blob: 4b15e9b056611571a4289036d8ee9ae39cd311a1 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
|
\documentclass[fleqn]{article}
\begin{document}
\setlength{\mathindent}{2cm}
The reduced cubic equation $y^3 + 3py +2q = 0$ has one real and two complex
solutions when $D = q^2 + p^3 > 0$. These are given by Cardan's formula as
\begin{equation} y_1 = u + v \end{equation}
\begin{equation} y_2 = -\frac{u+v}{2} + \frac{i}{2}\sqrt{3}(u-v) \end{equation}
\begin{equation} y_3 = -\frac{u+v}{2} - \frac{i}{2}\sqrt{3}(u-v) \end{equation}
where
\[ u = \sqrt[3]{-q + \sqrt{q^2+p^3}},\qquad v = \sqrt[3]{-q - \sqrt{q^2+p^3}} \]
\end{document}
|