summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/tex/latex/eepic/epic.sty
blob: a18285adb2295c61e9eb64cf0934dde0b69a6f15 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
\makeatletter
\typeout{%
Enhancements to Picture Environment. Version 1.2 - Released June 1, 1986}
%----------------------------------------------------------------------
% Copyright (C) podar@sbcs (Sunil Podar) July 14,1986.
% You may use this file in whatever way you wish. You are requested to 
% leave this notice intact, and report any bugs, enhancements, comments,
% suggestions, etc. to:
% USmail: Sunil Podar,Dept. of Computer Science,SUNY at Stony Brook,NY 11794.
%  CSNET: podar@sbcs.csnet
%   ARPA: podar%suny-sb.csnet@csnet-relay.arpa
%   UUCP: {allegra, hocsd, philabs, ogcvax}!sbcs!podar
%----------------------------------------------------------------------
% This file contains implementation of:
% \multiputlist	\matrixput	\grid		\picsquare
% \dottedline	\dashline	\drawline	\jput
% \putfile
% Environments: dottedjoin, dashjoin and drawjoin
%
% For documentation, see the accompanying manual.
%----------------------------------------------------------------------
% usage: \multiputlist(x,y)(delta-x,delta-y)[tbrl]{item1,item2,item3,.....}
% \lop and \lopoff taken from TeXbook.
%----------------------------------------------------------------------
\def\lop#1\to#2{\expandafter\lopoff#1\lopoff#1#2}
\long\def\lopoff,#1,#2\lopoff#3#4{\def#4{#1}\def#3{,#2}}
\def\@@mlistempty{,}
\newif\iflistnonempty
\def\multiputlist(#1,#2)(#3,#4){\@ifnextchar
[{\@imultiputlist(#1,#2)(#3,#4)}{\@imultiputlist(#1,#2)(#3,#4)[]}}

\long\def\@imultiputlist(#1,#2)(#3,#4)[#5]#6{{%
\@xdim=#1\unitlength \@ydim=#2\unitlength
\listnonemptytrue \def\@@mlist{,#6,} % need this for end condition
\loop
\lop\@@mlist\to\@@firstoflist
\@killglue\raise\@ydim\hbox to\z@{\hskip
\@xdim\@imakepicbox(0,0)[#5]{\@@firstoflist}\hss}
\advance\@xdim #3\unitlength\advance\@ydim #4\unitlength
\ifx\@@mlist\@@mlistempty \listnonemptyfalse\fi
\iflistnonempty
\repeat\relax
\ignorespaces}}
%----------------------------------------------------------------------
% two-dimensional version of \multiput
% \matrixput(0,0)(20,0){5}(0,20){3}{\circle{2}}
%----------------------------------------------------------------------
\newcount\@@multicnt
\def\matrixput(#1,#2)(#3,#4)#5(#6,#7)#8#9{%
\ifnum#5>#8\@matrixput(#1,#2)(#3,#4){#5}(#6,#7){#8}{#9}%
\else\@matrixput(#1,#2)(#6,#7){#8}(#3,#4){#5}{#9}\fi}

%% here #5 >= #8
\long\def\@matrixput(#1,#2)(#3,#4)#5(#6,#7)#8#9{{\@killglue%
\@multicnt=#5\relax\@@multicnt=#8\relax%
\@xdim=0pt%
\@ydim=0pt%
\setbox\@tempboxa\hbox{\@whilenum \@multicnt > 0\do {%
%%\typeout{\the\@multicnt, \the\@@multicnt}%
\raise\@ydim\hbox to \z@{\hskip\@xdim #9\hss}%
\advance\@multicnt \m@ne%
\advance\@xdim #3\unitlength\advance\@ydim #4\unitlength}}%
\@xdim=#1\unitlength%
\@ydim=#2\unitlength%
\@whilenum \@@multicnt > 0\do {%
\raise\@ydim\hbox to \z@{\hskip\@xdim \copy\@tempboxa\hss}%
\advance\@@multicnt \m@ne%
\advance\@xdim #6\unitlength\advance\@ydim #7\unitlength}%
\ignorespaces}}
%----------------------------------------------------------------------
%\grid(wd,ht)(delta-wd,delta-ht)[initial-X-integer,initial-Y-integer]
% example: 1. \put(0,0){\grid(95,100)(9.5,10)}
%          2. \put(0,0){\grid(100,100)(10,5)[-10,0]}
%          or \put(0,0){\tiny \grid(100,100)(5,5)[0,0]}%numbers in \tiny font
%----------------------------------------------------------------------
\newcount\d@lta
\newdimen\@delta
\newdimen\@@delta
\newcount\@gridcnt
\def\grid(#1,#2)(#3,#4){\@ifnextchar [{\@igrid(#1,#2)(#3,#4)}%
{\@igrid(#1,#2)(#3,#4)[@,@]}}

\long\def\@igrid(#1,#2)(#3,#4)[#5,#6]{%
\makebox(#1,#2){%
\@delta=#1pt\@@delta=#3pt\divide\@delta \@@delta\d@lta=\@delta%
\advance\d@lta \@ne\relax\message{grid=\the\d@lta\space x}%
%% copied the definition of \line(0,1){#2} for some efficiency!.
