summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/tex/lualatex/lualinalg/lualinalg_complex.lua
blob: 9f355e53b15d2dc0d460e9d32f656151230bcf19 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298

--Version=1.1, Date=10-Feb-2023
-- provides module for complex numbers

--Contains a modified version of the file complex.lua. It is availalbe on the link https://github.com/davidm/lua-matrix/blob/master/lua/matrix.lua.  This is licensed under the same terms as Lua itself. This license allows to freely copy, modify and distribute the file for any purpose and without any restrictions. 

--Licensed under the same terms as Lua itself. This license allows to freely copy, modify and distribute the file for any purpose and without any restrictions. 



complex = {}

local complex_meta = {}

local function parse_scalar(s, pos0)
	local x, n, pos = s:match('^([+-]?[%d%.]+)(.?)()', pos0)
	if not x then return end
	if n == 'e' or n == 'E' then
		local x2, n2, pos2 = s:match('^([+-]?%d+)(.?)()', pos)
		if not x2 then error 'number format error' end
		x = tonumber(x..n..x2)
		if not x then error 'number format error' end
		return x, n2, pos2
	else
		x = tonumber(x)
		if not x then error 'number format error' end
		return x, n, pos
	end
end
local function parse_component(s, pos0)
	local x, n, pos = parse_scalar(s, pos0)
	if not x then
		local x2, n2, pos2 = s:match('^([+-]?)(i)()$', pos0)
		if not x2 then error 'number format error' end
		return (x2=='-' and -1 or 1), n2, pos2
	end
	if n == '/' then
		local x2, n2, pos2 = parse_scalar(s, pos)
		x = x / x2
		return x, n2, pos2
	end
	return x, n, pos
end
local function parse_complex(s)
	local x, n, pos = parse_component(s, 1)
	if n == '+' or n == '-' then
		local x2, n2, pos2 = parse_component(s, pos)
		if n2 ~= 'i' or pos2 ~= #s+1 then error 'number format error' end
		if n == '-' then x2 = - x2 end
		return x, x2
	elseif n == '' then
		return x, 0
	elseif n == 'i' then
		if pos ~= #s+1 then error 'number format error' end
		return 0, x
	else
		error 'number format error'
	end
end

function complex.to( num )
	-- check for table type
	if type( num ) == "table" then
		-- check for a complex number
		if getmetatable( num ) == complex_meta then
			return num
		end
		local real,imag = tonumber( num[1] ),tonumber( num[2] )
		if real and imag then
			return setmetatable( { real,imag }, complex_meta )
		end
		return
	end
	local isnum = tonumber( num )
	if isnum then
		return setmetatable( { isnum,0 }, complex_meta )
	end
	if type( num ) == "string" then
		local real, imag = parse_complex(num)
		return setmetatable( { real, imag }, complex_meta )
	end
end

setmetatable( complex, { __call = function( _,num ) return complex.to( num ) end } )


function complex.new( ... )
	return setmetatable( { ... }, complex_meta )
end


function complex.type( arg )
	if getmetatable( arg ) == complex_meta then
		return "complex"
	end
end


function complex.convpolar( radius, phi )
	return setmetatable( { radius * math.cos( phi ), radius * math.sin( phi ) }, complex_meta )
end

function complex.convpolardeg( radius, phi )
	phi = phi/180 * math.pi
	return setmetatable( { radius * math.cos( phi ), radius * math.sin( phi ) }, complex_meta )
end

function complex.tostring( cx,formatstr )
	local real,imag = cx[1],cx[2]
	if formatstr then
		if imag == 0 then
			return string.format( formatstr, real )
		elseif real == 0 then
			return string.format( formatstr, imag ).."i"
		elseif imag > 0 then
			return string.format( formatstr, real ).."+"..string.format( formatstr, imag ).."i"
		end
		return string.format( formatstr, real )..string.format( formatstr, imag ).."i"
	end
	if imag == 0 then
		return real
	elseif real == 0 then
		return ((imag==1 and "") or (imag==-1 and "-") or imag).."i"
	elseif imag > 0 then
		return real.."+"..(imag==1 and "" or imag).."i"
	end
	return real..(imag==-1 and "-" or imag).."i"
end

function complex.print( ... )
	print( complex.tostring( ... ) )
end

function complex.polar( cx )
	return math.sqrt( cx[1]^2 + cx[2]^2 ), math.atan2( cx[2], cx[1] )
end

function complex.polardeg( cx )
	return math.sqrt( cx[1]^2 + cx[2]^2 ), math.atan2( cx[2], cx[1] ) / math.pi * 180
end

function complex.norm2( cx )
	return cx[1]^2 + cx[2]^2
end

function complex.abs( cx )
	return math.sqrt( cx[1]^2 + cx[2]^2 )
end

function complex.get( cx )
	return cx[1],cx[2]
end


function complex.set( cx,real,imag )
	cx[1],cx[2] = real,imag
end

function complex.is( cx,real,imag )
	if cx[1] == real and cx[2] == imag then
		return true
	end
	return false
end


