summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/tex/generic/trigonometry/trigonometry.tex
blob: ecf51eaeae78e138445e20623520c572a2daa94b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
%= = = = = = = = = = = = = T R I G O N O M E T R Y . T E X = = = = = = = = =
 
%%% Trigonometry.TeX: (as published in TeXhax Digest, September 1989)
%%% Philip Taylor, Royal Holloway and Bedford New College, University of London
 
%%% Routines to calculate the sine of an angle expressed in radians.
%%% So far as I can tell, the results are accurate to four places
%%% of decimals, for arguments in the range -pi/2 .. pi/2, except
%%% for `ridiculously small' arguments, which cannot be accurately represented.
 
%%% The routines for cosine and tangent are left to the reader ...
 
%%% After a call to \Sin (<angle>), the result is available for typesetting
%%% or boxing, and may also be extracted from the control-sequence \sine.
 
%%% Grouping is used to hide most things, but the following csnames are
%%% globally defined:
 
%%% \nodimen, \n@dimen, \product, \sine, \term, \t@rm, \Term
 
\newif \ifdebug %%% turn me on to see TeX hard at work ...
 
\def \term #1{{x^{#1} \over #1!}}
The power series expansion for $\sin$ is:
$$ \sin x = x - \term3 + \term5 - \term7 + \cdots$$
\indent and for $\cos$ is:
$$ \cos x = 1 - \term2 + \term4 - \term6 + \cdots$$
 
\let \then = \relax
\chardef \letter = 11
\chardef \other = 12
\def \radian {pt }
\let \radians = \radian
\let \dimensionlessunit = \radian
\let \dimensionlessunits = \dimensionlessunit
\def \internalunit {sp }
\let \internalunits = \internalunit
\newif \ifstillconverging
\def \Message #1{\ifdebug \then \message {#1} \fi}
 
{ %%% Things that need abnormal catcodes %%%
	\catcode `\@ = \letter
	\gdef \nodimen {\expandafter \n@dimen \the \dimen}
	\gdef \term #1 #2 #3%
	       {\edef \t@ {\the #1}%%% freeze parameter 1 (count, by value)
		\edef \t@@ {\expandafter \n@dimen \the #2\radian}%
				   %%% freeze parameter 2 (dimen, by value)
		\t@rm {\t@} {\t@@} {#3}%
	       }
	\gdef \t@rm #1 #2 #3%
	       {{%
		\count 0 = 0
		\dimen 0 = 1 \dimensionlessunit
		\dimen 2 = #2\relax
		\Message {Calculating term #1 of \nodimen 2}%
		\loop
		\ifnum	\count 0 < #1
		\then	\advance \count 0 by 1
			\Message {Iteration \the \count 0 \space}%
			\Multiply \dimen 0 by {\dimen 2}%
			\Message {After multiplication, term = \nodimen 0}%
			\Divide \dimen 0 by {\count 0}%
			\Message {After division, term = \nodimen 0}%
		\repeat
		\Message {Final value for term #1 of
				\nodimen 2 \space is \nodimen 0}%
		\xdef \Term {#3 = \nodimen 0 \radians}%
		\aftergroup \Term
	       }}
	\catcode `\p = \other
	\catcode `\t = \other
	\gdef \n@dimen #1pt{#1} %%% throw away the ``pt''
}
 
\def \Divide #1by #2{\divide #1 by #2} %%% just a synonym
 
\def \Multiply #1by #2%%% allows division of a dimen by a dimen
       {{%%% should really freeze parameter 2 (dimen, passed by value)
	\count 0 = #1\relax
	\count 2 = #2\relax
	\count 4 = 65536
	\Message {Before scaling, count 0 = \the \count 0 \space and
			count 2 = \the \count 2}%
	\ifnum	\count 0 > 32767 %%% do our best to avoid overflow
	\then	\divide \count 0 by 4
		\divide \count 4 by 4
	\else	\ifnum	\count 0 < -32767
		\then	\divide \count 0 by 4
			\divide \count 4 by 4
		\else
		\fi
	\fi
	\ifnum	\count 2 > 32767 %%% while retaining reasonable accuracy
	\then	\divide \count 2 by 4
		\divide \count 4 by 4
	\else	\ifnum	\count 2 < -32767
		\then	\divide \count 2 by 4
			\divide \count 4 by 4
		\else
		\fi
	\fi
	\multiply \count 0 by \count 2
	\divide \count 0 by \count 4
	\xdef \product {#1 = \the \count 0 \internalunits}%
	\aftergroup \product
       }}
 