\multiput(0,0)(#3,0){\d@lta}{\hbox to\z@{\hskip -\@halfwidth \vrule
	 \@width \@wholewidth \@height #2\unitlength \@depth \z@\hss}}%
\ifx#5@\relax\else%
\global\@gridcnt=#5%
\multiput(0,0)(#3,0){\d@lta}{%
\makebox(0,-2)[t]{\number\@gridcnt\global\advance\@gridcnt by #3}}%
\global\@gridcnt=#5%
\multiput(0,#2)(#3,0){\d@lta}{\makebox(0,0)[b]{\number\@gridcnt\vspace{2mm}%
\global\advance\@gridcnt by #3}}%
\fi%
\@delta=#2pt\@@delta=#4pt\divide\@delta \@@delta\d@lta=\@delta%
\advance\d@lta \@ne\relax\message{\the\d@lta . }%
%% copied the definition of \line(1,0){#1} for some efficiency!.
\multiput(0,0)(0,#4){\d@lta}{\vrule \@height \@halfwidth \@depth \@halfwidth
	 \@width #1\unitlength}%
\ifx#6@\relax\else
\global\@gridcnt=#6%
\multiput(0,0)(0,#4){\d@lta}{%
\makebox(0,0)[r]{\number\@gridcnt\ \global\advance\@gridcnt by #4}}%
\global\@gridcnt=#6%
\multiput(#1,0)(0,#4){\d@lta}{%
\makebox(0,0)[l]{\ \number\@gridcnt\global\advance\@gridcnt by #4}}%
\fi}}
%----------------------------------------------------------------------
% \picsquare is a centered square of dimensions governed by \thinlines,
% \thicklines or \linethickness declarations.
\def\picsquare{\hskip -0.5\@wholewidth%
\vrule height \@halfwidth depth \@halfwidth width \@wholewidth}
%
% just a square dot with reference point at bottom-left
\def\picsquare@bl{\vrule height \@wholewidth depth \z@  width \@wholewidth}
%----------------------------------------------------------------------
% \begin{dottedjoin}{interdot-gap in units}
% .....			
% \end{dottedjoin}
% \begin{dashjoin}{dash-length in units}{interdotgap in each dash}
% .....			
% \end{dashjoin}
% \begin{drawjoin}
% .....
% \end{drawjoin}
% \jput(x,y){character}
% \dottedline[opt. dotcharacter]{dotgap in units}(x1,y1)(x2,y2)...(xN,yN)
% \dashline[#]{dash-length}[opt. dotgap](x1,y1)(x2,y2)...(xN,yN)
% \drawline[#](x1,y1)(x2,y2)...(xN,yN)
%----------------------------------------------------------------------
% definitions for *join environment. had to do all this mess because of
% optional arguments.
