diff options
Diffstat (limited to 'texmf-dist/doc/latex/rangen/rangen_tst.tex')
-rw-r--r-- | texmf-dist/doc/latex/rangen/rangen_tst.tex | 280 |
1 files changed, 280 insertions, 0 deletions
diff --git a/texmf-dist/doc/latex/rangen/rangen_tst.tex b/texmf-dist/doc/latex/rangen/rangen_tst.tex new file mode 100644 index 00000000..c89a5964 --- /dev/null +++ b/texmf-dist/doc/latex/rangen/rangen_tst.tex @@ -0,0 +1,280 @@ +\documentclass{article} +\usepackage[fleqn]{amsmath} +\usepackage[tight,designiii,usesf]{web} +\usepackage{exerquiz} +\usepackage[equations,ImplMulti,indefIntegral,limitArith,nodec]{dljslib} +\usepackage[quiet,testmode]{rangen} + +\title{Experiments in Creating Random Problems} +\author{D. P. Story} +\subject{Test file for the rangen Package} +\keywords{LaTeX, rangen, quizzes, random} + +\university{NORTHWEST FLORIDA STATE COLLEGE\\ + Department of Mathematics} +\email{dpstory@acrotex.net} +\version{1.0} + +%\nocopyright +\norevisionLabel +\makeatletter +\def\eq@textFont{/TiRo} +\makeatother + +\everyTextField{\BG{1 1 1}} +\everyCheckBox{\BG{1 1 1}} +\everyRespBoxMath{\rectW{1.9in}\textSize{0}} +\everyRespBoxTxt{\rectW{1.9in}\textSize{0}} + +\newcommand{\cs}[1]{\texttt{\char`\\#1}} + +\renewcommand\nodecAlertMsg{% + "A decimal answer is not acceptable here. + Please express your answer using a fraction."} +\newenvironment{eqComments}[1][\strut]{\smallskip\leftskip-\labelwidth +\item[]\textbf{\textcolor{blue}{#1}}}{\par\smallskip} + +\begin{document} + +\maketitle + +\begin{shortquiz}*[sq] Answer each of the following. Passing is 100\%. + +\begin{questions} + +\begin{eqComments}[Arithmetic]\end{eqComments} + +%% addition +\RandomQ{\a}[9]{1/8}{6/7}\RandomQ{\b}[8]{1/16}{15/16} + +\item $\displaystyle \ds\a + \ds\b = + \RespBoxMath{ (\nOf\a * \dOf\b + \nOf\b * \dOf\a )/( \dOf\a * \dOf\b ) }{2}{.0001}{[0,2]}[{priorParse: \Array(nodec,NoAddOrSub)}]$\hfill + \CorrAnsButton{rFrac( rEval( \nOf\a * \dOf\b + \nOf\b * \dOf\a )/rEval( \dOf\a * \dOf\b ))}*{rngCorrAnsButton}\kern1bp\sqTallyBox + +% subtraction +\RandomQ{\a}[16]{1/16}{15/16}\RandomQ[ne=\a]{\b}[16]{1/8}{15/16} + +\item $\displaystyle \ds\a - \ds\b = + \RespBoxMath{ (\nOf\a * \dOf\b - \nOf\b * \dOf\a )/( \dOf\a * \dOf\b ) }{2}{.0001}{[0,2]}[{priorParse: \Array(nodec,NoAddOrSub)}]$\hfill + \CorrAnsButton{rFrac( rEval( \nOf\a * \dOf\b - \nOf\b * \dOf\a )/rEval( \dOf\a * \dOf\b ) )}*{rngCorrAnsButton}\kern1bp\sqTallyBox + +% subtraction +\RandomQ{\a}[16]{1/8}{15/16}\RandomQ[ne=\a]{\b}[16]{1/8}{15/16} + +\item $\displaystyle \ds\a - \ds\b = + \RespBoxMath{ (\nOf\a * \dOf\b - \nOf\b * \dOf\a )/( \dOf\a * \dOf\b ) }{2}{.0001}{[0,2]}[{priorParse: \Array(nodec,NoAddOrSub)}]$\hfill + \CorrAnsButton{rFrac( rEval( \nOf\a * \dOf\b - \nOf\b * \dOf\a )/rEval( \dOf\a * \dOf\b ) )}*{rngCorrAnsButton}\kern1bp\sqTallyBox + +\begin{eqComments} +This next problem illustrates the use of \cs{RandomL} and \cs{RansomAS}. The summands are +determined from a list of rational numbers. Addition or subtraction of the summands is determined +by \cs{RandomAS}. +\end{eqComments} + +%% Random add/subtr using RandomL and RandomAS +\RandomL{\a}{1/2,2/3,5/3,2/5,6/5}\RandomL{\b}{4/3,3/4,8/7,3/2}\RandomS{\as} + +\item $\displaystyle \ds\a \as \ds\b = + \RespBoxMath{ (\nOf\a * \dOf\b \as \nOf\b * \dOf\a )/( \dOf\a * \dOf\b ) }{2}{.0001}{[0,2]}[{priorParse: \Array(nodec,NoAddOrSub)}]$\hfill + \CorrAnsButton{rFrac( rEval( \nOf\a * \dOf\b \as \nOf\b * \dOf\a )/rEval( \dOf\a * \dOf\b ) )}*{rngCorrAnsButton}\kern1bp\sqTallyBox + + +\begin{eqComments} +This next example illustrates how you can create a solution to a problem. This is a simple +addition problem using the built-in command \cs{qAdd}. Solutions to more advanced problems +might be obtained using the \textsf{fp} package. +\end{eqComments} + +\begin{writeRVsTo}{quizzes} +\RandomQ{\a}[9]{1/8}{6/7}\RandomQ{\b}[7]{1/16}{15/16} +\end{writeRVsTo} + +%% addition +\item $\displaystyle \ds\a + \ds\b = + \RespBoxMath{ (\nOf\a * \dOf\b + \nOf\b * \dOf\a )/( \dOf\a * \dOf\b ) }*{2}{.0001}{[0,2]}[{priorParse: \Array(nodec,NoAddOrSub)}]$\hfill + \CorrAnsButton{rFrac( rEval( \nOf\a * \dOf\b + \nOf\b * \dOf\a )/rEval( \dOf\a * \dOf\b ) )}*{rngCorrAnsButton}\kern1bp\sqTallyBox + +\begin{solution}\relax\RNGadd\a\b\defineQ{\ans}{\rfNumer}{\rfDenom}% +The solution to this problem is +\begin{equation*} + \boxed{\ds\a + \ds\b = \ds\ans} +\end{equation*} +\end{solution} + + +\newpage +\begin{eqComments}[Definite Integrals]\end{eqComments} + +\RandomQ{\a}[8]{1/4}{7/6} +\RandomZ{\b}{1}{3} +\RandomQ{\n}[8]{1/2}{3/2} +\RandomZ[ne=0]{\c}{-3}{3} + +\item $\displaystyle\int_{\a}^{\b} \cfmt\c x^{\efmt\n}\,dx = + \RespBoxMath{\c((\b)^(\n+1)-(\a)^(\n+1))/(\n+1)}{3}{.0001}{[0,2]}$\hfill + \CorrAnsButton{rEval(\c((\b)^(\n+1)-(\a)^(\n+1))/(\n+1))}*{rngCorrAnsButton}\kern1bp\sqTallyBox + + +\RandomQ{\a}{1/6}{2/9} +\RandomZ{\b}{1}{10} +\RandomQ[ne={0,-1}]{\n}[5]{-1}{1} +\RandomZ[ne=0]{\c}{-3}{3} + +\item $\displaystyle\int_{\a}^{\b} \cfmt\c x^{\efmt\n}\,dx = + \RespBoxMath{\c((\b)^(\n+1)-(\a)^(\n+1))/(\n+1)}{3}{.0001}{[0,2]}$\hfill + \CorrAnsButton{rEval(\c((\b)^(\n+1)-(\a)^(\n+1))/(\n+1))}*{rngCorrAnsButton}\kern1bp\sqTallyBox + +\RandomZ{\a}{1}{6} +\RandomZ{\b}{\a*}{8} +\RandomZ{\n}{1}{5} +\RandomZ[ne=0]{\c}{-3}{3} + +\item $\displaystyle\int_{\a}^{\b} \cfmt\c x^{\efmt\n}\,dx = + \RespBoxMath{\c((\b)^(\n+1)-(\a)^(\n+1))/(\n+1)}{3}{.0001}{[0,2]}$\hfill + \CorrAnsButton{rFrac(rEval(\c ( (\b)^(\n+1)-(\a)^(\n+1)))/rEval(\n+1))}*{rngCorrAnsButton}\kern1bp\sqTallyBox + +\RandomZ{\a}{1}{5} +\RandomZ{\b}{\a*}{10} +\RandomQ[ne={0,-1}]{\n}{-3}{2/3} +\RandomZ[ne=0]{\c}{-3}{3} + +\item $\displaystyle\int_{\a}^{\b} \cfmt\c x^{\efmt\n}\,dx = + \RespBoxMath{\c((\b)^(\n+1)-(\a)^(\n+1))/(\n+1)}{3}{.0001}{[0,2]}$\hfill + \CorrAnsButton{rEval(\c((\b)^(\n+1)-(\a)^(\n+1))/(\n+1))}*{rngCorrAnsButton}\kern1bp\sqTallyBox + +\RandomQ{\a}{1/4}{2/3} +\RandomQ{\b}{\a*}{7/6} +\RandomQ[ne={0,-1}]{\n}{-3}{2/3} +\RandomZ[ne=0]{\c}{-3}{3} + +\item $\displaystyle\int_{\a}^{\b} \cfmt\c x^{\efmt\n}\,dx = + \RespBoxMath{\c((\b)^(\n+1)-(\a)^(\n+1))/(\n+1)}{3}{.0001}{[0,2]}$\hfill + \CorrAnsButton{rEval(\c((\b)^(\n+1)-(\a)^(\n+1))/(\n+1))}*{rngCorrAnsButton}\kern1bp\sqTallyBox + +\begin{eqComments} +This next problem was created from random lists of values using \cs{RandomL}. +\end{eqComments} + +\RandomL{\c}{1/6,1/4,1/6,1/2} +\RandomL{\a}{1,2,3,4,5,6} +\ifnum\a=1 + \def\strAns{sin(PI/\dOf\c)} +\else + \def\strAns{(1/\a)(sin(\a*PI/\dOf\c))} +\fi + +\item $\displaystyle\int_0^{\pi/\dOf\c} \cos(\cfmt\a x) \,dx = + \RespBoxMath{(1/\a)(sin(\a*PI/\dOf\c))}{3}{.0001}{[0,2]}$\hfill + \CorrAnsButton{rEval(\strAns)}*{rngCorrAnsButton\RNGprintf{\%.4f}}\kern1bp\sqTallyBox + + +\newpage +\begin{eqComments}[Indefinite Integration]\end{eqComments} + +\RandomQ{\a}{1/6}{3/2} +\RandomQ{\b}{1/6}{3/2} +\RandomZ{\c}{1}{3} + +\item $\displaystyle\int \cds\a x^2 + \ds\b x + \c\,dx = + \RespBoxMath{(\a/3)x^3+(\b/2) x^2 + \c x}{3}{.0001}{[0,2]}$\hfill + \CorrAnsButton{(rFrac(rEval(\nOf\a)/rEval(3*\dOf\a))) x^3 + + (rFrac(rEval(\nOf\b)/rEval(2*\dOf\b))) x^2 + + \c x + C}*{rngCorrAnsButton}\kern1bp\sqTallyBox + +\RandomQ{\a}{1/3}{3} +\RandomQ{\b}{1/6}{3/2} +\RandomZ{\c}{1}{3} + +\item $\displaystyle\int \cds\a x^2 + \ds\b x + \c\,dx = + \RespBoxMath{(\a/3)x^3+(\b/2) x^2 + \c x}{3}{.0001}{[0,2]}$\hfill + \CorrAnsButton{(rFrac(rEval(\nOf\a)/rEval(3*\dOf\a))) x^3 + + (rFrac(rEval(\nOf\b)/rEval(2*\dOf\b))) x^2 + + \c x + C}*{rngCorrAnsButton}\kern1bp\sqTallyBox + +\newpage +\begin{eqComments}[Differentiation]\end{eqComments} + +\RandomQ[ne=0]{\c}[4]{-2}{2} +\RandomQ[ne=0]{\n}[1]{-3}{2} + +\item $\displaystyle \frac{d}{dx} \cds\c x^{\efmt\n} = + \ifnum\nOf\n=\dOf\n + \RespBoxMath{\c}{3}{.0001}{[0,2]}$\hfill + \CorrAnsButton{rFrac(\nOf\c/\dOf\c)}*{rngCorrAnsButton}% + \else + \RespBoxMath{\c*\n*x^(\n-1)}{3}{.0001}{[0,2]}$\hfill + \CorrAnsButton{rFrac(rEval(\nOf\c*\nOf\n)/rEval(\dOf\c*\dOf\n)) + x^(rFrac(rEval(\nOf\n-\dOf\n)/\dOf\n))}*{rngCorrAnsButton}% + \fi + \kern1bp\sqTallyBox + +\begin{eqComments} +This next problem uses a random sign, defined by \cs{RandomS}. +\end{eqComments} + +\RandomQ{\c}[4]{2}{3}\RandomS{\s} +\RandomQ[ne=0]{\n}[2]{-3}{2} + +\item $\displaystyle \frac{d}{dx} \cfmt\s\ds\c x^{\efmt\n} = + \ifnum\nOf\n=\dOf\n + \RespBoxMath{\s\c}{3}{.0001}{[0,2]}$\hfill + \CorrAnsButton{\s\nOf\c/\dOf\c}*{rngCorrAnsButton}% + \else + \RespBoxMath{\s\c*\n*x^(\n-1)}{3}{.0001}{[0,2]}$\hfill + \CorrAnsButton{rFrac(rEval(\s\nOf\c*\nOf\n)/rEval(\dOf\c*\dOf\n)) + x^(rFrac(rEval(\nOf\n-\dOf\n)/\dOf\n))}*{rngCorrAnsButton}% + \fi + \kern1bp\sqTallyBox + + +\RandomQ[ne=0]{\c}[4]{-2}{5} +\RandomQ{\n}[4]{2}{5} + +\item $\displaystyle \frac{d}{dx} \ds\c x^{\efmt\n} = + \ifnum\nOf\n=\dOf\n + \RespBoxMath{\c}{3}{.0001}{[0,2]}$\hfill + \CorrAnsButton{\nOf\c/\dOf\c}*{rngCorrAnsButton}% + \else + \RespBoxMath{\c*\n*x^(\n-1)}{3}{.0001}{[0,2]}$\hfill + \CorrAnsButton{rFrac(rEval(\nOf\c*\nOf\n)/rEval(\dOf\c*\dOf\n)) + x^(rFrac(rEval(\nOf\n-\dOf\n)/\dOf\n))}*{rngCorrAnsButton}% + \fi + \kern1bp\sqTallyBox + +\newpage + +\begin{eqComments}[Analytic Geometry]\end{eqComments} + +\RandomZ{\a}{-10}{9} +\RandomZ{\b}{-10}{9} +\RandomZ{\c}{\a*}{10} +\RandomZ{\d}{\b*}{10} +\defineDepQJS{\m}{\d - \b}{\c - \a}{rFrac(rEval(\nOf\m)/rEval(\dOf\m))} +\defineDepQJS{\yIntercept}{\b - \a*\m}{1}{rFrac((rEval( \b * \dOf\m - \a*\nOf\m ))/(rEval(\dOf\m)))} + + +\item Let $P(\,\a, \b\,)$ be a point and $Q(\,\c, \d\,)$ be a point. Find the equation of the line that + passes through $P$ and $Q$.\par\kern3pt + \RespBoxMath{y = \m*x + \yIntercept }(xy){3}{.0001}{[0,2]x[0,2]}*{ProcRespEq}\hfill + \CorrAnsButton{y = \js\m\space x + \js\yIntercept}*{rngCorrAnsButton}% + \kern1bp\sqTallyBox + +\RandomZ{\a}{-10}{9} +\RandomZ{\b}{-10}{9} +\RandomZ{\c}{\a*}{10} +\RandomZ{\d}{\b*}{10} +\defineDepQJS{\m}{\d - \b}{\c - \a}{rFrac(rEval(\nOf\m)/rEval(\dOf\m))} +\defineDepQJS{\yIntercept}{\b - \a*\m}{1}{rFrac((rEval( \b * \dOf\m - \a*\nOf\m ))/(rEval(\dOf\m)))} + +\item Let $P(\,\a, \b\,)$ be a point and $Q(\,\c, \d\,)$ be a point. Find the equation of the line that + passes through $P$ and $Q$.\par\kern3pt + \RespBoxMath{y = \m*x + (\b - \a*\m) }(xy){3}{.0001}{[0,2]x[0,2]}*{ProcRespEq}\hfill + \CorrAnsButton{y = \js\m\space x + \js\yIntercept}*{rngCorrAnsButton}% + \kern1bp\sqTallyBox + +\end{questions} +\end{shortquiz} +\begin{flushright} +\sqClearButton\kern1bp\sqTallyTotal +\end{flushright} +\end{document} |