1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
|
\ProvidesPackageRCS[v\pgfversion] $Header: /cvsroot/pgf/pgf/generic/pgf/basiclayer/pgfbasesnakes.code.tex,v 1.6 2005/10/25 08:18:14 tantau Exp $
% Copyright 2005 by Till Tantau <tantau@cs.tu-berlin.de>.
%
% This program can be redistributed and/or modified under the terms
% of the GNU Public License, version 2.
\newdimen\pgfsnakeremainingdistance
\newdimen\pgfsnakecompleteddistance
% Creates a new pgf snake
%
% #1 = snake name
% #1 = initial state
% #3 = states of the snake
%
%
% This command declares a new snake for later use. The second
% parameter specifies the states of the snake, see also the
% description of pgfpathsnake.
%
% Inside the code of #3 the command \state may be used. This command
% will only be defined while #3 is executed.
%
% Example:
%
% \pgfdeclaresnake{zig zag}{one zig zag}
% {
% \state{one zig zag}[width=10pt]
% {
% \pgfpathlineto{\pgfpoint{2.5pt}{2.5pt}}
% \pgfpathlineto{\pgfpoint{7.5pt}{-2.5pt}}
% \pgfpathlineto{\pgfpoint{10pt}{0pt}}
% }
% \state{final}
% {
% \pgfpathlineto{\pgfpoint{\pgfsnakeremainingdistance}{0pt}}
% }
% }
\long\def\pgfdeclaresnake#1#2#3{%
\def\pgf@snake@name{#1}%
\@namedef{pgf@snake@@#1@initial}{#2}%
\let\pgf@orig@state=\state%
\let\state=\pgf@snake@state
#3
\let\state=\pgf@orig@state%
}
% Sets the additional transformation applied to every segment of a snake
%
% #1 = transformation
%
% Example:
%
% \pgfsetsnakesegmenttransformation{\pgftransformyshift{5pt}}
\def\pgfsetsnakesegmenttransformation#1{\def\pgf@snakeadditionaltransform{#1}}
\pgfsetsnakesegmenttransformation{}
% Declares a new state
%
% #1 = state name
% #2 = options
% #3 = path element
%
% Description:
%
% When a snake is drawn and the current state is #1, the following
% happens. First, the options are executed, which will possible change
% the state. If that does not happen, the path element is added to the
% path and the coordinate system is translated by the path element's
% width (which is specified using the width option).
%
% Example:
%
% \state{initial}[width=10pt]
% {
% \pgfpathlineto{\pgfpoint{2.5pt}{2.5pt}}
% \pgfpathlineto{\pgfpoint{7.5pt}{-2.5pt}}
% \pgfpathlineto{\pgfpoint{10pt}{0pt}}
% }
\def\pgf@snake@state#1{\@ifnextchar[{\pgf@@snake@start#1}{\pgf@@snake@start#1[]}}%}
\def\pgf@@snake@start#1[#2]#3{%
\@namedef{pgf@snake@@\pgf@snake@name @#1@options}{#2}%
\@namedef{pgf@snake@@\pgf@snake@name @#1@code}{#3}%
}
% Use multiple snakes
%
% #1 = list of snake names/length pairs
% #2 = point to which the snake leads
%
% This operation uses the snakes in parameter #1 to get to the point
% #4. The parameter #1 should contain pairs consisting of a snake name
% and a length for which this snake should be used. When the length is
% computed, the dimensions \pgfsnakeremainingdistance and
% \pgfsnakecompleteddistance will have been set to the length of the
% total distance to #2 that has already been covered/that still needs
% to be covered.
%
% Example:
%
% \pgfpathsnakesto{{lineto}{1cm},{zig zag}{\pgfsnakeremainingdistance}}{\pgfpoint{2cm}{3cm}}
\def\pgfpathsnakesto#1#2{%
\begingroup%
% compute target vector
\pgfpointtransformed{#2}%
\advance\pgf@x by-\pgf@path@lastx%
\advance\pgf@y by-\pgf@path@lasty%
% Ok, now normalize the vector...
