1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
|
%--------------------------------------------
%
% Package pgfplots, library for smith charts.
%
% Copyright 2010 by Christian Feuersänger.
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
%
% A smithchart maps the complex halfplane
% H subset \C,
% H := [0,infty] x [-infty,infty]
% =~ \{ z = a+ j *b | a >=0, b \in \R }
%
% to the unit circle.
%
% A number z = a+jb is mapped to r(z) = (z-1) / (z+1) which is, per
% definition, in the 2d unit circle.
%
% Grid lines (i.e. a==const or b==const) are mapped on circles.
%
% In PGFPlots, the a=Re(z) is the x axis and b = Im(z) is the y axis.
%
% - CARTESIAN INPUT
% - tick/grid coordinates are from
% - input coordinates can be either from H or (perhaps preferred) from
% the unit circle.
% this "preferred" needs to be discussed.
% - the transformed data range is the unit circle (or a sequeezed variant)
% - in order to compute limits etc., I should accept data in H. this
% should simplify the logic to determine ticks etc considerably.
% problem: this transformation appears to be quite difficult (?)
% -> r(z) = (z-1)/(z+1)
% in complex arithmetics (but the G-tutorial.pdf says something
% about these circle equations!?)
%
% www.amanogawa.com/archive/docs/G-tutorial.pdf
%
%
% Idea:
% - work on H
% - transform whereever necessary
% - implement all pgfplots wrinkles in analogy to polar axes
% - provide support for normalized input coords (combined with
% untransformed limits or something like that)
\pgfplotsdefineaxistype{smithchart}{%
\pgfplots@smithchartaxis@activate
}%
\newif\ifpgfplotspointisinsmithchartCS
\newif\ifpgfplots@smithchart@showorigin
\newif\ifpgfplots@smithchart@mirrored
\pgfplotsset{
/pgfplots/xgrid each nth passes y/.initial=,% format: CSV list, each entry of the form '<at> | <at> ':' <eachnth> | <at> 'if <' <xvalue> | <at> ':' <eachnth> 'if <' <xvalue>'
/pgfplots/xgrid each nth passes y start/.initial=0,
/pgfplots/ygrid each nth passes x/.initial=,
/pgfplots/ygrid each nth passes x start/.initial=0,
%
/pgfplots/xgrid stop at y/.initial=,% individual stop map of the form '<xpos> ':' <stopaty>', separated by white space
/pgfplots/ygrid stop at x/.initial=,
%
% FIXME : this is undocumented:
/pgfplots/smithchart mirrored/.is if=pgfplots@smithchart@mirrored,
/pgfplots/smithchart mirrored/.default=true,
%
% this boolean may only be used inside of \addplot. It will be
% ignored otherwise.
/pgfplots/is smithchart cs/.is if=pgfplotspointisinsmithchartCS,
/pgfplots/is smithchart cs/.default=true,
/pgfplots/show origin/.is if=pgfplots@smithchart@showorigin,
/pgfplots/show origin/.default=true,
/pgfplots/show origin code/.code={%
\path[draw=black,fill=white] (0pt,0pt) circle (2.5pt);
\path[fill=black] (0pt,0pt) circle (0.5pt);
},
/pgfplots/every smithchart axis/.style={
grid=both,
xmin=0,
xmax=16000,% FIXME : more is not possible because some code uses the \pgfplots@xmin@reg registers... (ticks)
ymin=-16000,ymax=16000,
scaled ticks=false, % never draw the \cdot 10^4 labels
major tick style={draw=black},
xtick align=center,
ytick align=center,
every axis title shift=1.2\baselineskip,
legend style={anchor=center},
},
/pgfplots/default smithchart xtick/.code=,
/pgfplots/default smithchart ytick/.code=,
/pgfplots/default smithchart xytick/.code=,
/pgfplots/smithchart ticks by size/.code 2 args={%
\ifdim#1<14cm
\pgfkeysalso{/pgfplots/few smithchart ticks}%
\else
\ifdim#1<20cm
\pgfkeysalso{/pgfplots/many smithchart ticks}%
\else
\pgfkeysalso{/pgfplots/dense smithchart ticks}%
\fi
\fi
},
/pgfplots/few smithchart ticks*/.style={
default smithchart xtick/.style={
xtick={0.2,0.5,1,2,5},
},
default smithchart ytick/.style={
ytick={%
0,%
0.2, 0.5, 1, 2, 5,%
-0.2,-0.5,-1,-2,-5},
},
default smithchart xytick/.style={
xgrid each nth passes y={2},
ygrid each nth passes x={2},
},
},
/pgfplots/few smithchart ticks/.style={/pgfplots/few smithchart ticks*},
/pgfplots/few smithchart ticks*,% use it as initial config
/pgfplots/many smithchart ticks*/.style={
default smithchart xtick/.style={
xtick={
0.1,0.2,0.3,0.4,0.5,1,1.5,2,3,4,5,10,20%
},
minor xtick={0.6,0.7,0.8,0.9,1.1,1.2,1.3,1.4,1.6,1.7,1.8,1.9,2.2,2.4,2.6,2.8,3.2,3.4,3.6,3.8,4.5,6,7,8,9,50},
},
default smithchart ytick/.style={
ytick={%
0,%
0.1,0.2,...,1,1.5,2,3,4,5,10,20,%
-0.1,-0.2,...,-1,-1.5,-2,-3,-4,-5,-10,-20%
},
minor ytick={%
1.1,1.2,1.3,1.4,1.6,1.7,1.8,1.9,2.2,2.4,2.6,2.8,3.2,3.4,3.6,3.8,4.5,6,7,8,9,50,%
-1.1,-1.2,-1.3,-1.4,-1.6,-1.7,-1.8,-1.9,-2.2,-2.4,-2.6,-2.8,-3.2,-3.4,-3.6,-3.8,-4.5,-6,-7,-8,-9,-50%
},
},
default smithchart xytick/.style={
xgrid each nth passes y={1,2,4,5,10,20},
ygrid each nth passes x={1,2,3,5,10:3,20:3},
},
},
/pgfplots/many smithchart ticks/.style={
many smithchart ticks*,
every axis title shift=6pt,
yticklabel in circle,
show origin=true,
},
/pgfplots/dense smithchart ticks*/.style={
default smithchart xtick/.style={
%ygrid each nth passes x start=0,
xtick={
0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1,1.2,1.4,1.6,1.8,2,3,4,5,10,20%
},
minor xtick={%
0.01,0.02,0.03,0.04,0.05,0.06,0.07,0.08,0.09,0.11,0.12,0.13,0.14,0.15,0.16,0.17,0.18,0.19,%
0.22,0.24,0.26,0.28,0.32,0.34,0.36,0.38,0.42,0.44,0.46,0.48,%
0.52,%
0.55,0.65,0.75,0.85,0.95,%
%0.6,0.7,0.8,0.9,%
1.1,1.3,1.5,1.7,1.9,%
2.2,2.4,2.6,2.8,3.2,3.4,3.6,3.8,4.5,6,7,8,9,50},
},
default smithchart ytick/.style={
ytick={%
0,%
0.1,0.2,...,1,1.2,1.4,1.6,1.8,2,3,4,5,10,20,%
-0.1,-0.2,...,-1,-1.2,-1.4,-1.6,-1.8,-2,-3,-4,-5,-10,-20%
},
minor ytick={%
0.01,0.02,0.03,0.04,0.05,0.06,0.07,0.08,0.09,0.11,0.12,0.13,0.14,0.15,0.16,0.17,0.18,0.19,%
0.22,0.24,0.26,0.28,0.32,0.34,0.36,0.38,0.42,0.44,0.46,0.48,%
0.55,0.65,0.75,0.85,0.95,%
1.1,1.3,1.5,1.7,1.9,2.2,2.4,2.6,2.8,3.2,3.4,3.6,3.8,4.5,6,7,8,9,50,%
-0.01,-0.02,-0.03,-0.04,-0.05,-0.06,-0.07,-0.08,-0.09,-0.11,-0.12,-0.13,-0.14,-0.15,-0.16,-0.17,-0.18,-0.19,%
-0.22,-0.24,-0.26,-0.28,-0.32,-0.34,-0.36,-0.38,-0.42,-0.44,-0.46,-0.48,%
-0.55,-0.65,-0.75,-0.85,-0.95,%
-1.1,-1.3,-1.5,-1.7,-1.9,-2.2,-2.4,-2.6,-2.8,-3.2,-3.4,-3.6,-3.8,-4.5,-6,-7,-8,-9,-50%
},
},
default smithchart xytick/.style={
xgrid each nth passes y={0.2 if < 0.2001,0.5 if < 0.50001,1 if < 1.001,2,4,5,10,20},
ygrid each nth passes x={0.2 if < 0.2001,0.52 if < 0.52001,1 if < 1.001,2,3,5,10:3,20:3},
},
},
/pgfplots/dense smithchart ticks/.style={
yticklabel in circle,
every axis title shift=6pt,
dense smithchart ticks*,
show origin=true,
every major grid/.style={black!60},
},
/pgfplots/yticklabel in circle/.style={
ytick align=inside,
yticklabel style={
rotate=90,
sloped like y axis={%
execute for upside down={\tikzset{anchor=north east}},
%allow upside down,
reset nontranslations=false},
anchor=south west,
%font=\tiny,
}
},
yticklabel around circle/.style={
ytick align=center,
yticklabel style={
rotate=90,
sloped like y axis={%
execute for upside down={\tikzset{anchor=south west}},
%allow upside down,
reset nontranslations=false},
anchor=south east,
%font=\tiny,
}
},
yticklabel around circle*/.style={
ytick align=center,
yticklabel style={
rotate=90,
sloped like y axis={%
execute for upside down={\tikzset{anchor=north west}},
%allow upside down,
reset nontranslations=false},
anchor=north east,
%font=\tiny,
}
}
}
\def\pgfplots@smithchartaxis@activate{%
\def\axisdefaultwidth{207pt}%
\def\axisdefaultheight{207pt}%
\let\pgfplotsqpointxy@cart=\pgfplotsqpointxy
\let\pgfplotsqpointxy=\pgfplotsqpointxy@smithchartaxis
\let\pgfplotsqpointxy@orthogonal=\pgfplotsqpointxy
\def\pgfplotsqpointxyz##1##2##3{\pgfplotsqpointxy{##1}{##2}}% FIXME
\let\pgfplotspointouternormalvectorofaxis@=\pgfplotspointouternormalvectorofaxis@smithchartaxis
\def\pgfplotspointouternormalvectorofaxis@ifdependson@v##1##2##3{##2}%
\def\pgfplots@drawticklines@INSTALLCLIP@onorientedsurf##1{}%
\let\pgfplots@drawgridlines@INSTALLCLIP@onorientedsurf=\pgfplots@drawgridlines@INSTALLCLIP@onorientedsurf@smithchartaxis
\def\pgfplots@visphase@notify@changeofcanvaslimits##1{}%
\def\pgfplots@avoid@empty@axis@range@for##1{}%
\def\pgfplotsaxisifcontainspoint##1##2{##1}%
\let\pgfplots@set@default@size@options=\pgfplots@set@default@size@options@smithchart%
%
\def\b@pgfplots@smithchart@defaultticks@x{0}%
\def\b@pgfplots@smithchart@defaultticks@y{0}%
\let\pgfplots@assign@default@tick@foraxis=\pgfplots@assign@default@tick@foraxis@smithchart
\def\pgfplots@checkisuniformLINEARtick##1##2{%
% don't do anything here. I suppose it is useless and is a
% waste of time for many ticks.