%----------------------------------------------------------------------
\newif\if@jointhem \global\@jointhemfalse
\newif\if@firstpoint \global\@firstpointtrue
\newcount\@joinkind
%\newenvironment{dottedjoin}[1]%[opt char]{dotgap}
%{\global\@jointhemtrue \gdef\dotgap@join{#1}\global\@joinkind=0\relax}%
%{\global\@jointhemfalse \global\@firstpointtrue}
%----------------------------------------------------------------------
\def\dottedjoin{\global\@jointhemtrue \global\@joinkind=0\relax
  \bgroup\@ifnextchar[{\@idottedjoin}{\@idottedjoin[\picsquare@bl]}}
\def\@idottedjoin[#1]#2{\gdef\dotchar@join{#1}\gdef\dotgap@join{#2}}
\def\enddottedjoin{\global\@jointhemfalse \global\@firstpointtrue\egroup}
%----------------------------------------------------------------------
\def\dashjoin{\global\@jointhemtrue \global\@joinkind=1\relax
  \bgroup\@ifnextchar[{\@idashjoin}{\@idashjoin[\dashlinestretch]}}
\def\@idashjoin[#1]#2{\edef\dashlinestretch{#1}\gdef\dashlen@join{#2}%
\@ifnextchar[{\@iidashjoin}{\gdef\dotgap@join{}}}
\def\@iidashjoin[#1]{\gdef\dotgap@join{#1}}
\let\enddashjoin\enddottedjoin
%----------------------------------------------------------------------
\def\drawjoin{\global\@jointhemtrue \global\@joinkind=2\relax
  \bgroup\@ifnextchar[{\@idrawjoin}{}}
\def\@idrawjoin[#1]{\def\drawlinestretch{#1}}
\let\enddrawjoin\enddottedjoin
%----------------------------------------------------------------------
%% this is equiv to \put(x,y){#1} when not in {dot*join} environment.
\long\def\jput(#1,#2)#3{{\@killglue\raise#2\unitlength\hbox to \z@{\hskip
#1\unitlength #3\hss}\ignorespaces}
\if@jointhem
 \if@firstpoint \gdef\x@one{#1} \gdef\y@one{#2} \global\@firstpointfalse
 \else\ifcase\@joinkind
	\@dottedline[\dotchar@join]{\dotgap@join\unitlength}%
(\x@one\unitlength,\y@one\unitlength)(#1\unitlength,#2\unitlength)
	\or\@dashline[\dashlinestretch]{\dashlen@join}[\dotgap@join]%
(\x@one,\y@one)(#1,#2)
	\else\@drawline[\drawlinestretch](\x@one,\y@one)(#1,#2)\fi
    \gdef\x@one{#1} \gdef\y@one{#2}
 \fi
\fi}
%----------------------------------------------------------------------
\newdimen\@dotgap
\newdimen\@ddotgap
\newcount\@x@diff
\newcount\@y@diff
\newdimen\x@diff
\newdimen\y@diff
\newbox\@dotbox
\newcount\num@segments
\newcount\num@segmentsi
\newif\ifsqrt@done
%% from sqrtandstuff func basically need \num@segments.
%% given a deltax, deltay and dotgap, it calculates \num@segments = number of
%% segments along the hypotenuse. used by \dottedline & \dashline.
%% It finishes quickly if any of deltax or deltay are zero or close to zero.
\def\sqrtandstuff#1#2#3{
\ifdim #1 <0pt \@x@diff= -#1 \else\@x@diff=#1\fi
\ifdim #2 <0pt \@y@diff= -#2 \else\@y@diff=#2\fi
%% @diff's will be positive and diff's will retain their sign.
\@dotgap=#3 \divide\@dotgap \tw@
\advance\@x@diff \@dotgap \advance\@y@diff \@dotgap% for round-off errors
\@dotgap=#3
\divide\@x@diff \@dotgap \divide\@y@diff \@dotgap
\sqrt@donefalse
\ifnum\@x@diff < 2
   \ifnum\@y@diff < 2 \num@segments=\@x@diff \advance\num@segments \@y@diff
		      \sqrt@donetrue
        \else\num@segments=\@y@diff \sqrt@donetrue\fi
   \else\ifnum\@y@diff < 2 \num@segments=\@x@diff \sqrt@donetrue\fi
\fi
\ifsqrt@done \ifnum\num@segments=\z@ \num@segments=\@ne\fi\relax
 \else \ifnum\@y@diff >\@x@diff
		 \@tempcnta=\@x@diff \@x@diff=\@y@diff \@y@diff=\@tempcnta
       \fi    		%exchange @x@diff & @y@diff, so now @x@diff > @y@diff
  \num@segments=\@y@diff
  \multiply\num@segments \num@segments
  \multiply\num@segments by 457
  \divide\num@segments \@x@diff
  \advance\num@segments by 750 % for round-off, going to divide by 1000.
