1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
|
%% This is part of OpTeX project, see http://petr.olsak.net/optex
\_codedecl \makeindex {Makeindex and sorting <2020-03-16>} % loaded in format
\_doc -----------------------------
`\makeindex` implements sorting algorithm at \TeX/ macrolanguage level.
You need not any external program.
There are two passes in sorting algorith. Primary pass does not
distinguish between a group o letters (typically non-accented and
accented). If the result of comparing two string is equal in primary pass
then secondary pass is started. It distinguish betveen variously accented
letters. Czech rules, for example says: not accented before dieresis
before acute before circumflrex before ring. At less priority: lowercase
letters maut be before uppercase letters.
The `\_sortingdata<iso-code>` implements these rules for the language
<iso-code>. The groups between commas are not distinguished in the first
pass. The second pass distinguishes all characters mentioned in the
`\_sortingdata<iso-code>` (commas are ignored). The order of letters
in the `\_sortingdata<iso-code>` macro is significant for sorting algorithm.
The Czech rules are implemented here:
\_cod -----------------------------
\_def \_sortingdatacs {%
/,{ },-,&,@,%
aAäÄáÁ,%
bB,%
cC,%
čČ,%
dDďĎ,%
eEéÉěĚ,%
fF,%
gG,%
hH,%
^^T^^U^^V,% ch Ch CH
iIíÍ,%
jJ,%
kK,%
lLĺĹľĽ,%
mM,%
nNňŇ,%
oOöÖóÓôÔ,%
pP,%
qQ,%
rRŕŔ,%
řŘ,%
sS,%
šŠ,%
tTťŤ,%
uUüÜúÚůŮ,%
vV,%
wW,%
xX,%
yYýÝ,%
zZ,%
žŽ,%
0,1,2,3,4,5,6,7,8,9,'%
}
\_doc -----------------------------
Characters ignored by sorting algorithm are declared in `\_ignoredchars<iso-code>`.
The compound characters (two or more characters interpreted as one
character in sorting algorithm) is mapped to single invisible characters
in `\_compoundchars<iso-code>`. Czech rules declares ch or Ch or CH as
a single letter sorted between H and I. See `\_sortingdatacs` above where
these declared characters are used.
The characters declared in `\_ignoredchars` are ignored in first pass
without additional condidion. They are ignored in second pass only if
they are not mentioned in the `\_sortingdata<iso-code>` macro.
\_cod -----------------------------
\_def \_ignoredcharscs {.,;?!:'"|()[]<>=+}
\_def \_compoundcharscs {ch:^^T Ch:^^U CH:^^V} % DZ etc. are sorted normally
\_doc -----------------------------
Slovak sorting rules are the same as Czech. The macro `\_sortingdatacs`
includes Slovak letters too. Compound characters are the same.
English sorting rules can be defined by `\_sortingdatacs` too because
English alphabet is subset of Czech and Slovak alphabets. Only
difference: `\_compoundcharsen` is empty in English rules.
You can declare these macros for more languages, if you wish to use
`\makeindex` with sorting rules in respect to your language.
Note: if you need to map compound characters to a character, don't use
`^^I` or `^^M` because these characters have very specific category code.
And use space to separate more mappings, like in `\_compoundcharscs`.
\_cod -----------------------------
\_let \_sortingdatask = \_sortingdatacs
\_let \_compoundcharssk = \_compoundcharscs
\_let \_ignoredcharssk = \_ignoredcharscs
\_let \_sortingdataen = \_sortingdatacs
\_def \_compoundcharsen {}
\_let \_ignoredcharsen = \_ignoredcharscs
\_doc -----------------------------
Preparing to primary pass is implemented here. It is called from `\makeindex`
macro and all processing of sorting is in a group.
