1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
|
%D \module
%D [ file=x-asciimath,
%D version=2014.06.01, % 2006.04.24, % 1999.11.06,
%D title=\CONTEXT\ Modules,
%D subtitle=AsciiMath,
%D author=Hans Hagen,
%D date=\currentdate,
%D copyright={PRAGMA ADE \& \CONTEXT\ Development Team}]
%C
%C This module is part of the \CONTEXT\ macro||package and is
%C therefore copyrighted by \PRAGMA. See mreadme.pdf for
%C details.
\registerctxluafile{x-asciimath}{}
%D When the Math4All project started, we immediately started using content \MATHML.
%D Because in school math there is often a reference to calculator input, we also
%D provided what we called \quote {calcmath}: a predictable expression based way
%D entering math. At some point \OPENMATH\ was also used but that was later
%D abandoned because editing is more cumbersome.
%D
%D Due to limitations in the web variant (which is independent of rendering for
%D paper but often determines the coding of document, not seldom for the worse) the
%D switch was made to presentational \MATHML. But even that proved to be too complex
%D for rendering on the web, so it got converted to so called \ASCIIMATH\ which
%D can be rendered using some \JAVASCRIPT\ magic. However, all the formulas (and
%D we're talking of tens of thousands of them) were very precisely coded by the main
%D author. Because in intermediate stages of the editing (by additional authors) a
%D mixture of \MATHML\ and \ASCIIMATH\ was used, we wrote the first version of this
%D module. As reference we took \url
%D {http://www1.chapman.edu/~jipsen/mathml/asciimath.html} and. The idea was to
%D stick to \MATHML\ as reference and if needed use \ASCIIMATH\ as annotation.
%D
%D Eventually we ended up with supporting several math encodings in \CONTEXT\ that
%D could be used mixed: content \MATHML\ (preferred), presentation \MATHML\ (often
%D messy), \OPENMATH\ (somewhat minimalistic) calcmath (handy for students who are
%D accustomed to calculators), \ASCIIMATH\ (to make web support easier) and of
%D course \TEX.
%D
%D The first version had some limitations as we didn't want to support all quirks of
%D \ASCIIMATH\ and also because I was not really in the mood to write a complex parser
%D when a bit of sane coding can work equally well. Some comments from that version:
%D
%D \startnarrower
%D \startitemize
%D \item We support only the syntactically clear variants and as long as lpeg does
%D not support left recursion this is as far as we want to go.
%D \item The parser is rather insensitive for spaces but yet the advice is to avoid
%D weird coding like \type {d/dxf(x)} but use \type {d/dx f(x)} instead. After
%D all we're not in a compact coding cq.\ parser challenge.
%D \item We also don't support the somewhat confusing \type {sqrt sqrt 2} nor \type
%D {root3x} (although the second one kind of works). A bit of defensive coding
%D does not hurt.
%D \item We can process \type {a/b/c/d} but it's not compatible with the default
%D behaviour of \ASCIIMATH. Use grouping instead. Yes, we do support the somewhat
%D nonstandard grouping token mix.
%D \item You should use explicit \type {text(..)} directives as one can never be sure
%D what is a reserved word and not.
%D \stopitemize
%D
%D Actually, as the only parsing sensitive elements of \TEX\ are fractions (\type {\over}
%D and friends, a restricted use of \TEX\ coding is probably as comprehensive and
%D parsable. The webpage with examples served as starting point so anything beyond
%D what can be found there isn't supported.
%D \stopnarrower
%D
%D Then in 2014 something bad happened. Following the fashion of minimal encoding
%D (which of course means messy encoding of complex cases and which can make authors
%D sloppy too) the web based support workflow of the mentioned project ran into some
%D limitations and magically one day all carefully coded \MATHML\ was converted into
%D \ASCIIMATH. As there was no way to recover the original thousands of files and
%D tens of thousands of formulas we were suddenly stuck with \ASCIIMATH. Because the
%D conversion had be done automagically, we also saw numerous errors and were forced
%D to come up with some methods to check formulas. Because \MATHML\ poses some
%D restrictions it has predictable rendering; \ASCIIMATH\ on the other hand enforces
%D no structure. Also, because \MATHML\ has to be valid \XML\ it always processes.
%D Of course, during the decade that the project had run we also had to built in
%D some catches for abuse but at least we had a relatively stable and configurable
%D subsystem. So, in order to deal with less predictable cases as well as extensive
%D checking, a new \ASCIIMATH\ parser was written, one that could also be used to
%D trace bad coding.
%D
%D Because the formal description is incomplete, and because some links to resources
%D are broken, and because some testing on the web showed that sequences of characters
%D are interpreted that were not mentioned anywhere (visible), and because we noticed
%D that the parser was dangerously tolerant, the new code is quite different from the
%D old code.
