1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
|
%% This is part of OpTeX project, see http://petr.olsak.net/optex
\_codedecl \table {Basic macros for OpTeX <2020-05-26>} % preloaded in format
\_doc -----------------------------
The result of the \`\table``{<declaration>}{<data>}` macro is inserted into
`\_tablebox`. You can change default value if you want by
`\let\_tablebox=\vtop` or `\let\_tablebox=\relax`.
\_cod -----------------------------
\_let\_tablebox=\_vbox
\_doc -----------------------------
We save the `to<size>` or `pxto<size>` to `#1` and \`\_tableW` sets the
`to<size>` to the \`\_tablew` macro.
If `pxto<size>` is used then `\_tablew` is empty and `\_tmpdim` includes
given <size>. The `\_ifpxto` returns true in this case.
The `\table` continues by reading `{<declaration>}` in the \^`\_tableA` macro.
Catcodes (for example the `|` character) have to be normal when reading
`\table` parameters. This is the reason why we use `\catcodetable` here.
\_cod -----------------------------
\_newifi \_ifpxto
\_def\_table#1#{\_tablebox\_bgroup \_tableW#1\_empty\_end
\_bgroup \_catcodetable\_optexcatcodes \_tableA}
\_def\_tableW#1#2\_end{\_pxtofalse
\_ifx#1\_empty \_def\_tablew{}\_else
\_ifx#1p \_def\_tablew{}\_tableWx#2\_end \_else \_def\_tablew{#1#2}\_fi\_fi}
\_def\_tableWx xto#1\_end{\_tmpdim=#1\_relax \_pxtotrue}
\_public \table ;
\_doc -----------------------------
The \^`\tablinespace` is implemented by enlarging given \^`\tabstrut`
by desired dimension (height and depth too) and by setting
`\_lineskip=-2\_tablinespace`. Normal table rows (where no `\hrule` is
between them) have normal baseline distance.\nl
The \`\_tableA``{<declaration>}` macro scans the `<declaration>` by
`\_scantabdata#1\_relax` and continues by reading `{<data>}` by
the \^`\_tableB` macro.
\_cod -----------------------------
\_def\_tableA#1{\_egroup
\_the\_thistable \_global\_thistable={}%
\_ea\_ifx\_ea^\_the\_tabstrut^\_setbox\_tstrutbox=\_null
\_else \_setbox\_tstrutbox=\_hbox{\_the\_tabstrut}%
\_setbox\_tstrutbox=\_hbox{\_vrule width0pt
height\_dimexpr\_ht\_tstrutbox+\_tablinespace
depth\_dimexpr\_dp\_tstrutbox+\_tablinespace}%
\_offinterlineskip
\_lineskip=-2\_tablinespace
\_fi
\_colnum=0 \_let\_addtabitem=\_addtabitemx
\_def\_tmpa{}\_tabdata={\_colnum1\_relax}\_scantabdata#1\_relax
\_the\_everytable \_tableB
}
\_doc -----------------------------
The \`\_tableB``{<data>}` saves `<data>` to `\_tmpb`
and does four \^`\replstring`s to prefix each macro \^`\crl` (etc.)
by `\_crcr`. The reason is: we want to use macros which scan its parameter
to the delimeiter written in right part of table item declaration.
See \^`\fS` for example. The `\crcr` cannot be hidden in other macro in such case.
The `\tabskip` value is saved for places between columns
into the \`\_tabskipmid` macro. Then it runs
\begtt \catcode`\<=13
\tabskip=\tabskipl \halign{<converted declaration>\tabskip=\tabskipr \cr <data>\crcr}
\endtt
This sets the desired boundary values of `\tabskip`. The
\"between-columns" values are set as `\tabskip=`\^`\_tabskipmid` in the
`<converted declaration>` immediately after each column declarator.
If `pxto` keyword was used, then we set the virtual unit \^`\tsize` to
`\hsize` first. Then the first attempt of the table is created in box 0.
Then the \^`\tsize` is re-calculated using `\wd0` and the real table is
printed by `\halign` in the second pass.
If no `pxto` keyword was used, then we print the table using `\halign`
directly. The \^`\_tablew` macro is nonempty if the `to` keyword was used.
