summaryrefslogtreecommitdiff
path: root/Master/texmf-doc/doc/english/guide-to-latex/exercises/chap7/exer7-6.tex
blob: 2d353a59383b14d09d5870b0783614bf52608396 (plain)
1
2
3
4
5
6
7
8
9
10
11
\documentclass{article}
\begin{document}
The union of two sets $\mathcal{A}$ and $\mathcal{B}$ is the set of elements
that are in at least one of the two sets,  and is designated as
$\mathcal{A\cup B}$. This operation is commutative
$\mathcal{A\cup B = B\cup A}$ and associative $\mathcal{(A\cup B)\cup C =
A\cup(B\cup C)}$.  If $\mathcal{A\subseteq B}$, then
$\mathcal{A\cup B = B}$. It then follows that $\mathcal{A\cup A = A}$,
$\mathcal{A\cup\{\emptyset\} = A}$ and $\mathcal{J\cup A = J}$. 

\end{document}