  \divide\num@segments \@m
  \advance\num@segments \@x@diff
		%num@segments = @x@diff + (0.457*sqr(@y@diff)/@x@diff)
\fi}
%----------------------------------------------------------------------
% \dottedline[opt. char]{interdot gap in units}(x1,y1)(x2,y2)....(xN,yN)
%----------------------------------------------------------------------
%% Used the following construction earlier but that results in box memory
%% full much too soon although it works perfectly.
%% \setbox\@dotbox\vbox to\z@{\vss \hbox to\z@{\hss #1\hss}\vss}\relax}
%% The cenetering of characters is achieved by substracting half the ht, wd
%% of character from the (x,y) coordinates where they are to be put. We
%% chose to use a macro for the ``dot'' instead of \copy\box to save memory
%% at the expense of extra cpu, since memory becomes an issue very soon.
%% \picsquare is already centered, whereas other characters, except \circle,
%% will not be cenetered, hence to handle them all in a similar fashion,
%% used \picsquare@bl.
%
% kind of tail recursion.
\def\dottedline{\@ifnextchar [{\@idottedline}{\@idottedline[\picsquare@bl]}}
\def\@idottedline[#1]#2(#3,#4){\@ifnextchar (%
{\@iidottedline[#1]{#2}(#3,#4)}{\relax}}
\def\@iidottedline[#1]#2(#3,#4)(#5,#6){\@dottedline[#1]{#2\unitlength}%
(#3\unitlength,#4\unitlength)(#5\unitlength,#6\unitlength)%
\@idottedline[#1]{#2}(#5,#6)}
%
%% user not supposed to use this directly. arguments in absolute dimensions.
%% need to pass absolute dimens here because dashline calls dottedline and
%% can supply only absolute dimensions.
\long\def\@dottedline[#1]#2(#3,#4)(#5,#6){{%
\x@diff=#5\relax\advance\x@diff by -#3\relax
\y@diff=#6\relax\advance\y@diff by -#4\relax
\sqrtandstuff{\x@diff}{\y@diff}{#2}
\divide\x@diff \num@segments
\divide\y@diff \num@segments
\advance\num@segments \@ne     % to put the last point at destination.
%%\typeout{num@segments= \the\num@segments}
\setbox\@dotbox\hbox{#1}% just to get the dimensions of the character.
\@xdim=#3 \@ydim=#4
\ifdim\ht\@dotbox >\z@% otherwise its a circle.
  \advance\@xdim -0.5\wd\@dotbox
  \advance\@ydim -0.5\ht\@dotbox
  \advance\@ydim .5\dp\@dotbox\fi
%%circle's have a ht=0, this is one way I could think of to catch circles.
%%following loop is equiv to
%%\multiput(\@xdim,\@ydim)(\x@diff,\y@diff){\num@segments}{#1}
%%with arguments in absolute dimensions.
\@killglue
\loop \ifnum\num@segments > 0
\unskip\raise\@ydim\hbox to\z@{\hskip\@xdim #1\hss}%
\advance\num@segments \m@ne\advance\@xdim\x@diff\advance\@ydim\y@diff%
\repeat
\ignorespaces}}
%----------------------------------------------------------------------
% \dashline[#]{dash-length}[optional dotgap](x1,y1)(x2,y2)...(xN,yN)
% The minimum # of dashes put is 2, one at either end point; dash-length is
% reduced accordingly if necessary. Also have to some dirty work to account
% for stretch & shrink.
% \renewcommand{\dashlinestretch}{-50}  %ONLY INTEGERS PERMITTED.
%----------------------------------------------------------------------
\def\dashlinestretch{0} %well, could have used a counter.
\def\dashline{\@ifnextchar [{\@idashline}{\@idashline[\dashlinestretch]}}
\def\@idashline[#1]#2{\@ifnextchar [{\@iidashline[#1]{#2}}%
{\@iidashline[#1]{#2}[\@empty]}} %\@empty needed-- later checked with \ifx 
\def\@iidashline[#1]#2[#3](#4,#5){\@ifnextchar (%
{\@iiidashline[#1]{#2}[#3](#4,#5)}{\relax}}
%
\def\@iiidashline[#1]#2[#3](#4,#5)(#6,#7){%
\@dashline[#1]{#2}[#3](#4,#5)(#6,#7)%
\@iidashline[#1]{#2}[#3](#6,#7)}
%
\long\def\@dashline[#1]#2[#3](#4,#5)(#6,#7){{%
\x@diff=#6\unitlength \advance\x@diff by -#4\unitlength
\y@diff=#7\unitlength \advance\y@diff by -#5\unitlength
%% correction to get actual width since the dash-length as taken in arguement
%% is the center-to-center of the end-points.