Because the color selector with `\aftergroup` can be used inside the
table item, we must to create second real group for each table item.
This is reason why we start `<converted declaration>` by `\bgroup` and we
end it by `\egroup` in the \`\_tableC` macro. Each `&` character
is stored as `\egroup&\bgroup` in `<converted declaration>`. The
`\halign\_tablew\_tableC` really does:
\begtt \catcode`\<=13
\halign\_tablew{\bgroup<converted declaration>\egroup\tabskip=\tabskipr \cr<data>\crcr}
\endtt
\relax
\_cod -----------------------------
\_def\_tableB#1{\_def\_tmpb{#1}%
\_replstring\_tmpb{\crl}{\_crcr\crl}\_replstring\_tmpb{\crll}{\_crcr\crll}%
\_replstring\_tmpb{\crli}{\_crcr\crli}\_replstring\_tmpb{\crlli}{\_crcr\crlli}%
\_replstring\_tmpb{\crlp}{\_crcr\crlp}%
\_edef\_tabskipmid{\_the\_tabskip}\_tabskip=\_tabskipl
\_ifpxto
\_tsize=\_hsize \_setbox0 = \_vbox{\_halign \_tableC}%
\_tsize=\_dimexpr\_hsize-(\_wd0-\_tmpdim)\_relax
\_setbox0=\_null \_halign \_tableC
\_else
\_halign\_tablew \_tableC
\_fi \_egroup
}
\_def\_tableC{\_ea{\_ea\_bgroup\_the\_tabdata\_egroup\_tabskip=\_tabskipr\_cr\_tmpb\_crcr}}
\_newbox\_tstrutbox % strut used in table rows
\_newtoks\_tabdata % the \halign declaration line
\_doc -----------------------------
The \`\_scantabdata` macro converts `\table`'s `<declaration>` to
`\halign` `<converted declaration>`.
The result is stored into \`\_tabdata` tokens list.
For example, the
following result is generated when `<declaration>=|cr||cl|`.
\begtt
tabdata: \_vrule\_the\_tabiteml\_hfil#\_unsskip\_hfil\_the\_tabitemr\_tabstrutA
&\_the\_tabiteml\_hfil#\_unsskip\_the\_tabitemr
\_vrule\_kern\_vvkern\_vrule\_tabstrutA
&\_the\_tabiteml\_hfil#\_unsskip\_hfil\_the\_tabitemr\_tabstrutA
&\_the\_tabiteml#\_unsskip\_hfil\_the\_tabitemr\_vrule\_tabstrutA
ddlinedata: &\_dditem &\_dditem\_vvitem &\_dditem &\_dditem
\endtt
The second result in the \`\_ddlinedata` macro is a template of one row of the table
used by \^`\crli` macro.
\_cod -----------------------------
\_def\_scantabdata#1{\_let\_next=\_scantabdata
\_ifx\_relax#1\_let\_next=\_relax
\_else\_ifx|#1\_addtabvrule
\_else\_ifx(#1\_def\_next{\_scantabdataE}%
\_else\_ifx:#1\_def\_next{\_scantabdataF}%
\_else\_isinlist{123456789}#1\_iftrue \_def\_next{\_scantabdataC#1}%
\_else \_ea\_ifx\_csname _tabdeclare#1\_endcsname \_relax
\_ea\_ifx\_csname _paramtabdeclare#1\_endcsname \_relax
\_opwarning{tab-declarator "#1" unknown, ignored}%
\_else
\_def\_next{\_ea\_scantabdataB\_csname _paramtabdeclare#1\_endcsname}\_fi
\_else \_def\_next{\_ea\_scantabdataA\_csname _tabdeclare#1\_endcsname}%
\_fi\_fi\_fi\_fi\_fi\_fi \_next
}
\_def\_scantabdataA#1{\_addtabitem
\_ea\_addtabdata\_ea{#1\_tabstrutA \_tabskip\_tabskipmid}\_scantabdata}
\_def\_scantabdataB#1#2{\_addtabitem
\_ea\_addtabdata\_ea{#1{#2}\_tabstrutA \_tabskip\_tabskipmid}\_scantabdata}
\_def\_scantabdataC {\_def\_tmpb{}\_afterassignment\_scantabdataD \_tmpnum=}
\_def\_scantabdataD#1{\_loop \_ifnum\_tmpnum>0 \_advance\_tmpnum by-1 \_addto\_tmpb{#1}\_repeat
\_ea\_scantabdata\_tmpb}
\_def\_scantabdataE#1){\_addtabdata{#1}\_scantabdata}
