ + \c x + C}*{rngCorrAnsButton}\kern1bp\sqTallyBox
+
+\RandomQ{\a}{1/3}{3}
+\RandomQ{\b}{1/6}{3/2}
+\RandomZ{\c}{1}{3}
+
+\item $\displaystyle\int \cds\a x^2 + \ds\b x + \c\,dx =
+ \RespBoxMath{(\a/3)x^3+(\b/2) x^2 + \c x}{3}{.0001}{[0,2]}$\hfill
+ \CorrAnsButton{(rFrac(rEval(\nOf\a)/rEval(3*\dOf\a))) x^3
+ + (rFrac(rEval(\nOf\b)/rEval(2*\dOf\b))) x^2
+ + \c x + C}*{rngCorrAnsButton}\kern1bp\sqTallyBox
+
+\newpage
+\begin{eqComments}[Differentiation]\end{eqComments}
+
+\RandomQ[ne=0]{\c}[4]{-2}{2}
+\RandomQ[ne=0]{\n}[1]{-3}{2}
+
+\item $\displaystyle \frac{d}{dx} \cds\c x^{\efmt\n} =
+ \ifnum\nOf\n=\dOf\n
+ \RespBoxMath{\c}{3}{.0001}{[0,2]}$\hfill
+ \CorrAnsButton{rFrac(\nOf\c/\dOf\c)}*{rngCorrAnsButton}%
+ \else
+ \RespBoxMath{\c*\n*x^(\n-1)}{3}{.0001}{[0,2]}$\hfill
+ \CorrAnsButton{rFrac(rEval(\nOf\c*\nOf\n)/rEval(\dOf\c*\dOf\n))
+ x^(rFrac(rEval(\nOf\n-\dOf\n)/\dOf\n))}*{rngCorrAnsButton}%
+ \fi
+ \kern1bp\sqTallyBox
+
+\begin{eqComments}
+This next problem uses a random sign, defined by \cs{RandomS}.
+\end{eqComments}
+
+\RandomQ{\c}[4]{2}{3}\RandomS{\s}
+\RandomQ[ne=0]{\n}[2]{-3}{2}
+
+\item $\displaystyle \frac{d}{dx} \cfmt\s\ds\c x^{\efmt\n} =
+ \ifnum\nOf\n=\dOf\n
+ \RespBoxMath{\s\c}{3}{.0001}{[0,2]}$\hfill
+ \CorrAnsButton{\s\nOf\c/\dOf\c}*{rngCorrAnsButton}%
+ \else
+ \RespBoxMath{\s\c*\n*x^(\n-1)}{3}{.0001}{[0,2]}$\hfill
+ \CorrAnsButton{rFrac(rEval(\s\nOf\c*\nOf\n)/rEval(\dOf\c*\dOf\n))
+ x^(rFrac(rEval(\nOf\n-\dOf\n)/\dOf\n))}*{rngCorrAnsButton}%
+ \fi
+ \kern1bp\sqTallyBox
+
+
+\RandomQ[ne=0]{\c}[4]{-2}{5}
+\RandomQ{\n}[4]{2}{5}
+
+\item $\displaystyle \frac{d}{dx} \ds\c x^{\efmt\n} =
+ \ifnum\nOf\n=\dOf\n
+ \RespBoxMath{\c}{3}{.0001}{[0,2]}$\hfill
+ \CorrAnsButton{\nOf\c/\dOf\c}*{rngCorrAnsButton}%
+ \else
+ \RespBoxMath{\c*\n*x^(\n-1)}{3}{.0001}{[0,2]}$\hfill
+ \CorrAnsButton{rFrac(rEval(\nOf\c*\nOf\n)/rEval(\dOf\c*\dOf\n))
+ x^(rFrac(rEval(\nOf\n-\dOf\n)/\dOf\n))}*{rngCorrAnsButton}%
+ \fi
+ \kern1bp\sqTallyBox
+
+\newpage
+
+\begin{eqComments}[Analytic Geometry]\end{eqComments}
+
+\RandomZ{\a}{-10}{9}
+\RandomZ{\b}{-10}{9}
+\RandomZ{\c}{\a*}{10}
+\RandomZ{\d}{\b*}{10}
+\defineDepQJS{\m}{\d - \b}{\c - \a}{rFrac(rEval(\nOf\m)/rEval(\dOf\m))}
+\defineDepQJS{\yIntercept}{\b - \a*\m}{1}{rFrac((rEval( \b * \dOf\m - \a*\nOf\m ))/(rEval(\dOf\m)))}
+
+
+\item Let $P(\,\a, \b\,)$ be a point and $Q(\,\c, \d\,)$ be a point. Find the equation of the line that
+ passes through $P$ and $Q$.\par\kern3pt
+ \RespBoxMath{y = \m*x + \yIntercept }(xy){3}{.0001}{[0,2]x[0,2]}*{ProcRespEq}\hfill
+ \CorrAnsButton{y = \js\m\space x + \js\yIntercept}*{rngCorrAnsButton}%
+ \kern1bp\sqTallyBox
+
+\RandomZ{\a}{-10}{9}
+\RandomZ{\b}{-10}{9}
+\RandomZ{\c}{\a*}{10}
+\RandomZ{\d}{\b*}{10}
+\defineDepQJS{\m}{\d - \b}{\c - \a}{rFrac(rEval(\nOf\m)/rEval(\dOf\m))}
+\defineDepQJS{\yIntercept}{\b - \a*\m}{1}{rFrac((rEval( \b * \dOf\m - \a*\nOf\m ))/(rEval(\dOf\m)))}
+
+\item Let $P(\,\a, \b\,)$ be a point and $Q(\,\c, \d\,)$ be a point. Find the equation of the line that
+ passes through $P$ and $Q$.\par\kern3pt
+ \RespBoxMath{y = \m*x + (\b - \a*\m) }(xy){3}{.0001}{[0,2]x[0,2]}*{ProcRespEq}\hfill
+ \CorrAnsButton{y = \js\m\space x + \js\yIntercept}*{rngCorrAnsButton}%
+ \kern1bp\sqTallyBox
+
+\end{questions}
+\end{shortquiz}
+\begin{flushright}
+\sqClearButton\kern1bp\sqTallyTotal
+\end{flushright}
+\end{document}