\global\pgfplots@isuniformtickfalse
}%
\let\pgfplots@clippath@prepare@for@axistype=\pgfplots@clippath@prepare@for@axistype@smithchartaxis
%
% invalid range: do not clear plots. simply assign default limits.
\let\pgfplots@handle@invalid@range@defaultlimits=\pgfplots@handle@invalid@range@defaultlimits@smithchart%
\def\pgfplots@handle@invalid@range{\pgfplots@handle@invalid@range@defaultlimits}%
%
\let\pgfplotspointonorientedsurfaceabwithbshift=\pgfplotspointonorientedsurfaceabwithbshift@smithchartaxis
\let\pgfplots@draw@axis@is@prepared=\pgfplots@draw@axis@is@prepared@smithchartaxis
\let\pgfplots@drawgridlines@onorientedsurf@fromto=\pgfplots@drawgridlines@onorientedsurf@fromto@smithchart
\let\pgfplots@drawaxis@innerlines@onorientedsurf=\pgfplots@drawaxis@innerlines@onorientedsurf@smithchart
\let\pgfplots@drawaxis@outerlines@separate@onorientedsurf=\pgfplots@drawaxis@outerlines@separate@onorientedsurf@smithchartaxis
\let\pgfplotspoint@initialisation@axes=\pgfplotspoint@initialisation@axes@smithchart%
\let\pgfplotspoint@initialisation@units=\pgfplotspoint@initialisation@units@smithchart
\expandafter\def\expandafter\pgfplots@create@axis@descriptions@\expandafter{%
\pgfplots@create@axis@descriptions@
\ifpgfplots@smithchart@showorigin
\pgfkeysvalueof{/pgfplots/show origin code/.@cmd}\pgfeov%
\fi
}%
\def\axisdefaultheight{\axisdefaultwidth}%
\let\pgfplots@BB@for@plotbox@get@unit@scales@for@limits=\pgfplots@BB@for@plotbox@get@unit@scales@for@limits@smithchart
%\let\pgfplots@limits@ready=\pgfplots@limits@ready@smithchart
%\let\pgfplots@show@ticklabel@=\pgfplots@show@ticklabel@@smithchart
%\def\pgfplots@xtick@disable@last@tick{0}%
\let\pgfplots@xtick@check@tickshow=\pgfplots@xtick@check@tickshow@smithchart%
\let\pgfplots@ytick@check@tickshow=\pgfplots@ytick@check@tickshow@smithchart%
\let\pgfplots@set@options@sanitize=\relax
\let\pgfplots@set@options@sanitizemode=\relax
\let\pgfplotscoordmathnotifydatascalesetfor=\pgfplotscoordmathnotifydatascalesetfor@smithchart
%
\expandafter\def\expandafter\pgfplots@notify@options@are@set\expandafter{%
\pgfplots@notify@options@are@set
\pgfplotsset{%
separate axis lines,%
is smithchart cs=false,%
xtick pos=left,
ytick pos=left,
axis x line*=center,
disabledatascaling,
}%
\def\pgfplots@xtickposnum{2}%
%
\ifx\pgfplots@xtick\pgfutil@empty
\def\b@pgfplots@smithchart@defaultticks@x{1}%
\fi
\ifx\pgfplots@ytick\pgfutil@empty
\def\b@pgfplots@smithchart@defaultticks@y{1}%
\fi
\pgfplotscoordmath{default}{parsenumber}{0.002}%
\let\pgfplots@almost@zero@thresh=\pgfmathresult
}%
\def\pgfplots@xticklabel@pos{}%
\def\pgfplots@yticklabel@pos{}%
\def\pgfplots@zticklabel@pos{}%
\def\pgfplots@init@ticklabelaxisspecfor##1##2{}%
\def\pgfplots@init@ticklabelaxisspec@twodim@for##1##2{}%
\def\pgfplotspointonorientedsurfaceabmatchaxisline@warn##1{}% clear warning. It works for smith charts.
\def\pgfplots@xticklabelaxisspec{v20}%
\def\pgfplots@yticklabelaxisspec{0v0}%
\def\pgfplots@zticklabelaxisspec{00v}%
%
% cartesian cs
\tikzdeclarecoordinatesystem{cartesian}{\edef\pgfplots@loc@TMPa{##1}\expandafter\pgfplotspointcartesian@\pgfplots@loc@TMPa\pgfplots@coord@end}%
%
%
% Special treatment for
% \pgfplots@prepare@tick@coordlists@for: make sure we don't need
% to use the register arithmetics in \pgfplots@xmin@reg and its
% variants! I want an UNRESTRICTED max data range!
\def\pgfplots@prepare@tick@coordlists@for@assign##1=##2{\edef##1{##2}}%
\def\pgfplots@prepare@tick@coordlists@for@advance##1by##2{%
% THIS IS NEVER USED (at the time of this writing).
\edef\pgfplots@loc@TMPa{##2}%
\pgfplotscoordmath{default}{parsenumber}{##1}%
\pgfplotscoordmath{default}{op}{add}{{\pgfmathresult}{\pgfplots@loc@TMPa}}%
\pgfplotscoordmath{default}{tofixed}{\pgfmathresult}%
\let##1=\pgfmathresult
}%
\def\pgfplots@prepare@tick@coordlists@for@tofixed##1{\edef\pgfmathresult{##1}}%
\def\pgfplots@prepare@tick@coordlists@for@handletolerance##1{}% does not apply to smithcharts.
\def\pgfplots@prepare@tick@coordlists@for@checktickmin##1{%
\pgfplotscoordmath{default}{parsenumber}{\pgfplots@tmpa}%
\let\pgfplots@loc@TMPa=\pgfmathresult
\pgfplotscoordmath{default}{parsenumber}{\csname pgfplots@##1tickmin\endcsname}%
\let\pgfplots@loc@TMPb=\pgfmathresult
\pgfplotscoordmath{default}{if less than}{\pgfplots@loc@TMPa}{\pgfplots@loc@TMPb}{%
\pgfplots@tickshowfalse
}{%
}%
}%
\def\pgfplots@prepare@tick@coordlists@for@checktickmax##1{%
\pgfplotscoordmath{default}{parsenumber}{\pgfplots@tmpa}%
\let\pgfplots@loc@TMPa=\pgfmathresult
\pgfplotscoordmath{default}{parsenumber}{\csname pgfplots@##1tickmin\endcsname}%
\let\pgfplots@loc@TMPb=\pgfmathresult
\pgfplotscoordmath{default}{if less than}{\pgfplots@loc@TMPb}{\pgfplots@loc@TMPa}{%
\pgfplots@tickshowfalse
}{%
}%
}%
\def\pgfplots@prepare@tick@coordlists@for@checkdatalimits##1{}% I won't do this here. Smithcharts are somewhat special.
}%
\def\pgfplotspointcartesian@#1,#2\pgfplots@coord@end{%
\pgfpointxy@orig{#1}{#2}%
}%
\def\pgfplotscoordmathnotifydatascalesetfor@smithchart#1{%
\def\pgfplotscoordmathnotifydatascalesetfor##1{}%
\edef\pgfplotscoordmathnotifydatascalesetfor@{#1}%
\def\pgfplotscoordmathnotifydatascalesetfor@@{x}%
\ifx\pgfplotscoordmathnotifydatascalesetfor@@\pgfplotscoordmathnotifydatascalesetfor@
\pgfplotscoordmath{#1}{datascaletrafo set params}{0}{0}%
\else
\def\pgfplotscoordmathnotifydatascalesetfor@@{y}%
\ifx\pgfplotscoordmathnotifydatascalesetfor@@\pgfplotscoordmathnotifydatascalesetfor@
\pgfplotscoordmath{#1}{datascaletrafo set shift}{0}%
\fi
\fi
\let\pgfplotscoordmathnotifydatascalesetfor=\pgfplotscoordmathnotifydatascalesetfor@smithchart
}%
% #1: the "a" value on the oriented surf
% #2: the "b" value.
% #3: the shift along the normal.
%
\def\pgfplotspointonorientedsurfaceabwithbshift@smithchartaxis#1#2#3{%
% implement the shift in "b" direction explicitly:
\pgfpointadd
{\pgfplotspointonorientedsurfaceab{#1}{#2}}%
{%
\pgfplotspointonorientedsurfaceabtolinespec{v}{0}%
\afterassignment\pgfplots@gobble@until@relax
\pgf@xa=-#3\relax
\edef\pgfplots@shift@no@unit{\pgf@sys@tonumber\pgf@xa}%
\pgfqpointscale
{\pgfplots@shift@no@unit}
{\expandafter\pgfplotspointouternormalvectorofaxis\expandafter{\pgfplotsretval}}%
}%
}
% Computes the complex division
% (A + j B) / (C + j D) = (A C + B D + j (B C - A D) ) / (C^2 + D^2)
% and assigns the result to \pgfmathresult and \pgfmathresultim . Here
% 'j = sqrt{-1}' is the imaginary unit.