\_def\_scantabdataF {\_addtabitem\_def\_addtabitem{\_let\_addtabitem=\_addtabitemx}\_scantabdata}
\_doc -----------------------------
The \`\_addtabitemx` adds the boundary code (used between columns)
to the <converted declaration>. This code is
`\egroup &\bgroup \colnum=<value>\relax`. You can get the current number of
column from the \`\colnum` register, but you cannot write
`\the\colnum` as the first object in a <data> item because `\halign`
first expands the front of the item and the left part of the declaration
is processed after this. Use `\relax\the\colnum` instead. Or you can
write:
\begtt
\def\showcolnum{\ea\def\ea\totcolnum\ea{\the\colnum}\the\colnum/\totcolnum}
\table{ccc}{\showcolnum & \showcolnum & \showcolnum}
\endtt
This example prints 1/3 \ 2/3 \ 3/3, because the value of the `\colnum` is
equal to the total number of columns before left part of the column declaration
is processed.
\_cod -----------------------------
\_newcount\_colnum % number of current column in the table
\_public \colnum ;
\_def\_addtabitemx{\_ifnum\_colnum>0
\_addtabdata{\_egroup &\_bgroup}\_addto\_ddlinedata{&\_dditem}\_fi
\_advance\_colnum by1 \_let\_tmpa=\_relax
\_ifnum\_colnum>1 \_ea\_addtabdata\_ea{\_ea\_colnum\_the\_colnum\_relax}\_fi}
\_def\_addtabdata#1{\_tabdata\_ea{\_the\_tabdata#1}}
\_doc -----------------------------
This code converts `||` or `|` from `\table` <declaration> to the <converted declaration>.
\_cod -----------------------------
\_def\_addtabvrule{%
\_ifx\_tmpa\_vrule \_addtabdata{\_kern\_vvkern}%
\_ifnum\_colnum=0 \_addto\_vvleft{\_vvitem}\_else\_addto\_ddlinedata{\_vvitem}\_fi
\_else \_ifnum\_colnum=0 \_addto\_vvleft{\_vvitemA}\_else\_addto\_ddlinedata{\_vvitemA}\_fi\_fi
\_let\_tmpa=\_vrule \_addtabdata{\_vrule}%
}
\_def\_tabstrutA{\_copy\_tstrutbox}
\_def\_vvleft{}
\_def\_ddlinedata{}
\_doc -----------------------------
The default \"declaration letters" `c`, `l`, `r` and `p` are declared
by setting \`\tabdeclarec`, \`\tabdeclarel`, \`\tabdeclarer` and
\`\paramtabdeclarep` macros. In general, define
`\def\_tabdeclare<letter>{...}` for a non-parametric
letter and `\def\_paramtabdeclare<letter>{...}` for a letter with a parameter.
The double hash `##` must be in the definition, it is replaced by a real table item data.
You can declare more such \"declaration letters" if you want.
\_cod -----------------------------
\_def\_tabdeclarec{\_the\_tabiteml\_hfil##\_unsskip\_hfil\_the\_tabitemr}
\_def\_tabdeclarel{\_the\_tabiteml\_relax##\_unsskip\_hfil\_the\_tabitemr}
\_def\_tabdeclarer{\_the\_tabiteml\_hfil##\_unsskip\_the\_tabitemr}
\_def\_paramtabdeclarep#1{\_the\_tabiteml
\_vtop{\_hsize=#1\_relax \_baselineskip=\_normalbaselineskip
\_lineskiplimit=0pt \_noindent##\_unsskip
\_ifvmode\_vskip\_dp\_tstrutbox \_else\_lower\_dp\_tstrutbox\_hbox{}\_fi}\_the\_tabitemr}
\_doc -----------------------------
User puts optional spaces around the table item typically, i.e.\ he/she writes
`& text &` instead `&text&`. The left space is ignored by internal \TeX/ algorithm but
the right space must be removed by macros. This is a reason why we recommend to
use \`\_unsskip` after each `##` in your definition of \"declaration letters".