\@tempdima=#2\unitlength \advance\@tempdima -\@wholewidth
\sqrtandstuff{\x@diff}{\y@diff}{\@tempdima}
\ifnum\num@segments <3 \num@segments=3\fi% min number of dashes I can plot
% is 2, 1 at either end, thus min num@segments is 3 (including 'empty dash').
\@tempdima=\x@diff \@tempdimb=\y@diff
\divide\@tempdimb by\num@segments
\divide\@tempdima by\num@segments
%% ugly if-then-else. If optional dotgap specified, then use it otherwise
%% make a solid looking dash.
{\ifx#3\@empty \relax
    \ifdim\@tempdima < 0pt \x@diff=-\@tempdima\else\x@diff=\@tempdima\fi
    \ifdim\@tempdimb < 0pt \y@diff=-\@tempdimb\else\y@diff=\@tempdimb\fi
    \ifdim\x@diff < 0.3pt %it's a vertical dashline
           \ifdim\@tempdimb > 0pt
	        \global\setbox\@dotbox\hbox{\hskip -\@halfwidth \vrule
		 \@width \@wholewidth \@height \@tempdimb}
	   \else\global\setbox\@dotbox\hbox{\hskip -\@halfwidth \vrule
		 \@width \@wholewidth \@height\z@ \@depth -\@tempdimb}\fi
       \else\ifdim\y@diff < 0.3pt %it's a horizontal dashline
               \ifdim\@tempdima >0pt
		  \global\setbox\@dotbox\hbox{\vrule \@height \@halfwidth
		 		\@depth \@halfwidth \@width \@tempdima}
		\else\global\setbox\@dotbox\hbox{\hskip \@tempdima
			 \vrule \@height \@halfwidth \@depth \@halfwidth
				 \@width -\@tempdima \hskip \@tempdima}\fi
	    \else\global\setbox\@dotbox\hbox{%
\@dottedline[\picsquare]{0.98\@wholewidth}(0pt,0pt)(\@tempdima,\@tempdimb)}
\fi\fi
\else\global\setbox\@dotbox\hbox{%
\@dottedline[\picsquare]{#3\unitlength}(0pt,0pt)(\@tempdima,\@tempdimb)}
\fi}
\advance\x@diff by -\@tempdima % both have same sign
\advance\y@diff by -\@tempdimb
%
%%here we correct the number of dashes to be put by reducing them
%%appropriately. (num@segments*\@wholewidth) is in some way the slack we
%%have,and division by dash-length gives the reduction. reduction =
%%(2*num@segments*\@wholewidth)/dash-length
%% (num@segments includes empty ones)
\@tempdima=\num@segments\@wholewidth \@tempdima=2\@tempdima 
\@tempcnta=\@tempdima \@tempdima=#2\unitlength \@tempdimb=0.5\@tempdima
\@tempcntb=\@tempdimb \advance\@tempcnta by \@tempcntb % round-off error
\divide\@tempcnta by\@tempdima \advance\num@segments by -\@tempcnta
%
\ifnum #1=0 \relax\else\ifnum #1 < -100
  \typeout{***dashline: reduction > -100 percent implies blankness!***}
\else\num@segmentsi=#1 \advance\num@segmentsi by 100
     \multiply\num@segments by\num@segmentsi \divide\num@segments by 100
\fi\fi
%
\divide\num@segments by 2 % earlier num@segments included 'empty dashes' too.
\ifnum\num@segments >0 % if =0 then don't divide => \x@diff & \y@diff
 \divide\x@diff by\num@segments%   remain same.
 \divide\y@diff by\num@segments
 \advance\num@segments by\@ne %for the last segment for which I subtracted
	 		     %\@tempdima & \@tempdimb from \x@diff & \y@diff
 \else\num@segments=2 % one at each end.