%
% #1 : A
% #2 : B
% #3 : C
% #4 : D
%
% The arithmetics is performed in \pgfplotscoordmath{default} (which
% uses the floating point unit in the initial configuration)
%
% Numbers are expected to be already parsed (i.e. you need to invoke
% \pgfplotscoordmath{default}{parsenumber}{#1}%
% \let\A=\pgfmathresult
% before)
\def\pgfplotscoordmathcomplexdivision#1#2#3#4{%
\begingroup
\edef\pgfplots@A{#1}%
\edef\pgfplots@B{#2}%
\edef\pgfplots@C{#3}%
\edef\pgfplots@D{#4}%
%
%
% ok, compute it:
\pgfplotscoordmath{default}{op}{multiply}{{\pgfplots@A}{\pgfplots@C}}%
\let\pgfplots@AC=\pgfmathresult
\pgfplotscoordmath{default}{op}{multiply}{{\pgfplots@A}{\pgfplots@D}}%
\let\pgfplots@AD=\pgfmathresult
\pgfplotscoordmath{default}{op}{multiply}{{\pgfplots@B}{\pgfplots@D}}%
\let\pgfplots@BD=\pgfmathresult
\pgfplotscoordmath{default}{op}{multiply}{{\pgfplots@B}{\pgfplots@C}}%
\let\pgfplots@BC=\pgfmathresult
%
\pgfplotscoordmath{default}{op}{multiply}{{\pgfplots@C}{\pgfplots@C}}%
\let\pgfplots@CC=\pgfmathresult
\pgfplotscoordmath{default}{op}{multiply}{{\pgfplots@D}{\pgfplots@D}}%
\let\pgfplots@DD=\pgfmathresult
\pgfplotscoordmath{default}{op}{add}{{\pgfplots@CC}{\pgfplots@DD}}%
\pgfplotscoordmath{default}{op}{reciprocal}{{\pgfmathresult}}%
\let\pgfplots@scale=\pgfmathresult
%
%
\pgfplotscoordmath{default}{op}{add}{{\pgfplots@AC}{\pgfplots@BD}}%
\pgfplotscoordmath{default}{op}{multiply}{{\pgfmathresult}{\pgfplots@scale}}%
\let\pgfplots@x=\pgfmathresult
%
\pgfplotscoordmath{default}{op}{subtract}{{\pgfplots@BC}{\pgfplots@AD}}%
\pgfplotscoordmath{default}{op}{multiply}{{\pgfmathresult}{\pgfplots@scale}}%
\let\pgfplots@y=\pgfmathresult
%
\xdef\pgfplots@glob@TMPa{%
\noexpand\def\noexpand\pgfmathresult{\pgfplots@x}%
\noexpand\def\noexpand\pgfmathresultim{\pgfplots@y}%
}%
\endgroup
\pgfplots@glob@TMPa
}%
\def\pgfplotsqpointxy@smithchartaxis#1#2{%
\pgf@process{%
\ifpgfplotspointisinsmithchartCS
\def\pgfplots@x{#1}%
\def\pgfplots@y{#2}%
\else
% compute rx + j* ry = (#1 + j * #2 -1) / (#1 + j*#2 + 1)
%
% I write
% #1 - 1 + j * #2 = A + j * B
% 1 + #1 + j * #2 = C + j * D
%
% -> rx + j * ry = (A + j B) / (C + j D) = (A C + B D + j (B C - A D) ) / (C^2 + D^2)
\pgfplotscoordmath{default}{parsenumber}{#1}%
\let\pgfplots@x=\pgfmathresult
%
\pgfplotscoordmath{default}{parsenumber}{#2}%
\let\pgfplots@D=\pgfmathresult
%
\pgfplotscoordmath{default}{one}%
\let\pgfplots@one=\pgfmathresult
%
\pgfplotscoordmath{default}{op}{add}{{\pgfplots@one}{\pgfplots@x}}%
\let\pgfplots@C=\pgfmathresult
%
\pgfplotscoordmath{default}{op}{subtract}{{\pgfplots@x}{\pgfplots@one}}%
\let\pgfplots@A=\pgfmathresult
%
\let\pgfplots@B=\pgfplots@D
%
\pgfplotscoordmathcomplexdivision\pgfplots@A\pgfplots@B\pgfplots@C\pgfplots@D
\pgfplotscoordmath{default}{tofixed}{\pgfmathresult}%
\let\pgfplots@x=\pgfmathresult
\pgfplotscoordmath{default}{tofixed}{\pgfmathresultim}%
\let\pgfplots@y=\pgfmathresult
\fi
%
\pgfplotsqpointxy@smithchart@canvas\pgfplots@x\pgfplots@y
%\message{pgfplotsqpointxy{#1}{#2} ---> (\pgfplots@x,\pgfplots@y) ---> (\the\pgf@x,\the\pgf@y)}%
}%
}%
\def\pgfplotsqpointxy@smithchart@canvas#1#2{%
\ifpgfplots@smithchart@mirrored
\pgfqpointxy@orig{-#1}{#2}%
\else
\pgfqpointxy@orig{#1}{#2}%
\fi
}%
\def\pgfplots@clippath@prepare@for@axistype@smithchartaxis{%
\def\pgfplots@clippath@install##1{%
\pgfpathellipse
{\pgfplotsqpointxy@smithchart@canvas{0}{0}}
{\pgfplotsqpointxy@smithchart@canvas{1}{0}}
{\pgfplotsqpointxy@smithchart@canvas{0}{1}}%
\pgfplots@clippath@use@{##1}%
}%
}%
\def\pgfplotspointouternormalvectorofaxis@smithchartaxis#1#2#3\relax{%
\if v#1%
\pgfqpoint{0pt}{1pt}%
\else
\if v#2%
\pgfplotspointouternormalvectorofaxisgetv{#1#2#3}%
\ifx\pgfplotsretval\pgfutil@empty
\def\pgfplotsretval{0}%
\fi
\pgfpointdiff
{\pgfplotsqpointxy@smithchart@canvas{0}{0}}%
{\pgfplotsqpointxy{0}{\pgfplotsretval}}%
\pgfpointnormalised{}%
\else
\pgfqpoint{0pt}{1pt}%
\fi
\fi
\pgf@process{}%
\endgroup
}%
\def\pgfplotspoint@initialisation@axes@smithchart{%
\begingroup
%\pgfplotsqpointxy{\pgfplots@xmin}{\pgfplots@ymin}%
\gdef\pgfplotspointminminmin{\pgfplotsqpointxy@smithchart@canvas{0}{0}}%
%
% the "x" axis is the diameter of the circle (for fixed y=0)
\pgf@x=2\pgf@xx
\pgf@y=0pt
\xdef\pgfplotspointxaxis{\noexpand\pgf@x=\the\pgf@x\space\noexpand\pgf@y=\the\pgf@y\space}%
\pgfmathveclen{\pgf@x}{\pgf@y}%
\xdef\pgfplotspointxaxislength{\pgfmathresult pt}%
%
\pgfplotsqpointxy{\pgfplots@xmax}{\pgfplots@ymax}%
\xdef\pgfplotspointyaxis{\noexpand\pgf@x=\the\pgf@x\space\noexpand\pgf@y=\the\pgf@y\space}%
%
% the length of the "y" axis is 2*pi*r (for fixed x=0, the outer
% circle).
% The radius is the length of (0,1) which is (0pt,\pgf@xx1):
\pgfmath@basic@multiply@{\pgf@sys@tonumber\pgf@xx}{1}%
\pgfmathmultiply@{\pgfmathresult}{6.28318530717959}% 2*pi * r
\xdef\pgfplotspointyaxislength{\pgfmathresult pt}%
%
\global\let\pgfplotspointzaxis=\pgfpointorigin
\gdef\pgfplotspointzaxislength{0pt}%
\endgroup
%
\edef\pgfplots@loc@TMPa{\pgf@sys@tonumber\pgf@xx}%
\pgfmathdivide@{16000}{\pgfplots@loc@TMPa}%
\let\pgfplots@smithchart@axis@max@xradius@for@ycircle=\pgfmathresult
%
\ifdim\pgf@xx=\pgf@yy
\def\pgfplots@smithchart@axis@ratioxy{1}%
\def\pgfplots@smithchart@axis@ratioyx{1}%
\let\pgfplots@smithchart@axis@max@yradius@for@ycircle=\pgfplots@smithchart@axis@max@xradius@for@ycircle
\else
\edef\pgfplots@loc@TMPb{\pgf@sys@tonumber\pgf@yy}%
\pgfmathdivide@\pgfplots@loc@TMPa\pgfplots@loc@TMPb
\let\pgfplots@smithchart@axis@ratioxy=\pgfmathresult
\pgfmathdivide@\pgfplots@loc@TMPb\pgfplots@loc@TMPa
\let\pgfplots@smithchart@axis@ratioyx=\pgfmathresult
%
\pgfmathdivide@{16000}{\pgfplots@loc@TMPb}%
\let\pgfplots@smithchart@axis@max@yradius@for@ycircle=\pgfmathresult
\fi
}
\let\pgfplotspoint@initialisation@units@orig=\pgfplotspoint@initialisation@units
\def\pgfplotspoint@initialisation@units@smithchart{%
\pgfplotspoint@initialisation@units@orig
\def\pgfplotspointunity{%
\pgfplotspointouternormalvectorofaxisgetv{0v0}% x=0 (outer circle) and v varies (the yticks)
\ifx\pgfplotsretval\pgfutil@empty
\def\pgfplotsretval{0}%
\fi
\pgfpointnormalised{\pgfplotsqpointxy{0}{\ifx\pgfplotsretval\pgfutil@empty 0\else\pgfplotsretval\fi}}%
\pgf@xa=-\pgf@y
\global\pgf@y=\pgf@x
\global\pgf@x=\pgf@xa
}%
\def\pgfplotsunitylength{1}%
\def\pgfplotsunityinvlength{1}%
}%
\def\pgfplots@drawgridlines@INSTALLCLIP@onorientedsurf@smithchartaxis#1{%
%\pgfplots@clippath@install{\pgfusepath{clip}}%
}%
% At this time, the minor/major tick lists are initialised.
\def\pgfplots@draw@axis@is@prepared@smithchartaxis{%
\pgfplots@gridlines@init@grid@stop@points@for xy%
\pgfplots@gridlines@init@grid@stop@points@for yx%
%
% and finalize x:
\def\pgfplots@finalize@constraints{1}%
\pgfplots@gridlines@init@grid@stop@points@for@computethem{x}{y}{\pgfplots@finalize@constraints}%
}%
% Initialises the '#1grid each nth passes #2' and '#1grid stop at #2'
% features. All it does is to prepare the
% method \pgfplots@get@current@grid@stop@point.
%
% The method is quite involved. Please refer to the manual for what it
% is supposed to do, and refer to the code comments below for
% implementational details.