This macro isn't only the primitive `\unskip` because we allow usage of plain \TeX/
`\hideskip` macro: `&\hideskip text\hideskip&`.
\_cod -----------------------------
\_def\_unsskip{\_ifmmode\_else\_ifdim\_lastskip>0pt \_unskip\_fi\_fi}
\_doc -----------------------------
The \`\fL`, \`\fR`, \`\fC` and \`\fX` macros only does a special parameters settings
for paragraph building algorithm. The \`\fS` prints the paragraph into
box 0 first, measures the number of lines by the `\prevgraf` primitive
and use (or don't use) `\hfil` (for centering) before the first line.
\_cod -----------------------------
\_let\_fL=\_raggedright
\_def\_fR{\_leftskip=0pt plus 1fill \_relax}
\_def\_fC{\_leftskip=0pt plus1fill \_rightskip=0pt plus 1fill \_relax}
\_def\_fX{\_leftskip=0pt plus1fil \_rightskip=0pt plus-1fil \_parfillskip=0pt plus2fil \_relax}
\_long\_def\_fS #1\_unsskip{\_noindent \_setbox0 =\_vbox{\_noindent #1\_endgraf \_ea}%
\_ifnum\_prevgraf=1 \_hfil \_fi #1\_unsskip
}
\_public \fL \fR \fC \fX \fS ;
\_doc -----------------------------
The family of `\_cr*` macros
\`\crl`, \`\crll`, \`\crli`, \`\crlli`, \`\crlp` and
\`\tskip` `<dimen>` is implemented here.
The \`\_zerotabrule` is used in order to suppress the negative `\lineskip`
declared by \^`\tablinespace`.
\_cod -----------------------------
\_def\_crl{\_crcr\_noalign{\_hrule}}
\_def\_crll{\_crcr\_noalign{\_hrule\_kern\_hhkern\_hrule}}
\_def\_zerotabrule {\_noalign{\_hrule height0pt width0pt depth0pt}}
\_def\_crli{\_crcr \_zerotabrule \_omit
\_gdef\_dditem{\_omit\_tablinefil}\_gdef\_vvitem{\_kern\_vvkern\_vrule}\_gdef\_vvitemA{\_vrule}%
\_vvleft\_tablinefil\_ddlinedata\_crcr \_zerotabrule}
\_def\_crlli{\_crli\_noalign{\_kern\_hhkern}\_crli}
\_def\_tablinefil{\_leaders\_hrule\_hfil}
\_def\_crlp#1{\_crcr \_zerotabrule \_noalign{\_kern-\_drulewidth}%
\_omit \_xdef\_crlplist{#1}\_xdef\_crlplist{,\_expandafter}\_expandafter\_crlpA\_crlplist,\_end,%
\_global\_tmpnum=0 \_gdef\_dditem{\_omit\_crlpD}%
\_gdef\_vvitem{\_kern\_vvkern\_kern\_drulewidth}\_gdef\_vvitemA{\_kern\_drulewidth}%
\_vvleft\_crlpD\_ddlinedata \_global\_tmpnum=0 \_crcr \_zerotabrule}
\_def\_crlpA#1,{\_ifx\_end#1\_else \_crlpB#1-\_end,\_expandafter\_crlpA\_fi}
\_def\_crlpB#1#2-#3,{\_ifx\_end#3\_xdef\_crlplist{\_crlplist#1#2,}\_else\_crlpC#1#2-#3,\_fi}
\_def\_crlpC#1-#2-#3,{\_tmpnum=#1\_relax
\_loop \_xdef\_crlplist{\_crlplist\_the\_tmpnum,}\_ifnum\_tmpnum<#2\_advance\_tmpnum by1 \_repeat}
\_def\_crlpD{\_global\_advance\_tmpnum by1
\_edef\_tmpa{\_noexpand\_isinlist\_noexpand\_crlplist{,\_the\_tmpnum,}}%
\_tmpa\_iftrue \_kern-\_drulewidth \_tablinefil \_kern-\_drulewidth\_else\_hfil \_fi}
\_def\_tskip{\_afterassignment\_tskipA \_tmpdim}
\_def\_tskipA{\_gdef\_dditem{}\_gdef\_vvitem{}\_gdef\_vvitemA{}\_gdef\_tabstrutA{}%
\_vbox to\_tmpdim{}\_ddlinedata \_crcr
\_zerotabrule \_noalign{\_gdef\_tabstrutA{\_copy\_tstrutbox}}}
\_public \crl \crll \crli \crlli \crlp \tskip ;
\_doc -----------------------------
The \`\mspan``{<number>}[<declaration>]{<text>}` macro generates similar `\omit\span\omit\span`
sequence as plain \TeX/ macro `\multispan`. Moreover, it uses \^`\_scantabdata` to
convert `<declaration>` from `\table` syntax to `\halign` syntax.