\fi
%%\typeout{num@segments finally = \the\num@segments}
%% equiv to \multiput(#4,#5)(\x@diff,\y@diff){\num@segments}{\copy\@dotbox}
%% with arguements in absolute dimensions.
\@xdim=#4\unitlength \@ydim=#5\unitlength
\@killglue
\loop \ifnum\num@segments > 0
\unskip\raise\@ydim\hbox to\z@{\hskip\@xdim \copy\@dotbox\hss}%
\advance\num@segments \m@ne\advance\@xdim\x@diff\advance\@ydim\y@diff%
\repeat
\ignorespaces}}
%----------------------------------------------------------------------
%%1.00   .833333  .80  .75  .66666   .60  .50  .40  .33333    .25 .20  .16666
%% .916666 .816666 .775 .708333 .633333 .55 .45 .366666 .291666 .225 .183333
%% 0.0
%%0.083333
%% the first line has absolute slopes corresponding to various permissible
%% integer combinations representing slopes. The second line is the midpoint
%% of all those slopes (attempted to show them in the middle of two entries).
%%
%% \lineslope(x@diff dimen, y@diff dimen)
%% Given base (x@diff) and height (y@diff) in dimensions, determines the
%% closest available slope and returns the two required integers in \@xarg
%% and \@yarg. The given base and height can be ANYTHING, -ve or +ve, or
%% even 0pt. \lineslope knows about (0,1) and (1,0) slopes too and returns
%% correct values if the conditions regarding x@diff & y@diff are obeyed
%% (see NOTE). Used by \drawline. This is the simplest and only way I could
%% figure out to accomplish it!.
%% NOTE: both the dimensions (x@diff & y@diff) must be in SAME units and the
%% larger of the two dimensions must be atleast 1pt (i.e. 65536sp). To avoid
%% dividing by 0, I make the larger dimension = 1pt if it is < 1pt.
%% will need a similar one for vectors, or maybe this can be used. For
%% vectors the range is -4, 4 unlike lines where it is -6, 6.
\newif\if@flippedargs
\def\lineslope(#1,#2){%
\ifdim #1 <0pt \@xdim= -#1 \else\@xdim=#1\fi
\ifdim #2 <0pt \@ydim= -#2 \else\@ydim=#2\fi
%%\typeout{xdim,ydim= \the\@xdim, \the\@ydim}
\ifdim\@xdim >\@ydim \@tempdima=\@xdim \@xdim=\@ydim \@ydim=\@tempdima
\@flippedargstrue\else\@flippedargsfalse\fi% x < y
\ifdim\@ydim >1pt \@tempcnta=\@ydim
            \divide\@tempcnta by 65536% now \@tempcnta=integral part of #1.
            \divide\@xdim \@tempcnta\fi
\ifdim\@xdim <.083333pt \@xarg=1 \@yarg=0
 \else\ifdim\@xdim <.183333pt	\@xarg=6 \@yarg=1
 \else\ifdim\@xdim <.225pt 	\@xarg=5 \@yarg=1
 \else\ifdim\@xdim <.291666pt 	\@xarg=4 \@yarg=1
 \else\ifdim\@xdim <.366666pt 	\@xarg=3 \@yarg=1
 \else\ifdim\@xdim <.45pt 	\@xarg=5 \@yarg=2
 \else\ifdim\@xdim <.55pt 	\@xarg=2 \@yarg=1
 \else\ifdim\@xdim <.633333pt 	\@xarg=5 \@yarg=3
 \else\ifdim\@xdim <.708333pt 	\@xarg=3 \@yarg=2
 \else\ifdim\@xdim <.775pt 	\@xarg=4 \@yarg=3
 \else\ifdim\@xdim <.816666pt 	\@xarg=5 \@yarg=4
 \else\ifdim\@xdim <.916666pt 	\@xarg=6 \@yarg=5
       \else			\@xarg=1 \@yarg=1%
\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi
\if@flippedargs\relax\else\@tempcnta=\@xarg \@xarg=\@yarg
			  \@yarg=\@tempcnta\fi
\ifdim #1 <0pt \@xarg= -\@xarg\fi
\ifdim #2 <0pt \@yarg= -\@yarg\fi
%%\typeout{closest slope integers = \the\@xarg, \the\@yarg}
}
%----------------------------------------------------------------------
% usage: \drawline[#](x1,y1)(x2,y2)....(xN,yN)
%       		 % # is an optional integer between -100 & infinity.
