blob: 2d353a59383b14d09d5870b0783614bf52608396 (
plain)
1
2
3
4
5
6
7
8
9
10
11
|
\documentclass{article}
\begin{document}
The union of two sets $\mathcal{A}$ and $\mathcal{B}$ is the set of elements
that are in at least one of the two sets, and is designated as
$\mathcal{A\cup B}$. This operation is commutative
$\mathcal{A\cup B = B\cup A}$ and associative $\mathcal{(A\cup B)\cup C =
A\cup(B\cup C)}$. If $\mathcal{A\subseteq B}$, then
$\mathcal{A\cup B = B}$. It then follows that $\mathcal{A\cup A = A}$,
$\mathcal{A\cup\{\emptyset\} = A}$ and $\mathcal{J\cup A = J}$.
\end{document}
|