%
% #1 either x or y
% #2 either x or y
\def\pgfplots@gridlines@init@grid@stop@points@for#1#2{%
%
\expandafter\let\csname pgfplots@#1grid@stop@points\endcsname=\relax
%
\pgfkeysgetvalue{/pgfplots/#1grid each nth passes #2}\pgfplots@loc@TMPa
\ifx\pgfplots@loc@TMPa\pgfutil@empty
\else
% we have no "xticknum -> xtickpos" lookup table yet.
\expandafter\def\csname b@pgfplots@#2ticknum@to@pos@lookup\endcsname{0}%
%
\pgfplotslistnewempty\pgfplots@loc@TMPd
% normalise the argument for 'ygrid each nth passes x': each list element
% should be of the form '<xtickpos>:<n>' where <n> means that each
% <n>th arc can pass.
\expandafter\pgfplotsutilforeachcommasep\pgfplots@loc@TMPa\as\entry{%
\expandafter\pgfplots@gridlines@init@grid@stop@points@for@normalise\entry\relax#1#2%
\expandafter\pgfplotslistpushback\entry\to\pgfplots@loc@TMPd
}%
\expandafter\let\csname pgfplots@#1grid@stop@points\endcsname=\pgfplots@loc@TMPd
%
% Ok.
%
% Now, the 'ygrid each nth passes x' feature relies *crucially* on grid line
% indices (for the 'each nth' feature).
%
% I sort the arcs according to their absolute magnitude and assign
% indices into the resulting arrays to normalize that stuff.
%
% The array is of the form
% A[i] = entry of \pgfplots@prepared@tick@positions@*
% and contains *both*, major and minor grid lines.
\pgfplotsarraynewempty\pgfplots@gridlines
\pgfplotscoordmath{default}{zero}%
\edef\elem{{-1}{\pgfmathresult}}% require 0 to be zero for symmetry even if there is no such tick pos
\expandafter\pgfplotsarraypushback\elem\to\pgfplots@gridlines
\pgfplots@if{pgfplots@#1majorgrids}{%
% insert all major tick positions, using their absolute value.
\expandafter
\pgfplotslistforeachungrouped\csname pgfplots@prepared@tick@positions@major@#1\endcsname\as\elem{%
\expandafter\pgfplots@prepared@tick@pos@unpack\elem
\pgfplotscoordmath{default}{parsenumber}{\pgfplots@tick}%
\pgfplotscoordmath{default}{op}{abs}{{\pgfmathresult}}%
\edef\elem{{\pgfplots@ticknum}{\pgfmathresult}}%
\expandafter\pgfplotsarraypushback\elem\to\pgfplots@gridlines
}%
}{}%
\pgfplots@if{pgfplots@#1minorgrids}{%
% now the same for minor grid positions:
\expandafter
\pgfplotslistforeachungrouped\csname pgfplots@prepared@tick@positions@minor@#1\endcsname\as\elem{%
\expandafter\pgfplots@prepared@tick@pos@unpack\elem
\pgfplotscoordmath{default}{parsenumber}{\pgfplots@tick}%
\pgfplotscoordmath{default}{op}{abs}{{\pgfmathresult}}%
\edef\elem{{\pgfplots@ticknum}{\pgfmathresult}}%
\expandafter\pgfplotsarraypushback\elem\to\pgfplots@gridlines
}%
}{}%
% sort the array!
\pgfkeysgetvalue{/pgfplots/smithchart@sortlt/.@cmd}\pgfplots@loc@TMPa
\pgfkeyslet{/pgfplots/iflessthan/.@cmd}\pgfplots@loc@TMPa
\pgfplotsarraysort\pgfplots@gridlines
%
% ok. Now it is sorted.
%
% I finally need a lookup
% \pgfplots@ticknum --> sort index.
% If the associated values have the same absolute value, the same
% sort index should be assigned.
%
% For example, the array might be associated to the following tick
% positions, sorted by absolute value:
% 0.0, 1.0, -1.0, 3.0, -3.0, 4.0, -4.0, 5.0, -5.0
% What I want is that
% 0.0 gets sort index 0
% 1.0 and -1.0 get sort index 1
% 3.0 and -3.0 get sort index 2
% 4.0 and -4.0 get sort index 3
% and so on. The array contains only absolute values, so that's
% not too difficult to check.
%
% Since each of the tick positions can be (uniquely) identified by
% its associated \pgfplots@ticknum value, I map \pgfplots@ticknum
% to the sort index.
\countdef\c@sortindex=\c@pgf@counta
\c@sortindex=\pgfkeysvalueof{/pgfplots/#1grid each nth passes #2 start} % this is assigned to the '0.0' gridline (if any)
\def\pgfplots@lasttickpos{}%
\pgfplotsarrayforeachungrouped\pgfplots@gridlines\as\elem{%
\expandafter\pgfplots@prepared@tick@pos@unpack\elem
\ifx\pgfplots@lasttickpos\pgfutil@empty
\else
\ifx\pgfplots@lasttickpos\pgfplots@tick
\else
\advance\c@sortindex by1
\fi
\fi
\expandafter\edef\csname pgfplots@#1tickpos@to@sortidx@\pgfplots@ticknum\endcsname{\the\c@sortindex}%
%\message{\pgfplots@ticknum\space(abs(tickpos) = \pgfplots@tick)---> sort index \csname pgfplots@#1tickpos@to@sortidx@\pgfplots@ticknum\endcsname^^J}%
\let\pgfplots@lasttickpos=\pgfplots@tick
}%
%
% unfortunately, I can't free the \pgfplots@gridlines array
% without extensive overhead :-(
\fi
%
\expandafter\let\csname b@pgfplots@#1gridline@stopmap\endcsname\relax
\pgfkeysgetvalue{/pgfplots/#1grid stop at #2}\pgfplots@loc@TMPa
\ifx\pgfplots@loc@TMPa\pgfutil@empty
\else
\edef\pgfplots@loc@TMPa{\pgfplots@loc@TMPa,}% this inserts the final comma and handles any active ':' sign (for french babel)
\def\pgfplots@loc@TMPb{\pgfplots@gridlines@init@stop@maps #1#2}%
\expandafter\pgfplots@loc@TMPb\pgfplots@loc@TMPa\pgfplots@EOI%
\fi
%
%
% Now, compute all final stop positions. Also prepare the cross
% dependencies between x grids and y grids here (such that there
% is no grid line stopping in white space)
%
\if#1x%
\def\pgfplots@finalize@constraints{0}% we have to wait until y stop points are known.
\else
\def\pgfplots@finalize@constraints{1}%
\fi
\pgfplots@gridlines@init@grid@stop@points@for@computethem{#1}{#2}{\pgfplots@finalize@constraints}%
}%
% #1,#2,#3 the arguments for
% \pgfplots@gridlines@preparation@get@current@grid@stop@point
\def\pgfplots@gridlines@init@grid@stop@points@for@computethem#1#2#3{%
%
\expandafter\pgfplotslistforeachungrouped\csname pgfplots@prepared@tick@positions@major@#1\endcsname\as\elem{%
\expandafter\pgfplots@prepared@tick@pos@unpack\elem
\pgfplotscoordmath{default}{parsenumber}{\pgfplots@tick}\let\pgfplots@tick=\pgfmathresult
\pgfplots@gridlines@preparation@get@current@grid@stop@point{#1}{#2}{\pgfplots@tick}{#3}%
\if1#3%
\pgfplots@gridlines@let{#1}{\pgfplots@tick@prepared}=\pgfplotsretval
\fi
}%
\expandafter\pgfplotslistforeachungrouped\csname pgfplots@prepared@tick@positions@minor@#1\endcsname\as\elem{%
\expandafter\pgfplots@prepared@tick@pos@unpack\elem
\pgfplotscoordmath{default}{parsenumber}{\pgfplots@tick}\let\pgfplots@tick=\pgfmathresult
\pgfplots@gridlines@preparation@get@current@grid@stop@point{#1}{#2}{\pgfplots@tick}{#3}%
\if1#3%
\pgfplots@gridlines@let{#1}{\pgfplots@tick@prepared}=\pgfplotsretval
\fi
}%
\expandafter\def\csname b@pgfplots@#1gridline@stopmap\endcsname{1}%
}
\def\pgfplots@gridlines@init@stop@maps#1#2{%
\pgfutil@ifnextchar\pgfplots@EOI{%
\pgfutil@gobble
}{%
\pgfutil@ifnextchar,{%
\pgfplots@gridlines@init@stop@maps@next@@#1#2%
}{%
\pgfplots@gridlines@init@stop@maps@next#1#2%
}%
}%
}%
\def\pgfplots@gridlines@init@stop@maps@next#1#2#3:#4,{%
\pgfplotscoordmath{default}{parsenumber}{#4}%
\let\pgfplots@loc@TMPa=\pgfmathresult
\pgfplots@gridlines@stopmap@prepare{#3}%
\pgfplots@gridlines@let{#1}{\pgfmathresult}=\pgfplots@loc@TMPa
\expandafter\def\csname b@pgfplots@#1gridline@stopmap\endcsname{1}%
%
\pgfplots@gridlines@init@stop@maps #1#2%
}
% just eat one empty comma:
\def\pgfplots@gridlines@init@stop@maps@next@@#1#2,{\pgfplots@gridlines@init@stop@maps #1#2}%
\def\pgfplots@gridlines@let#1#2=#3{%
\expandafter\let\csname pgfplots@#1gridline@stopmap@#2\endcsname=#3%
\if#1y%
% support symmetry:
% add -\pgfmathresult to the map.
% To disable this symmetry, use 'ygrid stop at x={0.2:4 -0.2:5}
% you can also use an empty value '-0.2:{}', that's also ok.
\expandafter\let\csname pgfplots@#1gridline@stopmap@-#2\endcsname=#3%
\fi
}%
\def\pgfplots@gridlines@stopmap@prepare@digits{2}%
\def\pgfplots@gridlines@stopmap@prepare#1{%
\begingroup
\pgfmathfloatparsenumber{#1}%
\let\pgfmathfloat@round@precision=\pgfplots@gridlines@stopmap@prepare@digits%
\pgfmathfloatroundzerofill\pgfmathresult
\pgfmath@smuggleone\pgfmathresult
\endgroup
}%
\def\pgfplots@gridlines@stopmap@trunc@#1.#2#3#4\relax{%
\def\pgfmathresult{#1.#2#3}%
}%
\pgfkeysdefargs{/pgfplots/smithchart@sortlt}{#1#2#3#4}{%
\expandafter\pgfplots@prepared@tick@pos@unpack#1%
\let\pgfplots@A=\pgfplots@tick
\expandafter\pgfplots@prepared@tick@pos@unpack#2%
\let\pgfplots@B=\pgfplots@tick
\pgfplotscoordmath{default}{if less than}{\pgfplots@A}{\pgfplots@B}{#3}{#4}%
}%
% initialise a lookuptable from ticknumber -> tick position (sort
% of an array)
%
% This is only invoked if it is needed (if 'arc
% limits={[index]4,[index]2}' or something like that is used, see the
% manual).
