blob: 70b988ebc89252ae5e5160ad0dd01efe886b4e29 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
|
\documentclass{article}
\usepackage{german}
\setlength{\textwidth}{135mm}
\begin{document}
\noindent
Aus der \emph{l'Hospitalschen} Regel folgt:
\[ \lim_{x\to0}\frac{\ln\sin\pi x}{\ln\sin x}
= \lim_{x\to0}\frac{\pi\frac{\cos\pi x}{\sin\pi x}}{\frac{\cos x}{\sin x}}
= \lim_{x\to0}\frac{\pi\tan x}{\tan\pi x}
= \lim_{x\to0}\frac{\pi/\cos^2 x}{\pi/\cos^2 \pi x}
= \lim_{x\to0}\frac{\cos^2\pi x}{\cos^2 x} = 1 \]
\end{document}
|