1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
|
% Copyright 2013 by Till Tantau
%
% This file may be distributed and/or modified
%
% 1. under the LaTeX Project Public License and/or
% 2. under the GNU Public License.
%
% See the file doc/generic/pgf/licenses/LICENSE for more details.
\ProvidesFileRCS{pgfmodulenonlineartransformations.code.tex}
%
% This file defines commands for nonlinear coordinate systems. This is
% needed, for instance, for bend arrow heads.
%
%
% Non-linear coordinate systems transform coordinates, in addition to
% the normal linear transformations, in a, well, non-linear way. An
% example are polar coordinates.
%
% Like the linear transformations, non-linear transformations are
% applied on a low level and they are integrated into the whole path
% construction mechanism. So, while \pgfpointpolar also "does
% something nonlinear", it just provides a way of computing a
% coordinate. In contrast, installing a polar transformation will
% transform everything being drawn using the \pgfpath... commands an
% will even turn a straight line into a circle.
%
% Since computing non-linear transformations is expensive, they are
% only applied "if really necessary".
% Return a transformed point
%
% #1 = a point
%
% Description:
%
% Applies the current transformation and the current nonlinear
% transformation to the given point and returns the result in \pgf@x/y.
\def\pgfpointtransformednonlinear#1{%
\pgf@process{%
#1%
\pgf@pos@transform@glob%
\pgf@nlt@list%
}
}%
% Approximate the nonlinear translation locally
%
% Description:
%
% Does a "local synchronization" of the nonlinear transformation with
% the linear transformation regarding the translation part of the
% current nonlinear transformation. The *linear* transformation will be
% updated so that it translates things to the point to which the
% nonlinear transformation transforms the origin. The nonlinear
% transformation will be reset.
%
% The net effect is that you can now draw things near the origin as
% before, but with just a linear transformation in force. Note that
% the coordinate system will not be rotated, only a shift is done (use
% the "real" local sync for a full sync).
\def\pgfapproximatenonlineartranslation{%
\ifx\pgf@nlt@list\pgfutil@empty%
\else%
\pgfpointtransformednonlinear{\pgfpointorigin}%
\pgf@pt@x=\pgf@x%
\pgf@pt@y=\pgf@y%
\let\pgf@nlt@list\pgfutil@empty%
\let\pgf@nlt@moveto\pgf@lt@moveto%
\let\pgf@nlt@lineto\pgf@lt@lineto%
\let\pgf@nlt@curveto\pgf@lt@curveto%
\let\pgf@nlt@closepath\pgf@lt@closepath%
\fi%
}%
% Local sync translation
%
% Description:
%
% Does a "complete local synchronization" of the nonlinear
% transformation with the linear transformation. The *linear*
% transformation will be updated so that it transforms things to the
% point to which the nonlinear transformation transforms the
% origin. The nonlinear transformation will be reset.
%
% The net effect is that you can now draw things near the origin as
% before, but with just a linear transformation in force.
\def\pgfapproximatenonlineartransformation{%
\ifx\pgf@nlt@list\pgfutil@empty%
\else%
\pgfpointtransformednonlinear{\pgfpoint{1pt}{0pt}}%
\pgf@xa\pgf@x
\pgf@ya\pgf@y
\pgfpointtransformednonlinear{\pgfpoint{0pt}{1pt}}%
\pgf@xb\pgf@x
\pgf@yb\pgf@y
\pgfpointtransformednonlinear{\pgfpointorigin}%
\advance\pgf@xa by-\pgf@x
\advance\pgf@xb by-\pgf@x
\advance\pgf@ya by-\pgf@y
\advance\pgf@yb by-\pgf@y
\pgfsettransformentries{\pgf@sys@tonumber\pgf@xa}{\pgf@sys@tonumber\pgf@ya}{\pgf@sys@tonumber\pgf@xb}{\pgf@sys@tonumber\pgf@yb}{\pgf@x}{\pgf@y}%
\let\pgf@nlt@list\pgfutil@empty%
\let\pgf@nlt@moveto\pgf@lt@moveto%
\let\pgf@nlt@lineto\pgf@lt@lineto%
\let\pgf@nlt@curveto\pgf@lt@curveto%
\let\pgf@nlt@closepath\pgf@lt@closepath%
\fi%
}%
% Adds a non-linear transformation to the current list of
% transformations.