%
% #1 either x or y
% #2 either x or y
\def\pgfplots@gridlines@init@grid@stop@points@for@init@ticknum@lookup#1#2{%
\c@pgf@counta=0
\pgfplots@if{pgfplots@#1majorgrids}{%
\expandafter
\pgfplotslistforeachungrouped\csname pgfplots@prepared@tick@positions@major@#2\endcsname\as\elem{%
\expandafter\pgfplots@prepared@tick@pos@unpack\elem
\expandafter\let\csname pgfplots@#2tick@num@to@pos@\the\c@pgf@counta\endcsname=\pgfplots@tick
\advance\c@pgf@counta by1
}%
}{}%
\pgfplots@if{pgfplots@#1minorgrids}{%
\expandafter
\pgfplotslistforeachungrouped\csname pgfplots@prepared@tick@positions@minor@#2\endcsname\as\elem{%
\expandafter\pgfplots@prepared@tick@pos@unpack\elem
\expandafter\let\csname pgfplots@#2tick@num@to@pos@\the\c@pgf@counta\endcsname=\pgfplots@tick
\advance\c@pgf@counta by1
}%
}{}%
\expandafter\def\csname b@pgfplots@#2ticknum@to@pos@lookup\endcsname{1}%
}%
\def\pgfplots@gridlines@init@grid@stop@points@for@normalise#1\relax#2#3{%
\def\b@pgfplots@haslt{0}%
%
\pgfutil@in@{if <}{#1}%
\ifpgfutil@in@
% strip the white space between 'if' and '<':
\def\pgfplots@loc@TMPa##1if <##2\relax{\edef\entry{##1if<##2}}%
\expandafter\pgfplots@loc@TMPa\entry\relax
\def\b@pgfplots@haslt{1}%
\fi
%
\pgfutil@in@{if<}{#1}%
\ifpgfutil@in@
\def\b@pgfplots@haslt{1}%
\fi
%
\pgfutil@in@:{#1}%
\ifpgfutil@in@
\def\b@pgfplots@hascolon{1}%
\else
\def\b@pgfplots@hascolon{0}%
\fi
%
\if1\b@pgfplots@hascolon
\edef\entry{\entry\if0\b@pgfplots@haslt if<\fi}%
\else
\if1\b@pgfplots@haslt
\expandafter\pgfplots@gridlines@stop@at@unpack@@@\entry\relax
\edef\entry{\pgfplots@grid@stop@at:2if<\pgfplots@grid@stop@at@iflt}%
\else
\edef\entry{\entry:2if<}%
\fi%
\fi%
%
\pgfutil@in@{[index]}{#1}%
\ifpgfutil@in@
\if0\csname b@pgfplots@#3ticknum@to@pos@lookup\endcsname
\pgfplots@gridlines@init@grid@stop@points@for@init@ticknum@lookup#2#3%
\fi
\expandafter\pgfplots@gridlines@stop@at@unpack\entry\relax
\pgfutil@ifundefined{pgfplots@#3tick@num@to@pos@\pgfplots@grid@stop@at}{%
\pgfplots@warning{There is no #3tick with index '\pgfplots@grid@stop@at'. Skipping it.}%
\let\entry=\pgfutil@empty
}{%
\edef\entry{\csname pgfplots@#3tick@num@to@pos@\pgfplots@grid@stop@at\endcsname:\pgfplots@grid@stop@at@eachnth}%
}%
\fi
%
\expandafter\pgfplots@gridlines@stop@at@unpack\entry\relax
\pgfplotscoordmath{default}{parsenumber}\pgfplots@grid@stop@at
\let\pgfplots@grid@stop@at=\pgfmathresult
\ifx\pgfplots@grid@stop@at@iflt\pgfutil@empty
\else
\pgfplotscoordmath{default}{parsenumber}\pgfplots@grid@stop@at@iflt
\let\pgfplots@grid@stop@at@iflt=\pgfmathresult
\fi
\edef\entry{\pgfplots@grid@stop@at:\pgfplots@grid@stop@at@eachnth if<\pgfplots@grid@stop@at@iflt}%
}%
\def\pgfplots@gridlines@stop@at@unpack@@@#1if<#2\relax{%
\def\pgfplots@grid@stop@at{#1}%
\def\pgfplots@grid@stop@at@iflt{#2}%
}%
\def\pgfplots@gridlines@stop@at@unpack#1:#2if<#3\relax{%
\def\pgfplots@grid@stop@at{#1}%
\def\pgfplots@grid@stop@at@eachnth{#2}%
\def\pgfplots@grid@stop@at@iflt{#3}%
}%
% Returns the xtick position which should end the current arc.
%
% This is an INTERNAL preparation method. See
% \pgfplots@get@current@grid@stop@point for the final one.
%
% Note that arcs correspond to ygrid lines.
%
% #1 either x or y
% #2 either x or y
% #3 the value of the current grid line
% #4 a boolean which expands either to 0 or to 1.
% The \pgfplots@get@current@grid@stop@point@handle@constraints method
% will be invoked if and only if #4=1
%
% @POSTCONDITION On output,
% - \pgfplotsretval will be filled with the
% result. If the result is empty, no restriction is imposed.
% Otherwise, it contains the #2tick value at which the current #1grid shall end.
% The result is already processed with
% \pgfplotscoordmath{default}{parsenumber}{<value>}
% - \pgfplots@tick@prepared contains a rounded representation of #3.
%
% The method relies on the 'ygrid each nth passes x' feature, more specifically the
% stuff prepared by \pgfplots@gridlines@init@grid@stop@points@for
\def\pgfplots@gridlines@preparation@get@current@grid@stop@point#1#2#3#4{%
\def\pgfplotsretval{}%
%
\pgfplots@gridlines@stopmap@prepare{#3}%
\let\pgfplots@tick@prepared=\pgfmathresult
\pgfmathfloatabs@\pgfplots@tick@prepared
\let\pgfplots@tick@prepared@abs=\pgfmathresult
%
\pgfplotscoordmath{default}{op}{abs}{{#3}}%
\let\pgfplots@tick@abs=\pgfmathresult
%
% first: check the '#1grid stop at #2':
\expandafter\ifx\csname b@pgfplots@#1gridline@stopmap\endcsname\relax%
% ok. there is no such thing.
\else
% ah - process it!
\pgfutil@ifundefined{pgfplots@#1gridline@stopmap@\pgfplots@tick@prepared}{%
}{%
\edef\pgfplotsretval{\csname pgfplots@#1gridline@stopmap@\pgfplots@tick@prepared\endcsname}%
}%
\fi
%
\ifx\pgfplotsretval\pgfutil@empty
% the individual map failed. Ok, then check for the '#1grid each nth passes #2'
\expandafter\ifx\csname pgfplots@#1grid@stop@points\endcsname\relax
\else
% \pgfplots@ticknum is defined in this context here.
\pgfutil@ifundefined{pgfplots@#1tickpos@to@sortidx@\pgfplots@ticknum}{%
\pgfplots@warning{Sorry, I can't get the current arc limit for #1grid no \#\pgfplots@ticknum\space(value \pgfplots@tick). This seems like an internal error!?}%
}{%
% get the sort index for the current tick (which is
% uniquely identified by its \pgfplots@ticknum)
\expandafter\let\expandafter\pgfplots@k\csname pgfplots@#1tickpos@to@sortidx@\pgfplots@ticknum\endcsname
%
\expandafter\pgfplotslistforeachungrouped\csname pgfplots@#1grid@stop@points\endcsname\as\pgfplots@loc@TMPa{%
\ifx\pgfplotsretval\pgfutil@empty
% we found no final limit so far. proceed.
\expandafter\pgfplots@gridlines@stop@at@unpack\pgfplots@loc@TMPa\relax
\ifx\pgfplots@grid@stop@at@iflt\pgfutil@empty
\pgfplots@loop@CONTINUEtrue
\else
\pgfplotscoordmath{default}{if less than}{\pgfplots@tick@abs}{\pgfplots@grid@stop@at@iflt}{%
\pgfplots@loop@CONTINUEtrue
}{%
\pgfplots@loop@CONTINUEfalse
}%
\fi
%
\ifpgfplots@loop@CONTINUE
\pgfplotsmathmodint\pgfplots@k\pgfplots@grid@stop@at@eachnth
\ifnum\pgfmathresult=0
\c@pgf@counta=\pgfplots@k
\divide\c@pgf@counta by\pgfplots@grid@stop@at@eachnth\relax
\edef\pgfplots@k{\the\c@pgf@counta}%
\else
% found the final limit.
%
% Now, check the constraints which couple
% X and Y.
\let\pgfplotsretval=\pgfplots@grid@stop@at
\if1#4%
\pgfplots@get@current@grid@stop@point@handle@constraints #1#2{#3}%
\fi
\fi
\fi
\fi
}%
}%
\fi
\fi
\ifx\pgfplotsretval\pgfutil@empty
\else
\expandafter\let\csname pgfplots@final@stop@point@for@#1tick@\pgfplots@tick@prepared\endcsname=\pgfplotsretval
%\message{#1 grid line: storing end value for '#3' END[\pgfplots@tick@prepared] = \pgfplotsretval.^^J}%
\fi
}%
% PRECONDITION
% \pgfplotsretval contains a non-zero constraint for the ygrid at #1.
%
% POSTCONDITION
% either \pgfplotsretval is unchanged, or it is reset to
% \pgfutil@empty if constraints are violated.
%
% The constraints are ONLY effective if BOTH, incomplete x- and y grid
% lines are in effect. In that case, it should never happen that a
% single grid line ends in a dead-end somewhere in white space.
%
% I enforce two constraints which apply only to ygrid to fix this
% issue (this may be improved later).
%
% The idea is simple:
% 1. suppose the grid line 'x=1' stops at 'y=5'.
% Suppose further that the y grid line 'y=0.95' should stop at 'x=1'.
