blob: 0eb00afe20f62a4d10e30e9a6922a0ef9ed11ec9 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
|
%
% Base arithmetic functions
%
\newdimen\MFF@dimenA
\newdimen\MFF@dimenB
\newdimen\MFF@dimenC
\newdimen\MFF@dimenD
%
% this code convert dimen (pt) into real value assigned to \@tempa
%
\def\MFF@convert#1{\@ovxx=#1\relax \@negargfalse
\ifdim \@ovxx<0pt \@ovxx=-\@ovxx \@negargtrue \fi
\@xarg=\@ovxx \@yarg=\@xarg
\divide\@xarg by 65536\relax
\@yyarg=\@xarg \multiply\@yyarg by 65536\relax
\advance\@yarg by -\@yyarg
\multiply\@yarg by 3125 \divide\@yarg by 2048
\ifnum \@yarg > 9999 \def\@tempa{}%
\else \ifnum \@yarg > 999 \def\@tempa{0}%
\else \ifnum \@yarg > 99 \def\@tempa{00}%
\else \ifnum \@yarg > 99 \def\@tempa{000}%
\else \def\@tempa{0000}%
\fi\fi\fi\fi
\edef\@tempa{\if@negarg -\fi \the\@xarg.\@tempa\the\@yarg}%
}
% ************************************************************
% *** The following macros are partially taken from PiCTeX ***
% ************************************************************
% DIVISION (Does long division of dimension registers)
% ** \MFF@divide{DIVIDEND}{DIVISOR}{RESULT}
% ** \MFF@divide DIVIDEND [by] DIVISOR [to get] ANSWER
% ** Divides the dimension DIVIDEND by the dimension DIVISOR, placing the
% ** quotient in the dimension register ANSWER. Values are understood to
% ** be in points. E.g. 12.5pt/1.4pt=8.92857pt.
% ** Quotient is accurate to 1/65536pt=2**[-16]pt
% ** |DIVISOR| should be < 8192pt = 113.36in
% ** --- otherwise acciracy is decreased in 2 times
\def\MFF@divide#1#2#3{%
\ifdim #2=\z@ #3=\z@\relax
\else
\MFF@dimenB=#1\relax% ** dimB holds current remainder (r)
\MFF@dimenC=#2\relax% ** dimC holds divisor (d)
\ifdim\MFF@dimenC<\z@
\MFF@dimenB=-\MFF@dimenB \MFF@dimenC=-\MFF@dimenC
\fi
\@negargfalse
\ifdim \MFF@dimenB<\z@ \MFF@dimenB=-\MFF@dimenB \@negargtrue \fi
\ifdim \MFF@dimenC<8192pt\relax
\else
\MFF@dimenB=0.5\MFF@dimenB
\MFF@dimenC=0.5\MFF@dimenC
\fi
\MFF@dimenD=\MFF@dimenB% ** dimD holds quotient q=r/d for this
\divide \MFF@dimenD \MFF@dimenC% ** step, in units of scaled pts
\MFF@dimenA=\MFF@dimenD% ** dimA eventually holds answer (a)
\multiply\MFF@dimenD \MFF@dimenC% ** r <-- r - dq
\advance\MFF@dimenB -\MFF@dimenD% ** First step complete. Have integer part
% ** of a, and corresponding remainder.
\MFF@dimenD=\MFF@dimenC% ** Temporarily use dimD to hold |d|
\ifdim\MFF@dimenD<64pt% ** Branch on the magnitude of |d|
\MFF@divstep[256]\MFF@divstep[256]%
\else
% ** The following code handles divisors d with
% ** (1) .88in = 64pt <= d < 256pt = 3.54in
% ** (2) 3.54in = 256pt <= d < 2048pt = 28.34in
% ** (3) 28.34in = 2048pt <= d < 8192pt = 113.36in
% ** Anything bigger than that may result in an overflow condition.
% ** For our purposes, we should never even see case (2) or (3).