\_cod -----------------------------
\_def\_mspan{\_omit \_tabdata={\_tabstrutA}\_let\_tmpa=\_relax \_afterassignment\_mspanA \_mscount=}
\_def\_mspanA[#1]#2{\_loop \_ifnum\_mscount>1 \_cs{_span}\_omit \_advance\_mscount-1 \_repeat
\_count1=\_colnum \_colnum=0 \_def\_tmpa{}\_tabdata={}\_scantabdata#1\_relax
\_colnum=\_count1 \_setbox0=\_vbox{\_halign\_ea{\_ea\_bgroup\_the\_tabdata\_egroup\_cr#2\_cr}%
\_global\_setbox8=\_lastbox}%
\_setbox0=\_hbox{\_unhbox8 \_unskip \_global\_setbox8=\_lastbox}%
\_unhbox8 \_ignorespaces}
\_public \mspan ;
\_doc -----------------------------
The \`\vspan``{<number>}{<text>}` implementaiton is here.
We need to lower the box by
\begtt \catcode`\<=13
(<number>-1)*(\ht+\dp of \tabstrut) / 2.
\endtt
The `#1` parameter must be one-digit number. If you want to set more digits
then use braces.
\_cod -----------------------------
\_def\_vspan#1#2{\_vtop to 0pt{\_hbox{\_lower \_dimexpr
#1\_dimexpr(\_ht\_tstrutbox+\_dp\_tstrutbox)/2\_relax
-\_dimexpr(\_ht\_tstrutbox+\_dp\_tstrutbox)/2\_relax \_hbox{#2}}\_vss}}
\_public \vspan ;
\_doc -----------------------------
The parameters of primitive `\vrule` and `\hrule` keeps the rule \"last wins".
If we re-define `\hrule` to `\_orihrule height1pt` then each usage
of redefined `\hrule` uses `1pt` height if this parameter isn't
overwritten by another following `height` parameter. This principle is used for
settings another default rule thickness than 0.4\,pt by the macro
\`\rulewidth`.
\_cod -----------------------------
\_newdimen\_drulewidth \_drulewidth=0.4pt
\_let\_orihrule=\_hrule \_let\_orivrule=\_vrule
\_def\_rulewidth{\_afterassignment\_rulewidthA \_drulewidth}
\_def\_rulewidthA{\_edef\_hrule{\_orihrule height\_drulewidth}%
\_edef\_vrule{\_orivrule width\_drulewidth}%
\_let\_rulewidth=\_drulewidth
\_public \vrule \hrule \rulewidth;}
\_public \rulewidth ;
\_doc -----------------------------
The \`\frame``{<text>}` uses \"\code{\\vbox} in \code{\\vtop}" trick in order to keep the
baseline of the internal text at the same level as outer baseline.
User can write `\frame{abcxyz}` in normal paragraph line, for example
and gets the expected result: \frame{abcxyz}.
The internal margins are set by `\vvkern` and `\hhkern` parameters.