% \renewcommand{\drawlinestretch}{-50}  %ONLY INTEGERS PERMITTED.
%----------------------------------------------------------------------
\newif\if@toosmall
\newif\if@drawit
\newif\if@horvline
\def\drawlinestretch{0} %well, could have used a counter.
% kind of tail recursion.
\def\drawline{\@ifnextchar [{\@idrawline}{\@idrawline[\drawlinestretch]}}
\def\@idrawline[#1](#2,#3){\@ifnextchar ({\@iidrawline[#1](#2,#3)}{\relax}}
\def\@iidrawline[#1](#2,#3)(#4,#5){\@drawline[#1](#2,#3)(#4,#5)
\@idrawline[#1](#4,#5)}
%
\def\@drawline[#1](#2,#3)(#4,#5){{%
\x@diff=#4\unitlength \advance\x@diff by -#2\unitlength
\y@diff=#5\unitlength \advance\y@diff by -#3\unitlength
%% override any linethickness declarations, and since horiz & vertical lines
%% come out thinner than the slanted ones, assign slightly larger values.
%% default values are: thinlines=0.4pt, thicklines=0.8pt
\ifx\@linefnt\tenln \linethickness{0.5pt} \else \linethickness{0.9pt}\fi
\lineslope(\x@diff,\y@diff)% returns the two integers in \@xarg & \@yarg.
%------
\@toosmalltrue
{\ifdim\x@diff <\z@ \x@diff=-\x@diff\fi
 \ifdim\y@diff <\z@ \y@diff=-\y@diff\fi
 \ifdim\x@diff >10pt \global\@toosmallfalse\fi
 \ifdim\y@diff >10pt \global\@toosmallfalse\fi}
%------
%% For efficiency, if the line is horiz or vertical then we draw it in one
%% shot, only if the stretch is not -ve and the line is not too small.
\@drawitfalse\@horvlinefalse
\ifnum#1 <0 \relax\else\@horvlinetrue\fi
\if@toosmall\@horvlinetrue\fi% to get 'or' condition. We necessarily draw a 
% solid line if the line is too small ignoring any -ve stretch.
\if@horvline
 \ifdim\x@diff =0pt \put(#2,#3){\ifdim\y@diff >0pt \@linelen=\y@diff \@upline
 				\else\@linelen=-\y@diff \@downline\fi}%
 \else\ifdim\y@diff =0pt
          \ifdim\x@diff >0pt \put(#2,#3){\vrule \@height \@halfwidth \@depth
				\@halfwidth \@width \x@diff}
		\else \put(#4,#5){\vrule \@height \@halfwidth \@depth
				\@halfwidth \@width -\x@diff}\fi
       \else\@drawittrue\fi\fi % construct the line explicitly
\else\@drawittrue\fi
%-------------------------------
\if@drawit
\ifnum\@xarg< 0 \@negargtrue\else\@negargfalse\fi
\ifnum\@xarg =0 \setbox\@linechar%
\hbox{\hskip -\@halfwidth \vrule \@width \@wholewidth \@height 10.2pt
 \@depth \z@}
\else \ifnum\@yarg =0 \setbox\@linechar%
\hbox{\vrule \@height \@halfwidth \@depth \@halfwidth \@width 10.2pt}
\else \if@negarg \@xarg -\@xarg \@yyarg -\@yarg
        \else \@yyarg \@yarg\fi
\ifnum\@yyarg >0 \@tempcnta\@yyarg \else \@tempcnta -\@yyarg\fi
\setbox\@linechar\hbox{\@linefnt\@getlinechar(\@xarg,\@yyarg)}%
\fi\fi
%------
\if@toosmall% => it isn't a horiz or vert line and is toosmall.
  \@dottedline[\picsquare]{.98\@wholewidth}%
(#2\unitlength,#3\unitlength)(#4\unitlength,#5\unitlength)%
\else
%% following is neat. The last segment takes \wd\@linechar & \ht\@linechar
%% so plot the line as though it were from (#2,#3) to
%% (#4-\wd\@linechar,#5-\ht\@linechar) (i.e. for positive slope; of course,
%% signs are reversed for other slopes). For horizontal & vertical dashes we
%% don't have to subtract the ht & wd resp. since they are already centered.