\_cod -----------------------------
\_def\_setprimarysorting {%
\_ea\_let \_ea\_sortingdata \_csname _sortingdata\_sortinglang\endcsname
\_ea\_let \_ea\_compoundchars \_csname _compoundchars\_sortinglang\endcsname
\_ea\_let \_ea\_ignoredchars \_csname _ignoredchars\_sortinglang\endcsname
\_ifx \_sortingdata\_relax \_addto\_nold{ sortingdata}%
\_let \_sortingdata = \_sortingdataen \fi
\_ifx \_compoundchars\_relax \_addto\_nold{ compoundchars}%
\_let \_compoundchars = \_compoundcharsen \fi
\_ifx \_ignoredchars\_relax \_addto\_nold{ ignoredchars}%
\_let \_ignoredchars = \_ignoredcharsen \fi
\_ifx \_compoundchars\_empty \_else
\_edef \_compoundchars {\_detokenize\_ea{\_compoundchars} }\_fi % all must be catcode 12
\_def \_act ##1{\_ifx##1\_relax \_else
\_ifx##1,\_advance\_tmpnum by1
\_else \_lccode`##1=\_tmpnum \_fi
\_ea\_act \_fi}%
\_tmpnum=60 \_ea\_act \_sortingdata \_relax
\_def \_act ##1{\_ifx##1\_relax \_else
\_lccode`##1=`\^^I
\_ea\_act \_fi}%
\_ea\_act \_ignoredchars \_relax
}
\_doc -----------------------------
Preparing to secondary pass is implemented here:
\_cod -----------------------------
\_def\_setsecondarysorting {%
\_def \_act ##1{\_ifx##1\_relax \_else
\_ifx##1,\_else \_advance\_tmpnum by1 \_lccode`##1=\_tmpnum \_fi
\_ea\_act \_fi}%
\_tmpnum=60 \_ea\_act \_sortingdata \_relax
}
\_doc -----------------------------
Strings to be sorted are prepared in `\,<string>` control sequences
(in order to save `\TeX` memory).
The `\_preparesortstring \,<string>` converts <string> to `\_tmpb`
with respect to the data initialized in `\_setprimarysorting` or
`\_setsecondarysortting`.
\_cod -----------------------------
\_def \_preparesorting #1{%
\_edef \_tmpb {\_ea\_ignorefirst\_csstring #1}% \,<string> -> <string>
\_ea \_docompound \_compoundchars \_relax:{} % replace compound characters
\_lowercase \_ea{\_ea\_def \_ea\_tmpb \_ea{\_tmpb}}% convert in respect to \_sortingdata
\_ea\_replstring \_ea\_tmpb \_ea{\_csstring\^^I}{}% remove ignored characters
}
\_def \_docompound #1:#2 {%
\_ifx\_relax#1\_else \_replstring\_tmpb {#1}{#2}\_ea\_docompound \_fi
}
\_def \_ignorefirst#1{}
\_doc -----------------------------
Macro `\_isAleB \,<string1> \,<string2>` returns the result of comparison
of given two strings to `\_ifAleB` control sequence. Usage:
`\isAleB \,<string1> \,<string2>` \_ifAleB ... \_else ... \_fi`
The converted strings (in respect of the data prepared for first pass)
must be saved as valuses of `\,<string1>` and `\,<string2>` macros.
The reason is speed: we don't want to convert them repeatedly in each
comparison.
The auxiliary macro
`\_testAleB <converted string1>&\_relax<converted-string2>\_relax \,<string1>\,<string2>`
does the real work. It reads first character from both converted strings, compares them
and if it is equal then calls iself recursively else gives result.
\_cod -----------------------------
\_newifi \_ifAleB
\_def\_isAleB #1#2{%
\_edef\_tmpb {#1&\_relax#2&\_relax}%
\_ea \_testAleB \_tmpb #1#2%
}
\_def\_testAleB #1#2\_relax #3#4\_relax #5#6{%
\_if #1#3\_if #1&\_testAleBsecondary #5#6% goto to the second pass::
\_else \_testAleB #2\_relax #4\_relax #5#6%
\_fi
\_else \_ifnum `#1<`#3 \_AleBtrue \_else \_AleBfalse \_fi
\_fi
}
\_def\_testAleBsecondary#1#2{%
\_bgroup
\_setsecondarysorting
\_preparesorting#1\_let\_tmpa=\_tmpb \_preparesorting#2%
\_edef\_tmpb{\_tmpa0\_relax\_tmpb1\_relax}%
\_ea\_testAleBsecondaryX \_tmpb
\_egroup
}
\_def\_testAleBsecondaryX #1#2\_relax #3#4\_relax {%
\_if #1#3\_testAleBsecondaryX #2\_relax #4\_relax
\_else \_ifnum `#1<`#3 \_global\_AleBtrue \_else \_global \_AleBfalse \_fi
\_fi
}
\_doc -----------------------------
Merge sort is very efectively implemented by \TeX/ macros. The following
code is created by my son Miroslav.