% Is that acceptable? Yes, because |y| < 5.
% Now, suppose an y grid line with |y| > 5 should stop at 'x=1'.
% Is this allowed? NO! Because it would become a dead end since
% the 'x=1' line ends at 'y=5'!
%
% So, whenever we consider ygrids and stop point candidates "x=X",
% acquire the value Q where the x (!) grid line "x=X" stops.
% If |y| > Q, the candidate "x=X" is rejected.
%
% 2. There might still be the case that x grid lines have dead-ends.
% The current solution applies the idea first to all y grid lines,
% and once the y grid lines are ready, it applies the same idea to
% x grid lines.
%
% Uncomment the routine(s) and run the test cases to see what happens.
\def\pgfplots@get@current@grid@stop@point@handle@constraints#1#2#3{%
\ifx\pgfplotsretval\pgfutil@empty
\else
\pgfplots@gridlines@stopmap@prepare{\pgfplotsretval}%
\let\pgfplots@loc@TMPa=\pgfmathresult
%
%\message{checking ending '#1=#3' at '#2=\pgfplotsretval'. '#2=\pgfplots@loc@TMPa' stops}%
\pgfutil@ifundefined{pgfplots@final@stop@point@for@#2tick@\pgfplots@loc@TMPa}{%
% no constraint. Ok.
%\message{ nowhere. No constraint.^^J}%
}{%
%\message{ at \pgfplots@loc@TMPa. Feasible: }%
% Oh, a constraint. That means
% further work.
\expandafter\let\expandafter\pgfplots@loc@TMPa\csname pgfplots@final@stop@point@for@#2tick@\pgfmathresult\endcsname
\pgfplotscoordmath{default}{op}{abs}{{#3}}%
\pgfplotscoordmath{default}{if less than}{\pgfmathresult}{\pgfplots@loc@TMPa}{%
% ok, we can use the found
% stop value.
%\message{YES.^^J}%
}{%
%\message{NO.^^J}%
% no, the stop value is
% invalid; it would stop in
% white space!
\let\pgfplotsretval=\pgfutil@empty
}%
}%
\fi
}%
% Returns the xtick position which should end the current arc.
%
% Note that arcs correspond to ygrid lines.
%
% #1 either x or y
% #2 either x or y
% #3 the value of the current grid line
%
% @POSTCONDITION On output, \pgfplotsretval will be filled with the
% result. If the result is empty, no restriction is imposed.
% Otherwise, it contains the #2tick value at which the current #1grid shall end.
% The result is already processed with
% \pgfplotscoordmath{default}{parsenumber}{<value>}
%
% The method relies on the 'ygrid each nth passes x' feature, more specifically the
% stuff prepared by \pgfplots@gridlines@init@grid@stop@points@for
%
% Note that all work has already been done by
% \pgfplots@gridlines@init@grid@stop@points@for. We only need to query
% the result at this point.
% @see \pgfplots@gridlines@init@grid@stop@points@for
% @see \pgfplots@gridlines@preparation@get@current@grid@stop@point
\def\pgfplots@get@current@grid@stop@point#1#2#3{%
\def\pgfplotsretval{}%
%
% check the '#1grid stop at #2':
\expandafter\ifx\csname b@pgfplots@#1gridline@stopmap\endcsname\relax%
% ok. there is no such thing.
\else
%
\pgfplots@gridlines@stopmap@prepare{#3}%
\let\pgfplots@tick@prepared=\pgfmathresult
\pgfmathfloatabs@\pgfplots@tick@prepared
\let\pgfplots@tick@prepared@abs=\pgfmathresult
%
% ah - process it!
\pgfutil@ifundefined{pgfplots@#1gridline@stopmap@\pgfplots@tick@prepared}{%
\let\pgfplotsretval\pgfutil@empty
}{%
\edef\pgfplotsretval{\csname pgfplots@#1gridline@stopmap@\pgfplots@tick@prepared\endcsname}%
}%
\fi
%
}%
\def\pgfplots@smithchart@draw@xcircle#1{%
\pgfplotscoordmath{default}{one}%
\let\pgfplots@loc@TMPa=\pgfmathresult
%
\pgfplotscoordmath{default}{parsenumber}{#1}%
\let\pgfplots@x=\pgfmathresult
%
\pgfplotscoordmath{default}{op}{add}{{\pgfplots@loc@TMPa}{\pgfplots@x}}%
\let\pgfplots@radius@inverse=\pgfmathresult
\pgfplotscoordmath{default}{op}{reciprocal}{{\pgfmathresult}}%
\let\pgfplots@radius=\pgfmathresult
\pgfplotscoordmath{default}{op}{multiply}{{\pgfmathresult}{\pgfplots@x}}%
\pgfplotscoordmath{default}{tofixed}{\pgfmathresult}%
\let\pgfplots@center=\pgfmathresult
%
\pgfplotscoordmath{default}{tofixed}{\pgfplots@radius}%
\let\pgfplots@radius=\pgfmathresult
%
\pgfplotscoordmath{default}{tofixed}{\pgfplots@radius@inverse}%
\let\pgfplots@radius@inverse=\pgfmathresult
%
% This here would suffice in case 'xgrid each nth passes y={}':
% \pgfpathellipse
% {\pgfplotsqpointxy@smithchart@canvas{\pgfplots@center}{0}}
% {\pgfplotsqpointxy@smithchart@canvas{\pgfplots@radius}{0}}
% {\pgfplotsqpointxy@smithchart@canvas{0}{\pgfplots@radius}}%
%
% but we also check for the 'xgrid each nth passes y' feature:
\pgfplots@get@current@grid@stop@point xy{\pgfplots@x}%
\let\pgfplots@arc@ends@at@y@arc@value\pgfplotsretval%
%
\ifx\pgfplots@arc@ends@at@y@arc@value\pgfutil@empty
% Ok. There is no specific end point -- simply use the
% (1,0) point (i.e. draw the full circle).
%
\pgfmathadd@{\pgfplots@center}{\pgfplots@radius}%
\let\pgfplots@start=\pgfmathresult%
\def\pgfplots@startim{0}%
\def\pgfplots@startangle{0}%
\let\pgfplots@end=\pgfplots@start
\let\pgfplots@endim=\pgfplots@startim
\def\pgfplots@endangle{360}%
\else
% Ok. The arc should end before it reaches the (1,0)
% point. Determine the exact position and the
% corresponding arc end angle.
%
% In general, the intersection between the circle for
% fixed x=A and fixed y=B is given by
%
% p + j * q = (A + j * B -1 ) / ( A + j*B +1)
% see http://www.siart.de/lehre/tutorien.xhtml#smishort
\pgfplotscoordmath{default}{one}%
\let\pgfplots@one=\pgfmathresult
\pgfplotscoordmath{default}{parsenumber}{-1}%
\let\pgfplots@mone=\pgfmathresult
\pgfplotscoordmath{default}{op}{add}{{\pgfplots@x}{\pgfplots@mone}}%
\let\pgfplots@A@mone=\pgfmathresult
\pgfplotscoordmath{default}{op}{add}{{\pgfplots@x}{\pgfplots@one}}%
\let\pgfplots@A@one=\pgfmathresult
% oh - we should only draw a partial arc.
% Well, then compute its end point and the
% corresponding end angle.
\pgfplotscoordmathcomplexdivision
{\pgfplots@A@mone}{\pgfplots@arc@ends@at@y@arc@value}%
{\pgfplots@A@one}{\pgfplots@arc@ends@at@y@arc@value}%
\let\pgfplots@start=\pgfmathresult
\let\pgfplots@startim=\pgfmathresultim
\pgfplotscoordmath{default}{tofixed}{\pgfplots@start}%
\let\pgfplots@start=\pgfmathresult
\pgfplotscoordmath{default}{tofixed}{\pgfplots@startim}%
\let\pgfplots@startim=\pgfmathresult
%
\pgfplots@compute@angle@of@point@in@circle\pgfplots@start\pgfplots@startim{\pgfplots@center}{\pgfplots@radius}{\pgfplots@radius@inverse}%
\let\pgfplots@startangle=\pgfmathresult
\pgfmathsubtract@{360}{\pgfplots@startangle}%
\let\pgfplots@endangle=\pgfmathresult
\let\pgfplots@end=\pgfplots@start
\edef\pgfplots@endim{-\pgfplots@startim}%
\ifdim\pgfplots@startangle pt>\pgfplots@endangle pt
\let\pgfplots@loc@TMPa=\pgfplots@startangle
\let\pgfplots@startangle=\pgfplots@endangle
\let\pgfplots@endangle=\pgfplots@loc@TMPa
\fi
\fi
%
%\message{X grid line \#\csname pgfplots@ticknum\endcsname \space at '#1': center = (\pgfplots@center,0); radius = \pgfplots@radius\space(start angle \pgfplots@startangle, end angle = \pgfplots@endangle; stops at y = \pgfplots@arc@ends@at@y@arc@value).^^J}%
%
% Now, compute the arc.
%
% first, compute the absolute x/y radii:
\pgf@xa=\pgfplots@radius\pgf@xx
\pgf@xb=\pgfplots@radius\pgf@yy
\edef\pgfplots@mirror@sign{\ifpgfplots@smithchart@mirrored -\fi}%
\pgfpathmoveto{\pgfplotsqpointxy@smithchart@canvas{\pgfplots@start}{\pgfplots@startim}}%
% note that the case startangle > endangle is
% automatically correct; patharc handles that.