%
% #1 = code
%
% Description:
%
% When the code #1 is called, \pgf@x and \pgf@y will be set to some
% values, let us call this the point p. The nonlinear transformation
% will now map this point to a new point f(p). The coordinates of this
% point should be returned in \pgf@x and \pgf@y. Furthermore, consider
% the two "unit tangents" (going in $x$-direction and in
% $y$-direction) at point p. The nonlinear transformation will map
% these to new tangents, t_x and t_y. The (not necessarily normalized)
% vectors t_x and t_y should be returned in pgf@xa and -ya and pgf@xb
% and pgf@yb. The macro should not do any global assignments except to
% \pgf@x and \pgf@y, but may do arbitrary local assignments.
%
% The effect of installing a new transformation is the following: As
% long as there is at least one nonlinear transformation installed,
% whenever the path construction commands add a curve or line to the
% softpath, the line or curve will be "bend" by applying all of the
% nonlinear transformation installed. In particular, straight lines
% will be replaced by curves.
%
% Note that the normal linear transformation are always applied before
% any nonlinear transformations are applied.
\def\pgftransformnonlinear#1{%
\expandafter\def\expandafter\pgf@nlt@list\expandafter{\pgf@nlt@list#1}%
\let\pgf@nlt@moveto\pgf@nlt@moveto@nlt
\let\pgf@nlt@lineto\pgf@nlt@lineto@nlt
\let\pgf@nlt@curveto\pgf@nlt@curveto@nlt
\let\pgf@nlt@closepath\pgf@nlt@closepath@nlt
}%
\def\pgf@nlt@moveto@nlt#1#2{%
{%
\pgfutil@tempdima#1%
\pgfutil@tempdimb#2%
\pgf@x\pgfutil@tempdima%
\pgf@y\pgfutil@tempdimb%
\xdef\pgf@nlt@last@moveto@orig{{\the\pgf@x}{\the\pgf@y}}%
\pgf@nlt@list%
\xdef\pgf@nlt@last@moveto@trans{{\the\pgf@x}{\the\pgf@y}}%
\xdef\pgf@nlt@last@moveto@xaxis{{\the\pgf@xa}{\the\pgf@ya}}%
\xdef\pgf@nlt@last@moveto@yaxis{{\the\pgf@xb}{\the\pgf@yb}}%
\pgf@protocolsizes{\pgf@x}{\pgf@y}%
\pgfsyssoftpath@moveto{\the\pgf@x}{\the\pgf@y}%
\global\let\pgf@nlt@last@coord@orig\pgf@nlt@last@moveto@orig%
\global\let\pgf@nlt@last@coord@trans\pgf@nlt@last@moveto@trans%
\global\let\pgf@nlt@last@coord@xaxis\pgf@nlt@last@moveto@xaxis%
\global\let\pgf@nlt@last@coord@yaxis\pgf@nlt@last@moveto@yaxis%
}%
}%
\def\pgf@nlt@lineto@nlt#1#2{%
{%
\edef\pgf@temp{\pgf@xc\the#1\pgf@yc\the#2}%
\pgf@temp%
\expandafter\pgfqpoint\pgf@nlt@last@coord@orig%
\expandafter\pgf@nlt@set@temps\pgf@nlt@last@coord@trans%
% Test, whether the points are quite near:
\pgf@xa\pgf@x\advance\pgf@xa by-\pgf@xc%
\pgf@ya\pgf@y\advance\pgf@ya by-\pgf@yc%
\pgfutil@tempswafalse%
\ifdim\pgf@xa<0.1pt\relax\ifdim\pgf@xa>-0.1pt\relax\ifdim\pgf@ya<0.1pt\relax\ifdim\pgf@ya>-0.1pt\relax\pgfutil@tempswatrue\fi\fi\fi\fi%