The `\_mergesort` macro expects that all items in `\_iilist` are separated
by comma when it starts. It ends with sorted items in `\_iilist` without commas.
So `\_dosorting` macro must prepare commas between items.
\_cod -----------------------------
\_def\_mergesort #1#2,#3{% by Miroslav Olsak
\_ifx,#1% % prazdna-skupina,neco, (#2=neco #3=pokracovani)
\_addto\_iilist{#2,}% % dvojice skupin vyresena
\_sortreturn{\_fif\_mergesort#3}% % \mergesort pokracovani
\_fi
\_ifx,#3% % neco,prazna-skupina, (#1#2=neco #3=,)
\_addto\_iilist{#1#2,}% % dvojice skupin vyresena
\_sortreturn{\_fif\_mergesort}% % \mergesort dalsi
\_fi
\_ifx\_end#3% % neco,konec (#1#2=neco)
\_ifx\_empty\_iilist % neco=kompletni setrideny seznam
\_def\_iilist{#1#2}%
\_sortreturn{\_fif\_fif\_gobbletoend}% % koncim
\_else % neco=posledni skupina nebo \end
\_sortreturn{\_fif\_fif % spojim \indexbuffer+necoa cele znova
\_edef\_iilist{\_ea}\_ea\_mergesort\_iilist#1#2,#3}%
\_fi\_fi % zatriduji: p1+neco1,p2+neco2, (#1#2=p1+neco1 #3=p2)
\_isAleB #1#3\_ifAleB % p1<p2
\_addto\_iilist{#1}% % p1 do bufferu
\_sortreturn{\_fif\_mergesort#2,#3}% % \mergesort neco1,p2+neco2,
\_else % p1>p2
\_addto\_iilist{#3}% % p2 do bufferu
\_sortreturn{\_fif\_mergesort#1#2,}% % \mergesort p1+neco1,neco2,
\_fi
\_relax % zarazka, na ktere se zastavi \sortreturn
}
\_def\_sortreturn#1#2\_fi\_relax{#1} \_def\_fif{\_fi}
\_def\_gobbletoend #1\_end{}
\_doc -----------------------------
The `\_dosorting \list` macro redefines `\list` as sorted `\list`.
The `\list` have to include control sequences in the form `\<c><string>`.
These control sequences will be sorted in respect to <strings> wihout
change of meanings of these control sequences. Their meanings are
irrelevant when sorting. The first character <c> in `\<c><string>` should
be whatever. It does not influence the sorting. \OpTeX/ uses comma at
this place for sorting indexes: `\,<word1> \,<word2> \,<word3> ...`.
The actual language is used for sorting data. If the `\_sortinglang` macro
is defined as <iso-code> then it has precedence and actual languge is not used.
Moreover, if you specify `\_asciisortingtrue` then ASCII sorting will be processed
and all language sorting data will be ignored.
\_cod -----------------------------
\_newifi \_ifasciisorting \_asciisortingfalse
\_def\_dosorting #1{%
\begingroup
\_def\_nold{}%
\_ifx\_sotringlang\_undefined \_edef\_sortinglang{\_cs{_lan:\_the\_language}}\_fi
\_ifasciisorting
\_edef\_sortinglang{ASCII}%
\_def \_preparesorting##1{\_edef\_tmpb{\_ea\_ignorefirst\_csstring##1}}%
\_let \_setsecondarysorting=\_relax
\_else
\_setprimarysorting
\_fi
\_message{OpTeX: Sorting \_string#1 (\_sortinglang) ...^^J}%
\_ifx\_nold\_empty\_else \_opwarning{Missing\_nold\_space for language (\_sortinglang)}\_fi
\_def \_act##1{\_preparesorting ##1\_edef##1{\_tmpb}}%
\_ea\_xargs \_ea\_act #1;%
\_def \_act##1{\_addto #1{##1,}}%
\_edef #1{\_ea}\_ea\_xargs \_ea\_act #1;%
\_edef \_iilist{\_ea}\_ea\_mergesort #1\_end,\_end
\_ea\_endgroup
\_ea\_def\_ea#1\ea{\_iilist}%
}
\_doc -----------------------------
The `\makeindex` prints the index. First, it sorts the `\_iilist`
second, it prints the sorted `\_iilist`, each item is printed
using `\_printindexitem`.
