1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
|
%%
%% This is file `pst-func.tex',
%%
%% IMPORTANT NOTICE:
%%
%% Package `pst-func.tex'
%%
%% Herbert Voss <voss@pstricks.de>
%%
%% This program can be redistributed and/or modified under the terms
%% of the LaTeX Project Public License Distributed from CTAN archives
%% in directory macros/latex/base/lppl.txt.
%%
%% DESCRIPTION:
%% `pst-func' is a PSTricks package to plot special functions
%%
%% For a ChangeLog go the the end
%%
\csname PSTfuncLoaded\endcsname
\let\PSTfuncLoaded\endinput
% Requires PSTricks, pst-node
\ifx\PSTricksLoaded\endinput\else\input pstricks.tex\fi
\ifx\PSTnodesLoaded\endinput\else\input pst-plot.tex\fi
\ifx\PSTXKeyLoaded\endinput\else\input pst-xkey.tex \fi
%
\edef\PstAtCode{\the\catcode`\@} \catcode`\@=11\relax
% interface to the `xkeyval' package
\pst@addfams{pst-func}
\def\fileversion{0.38}
\def\filedate{2004/11/08}
\message{`PST-func' v\fileversion, \filedate\space (Herbert Voss)}
%
\pstheader{pst-func.pro}
%\def\pst@funcdict{tx@FuncDict begin }
%\def\tx@saveCoor{\pst@3ddict saveCoor end }
%\def\tx@ConvertTo2D{\pst@3ddict ConvertTo2D end }
\define@key[psset]{pst-func}{cosCoeff}{\edef\psk@cosCoeff{#1}}
\define@key[psset]{pst-func}{sinCoeff}{\edef\psk@sinCoeff{#1}}
\psset[pst-func]{cosCoeff=0,sinCoeff=1} % coeff=a0 a1 a2 a3 ...
%
\def\psFourier{\@ifnextchar[{\psFourier@i}{\psFourier@i[]}}
\def\psFourier@i[#1]#2#3{{%
\pst@killglue
\psset{#1}
\psplot{#2}{#3}{%
/type (cos) def
/Fourier {
aload length /n exch def
n -1 roll 2 div n 1 roll % a0/2
n 1 sub -1 0 {
/i exch def
i x mul 180 mul 3.141592 div
type (sin) eq {sin}{cos} ifelse
mul n 1 roll
} for
n 1 sub -1 1 { pop add } for
} def
[\psk@cosCoeff] Fourier
/type (sin) def
[0 \psk@sinCoeff] Fourier add
}%
}\ignorespaces}
%
\define@key[psset]{pst-func}{coeff}{\edef\psk@coeff{#1}}
\define@key[psset]{pst-func}{Abbreviation}{\edef\psk@Deriviation{#1}}% compatibility
\define@key[psset]{pst-func}{Derivation}{\edef\psk@Derivation{#1}}
\newif\ifPst@markZeros%
\define@key[psset]{pst-func}{markZeros}[true]{\@nameuse{Pst@markZeros#1}}
\define@key[psset]{pst-func}{epsZero}{\edef\psk@epsZero{#1}}
\define@key[psset]{pst-func}{dZero}{\edef\psk@dZero{#1}}
\define@key[psset]{pst-func}{zeroLineTo}{\edef\psk@zeroLineTo{#1}}
\define@key[psset]{pst-func}{zeroLineColor}{\pst@getcolor{#1}\psk@zeroLineColor}
\newdimen\psk@zeroLineWidth
\define@key[psset]{pst-func}{zeroLineWidth}{\pssetlength\psk@zeroLineWidth{#1}}
\define@key[psset]{pst-func}{zeroLineStyle}{%
\@ifundefined{psls@#1}%
{\@pstrickserr{Line style `#1' not defined}\@eha}%
{\edef\psk@zeroLineStyle{#1}}%
}
\psset[pst-func]{%
coeff=0 1, % coeff=a0 a1 a2 a3 ...