\_cod -----------------------------
\_long\_def\_frame#1{%
\_hbox{\_vrule\_vtop{\_vbox{\_hrule\_kern\_vvkern
\_hbox{\_kern\_hhkern\_relax#1\_kern\_hhkern}%
}\_kern\_vvkern\_hrule}\_vrule}}
\_public \frame ;
\_doc -----------------------------
\`\eqbox` and \`\eqboxsize` are implemented here. The widths of
all `\eqbox`es are saved to the `.ref` file in the format
\`\_Xeqbox``{<label>}{<size>}`. The `.ref` file is read again and maximum
box width for each <label> is saved to `\_eqb:<label>`.
\_cod -----------------------------
\_def\_Xeqbox#1#2{%
\_ifcsname _eqb:#1\_endcsname
\_ifdim #2>\_cs{_eqb:#1}\_relax \_sdef{_eqb:#1}{#2}\_fi
\_else \_sdef{_eqb:#1}{#2}\_fi
}
\_def\_eqbox #1[#2]#3{\_setbox0=\_hbox{{#3}}%
\_openref \_immediate\_wref \_Xeqbox{{#2}{\_the\_wd0}}%
\_ifcsname _eqb:#2\_endcsname
\_hbox to\_cs{_eqb:#2}{\_ifx r#1\_hfill\_fi\_hss\_unhbox0\_hss\_ifx l#1\_hfill\_fi}%
\_else \_box0 \_fi
}
\_def\_eqboxsize [#1]#2{\_trycs{_eqb:#1}{#2}}
\public \eqbox \eqboxsize ;
\_endcode % -------------------------------------
\secc[table.bound] The boundary declarator \code{:}
The `<declaration>` part of `\table{<declaration>}{<data>}` includes
column declarators (letters) and other material: the `|` or `(<cmd>)`.
The boundaries of columns are just before each column declarator
(with exception of the first one) if the boundary declarator `:` is not used.
For example, the declaration `{|c||c(xx)(yy)c}`
should be written more exactly using the boundary declarator `:`
by `{|c||:c(xx)(yy):c}`. But you can set these boundaries to
another places using the boundary declarator~`:` explicitly,
for example `{|c:||c(xx):(yy)c}`. The boundary declarator `:`
can be used only once between each two column declarators.
Each table item have its own group. The `(<cmd>)` are parts of the given
table item (depending on the boundary declarator position).
If you want to apply a special setting for given column, you can do this by
`(<setting>)` followed by column declarator. But if such column is not
first, you must use `:(<setting>)`. Example. We have three centered columns,
the second one have to be in bold font and the third one have to be in red:
`\table{c:(\bf)c:(\Red)c}{<data>}`
\secc Usage of the \code{\\tabskip} primitive
The value of `\tabskip` primitive is used between all columns of the table.
It is glue-type, so it can be stretchable or shrinkable, see next
section~\ref[table.w].
By default, `\tabskip` is 0\,pt. It means that only \^`\tabiteml`,
\^`\tabitemr` and `(<cmds>)` can generate visual spaces between columns. But they
are not real spaces between columns because they are in fact the part of
the total column width.
The `\tabskip` value declared before the \^`\table` macro (or in
\^`\everytable` or in \^`\thistable`) is used between all columns in the table.
This value is equal for all spaces between columns. But you can set each such space
individualy if you use `(\tabskip=<value>)` in the <declaration> immediately
before boundary character. The boundary character represents the column pair for
which the `\tabskip` have individual value. For example
`c(\tabskip=5pt):r` gives `\tabskip` value betwen `c` and `r` columns.
You need not to use boundary character explicitly, so `c(\tabskip=5pt)r` gives
the same result.
The space before first column is given by the \^`\tabskipl`
and the space after last column is equal to \^`\tabskipr`.
Default values are 0\,pt.
Use nonzero `\tabskip` only in special applications. If `\tabskip` is
nonzero then horizontal lines generated by \^`\crli`, \^`\crlli` and \^`\crlp`
have another behavior than you probably expected: they are interrupted in
each `\tabskip` space.
\secc[table.w] Tables to given width
There are two possibilities how to create tables to given width:
\begitems
* `\table to<size>{<declaration>}{<data>}` uses stretchability or
shrinkability of all spaces between columns generated by `\tabskip` value and
eventually by \^`\tabskipl`, \^`\tabskipr` values. See example below.