\ifpgfutil@tempswa%
\pgf@x\pgf@xc\pgf@y\pgf@yc%
\xdef\pgf@nlt@last@coord@orig{{\the\pgf@x}{\the\pgf@y}}%
\pgf@process{\pgf@nlt@list}%
\xdef\pgf@nlt@last@coord@trans{{\the\pgf@x}{\the\pgf@y}}%
\xdef\pgf@nlt@last@coord@xaxis{{\the\pgf@xa}{\the\pgf@ya}}%
\xdef\pgf@nlt@last@coord@yaxis{{\the\pgf@xb}{\the\pgf@yb}}%
\pgf@protocolsizes{\pgf@x}{\pgf@y}%
\pgfsyssoftpath@lineto{\the\pgf@x}{\the\pgf@y}%
\else%
% Compute support points
\pgf@xb=.333333\pgf@x%
\advance\pgf@xb by.666666\pgf@xc%
\pgf@yb=.333333\pgf@y%
\advance\pgf@yb by.666666\pgf@yc%
\pgf@xa=.333333\pgf@xc%
\advance\pgf@xa by.666666\pgf@x%
\pgf@ya=.333333\pgf@yc%
\advance\pgf@ya by.666666\pgf@y%
\pgf@nlt@inner@curve%
\fi%
}%
}%
\def\pgf@nlt@set@temps#1#2{%
\pgfutil@tempdima#1\pgfutil@tempdimb#2%
}%
\def\pgf@nlt@curveto@nlt#1#2#3#4#5#6{%
{%
\edef\pgf@temp{\pgf@xa\the#1\pgf@ya\the#2\pgf@xb\the#3\pgf@yb\the#4\pgf@xc\the#5\pgf@yc\the#6}%
\pgf@temp%
\pgf@nlt@inner@curve%
}%
}%
\newdimen\pgftransformnonlinearflatness
\pgftransformnonlinearflatness=5pt
\def\pgfsettransformnonlinearflatness#1{\pgfmathsetlength\pgftransformnonlinearflatness{#1}}%
% Compute a curve from \pgf@nlt@last@coord@orig to \pgf@xc/\pgf@yc via the
% controls \pgf@xa/\pgf@ya and \pgf@xb/\pgf@yb.
\def\pgf@nlt@inner@curve{%
\expandafter\pgfqpoint\pgf@nlt@last@coord@orig%
% Save delta of supports:
\pgfutil@tempdima\pgf@xa\advance\pgfutil@tempdima by-\pgf@xb
\pgfutil@tempdimb\pgf@ya\advance\pgfutil@tempdimb by-\pgf@yb
\begingroup
% Replace supports by relative supports
\advance\pgf@xa by-\pgf@x%
\advance\pgf@ya by-\pgf@y%
\advance\pgf@xb by-\pgf@xc%
\advance\pgf@yb by-\pgf@yc%
%
% Now, test whether the flatness is satisfied:
%
\pgfutil@tempswafalse
\ifdim\pgfutil@tempdima>\pgftransformnonlinearflatness\pgfutil@tempswatrue\fi%
\ifdim\pgfutil@tempdima<-\pgftransformnonlinearflatness\pgfutil@tempswatrue\fi%
\ifdim\pgfutil@tempdimb>\pgftransformnonlinearflatness\pgfutil@tempswatrue\fi%
\ifdim\pgfutil@tempdimb<-\pgftransformnonlinearflatness\pgfutil@tempswatrue\fi%
\ifdim\pgf@xa>\pgftransformnonlinearflatness\pgfutil@tempswatrue\fi%
\ifdim\pgf@xa<-\pgftransformnonlinearflatness\pgfutil@tempswatrue\fi%
\ifdim\pgf@ya>\pgftransformnonlinearflatness\pgfutil@tempswatrue\fi%
\ifdim\pgf@ya<-\pgftransformnonlinearflatness\pgfutil@tempswatrue\fi%
\ifdim\pgf@xb>\pgftransformnonlinearflatness\pgfutil@tempswatrue\fi%
\ifdim\pgf@xb<-\pgftransformnonlinearflatness\pgfutil@tempswatrue\fi%
\ifdim\pgf@yb>\pgftransformnonlinearflatness\pgfutil@tempswatrue\fi%
\ifdim\pgf@yb<-\pgftransformnonlinearflatness\pgfutil@tempswatrue\fi%
\ifpgfutil@tempswa%
\endgroup% Undo the adjustments...