\ifnum\@xarg=0\relax\else\ifdim\x@diff >\z@ \advance\x@diff -\wd\@linechar
  \else\advance\x@diff \wd\@linechar\fi\fi
\ifnum\@yarg=0\relax\else\ifdim\y@diff >\z@\advance\y@diff -\ht\@linechar
  \else\advance\y@diff \ht\@linechar\fi\fi
\ifdim\x@diff <\z@ \@x@diff=-\x@diff \else\@x@diff=\x@diff\fi
\ifdim\y@diff <\z@ \@y@diff=-\y@diff \else\@y@diff=\y@diff\fi
%%\typeout{x@diff,y@diff=\the\x@diff , \the\y@diff}
\num@segments=0 \num@segmentsi=0
\ifdim\wd\@linechar >1pt
 \num@segmentsi=\@x@diff \divide\num@segmentsi \wd\@linechar\fi
\ifdim\ht\@linechar >1pt
 \num@segments=\@y@diff \divide\num@segments \ht\@linechar\fi
\ifnum\num@segmentsi >\num@segments \num@segments=\num@segmentsi\fi
\advance\num@segments \@ne %to account for round-off error
%
\ifnum #1=0 \relax \else\ifnum #1 < -99
  \typeout{***drawline: reduction <= -100 percent implies blankness!***}
\else\num@segmentsi=#1 \advance\num@segmentsi by 100
     \multiply\num@segments \num@segmentsi
     \divide\num@segments by 100
     \ifnum \num@segments=0 \num@segments=1 \fi
\fi\fi
%%\typeout{num@segments after = \the\num@segments}
%
\divide\x@diff \num@segments
\divide\y@diff \num@segments
\advance\num@segments \@ne %for the last segment for which I subtracted
			  %\wd & \ht of \@linechar from \@x@diff & \@y@diff.
%%\typeout{numseg,x@diff,y@diff= \the\num@segments, \the\x@diff, \the\y@diff}
%
\@xdim=#2\unitlength \@ydim=#3\unitlength
\if@negarg \advance\@xdim -\wd\@linechar\fi
\ifnum\@yarg <0 \advance\@ydim -\ht\@linechar\fi
%%following loop equiv to \multiput@abs(\@xdim,\@ydim)%
%%(\x@diff,\y@diff){\num@segments}{\copy\@linechar}
%%with arguements in absolute dimensions.
\@killglue
\loop \ifnum\num@segments > 0
\unskip\raise\@ydim\hbox to\z@{\hskip\@xdim \copy\@linechar\hss}%
\advance\num@segments \m@ne\advance\@xdim\x@diff\advance\@ydim\y@diff%
\repeat
\ignorespaces
\fi%the if of @toosmall
\fi}}% for \if@drawit
%----------------------------------------------------------------------
%usage: \putfile{datafile}{OBJECT}
% The OBJECT is plotted at EACH of the coordinates read from the datafile.
% The idea of these macros is to generate (x,y) pairs using some program
% and then directly use those coordinates. Since TeX doesn't have real
% floating point calculations, it is much more efficient and accurate to do
% things this way. One can also use the unix facility 'spline' now to
% generate smooth curves with equidistant ``dots''.
% NOTE: the external file of coordinates must have x y pairs with a space
% between them. Also it is suggested that some extension such as '.put'
% be used for such datafiles to distinguish them in which case it must
% be explicitely specified in the 1st argument so that TeX doesn't look
% for a .tex extension.
% The % char remains valid as a comment char and such lines are ignored;
% however, there should be atleast one space after the second entry if a
% comment is on the same line as data since % eats up the newline.
%-----------------------------------------------------------------------
\long\def\splittwoargs#1 #2 {(#1,#2)}
%
\newif\if@stillmore
\newread\@datafile
\long\def\putfile#1#2{\openin\@datafile = #1
\@stillmoretrue
\loop
\ifeof\@datafile\relax\else\read\@datafile to\@dataline\fi
%if file nonexistent, do nothing.
\ifeof\@datafile\@stillmorefalse
\else\ifx\@dataline\@empty \relax
     \else
\expandafter\expandafter\expandafter\put\expandafter\splittwoargs%
\@dataline{#2}
     \fi
\fi
\if@stillmore
\repeat
\closein\@datafile
}
%----------------------------------------------------------------------
\makeatother