* `\table pxto<size>{<declaration>}{<data>}` expands the columns declared
by `p{<size>}`, if the `<size>` is given by a virtual \^`\tsize` unit.
See example below.
\enditems
Example of `\table to<size>`:
\begtt \catcode`\<=13
\thistable{\tabskip=0pt plus1fil minus1fil}
\table to\hsize {lr}{<data>}
\endtt
%
This table has its width `\hsize`. First column starts at the left boundary of
this table and it is justified left (to the boundary). Second column ends at
the right boundary of the table and it is justified right (to the boundary).
The space between them are stretchable and shrinkable in order to reach
given width `\hsize`.
\medskip
Example of `\table pxto<size>` (means \"{\bf p}aragraphs e{\bf x}panded {\bf to}"):
\begtt
\table pxto\hsize {|c|p{\tsize}|}{\crl
aaa & Ddkas jd dsjds ds cgha sfgs dd fddzf dfhz xxz
dras ffg hksd kds d sdjds h sd jd dsjds ds cgha
sfgs dd fddzf dfhz xxz. \crl
bb ddd ggg & Dsjds ds cgha sfgs dd fddzf dfhz xxz
ddkas jd dsjds ds cgha sfgs dd fddzf. \crl }
\endtt
\noindent\table pxto\hsize {|c|p{\tsize}|}{\crl
aaa & Ddkas jd dsjds ds cgha sfgs dd fddzf dfhz xxz
dras ffg hksd kds d sdjds h sd jd dsjds ds cgha
sfgs dd fddzf dfhz xxz. \crl
bb ddd ggg & Dsjds ds cgha sfgs dd fddzf dfhz xxz
ddkas jd dsjds ds cgha sfgs dd fddzf. \crl }
\medskip
The first `c` colum is variable width (it gets the width of most wide item)
and the resting space to given `\hsize` is filled by the `p` column.
You can declare more than one `p{<coefficient>\tsize}` columns in the table
when `pxto` keyword is used. The total sum of <coefficinets> must be exactly one.
For example,
\begtt \catcode`\<=13
\table pxto13cm {r p{.3\tsize} p{.5\tsize} p{.2\tsize} l}{<data>}
\endtt
%
This gives the ratio of widths of individual paragraphs in the table.
\secc `\eqbox`: boxes with equal width acros the whole document
The \^`\eqbox` `[<label>]{<text>}` behaves like `\hbox{<text>}` in the first
run of \TeX. But the widths of all boxes with the same label are saved to
`.ref` file and the maximum box width for each label is calculated at the
beginning of the next \TeX/ run. Then \^`\eqbox`~`[<label>]{<text>}` behaves
like `\hbox to <dim:label> {\hss <text>\hss}`, where <dim:label> is
the maximum width of all boxes
labeled by the same `[<label>]`. The documentation of the \LaTeX/ package
`eqparbox` includes more information and tips.
The \^`\eqboxsize` `[<label>]{<dimen>}` expands to <dim:label> if this value is known,
else it expands to the given <dimen>.
The optional parameter `r` or `l` can be writen before `[<label>]` (for example
`\eqbox r[label]{text}`) if you want to put the text to the right or to the
left side of the box width.
Try the following example and watch what happens after first \TeX/ run and
after second one.
\begtt
\def\leftitem#1{\par
\noindent \hangindent=\eqboxsize[items]{2em}\hangafter=1
\eqbox r[items]{#1 }\ignorespaces}
\leftitem {\bf first} \lorem[1]
\leftitem {\bf second one} \lorem[2]
\leftitem {\bf final} \lorem[3]
\endtt
\_endinput
2020-05-26 \eqbox implemented
2020-05-20 \colnum implemented.
\vspan implemented.
2020-05-19 \fL, \fR ets defined.
\table to, \table pxto implemented.
2020-05-10 \bgroup &\egroup added to tabdata (in order to \aftergroup from colors)
boundary declarator : introduced
\_unsskip: \ifmmode added.
2020-04-10 second group for items in order to \localcolors
|