function complex.copy( cx )
	return setmetatable( { cx[1],cx[2] }, complex_meta )
end


function complex.add( cx1,cx2 )
	return setmetatable( { cx1[1]+cx2[1], cx1[2]+cx2[2] }, complex_meta )
end


function complex.sub( cx1,cx2 )
	return setmetatable( { cx1[1]-cx2[1], cx1[2]-cx2[2] }, complex_meta )
end

function complex.mul( cx1,cx2 )
	return setmetatable( { cx1[1]*cx2[1] - cx1[2]*cx2[2],cx1[1]*cx2[2] + cx1[2]*cx2[1] }, complex_meta )
end


function complex.mulnum( cx,num )
	return setmetatable( { cx[1]*num,cx[2]*num }, complex_meta )
end

function complex.div( cx1,cx2 )
	local val = cx2[1]^2 + cx2[2]^2
	return setmetatable( { (cx1[1]*cx2[1]+cx1[2]*cx2[2])/val,(cx1[2]*cx2[1]-cx1[1]*cx2[2])/val }, complex_meta )
end

function complex.divnum( cx,num )
	return setmetatable( { cx[1]/num,cx[2]/num }, complex_meta )
end


function complex.pow( cx,num )
	if math.floor( num ) == num then
		if num < 0 then
			local val = cx[1]^2 + cx[2]^2
			cx = { cx[1]/val,-cx[2]/val }
			num = -num
		end
		local real,imag = cx[1],cx[2]
		for i = 2,num do
			real,imag = real*cx[1] - imag*cx[2],real*cx[2] + imag*cx[1]
		end
		return setmetatable( { real,imag }, complex_meta )
	end
	local length,phi = math.sqrt( cx[1]^2 + cx[2]^2 )^num, math.atan2( cx[2], cx[1] )*num
	return setmetatable( { length * math.cos( phi ), length * math.sin( phi ) }, complex_meta )
end

function complex.sqrt( cx )
	local len = math.sqrt( cx[1]^2+cx[2]^2 )
	local sign = (cx[2]<0 and -1) or 1
	return setmetatable( { math.sqrt((cx[1]+len)/2), sign*math.sqrt((len-cx[1])/2) }, complex_meta )
end


function complex.ln( cx )
	return setmetatable( { math.log(math.sqrt( cx[1]^2 + cx[2]^2 )),
		math.atan2( cx[2], cx[1] ) }, complex_meta )
end

function complex.exp( cx )
	local expreal = math.exp(cx[1])
	return setmetatable( { expreal*math.cos(cx[2]), expreal*math.sin(cx[2]) }, complex_meta )
end


function complex.conjugate( cx )
	return setmetatable( { cx[1], -cx[2] }, complex_meta )
end

function complex.round( cx,idp )
	local mult = 10^( idp or 0 )
	return setmetatable( { math.floor( cx[1] * mult + 0.5 ) / mult,
		math.floor( cx[2] * mult + 0.5 ) / mult }, complex_meta )
end


complex.zero = complex.new(0, 0)
complex.one  = complex.new(1, 0)



complex_meta.__add = function( cx1,cx2 )
	local cx1,cx2 = complex.to( cx1 ),complex.to( cx2 )
	return complex.add( cx1,cx2 )
end
complex_meta.__sub = function( cx1,cx2 )
	local cx1,cx2 = complex.to( cx1 ),complex.to( cx2 )
	return complex.sub( cx1,cx2 )
end
complex_meta.__mul = function( cx1,cx2 )
	local cx1,cx2 = complex.to( cx1 ),complex.to( cx2 )
	return complex.mul( cx1,cx2 )
end
complex_meta.__div = function( cx1,cx2 )
	local cx1,cx2 = complex.to( cx1 ),complex.to( cx2 )
	return complex.div( cx1,cx2 )
end
complex_meta.__pow = function( cx,num )
	if num == "*" then
		return complex.conjugate( cx )
	end
	return complex.pow( cx,num )
end
complex_meta.__unm = function( cx )
	return setmetatable( { -cx[1], -cx[2] }, complex_meta )
end
complex_meta.__eq = function( cx1,cx2 )
	if cx1[1] == cx2[1] and cx1[2] == cx2[2] then
		return true
	end
	return false
end
complex_meta.__tostring = function( cx )
	return tostring( complex.tostring( cx ) )
end
complex_meta.__concat = function( cx,cx2 )
	return tostring(cx)..tostring(cx2)
end
-- cx( cx, formatstr )
complex_meta.__call = function( ... )
	print( complex.tostring( ... ) )
end
complex_meta.__index = {}
for k,v in pairs( complex ) do
	complex_meta.__index[k] = v
end

return complex