\ifdim\MFF@dimenD<256pt
\MFF@divstep[64]\MFF@divstep[32]\MFF@divstep[32]%
\else
\ifdim\MFF@dimenD<2048pt
\MFF@divstep[8]\MFF@divstep[8]\MFF@divstep[8]%
\MFF@divstep[8]\MFF@divstep[4]\MFF@divstep[4]%
\else
\MFF@divstep[2]\MFF@divstep[2]\MFF@divstep[2]\MFF@divstep[2]%
\MFF@divstep[2]\MFF@divstep[2]\MFF@divstep[2]\MFF@divstep[2]%
\MFF@divstep[2]\MFF@divstep[2]\MFF@divstep[2]\MFF@divstep[2]%
\MFF@divstep[2]\MFF@divstep[2]\MFF@divstep[2]\MFF@divstep[2]%
\fi
\fi
\fi
\if@negarg \MFF@dimenA=-\MFF@dimenA \fi
#3=\MFF@dimenA
\fi\ignorespaces}
% ** The following macro does the real long division work.
\def\MFF@divstep[#1]{% ** #1 = "B"
\MFF@dimenB=#1\MFF@dimenB% ** r <-- B*r
\MFF@dimenD=\MFF@dimenB% ** dimD holds quotient q=r/d for this
\divide \MFF@dimenD by \MFF@dimenC% ** step, in units of scaled pts
\MFF@dimenA=#1\MFF@dimenA% ** a <-- B*a + q
\advance\MFF@dimenA by \MFF@dimenD%
\multiply\MFF@dimenD by \MFF@dimenC% ** r <-- r - dq
\advance\MFF@dimenB by -\MFF@dimenD}
% MULTIPLICATION (Does long multiplication of dimension registers)
% ** \MFF@multiply{FACTOR1}{FACTOR2}{RESULT}
% ** Result is accurate to 1/65536pt=2**[-16]pt
% ** |FACTOR2| should be < 8192pt = 113.36in
% ** --- otherwise acciracy is decreased in 2 times
\def\MFF@multiply#1#2#3{%
\MFF@dimenB=#1\relax \MFF@dimenC=#2\relax
\ifdim\MFF@dimenC<\z@
\MFF@dimenB=-\MFF@dimenB \MFF@dimenC=-\MFF@dimenC
\fi
\@negargfalse
\ifdim \MFF@dimenB<\z@ \MFF@dimenB=-\MFF@dimenB \@negargtrue \fi
\ifdim \MFF@dimenC<8192pt\relax
\else
\MFF@dimenB=2\MFF@dimenB
\MFF@dimenC=0.5\MFF@dimenC
\fi
% calculate integer part
\@yarg=\MFF@dimenC \@xarg=65536
\@yyarg=\@yarg \divide\@yyarg by \@xarg
% multiplication by integer part
\MFF@dimenA=\MFF@dimenB \multiply\MFF@dimenA by \@yyarg
% prepare fraction part
\multiply\@yyarg by \@xarg \advance\@yarg by -\@yyarg
% multiplication cycle
\ifdim\MFF@dimenB<64pt%
\MFF@mulstep[256]\MFF@mulstep[256]%
\else
\ifdim\MFF@dimenB<256pt
\MFF@mulstep[64]\MFF@mulstep[32]\MFF@mulstep[32]%
\else
\ifdim\MFF@dimenB<2048pt
\MFF@mulstep[8]\MFF@mulstep[8]\MFF@mulstep[8]%
\MFF@mulstep[8]\MFF@mulstep[4]\MFF@mulstep[4]%
\else
\MFF@mulstep[2]\MFF@mulstep[2]\MFF@mulstep[2]\MFF@mulstep[2]%
\MFF@mulstep[2]\MFF@mulstep[2]\MFF@mulstep[2]\MFF@mulstep[2]%
\MFF@mulstep[2]\MFF@mulstep[2]\MFF@mulstep[2]\MFF@mulstep[2]%
\MFF@mulstep[2]\MFF@mulstep[2]\MFF@mulstep[2]\MFF@mulstep[2]%
\fi
\fi
\fi
% assign result
\if@negarg \MFF@dimenA=-\MFF@dimenA \fi
#3=\MFF@dimenA
\ignorespaces}
% perform partial multiplication
\def\MFF@mulstep[#1]{\divide\@xarg by #1
\@yyarg=\@yarg \divide\@yyarg by \@xarg
% calculate new additive component
\MFF@dimenC=\MFF@dimenB \multiply\MFF@dimenC by \@yyarg
\divide\MFF@dimenC by #1 \advance\MFF@dimenA by \MFF@dimenC
% update fraction data
\multiply\@yyarg by \@xarg \advance\@yarg by -\@yyarg
\divide\MFF@dimenB by #1
}
% *********************************************
% ******** End of PiCTeX arith macros *********
% *********************************************
|