{%
\edef\pgf@orig@xya{\pgf@xa\the\pgf@xa\pgf@ya\the\pgf@ya}
\edef\pgf@orig@xyb{\pgf@xb\the\pgf@xb\pgf@yb\the\pgf@yb}
\edef\pgf@orig@xyc{\pgf@xc\the\pgf@xc\pgf@yc\the\pgf@yc}
\pgfpointcurveattime{.5}%
{\expandafter\pgfqpoint\pgf@nlt@last@coord@orig}%
{\pgf@x\pgf@xa\pgf@y\pgf@ya}%
{\pgf@x\pgf@xb\pgf@y\pgf@yb}%
{\pgf@x\pgf@xc\pgf@y\pgf@yc}%
% First new curve:
% Start is at last@coord@orig,
% first support is at last@coord@orig*t + s*(original xa/ya)
% second support is at xb/yb
% target is at x/y
{%
% Target:
\pgf@xc\pgf@x\pgf@yc\pgf@y
% First support:
\expandafter\pgfqpoint\pgf@nlt@last@coord@orig%
\pgf@orig@xya%
\pgf@xa\pgf@time@s\pgf@xa\advance\pgf@xa by\pgf@time@t\pgf@x%
\pgf@ya\pgf@time@s\pgf@ya\advance\pgf@ya by\pgf@time@t\pgf@y%
\pgf@nlt@inner@curve%
}%
% Second new curve:
% Start is at (new) last@coord@orig
% first support is at xa/ya
% second support is at t*(original xb/yb) + s*(original xc/yc)
% target is at original xc/yc
{%
\pgf@orig@xyb%
\pgf@orig@xyc%
\pgf@xb\pgf@time@t\pgf@xb\advance\pgf@xb by\pgf@time@s\pgf@xc%
\pgf@yb\pgf@time@t\pgf@yb\advance\pgf@yb by\pgf@time@s\pgf@yc%
\pgf@nlt@inner@curve%
}%
}%
\else%
\endgroup% Snap back...
\pgf@nlt@do@inner@curve%
\fi%
}%
\def\pgf@nlt@do@inner@curve{%
\pgf@process{\pgf@x\pgf@xa\pgf@y\pgf@ya\pgf@nlt@list}%
\pgf@xa\pgf@x\pgf@ya\pgf@y%
\pgf@process{\pgf@x\pgf@xb\pgf@y\pgf@yb\pgf@nlt@list}%
\pgf@xb\pgf@x\pgf@yb\pgf@y%
\xdef\pgf@nlt@last@coord@orig{{\the\pgf@xc}{\the\pgf@yc}}%
\pgf@process{\pgf@x\pgf@xc\pgf@y\pgf@yc\pgf@nlt@list}%
\pgf@xc\pgf@x\pgf@yc\pgf@y%
\xdef\pgf@nlt@last@coord@trans{{\the\pgf@xc}{\the\pgf@yc}}%
\pgf@protocolsizes{\pgf@xa}{\pgf@ya}%
\pgf@protocolsizes{\pgf@xb}{\pgf@yb}%
\pgf@protocolsizes{\pgf@xc}{\pgf@yc}%
\pgfsyssoftpath@curveto{\the\pgf@xa}{\the\pgf@ya}{\the\pgf@xb}{\the\pgf@yb}{\the\pgf@xc}{\the\pgf@yc}%
}%
\def\pgf@nlt@closepath@nlt{%
{%
\expandafter\pgfqpoint\pgf@nlt@last@moveto@orig%
\expandafter\pgf@nlt@set@temps\pgf@nlt@last@coord@orig%
\advance\pgfutil@tempdima by-\pgf@x%
\advance\pgfutil@tempdimb by-\pgf@y%
\pgfutil@tempswatrue%
\ifdim\pgfutil@tempdima<0.01pt\relax\ifdim\pgfutil@tempdima>-0.01pt\relax\ifdim\pgfutil@tempdimb<0.01pt\relax\ifdim\pgfutil@tempdimb>-0.01pt\relax\pgfutil@tempswafalse\fi\fi\fi\fi%
\ifpgfutil@tempswa%
\pgf@nlt@lineto@nlt{\pgf@x}{\pgf@y}%
\fi%
\pgfsyssoftpath@closepath%
}%
}%
\endinput
|