\pgf@xa=\pgf@x%
\pgf@ya=\pgf@y%
\pgf@process{\pgfpointnormalised{}}%
% ok, now computer length (arghh...)
% In theory that's easy: divide the larger of the values x or y by
% the normalizes x or y. Well...
%
% First, make xa and ya positive:
\ifdim\pgf@xa<0pt%
\pgf@xa=-\pgf@xa%
\fi%
\ifdim\pgf@ya<0pt%
\pgf@ya=-\pgf@ya%
\fi%
% Now do division:
\ifdim\pgf@xa>\pgf@ya%
\c@pgf@counta=\pgf@x%
\ifnum\c@pgf@counta=0\relax%
\else%
\divide\c@pgf@counta by 255\relax%
\pgf@xa=16\pgf@xa\relax%
\divide\pgf@xa by\c@pgf@counta%
\pgf@xa=16\pgf@xa\relax%
\fi%
\else%
\c@pgf@counta=\pgf@y%
\ifnum\c@pgf@counta=0\relax%
\else%
\divide\c@pgf@counta by 255\relax%
\pgf@ya=16\pgf@ya\relax%
\divide\pgf@ya by\c@pgf@counta%
\pgf@xa=16\pgf@ya\relax%
\fi%
\fi%
% Make positive:
\ifdim\pgf@xa<0pt%
\pgf@xa=-\pgf@xa%
\fi%
% Ok, now we draw things...
\edef\pgf@list{#1}%
\pgfsnakeremainingdistance=\pgf@xa%
\pgfsnakecompleteddistance=0pt%
\pgf@xb=\pgf@x%
\pgf@yb=\pgf@y%
\@for\pgf@temp:=\pgf@list\do{%
\ifx\pgf@temp\@empty%
\else%
\expandafter\pgf@snake@invoke\pgf@temp%
\fi%
}%
\endgroup%
}
\def\pgf@snake@invoke#1#2{%
\setlength\pgf@xa{#2}%
{%
\edef\pgf@marshal{\noexpand\pgfpathsnakealongvector{#1}{\the\pgf@xa}{\noexpand\pgfpoint{\the\pgf@xb}{\the\pgf@yb}}}%
\pgf@marshal%
}%
\advance\pgfsnakecompleteddistance by\pgf@xa%
\advance\pgfsnakeremainingdistance by-\pgf@xa%
}
% Use a snake
%
% #1 = snake name
% #2 = point to which the snake leads
%
% This operation mainly computes \pgfpathsnakealongvector for a vector
% appropriately choosen. See \pgfpathsnakealongvector for details.
%
% Example:
%
% \pgfpathsnaketo{zig zag}{\pgfpoint{2cm}{3cm}}
\def\pgfpathsnaketo#1#2{\pgfpathsnakesto{{#1}{\pgfsnakeremainingdistance}}{#2}}
% Use a snake
%
% #1 = snake name
% #2 = length of the snake
% #3 = vector along which the snake grows, should have unit length.
%
% This command draws a snake (more precisely, it adds a snake to the
% path). This works as follows:
%
% First, the coordinate system is transformed such that the vector #3
% points to the right.
%
% Next, the state `initial' of the snake is entered. Unless the
% options of this state cause it to switch to another state, the path
% element is added to the path. Then, the coordinate system is
% translated by the width of the path element as specified in the
% width option of the path element. The dimensions
% \pgfsnakeremainingdistance and \pgfsnakecompleteddistance are
% updated.
%
% The process ends when the state `final' is entered. The code of the
% final state is executed and the process stops.