\def \Sin (#1)%
       {{%
	\dimen 0 = #1 \radian
	\dimen 2 = 3.1415926535897963 \radian %%% a well-known constant
	\divide	\dimen 2 by 2 %%% we only deal with -pi/2 : pi/2
	\ifdim	\dimen 0 > \dimen 2
	\then	\message {Sin: argument (\nodimen 0) too large
						--- use range reduction}%
		\xdef \sine {<undefined>}%
	\else	\ifdim	\dimen 0 < - \dimen 2
		\then	\message {Sin: argument (\nodimen 0) too large
						--- use range reduction}%
			\xdef \sine {<undefined>}%
		\else	\Message {Sin: calculating Sin of \nodimen 0}%
			\count 0 = 1 %%% see power-series expansion for sine
			\dimen 2 = 1 \radian %%% ditto
			\dimen 4 = 0 \radian %%% ditto
			\loop
				\ifnum	\dimen 2 = 0 %%% then we've done
				\then	\stillconvergingfalse
				\else	\stillconvergingtrue
				\fi
				\ifstillconverging %%% then calculate next term
				\then	\term {\count 0} {\dimen 0} {\dimen 2}%
					\advance \count 0 by 2
					\count 2 = \count 0
					\divide \count 2 by 2
					\ifodd	\count 2 %%% signs alternate
					\then	\advance \dimen 4 by \dimen 2
					\else	\advance \dimen 4 by -\dimen 2
					\fi
			\repeat
			\xdef \sine {\nodimen 4}%
		\fi
	\fi
	\aftergroup \sine
       }}
 
%%% What follows is just a demonstration of the \Sin function
 
$$
\def \rule {\noalign {\hrule}}
\def \SIN (#1){&#1&&\Sin (#1)&\cr\noalign{\message {The sine of #1 is \sine}}}
\mathcode `\- = 32768 %%% just a bodge to improve alignment
\let \minus = -
\begingroup
\catcode `\- = \active
\gdef -{\llap{\minus}}
\endgroup
\vbox {\offinterlineskip
\halign
{\vrule #& \qquad \hfil $#$ & \vrule # & \qquad $#$ \hfil & \vrule # \strut \cr
	\rule
	&\omit {\hfil $x$ \hfil} && \omit {\hfil $\sin x$ \hfil} & \cr
	\rule
	\SIN (-1.6)
	\SIN (-1.5)
	\SIN (-1.4)
	\SIN (-1.3)
	\SIN (-1.2)
	\SIN (-1.1)
	\SIN (-1.0)
	\SIN (-0.9)
	\SIN (-0.8)
	\SIN (-0.7)
	\SIN (-0.6)
	\SIN (-0.5)
	\SIN (-0.4)
	\SIN (-0.3)
	\SIN (-0.2)
	\SIN (-0.1)
	\SIN (-0.01)
	\SIN (-0.001)
	\SIN (-0.0001)
	\SIN (0)
	\SIN (0.0001)
	\SIN (0.001)
	\SIN (0.01)
	\SIN (0.1)
	\SIN (0.2)
	\SIN (0.3)
	\SIN (0.4)
	\SIN (0.5)
	\SIN (0.6)
	\SIN (0.7)
	\SIN (0.8)
	\SIN (0.9)
	\SIN (1.0)
	\SIN (1.1)
	\SIN (1.2)
	\SIN (1.3)
	\SIN (1.4)
	\SIN (1.5)
	\SIN (1.6)
	\rule}
}
$$
\end