%\edef\pgfplots@loc@TMPa{{\pgfplots@startangle}{\pgfplots@endangle}{\pgfplots@mirror@sign\the\pgf@xa\space and \the\pgf@xb}}%
%\expandafter\pgfpatharc\pgfplots@loc@TMPa
%
% prefer \pgfpatharctoprecomputed. It is faster and more accurate
\edef\pgfplots@loc@TMPa{%
{\noexpand\pgfplotsqpointxy@smithchart@canvas{\pgfplots@center}{0}}%
{\pgfplots@startangle}%
{\pgfplots@endangle}%
{\noexpand\pgfplotsqpointxy@smithchart@canvas{\pgfplots@end}{\pgfplots@endim}}%
{\pgfplots@mirror@sign\the\pgf@xa}%
{\the\pgf@xb}%
{\pgfplots@mirror@sign\pgfplots@smithchart@axis@ratioxy}%
{\pgfplots@mirror@sign\pgfplots@smithchart@axis@ratioyx}%
}%
\expandafter\pgfpatharctoprecomputed\pgfplots@loc@TMPa
}
\def\pgfplots@smithchart@draw@yarc#1{%
\pgfplotscoordmath{default}{parsenumber}{#1}%
\let\pgfplots@y\pgfmathresult
\pgfplotscoordmath{default}{op}{abs}{{\pgfplots@y}}%
\pgfplotscoordmath{default}{if less than}{\pgfmathresult}{\pgfplots@almost@zero@thresh}{%
\pgfpathmoveto{\pgfplotsqpointxy@smithchart@canvas{-1}{0}}%
\pgfpathlineto{\pgfplotsqpointxy@smithchart@canvas{1}{0}}%
}{%
\pgfplotscoordmath{default}{op}{reciprocal}{{\pgfplots@y}}%
\pgfplotscoordmath{default}{tofixed}{\pgfmathresult}%
\let\pgfplots@signedradius=\pgfmathresult
%
\pgfplotscoordmath{default}{tofixed}{\pgfplots@y}%
\ifdim\pgfplots@signedradius pt<0pt
\def\pgfplots@radius@sign{-}%
\edef\pgfplots@radius@inverse{-\pgfmathresult}%
\edef\pgfplots@radius{-\pgfplots@signedradius}%
\else
\def\pgfplots@radius@sign{}%
\edef\pgfplots@radius@inverse{\pgfmathresult}%
\let\pgfplots@radius=\pgfplots@signedradius
\fi
% this here is the correct, complete circle -- together
% with a clip path, you get what you want:
%\pgfpathellipse
% {\pgfplotsqpointxy@smithchart@canvas{1}{\pgfplots@signedradius}}
% {\pgfplotsqpointxy@smithchart@canvas{\pgfplots@signedradius}{0}}
% {\pgfplotsqpointxy@smithchart@canvas{0}{\pgfplots@signedradius}}%
% But I only want the arc (probably stopped earlier to
% improve qualtity of the chart)
%
% compute start point for the arc.
%
% To do so, we need to compute the intersection between
% the circle for fixed x=0 and the circle for y=#1.
%
% In general, the intersection between the circle for
% fixed x=A and fixed y=B is given by
%
% p + j * q = (A + j * B -1 ) / ( A + j*B +1)
% see http://www.siart.de/lehre/tutorien.xhtml#smishort
%
% inserting A = 0 and B = #1 yields the result
% p=\pgfplots@start
% q=\pgfplots@startim
% as follows:
\pgfplotscoordmath{default}{one}%
\let\pgfplots@one=\pgfmathresult
\pgfplotscoordmath{default}{parsenumber}{-1}%
\let\pgfplots@mone=\pgfmathresult
\pgfplotscoordmathcomplexdivision{\pgfplots@mone}{\pgfplots@y}{\pgfplots@one}{\pgfplots@y}%
\let\pgfplots@start=\pgfmathresult
\let\pgfplots@startim=\pgfmathresultim
\pgfplotscoordmath{default}{tofixed}{\pgfplots@start}%
\let\pgfplots@start=\pgfmathresult
\pgfplotscoordmath{default}{tofixed}{\pgfplots@startim}%
\let\pgfplots@startim=\pgfmathresult
%
\pgfplots@compute@angle@of@point@in@circle\pgfplots@start\pgfplots@startim{1}{\pgfplots@signedradius}{\pgfplots@radius@inverse}%
\let\pgfplots@startangle=\pgfmathresult
%
%
% compute end angle.
\pgfplots@get@current@grid@stop@point yx{\pgfplots@y}%
\let\pgfplots@arc@ends@at@x@circle@value\pgfplotsretval%
%
\ifx\pgfplots@arc@ends@at@x@circle@value\pgfutil@empty
% Ok. There is no specific end point -- simply use the
% (1,0) point (i.e. draw the full arc).
%
% The "0 degree" angle in my circles is in the direction
% of (1,0) .
\ifdim\pgfplots@startim pt>0pt
% ok; this arc belongs to the upper hemisphere.
\def\pgfplots@endangle{270}%
\else
% ok; this arc belongs to the lower hemisphere.
\def\pgfplots@endangle{90}%
\fi
\def\pgfplots@end{1}%
\def\pgfplots@endim{0}%
\else
% Ok. The arc should end before it reaches the (1,0)
% point. Determine the exact position and the
% corresponding arc end angle.
\pgfplotscoordmath{default}{op}{add}{{\pgfplots@arc@ends@at@x@circle@value}{\pgfplots@mone}}%
\let\pgfplots@A@mone=\pgfmathresult
\pgfplotscoordmath{default}{op}{add}{{\pgfplots@arc@ends@at@x@circle@value}{\pgfplots@one}}%
\let\pgfplots@A@one=\pgfmathresult
% oh - we should only draw a partial arc.
% Well, then compute its end point and the
% corresponding end angle.
\pgfplotscoordmathcomplexdivision{\pgfplots@A@mone}{\pgfplots@y}{\pgfplots@A@one}{\pgfplots@y}%
\let\pgfplots@end=\pgfmathresult
\let\pgfplots@endim=\pgfmathresultim
\pgfplotscoordmath{default}{tofixed}{\pgfplots@end}%
\let\pgfplots@end=\pgfmathresult
\pgfplotscoordmath{default}{tofixed}{\pgfplots@endim}%
\let\pgfplots@endim=\pgfmathresult
%
\pgfplots@compute@angle@of@point@in@circle\pgfplots@end\pgfplots@endim{1}{\pgfplots@signedradius}{\pgfplots@radius@inverse}%
\let\pgfplots@endangle=\pgfmathresult
\fi
%
%
%
% Now, compute the arc.
%
% first, compute the absolute x/y radii:
%
% Note that for small y (like y=0.01), the arc is almost a
% straight line. Consequently, the ellipsis radius will be much larger
% than 16000, violating TeX's number range.
%
% To avoid that, I clip it to the highest allowed value.
% The final radius is
% \pgfplots@radius * \pgf@xx and \pgfplots@radius * \pgf@yy.
% the clipped value thus needs to respect the magnitude of \pgf@xx and \pgf@yy.
\ifdim\pgfplots@radius pt<\pgfplots@smithchart@axis@max@xradius@for@ycircle pt
\let\pgfplots@radius@x\pgfplots@radius
\else
\let\pgfplots@radius@x=\pgfplots@smithchart@axis@max@xradius@for@ycircle
\fi
\ifdim\pgfplots@radius pt<\pgfplots@smithchart@axis@max@yradius@for@ycircle pt
\let\pgfplots@radius@y\pgfplots@radius
\else
\let\pgfplots@radius@y=\pgfplots@smithchart@axis@max@yradius@for@ycircle
\fi
%\message{Y grid line \#\csname pgfplots@ticknum\endcsname\space at '#1': center = (1,\pgfplots@signedradius); signedradius = \pgfplots@signedradius\space clipped radii = \pgfplots@radius@x*\the\pgf@xx\space and \pgfplots@radius@y*\the\pgf@yy\space ( start angle \pgfplots@startangle, end angle \pgfplots@endangle, arc limit: \ifx\pgfplots@arc@ends@at@x@circle@value\pgfutil@empty NONE\else \pgfplots@arc@ends@at@x@circle@value\fi)^^J}%
\pgf@xa=\pgfplots@radius@x\pgf@xx
\pgf@xb=\pgfplots@radius@y\pgf@yy
\edef\pgfplots@mirror@sign{\ifpgfplots@smithchart@mirrored -\fi}%
\pgfpathmoveto{\pgfplotsqpointxy@smithchart@canvas{\pgfplots@start}{\pgfplots@startim}}%
% note that the case startangle > endangle is
% automatically correct; patharc handles that.
%\edef\pgfplots@loc@TMPa{{\pgfplots@startangle}{\pgfplots@endangle}{\pgfplots@mirror@sign\the\pgf@xa\space and \the\pgf@xb}}%
%\expandafter\pgfpatharc\pgfplots@loc@TMPa
%
% prefer \pgfpatharctoprecomputed. It is faster and more accurate
\ifdim\pgfplots@startangle pt>\pgfplots@endangle pt
\let\pgfplots@loc@TMPa=\pgfplots@startangle
% \let\pgfplots@startangle=\pgfplots@endangle
% \let\pgfplots@endangle=\pgfplots@loc@TMPa
\fi
\edef\pgfplots@loc@TMPa{%
{\noexpand\pgfplotsqpointxy@smithchart@canvas{1}{\pgfplots@radius@sign\pgfplots@radius@y}}%
{\pgfplots@startangle}%
{\pgfplots@endangle}%
{\noexpand\pgfplotsqpointxy@smithchart@canvas{\pgfplots@end}{\pgfplots@endim}}%
{\pgfplots@mirror@sign\the\pgf@xa}%
{\the\pgf@xb}%
{\pgfplots@mirror@sign\pgfplots@smithchart@axis@ratioxy}%
{\pgfplots@mirror@sign\pgfplots@smithchart@axis@ratioyx}%
}%
\expandafter\pgfpatharctoprecomputed\pgfplots@loc@TMPa
}%
}
\def\pgfplots@drawgridlines@onorientedsurf@fromto@smithchart#1{%
\if x\pgfplotspointonorientedsurfaceA
\pgfplots@smithchart@draw@xcircle{#1}%
\else
\pgfplots@smithchart@draw@yarc{#1}%
\fi
}%
% Given a circle with center point (#3,#4), we search for the angle
% of the point (#1,#2). The point is expected to be on the circle.
% The resulting angle is returned in \pgfmathresult
%
% #1 x coordinate of the point for which an angle is searched
% #2 y coordinate of the point for which an angle is searched
% #3 x coordinate of the circle's center point
% #4 y coordinate of the circle's center point
% #5 is either empty or it is expected to contain the inverse radius, 1/r
% this information is available in my context, so I don't recompute
% it.
%
% All coordinates are expected in standard TeX precision (numbers
% without unit)
\def\pgfplots@compute@angle@of@point@in@circle#1#2#3#4#5{%
%
% 1. compute diff vector from center=(1,\pgfplots@signedradius) to start:
\pgfmathsubtract@{#1}{#3}%
\let\pgfplots@D\pgfmathresult
\pgfmathsubtract@{#2}{#4}%
\let\pgfplots@Dim\pgfmathresult
%
% 2. compute the start angle.