%
% Example:
%
% \pgfpathsnakealongvector{zig zag}{100pt}{\pgfpolar{30}{1pt}}
\def\pgfpathsnakealongvector#1#2#3{%
\@ifundefined{pgf@snake@@#1@initial}{\PackageError{pgf}{Undefined snake ``#1''}{}}
{
\begingroup% keep things local
\pgftransformreset%
\pgf@pt@x=\pgf@path@lastx% evil trickery to transform to the last point
\pgf@pt@y=\pgf@path@lasty%
\pgf@process{#3}%
\pgf@xa=\pgf@x%
\pgf@ya=\pgf@y%
\pgf@xb=-\pgf@y%
\pgf@yb=\pgf@x%
\pgftransformcm
{\pgf@sys@tonumber{\pgf@xa}}{\pgf@sys@tonumber{\pgf@ya}}
{\pgf@sys@tonumber{\pgf@xb}}{\pgf@sys@tonumber{\pgf@yb}}
{\pgfpointorigin}%
% Now, setup the automaton
\expandafter\let\expandafter\pgf@snake@current@state\expandafter=\csname pgf@snake@@#1@initial\endcsname%
\def\pgf@snake@name{#1}%
\pgfsnakecompleteddistance=0pt%
\setlength\pgfsnakeremainingdistance{#2}%
\pgf@snake@run%
% Last step:
{%
\pgftransformxshift{\pgfsnakecompleteddistance}%
\pgf@snakeadditionaltransform%
\csname pgf@snake@@#1@final@code\endcsname%
}%
\endgroup%
}%
}
\def\pgf@final@text{final}
\def\pgf@snake@run{%
\let\pgf@snake@next=\pgf@snake@do@state%
\ifx\pgf@snake@current@state\pgf@final@text%
\let\pgf@snake@next=\relax%
\fi%
\pgf@snake@next%
}
\def\pgf@snake@do@state{%
\let\pgf@snake@next=\relax%
\let\pgf@snake@next@state=\pgf@snake@current@state%
% execute options
\def\pgf@marshal{\setkeys{pgfsnake}}%
\expandafter\expandafter\expandafter\pgf@marshal
\expandafter\expandafter\expandafter{\csname pgf@snake@@\pgf@snake@name @\pgf@snake@current@state @options\endcsname}%
\ifx\pgf@snake@next\relax%
\let\pgf@snake@next=\pgf@snake@do@code%
\fi%
\pgf@snake@next%
}
\def\pgf@snake@do@code{%
% Ok, execute code:
{%
\pgftransformxshift{\pgfsnakecompleteddistance}%
\pgf@snakeadditionaltransform%
\csname pgf@snake@@\pgf@snake@name @\pgf@snake@current@state @code\endcsname%
}%
% next, do transformation and update
\setlength{\pgf@xa}{\pgf@snake@width}%
\advance\pgfsnakeremainingdistance by-\pgf@xa%
\advance\pgfsnakecompleteddistance by\pgf@xa%
% Next iteration:
\let\pgf@snake@current@state=\pgf@snake@next@state%
\pgf@snake@run%
}
\define@key{pgfsnake}{width}{%
\def\pgf@snake@width{#1}%
\pgf@snake@switch@if#1 to final\pgf@stop%
}
\define@key{pgfsnake}{switch if less than}{%
\pgf@snake@switch@if#1\pgf@stop%
}
\define@key{pgfsnake}{next state}{%
\def\pgf@snake@next@state{#1}%
}
\def\pgf@snake@switch@if#1to #2\pgf@stop{%
\ifx\pgf@snake@next\relax%
\setlength\pgf@x{#1}%
\ifdim\pgfsnakeremainingdistance<\pgf@x%
\def\pgf@snake@current@state{#2}%
\let\pgf@snake@next=\pgf@snake@run%
\fi%
\fi%
}
% lineto snake
%
% This snake simply adds a straight line. This snake is mainly useful
% in conjunction with other snakes.
\pgfdeclaresnake{lineto}{final}
{
\state{final}
{ \pgfpathlineto{\pgfpoint{\pgfsnakeremainingdistance}{0pt}} }
}
% moveto snake
%
% This snake simply jumps to the end. This snake, too, is mainly
% useful in conjunction with other snakes.
\pgfdeclaresnake{moveto}{final}
{
\state{final}
{ \pgfpathmoveto{\pgfpoint{\pgfsnakeremainingdistance}{0pt}} }
}
\endinput
|