\_cod -----------------------------
\_def\_makeindex{\_par
\_ifx\_iilist\_empty \_opwarning{index data-buffer is empty. TeX me again}
\_else
\_dosorting \_iilist % sorting \_iilist
\_bgroup
\_rightskip=0pt plus1fil \_exhyphenpenalty=10000 \_leftskip=\_iindent
\_ea\_xargs \_ea\_printindexitem \_iilist ;\_par
\_egroup
\_fi
}
\_public \makeindex ;
\_doc -----------------------------
The `\_printindexitem \,<word>` prints one item to the index.
If `\_,<word>` is defined then this is used instead real <word>
(this exception is declared by `\iis` macro). Else <word> is printed by
`\_printii`. Finaly, `\_printiipages` prints the value of `\,<word>`,
i.e. the list of pages.
\_cod -----------------------------
\_def\_printindexitem #1{%
\_ifcsname _\_csstring #1\_endcsname
\_ea\_ea\_ea \_printii \_csname _\_csstring #1\_endcsname &%
\_else
\_ea\_ea\_ea\_printii \_ea\_ignorefirst \_csstring #1&%
\_fi
\_ea\_printiipages #1&
}
\_doc -----------------------------
`\printii <word>&` does more intelligent work because we are working with
words in the form `<main-word>/<sub-word>/<sub-sub-word>`.
The `\everyii` tokens register is applied before `\noindent`. User can
declare something special here.
The `\_newiiletter{<letter>}` macro is empty by default. It is invoked if first
letter of index entries is changed. You can declare a design between
index entries here. You can try, for example:
\begtt
\def\_newiiletter#1#2{\bigskip\hbox{\setfontsize{at15pt}\bf\uppercase{#1}}\medskip}
\endtt
\_cod -----------------------------
\_def\_printii #1#2&{%
\_ismacro\_lastii{#1}\_iffalse \_newiiletter{#1}{#2}\_def\_lastii{#1}\_fi
\_gdef\_currii{#1#2}\_the\_everyii\_noindent
\_hskip-\_iindent \_ignorespaces\_printiiA#1#2//}
\_def\_printiiA #1/{\_if^#1^\_let\_previi=\_currii \_else
\_ea\_scanprevii\_previi/&\_edef\_tmpb{\_detokenize{#1}}%
\_ifx\_tmpa\_tmpb \_iiemdash \_else#1 \_gdef\_previi{}\_fi
\_expandafter\_printiiA\_fi
}
\_def\_iiemdash{\_kern.1em---\_space}
\_def\_lastii{}
\_def\_newiiletter#1#2{}
\_def\_scanprevii#1/#2&{\_def\_previi{#2}\_edef\_tmpa{\_detokenize{#1}}}
\_def\_previi{} % previous index item
\_doc -----------------------------
`\printiipages <pglist>&` gets <pglist> in the form
`<pg>:<type>,<pg>:<type>,...<pg>:<type>` and it converts them to
<pg>, <pg>, <from>--<to>, <pg> etc. The same pages must be printed only once
and continuos consequnces of pages must be comprimed to the form <from>-<to>.
Moreover, the consequence is continuous only if all pages have the same <type>.
Empty <type> is most common, pages with `b` <type> must be printed as bold
and with `i` <type> as italics.
Moreover, the <pg> meioned here are <gpageno>, but we have to print
<pageno>. The following macros solves these tasks.
\_cod -----------------------------
\_def\_printiipages#1&{\_let\_pgtype=\_undefined \_tmpnum=0 \_printpages #1,:,\_par}
\_def\_printpages#1:#2,{% state automaton for compriming pages
\_ifx,#1,\_uselastpgnum
\_else \_def\_tmpa{#2}%
\_ifx\_pgtype\_tmpa \_else
\_let\_pgtype=\_tmpa
\_uselastpgnum \_usepgcomma \_pgprint#1:{#2}%
\_tmpnum=#1 \_returnfi \_fi
\_ifnum\_tmpnum=#1 \_returnfi \_fi
\_advance\_tmpnum by1
\_ifnum\_tmpnum=#1 \_ifx\_lastpgnum\_undefined \_usepgdash\_fi
\_edef\_lastpgnum{\_the\_tmpnum:{\_pgtype}}%
\_returnfi \_fi
\_uselastpgnum \_usepgcomma \_pgprint#1:{#2}%
\_tmpnum=#1
\_relax
\_ea\_printpages \_fi
}
\_def\_returnfi #1\_relax{\_fi}
\_def\_uselastpgnum{\_ifx\_lastpgnum\_undefined
\_else \_ea\_pgprint\_lastpgnum \_let\_lastpgnum=\_undefined \_fi
}
\_def\_usepgcomma{\_ifnum\_tmpnum>0, \_fi} % comma+space between page numbers
\_def\_usepgdash{\_hbox{--}} % dash in the <from>--<to> form
\_doc -----------------------------
You can re-define `\_pgprint <gpageno>:{<iitype>}`
if you need to implement more <iitypes>.