Derivation=0, % 0 is the original function
markZeros=false,% no dots for the zeros
epsZero=0.1, % the distance between two zero points
dZero=0.1, % the distance of the x value for scanning the function
zeroLineTo=-1, % a line to the value of the lineTo's Derivation (-1= none)
zeroLineStyle=dashed,%
zeroLineWidth=0.5\pslinewidth,%
zeroLineColor=black}%
%
\def\psPolynomial{\pst@object{psPolynomial}}
\def\psPolynomial@i#1#2{{%
\begin@OpenObj
\@nameuse{beginplot@\psplotstyle}%
\gdef\psplot@init{}%
\@nameuse{testqp@\psplotstyle}%
\addto@pscode{%
tx@FuncDict begin
/coeff [ \psk@coeff ] def
/x0 #1 def /x1 #2 def
/dx x1 x0 sub \psk@plotpoints\space div def
/Derivation \psk@Derivation\space def
\ifPst@markZeros
gsave
\pst@number\psk@zeroLineWidth SLW
\pst@usecolor\psk@zeroLineColor
\psk@epsZero\space \psk@dZero\space FindZeros
pstZeros aload length {
/xZero exch def
xZero \pst@number\psxunit mul /xPixel exch def
\psk@dotsize
\@nameuse{psds@\psk@dotstyle}%
xPixel 0 Dot
\psk@zeroLineTo\space 0 ge { % line to function \psk@lineTo
xPixel 0 moveto
xZero coeff \psk@zeroLineTo\space FuncValue
\pst@number\psyunit mul xPixel exch L
\@nameuse{psls@\psk@zeroLineStyle}
} if
} repeat
grestore
\fi
/x x0 def
/xy {
x coeff Derivation FuncValue \pst@number\psyunit mul
x \pst@number\psxunit mul exch
} def
xy moveto
}%
\if@pst% lines and dots
\psPolynomial@ii%
\else% curves
\psPolynomial@iii%
\fi%
\end@OpenObj
}\ignorespaces}
%
\def\psPolynomial@ii{%
\addto@pscode{%
xy \@nameuse{beginqp@\psplotstyle}
\psk@plotpoints {
xy \@nameuse{doqp@\psplotstyle}
/x x dx add def
} repeat
xy \@nameuse{doqp@\psplotstyle}
end
}%
\@nameuse{endqp@\psplotstyle}%
}
\def\psPolynomial@iii{% curves
\addto@pscode{%
mark
/n 2 def
\psk@plotpoints {
xy
n 2 roll
/n n 2 add def
/x x dx add def
} repeat
/x x1 def
xy
n 2 roll
end
}%
\@nameuse{endplot@\psplotstyle}%
}
%
% Bessel 2004-06-08
% Manuel Luque, Herbert Voss
% Look at the end for some more documentation about the algorithm
%
\define@key[psset]{pst-func}{constI}{\edef\psk@constI{#1}}
\define@key[psset]{pst-func}{constII}{\edef\psk@constII{#1}}
\psset{constI=1,constII=0}
%
\def\psBessel{\@ifnextchar[{\psBessel@i}{\psBessel@i[]}}
\def\psBessel@i[#1]#2#3#4{{%%% #2 = n
\pst@killglue
\psset{plotpoints=500}%
\psset{#1}%
\parametricplot{#3}{#4}{%
/J1 0 def
/k { 57.29577951 mul } def
/xBessel t k def
0 0.1 180 {
/tB exch k def
/J1 J1 0.1 xBessel
tB sin mul tB #2\space mul sub cos mul add def
} for
t J1 180 div \psk@constI\space mul \psk@constII\space add
}%
}\ignorespaces}
%
\define@key[psset]{pst-func}{sigma}{\edef\psk@sigma{#1}}
\psset{sigma=0.5}
%
\def\psGauss{\@ifnextchar[{\psGauss@i}{\psGauss@i[]}}
\def\psGauss@i[#1]#2#3{{%
\pst@killglue%
\psset{plotpoints=200}%
\psset{#1}%
\pstVerb{%
/euler 2.718282 def
/Const 1 \psk@sigma\space div 6.2831 sqrt div def
}%
\psplot{#2}{#3}{%
euler x dup mul 2 div \psk@sigma\space dup mul div neg exp Const mul%
}%
}\ignorespaces}
%
\catcode`\@=\PstAtCode\relax
%
%% END: pst-abspos.tex
\endinput
%
|