% It is related to the angle between the point (1,0) and
% diff, which, in turn is given by
% < (1,0), (D,Dim) > = cos(alpha) ||(D,Dim)||
% < (1,0), (D,Dim) > = D
%
% Note that ||(D,Dim)|| = r, the radius of the involved circle
% around (#3,#4). If 1/r is already available, use it! Saves a lot
% of time.
%
\def\pgfplots@loc@TMPa{#5}%
\ifx\pgfplots@loc@TMPa\pgfutil@empty
\pgfmathveclen\pgfplots@D\pgfplots@Dim
\let\pgfplots@veclen=\pgfmathresult
\pgfmathreciprocal@\pgfplots@veclen
\let\pgfplots@inverseveclen=\pgfmathresult
\else
% oh, good -- we already have 1/||(D,Dim)||. Use it.
\def\pgfplots@inverseveclen{#5}%
%\message{using already available inverseveclen '#5' }%
\fi
\pgfmathmultiply@{\pgfplots@D}{\pgfplots@inverseveclen}%
%\message{D= (\pgfplots@D,\pgfplots@Dim).. acos(\pgfplots@D * \pgfplots@inverseveclen) = acos(\pgfmathresult)}%
\pgfmathacos@{\pgfmathresult}% the '-' comes from D<0 .
%\message{= \pgfmathresult^^J}%
\let\pgfplots@tmpangle\pgfmathresult%
% ok. tmpangle is per definition less than 180; it is the
% smaller angle between (1,0) and (D,Dim).
%
% compute the angle relative to (1,0):
\ifdim\pgfplots@Dim pt<0pt
\pgfmathsubtract@{360}{\pgfplots@tmpangle}%
\fi
}%
\def\pgfplots@drawaxis@innerlines@onorientedsurf@smithchart#1#2#3{%
\if2\csname pgfplots@#1axislinesnum\endcsname
\draw[/pgfplots/every inner #1 axis line,%
decorate,%
#1discont,%
decoration={pre length=\csname #1disstart\endcsname, post length=\csname #1disend\endcsname}]
\pgfextra
\csname pgfplotspointonorientedsurfaceabsetupforset#3\endcsname{\csname pgfplots@logical@ZERO@#3\endcsname}{2}%
\if#1x%
\pgfplotspointonorientedsurfaceabsetupfor{#2}{#1}{\pgfplotspointonorientedsurfaceN}%
\pgfplots@drawgridlines@onorientedsurf@fromto{0}%
\else
\pgfpathmoveto{\pgfplotspointonorientedsurfaceab{\csname pgfplots@#1min\endcsname}{\csname pgfplots@logical@ZERO@#2\endcsname}}%
\pgfpathlineto{\pgfplotspointonorientedsurfaceab{\csname pgfplots@#1max\endcsname}{\csname pgfplots@logical@ZERO@#2\endcsname}}%
\fi
\endpgfextra
;
\fi
}%
\def\pgfplots@drawaxis@outerlines@separate@onorientedsurf@smithchartaxis#1#2{%
\if2\csname pgfplots@#1axislinesnum\endcsname
% centered axis lines handled elsewhere.
\else
\scope[/pgfplots/every outer #1 axis line,
#1discont,decoration={pre length=\csname #1disstart\endcsname, post length=\csname #1disend\endcsname}]
\if#1x
\draw decorate {
\pgfextra
% exchange roles of A <-> B axes:
\pgfplotspointonorientedsurfaceabsetupfor{#2}{#1}{\pgfplotspointonorientedsurfaceN}%
\pgfplots@drawgridlines@onorientedsurf@fromto{0}%
\endpgfextra
};
\else
\pgfplots@ifaxisline@B@onorientedsurf@should@be@drawn{0}{%
\draw decorate {
\pgfextra
% exchange roles of A <-> B axes:
\pgfplotspointonorientedsurfaceabsetupfor{#2}{#1}{\pgfplotspointonorientedsurfaceN}%
\pgfplots@drawgridlines@onorientedsurf@fromto{\csname pgfplots@#2min\endcsname}%
\endpgfextra
};
}{}%
%--------------------------------------------------
% \pgfplots@ifaxisline@B@onorientedsurf@should@be@drawn{1}{%
% \draw decorate {
% \pgfextra
% % exchange roles of A <-> B axes:
% \pgfplotspointonorientedsurfaceabsetupfor{#2}{#1}{\pgfplotspointonorientedsurfaceN}%
% \pgfplots@drawgridlines@onorientedsurf@fromto{\csname pgfplots@#2max\endcsname}%
% \endpgfextra
% };
% }{}%
%--------------------------------------------------
\fi
\endscope
\fi
}%
\def\pgfplots@BB@for@plotbox@get@unit@scales@for@limits@smithchart#1#2#3{%
% In a smith chart, the size of the image is unrelated to the
% involved data limits.
%
% The factor 2 is because we want to fit the DIAMETER into the
% prescribed dimensions, not just the radius.
\def\pgfmathresult{2}%
\let#1=\pgfmathresult
\let#2=\pgfmathresult
\def#3{1}%
}%
\def\pgfplots@handle@invalid@range@defaultlimits@smithchart{%
\pgfplotscoordmath{x}{parsenumber}{0}%
\global\let\pgfplots@xmin=\pgfmathresult
\pgfplotscoordmath{x}{parsenumber}{16000}%
\global\let\pgfplots@xmax=\pgfmathresult
\global\let\pgfplots@data@xmin=\pgfplots@xmin
\global\let\pgfplots@data@xmax=\pgfplots@xmax
%
\pgfplotscoordmath{y}{parsenumber}{0}%
\global\let\pgfplots@ymin=\pgfmathresult
\pgfplotscoordmath{y}{parsenumber}{16000}%
\global\let\pgfplots@ymax=\pgfmathresult
\global\let\pgfplots@data@ymin=\pgfplots@ymin
\global\let\pgfplots@data@ymax=\pgfplots@ymax
\pgfplotsset{enlargelimits=false}%
}
\let\pgfplots@set@default@size@options@standard=\pgfplots@set@default@size@options
\def\pgfplots@set@default@size@options@smithchart{%
\pgfplots@set@default@size@options@standard
\pgfplotsset{smithchart ticks by size={\pgfkeysvalueof{/pgfplots/width}}{\pgfkeysvalueof{/pgfplots/height}}}%
%
\if1\b@pgfplots@smithchart@defaultticks@x
\if1\b@pgfplots@smithchart@defaultticks@y
\pgfplotsset{default smithchart xytick}%
\fi
\fi
}
\def\pgfplots@assign@default@tick@foraxis@smithchart#1{%
% do nothing here. I don't know the algorithm yet... but for
% smithcharts, it may be sufficient to simply predefine several
% sets of ticks, depending on the final size.
%
% This is realized in
% \pgfplots@set@default@size@options@smithchart (which is invoked
% before the ticks are processed).
\pgfplots@determinedefaultvalues@needs@check@uniformtickfalse
\expandafter\let\csname pgfplots@tick@distance@#1\endcsname=\pgfutil@empty
%
\pgfplotsset{default smithchart #1tick}%
% ok, I expect the '#1tick' key to be set now. Process it.
% Note that the earlier processing of pgfplots has been bypassed
% at this point -- we need to preprocess the tick list *here*:
\expandafter\let\expandafter\pgfplots@loc@TMPa\csname pgfplots@#1tick\endcsname
\expandafter\pgfplots@assign@default@tick@foraxis@smithchart@\expandafter{\pgfplots@loc@TMPa}%
\expandafter\let\csname pgfplots@#1tick\endcsname=\pgfplotsretval
%
\pgfkeysgetvalue{/pgfplots/minor #1tick}\pgfplots@loc@TMPa
\ifx\pgfplots@loc@TMPa\pgfutil@empty
\else
\expandafter\pgfplots@assign@default@tick@foraxis@smithchart@\expandafter{\pgfplots@loc@TMPa}%
\pgfkeyslet{/pgfplots/minor #1tick}\pgfplotsretval
\fi
%
}%
% #1: a \foreach list
% on output, \pgfplotsretval contains a parsed list of positions
\def\pgfplots@assign@default@tick@foraxis@smithchart@#1{%
\pgfplotsapplistXXglobalnewempty
\gdef\pgfplots@loc@TMPd{1}%
\foreach \pgfplots@loc@TMPb in {#1} {%
\ifx\pgfplots@loc@TMPb\pgfutil@empty
\else
\pgfplotscoordmath{default}{parsenumber}{\pgfplots@loc@TMPb}%
\pgfplotscoordmath{default}{tofixed}{\pgfmathresult}% per convention...
\edef\pgfmathresult{\if0\pgfplots@loc@TMPd,\fi\pgfmathresult}%
\gdef\pgfplots@loc@TMPd{0}%
\expandafter\pgfplotsapplistXXglobalpushback\expandafter{\pgfmathresult}%
\fi
}%
\pgfplotsapplistXXgloballet\pgfplotsretval
\pgfplotsapplistXXglobalclear
}%
\let\pgfplots@show@ticklabel@@orig=\pgfplots@show@ticklabel@
\def\pgfplots@show@ticklabel@@smithchart#1#2{%
\def\pgfmathresult{#2}%
\if#1x%
\ifdim#2pt>360pt
\pgfmath@basic@mod@{#2}{360}%
\fi
\fi
\def\pgfplots@loc@TMPa{\pgfplots@show@ticklabel@@orig{#1}}%
\expandafter\pgfplots@loc@TMPa\expandafter{\pgfmathresult}%
}%
\def\pgfplots@xtick@check@tickshow@smithchart{%
\pgfplots@tickshowtrue
}
\def\pgfplots@ytick@check@tickshow@smithchart{%
\pgfplots@tickshowtrue
}
\let\pgfplots@limits@ready@orig=\pgfplots@limits@ready
\def\pgfplots@limits@ready@smithchart{%
\pgfplots@limits@ready@orig
%
% Avoid tick labels at upper *and* lower angle range if both are the
% same:
\pgfmath@basic@sin@{\pgfplots@xmin}%
\let\pgfplots@loc@TMPa=\pgfmathresult
\pgfmath@basic@sin@{\pgfplots@xmax}%
\pgfplotsmath@ifapproxequal@dim
{\pgfmathresult pt}{\pgfplots@loc@TMPa pt}%
{0.002pt}
{%
\def\pgfplots@xtick@disable@last@tick{1}%
}{%
}%
}%
\def\smithchart{\smithchartaxis}
\def\endsmithchart{\endsmithchartaxis}
\def\startsmithchart{\smithchart}%
\def\stopsmithchart{\endsmithchart}%
\endinput
|