\_cod -----------------------------
\_def\_pgprint #1:#2{%
\_ifx ,#2,\_pgprintA{#1}\_returnfi \_fi
\_ifx b#2{\_bf \_pgprintA{#1}}\_returnfi \_fi
\_ifx i#2{\_it \_pgprintA{#1}}\_returnfi \_fi
\_ifx u#2\_pgu{\_pgprintA{#1}}\_returnfi \_fi
\_pgprintA{#1}\_relax
}
\_def\_pgprintA #1{\_ilink[pg:#1]{\_cs{_pgi:#1}}} % \ilink[pg:<gpageno>]{<pageno>}
\_def\_pgu#1{\_leavevmode\_vtop{\_hbox{#1}\kern.3ex\_hrule}}
\_doc -----------------------------
The `\iindex{<word>}` puts one <word> to the index. It writes
`\_Xindex{<word>}{<iitype>}` to the `.ref` file.
All othes variants of indexing macros expands internally to `\_iindex`.
\_cod -----------------------------
\_def\_iindex#1{\_openref{\def~{ }%
\edef\_act{\_noexpand\_wref\_noexpand\_Xindex{{#1}{\_iitypesaved}}}\_act}}
\_public \iindex ;
\_doc -----------------------------
The `\_Xindex{<word>}{<iitype>}` stores `\,<word>` to the `\_iilist` if
there is first occurence of the <word>. The list of pages where <word>
occurs, is the value of the macro `\,<word>`, so the <gpageno>:<iitype>
is appedned to this list.
Moreower, we need a mapping from <gpageno> to <pageno>, because we print
<pageno> in the index, but hyperlinks are implemented by <gpageno>.
So, the macro `\_pgi:<gpageno>` is defined as <pageno>.
\_cod -----------------------------
\_def \_iilist {}
\_def \_Xindex #1#2{\_ea\_XindexA \_csname ,#1\_ea\_endcsname \_currpage {#2}}
\_def \_XindexA #1#2#3#4{% #1=\,<word> #2=<gpageno> #3=<pageno> #4=<iitype>
\_ifx#1\relax \_global\_addto \_iilist {#1}%
\_gdef #1{#2:#4}%
\else \_global\_addto #1{,#2:#4}%
\fi
\sxdef{_pgi:#2}{#3}%
}
\_doc -----------------------------
The implementation of macros `\ii`, `\iid`, `\iis` follows.
Note that `\ii` works in horizontal mode on order to the `\write` whatsit
is not broken from the following word. If you need to keep vertical mode,
use `\_iindex{<word>}` directly.
\_cod -----------------------------
\_def\_ii #1 {\_leavevmode\_def\_tmp{#1}\_iiA #1,,\_def\_iitypesaved{}}
\_def\_iiA #1,{\_if$#1$\_else\_def\_tmpa{#1}%
\_ifx\_tmpa\_iiatsign \_ea\_iiB\_tmp,,\_else\_iindex{#1}\_fi
\_ea\_iiA\_fi}
\_def\_iiatsign{@}
\_def\_iiB #1,{\_if$#1$\_else \_iiC#1/\_relax \_ea\_iiB\_fi}
\_def\_iiC #1/#2\_relax{\_if$#2$\_else\_iindex{#2#1}\_fi}
\_def\_iid #1 {\_leavevmode\_iindex{#1}#1\_futurelet\_tmp\_iiD\_def\_iitypesaved{}}
\_def\_iiD{\_ifx\_tmp,\_else\_ifx\_tmp.\_else\_space\_fi\_fi}
\_def\_iis #1 #2{{\_def~{ }\_global\_sdef{_,#1}{#2}}\_ignorespaces}
\_def\_iitypesaved{}
\_def\_iitype #1{\_def\_iitypesaved{#1}\_ignorespaces}
\_public \ii \iid \iis \iitype ;
\_endcode % -------------------------------------
|