%D
%D One need to keep in mind that because spaces are optional, the only robust way to
%D edit \ASCIIMATH\ is to use a \WYSIWYG\ editor and hope that the parser doesn't
%D change ever. Keys are picked up from spaceless sequences and when not recognized
%D a (sequence) of characters is considered to be variables. So, \type {xsqrtx} is
%D valid and renders as \type {$x\sqrt{x}$}, \type {xx} becomes \type {×} (times)
%D but \type {ac} becomes \type {$a c$} (a times c). We're lucky that \type {AC} is
%D not turned into Alternating Current, but who knows what happens a few years from
%D now. So, we do support this spaceless mess, but users are warned: best use a
%D spacy sequence. The extra amount of spaces (at one byte each) an author has to
%D include in his|/|her active writing time probably stays below the size of one
%D holiday picture. Another complication is that numbers (in Dutch) use commas instead
%D of periods, but vectors use commas as well. We also hav esome different names for
%D functions which then can conflict with the expectations about collapsed variables.
%D
%D It must be noted that simplified encodings (that seem to be the fashion today)
%D can demand from applications to apply fuzzy logic to make something work out
%D well. Because we have sequential data that gets rendered, sometimes wrong input
%D gets obscured simply by the rendering: like the comma's in numbers as well as
%D for separators (depending on space usage), or plain wrong symbols that somehow
%D get a representation anyway. This in itself is more a side effect of trying to
%D use the simplified encoding without applying rules (in the input) or to use it
%D beyong its intended usage, which then of course can lead to adapted parsers and
%D catches that themselves trigger further abuse. Imagine that instead of developing
%D new cars, planes, space ships, mobile phones, computers we would have adapted
%D horse cars, kites, firework, old fashioned phones and mechanical calculators in a
%D similar way: patch upon patch of traditional means for sure would not have
%D worked. So, when you use \ASCIIMATH\ best check immediately how it gets rendered
%D in the browser as well as on paper. And be prepared to check the more complex
%D code in the future again. We don't offer any guarantees but of course will try to
%D keep up.
%D
%D In retrospect I sometimes wonder if the energy put into constantly adapting to
%D the fashion of the day pays off. Probably not. It definitely doesn't pay of.
%D
%D More complex crap:
%D
%D 1: $x + \stackrel{comment}{\stackrel{\utfchar{"23DE}}{yyyyyyyy}} = y$ \blank
%D 2: \asciimath{x + stackrel{\utfchar{"23DE}}{yyyyyyyy} = y} \blank
%D 3: \asciimath{x + stackrel{yyyyyyyy}{\utfchar{"23DE}} = y} \blank
%D 4: \asciimath{x + stackrel{"comment"}{stackrel{\utfchar{"23DE}}{yyyyyyyy}} = y} \blank
\usemodule[mathml-basics]
\startmodule[asciimath]
\unprotect
\writestatus{asciimath}{beware, this is an experimental (m4all only) module}
%D Hacks:
\unexpanded\def\asciimathoptext #1{\ifmmode\mathoptext{#1}\else#1\fi}
\unexpanded\def\asciimathoptexttraced #1{\ifmmode\mathoptext{\color[darkgreen]{#1}}\else\color[darkgreen]{#1}\fi}
\unexpanded\def\asciimathstackrel #1#2{\mathematics{\mathop{\let\limits\relax\mover{#2}{#1}}}}
\unexpanded\def\asciimathroot #1#2{\sqrt[#1]{#2}}
\unexpanded\def\asciimathsqrt #1{\sqrt{#1}}
%D The core commands:
% if we need to set
\installsetuponlycommandhandler {asciimath} {asciimath}
\appendtoks
\ctxlua{moduledata.asciimath.setup {
splitmethod = "\asciimathparameter\c!splitmethod",
separator = "\asciimathparameter\c!separator",
symbol = "\asciimathparameter\c!symbol",
}}%
\to \everysetupasciimath
\newtoks\everyasciimath
% \appendtoks
% \ignorediscretionaries
% \to \everyasciimath
\appendtoks
\enableautofences
\to \everyasciimath
\unexpanded\def\asciimath
{\doifnextoptionalelse\asciimath_yes\asciimath_nop}
\def\asciimath_yes[#1]#2%
{\mathematics
[#1]%
{\the\everyasciimath%
\clf_justasciimath{\detokenize\expandafter{\normalexpanded{#2}}}}}
\def\asciimath_nop#1%
{\mathematics
{\the\everyasciimath
\clf_justasciimath{\detokenize\expandafter{\normalexpanded{#1}}}}}
\unexpanded\def\ctxmoduleasciimath#1%
{\ctxlua{moduledata.asciimath.#1}}
%D Some tracing commands. Using tex commands is 10\% slower that directly piping
%D from \LUA, but this is non|-|critical code.
\unexpanded\def\ShowAsciiMathLoad [#1]{\ctxlua{moduledata.asciimath.show.load("#1")}}
\unexpanded\def\ShowAsciiMathIgnore[#1]{\ctxlua{moduledata.asciimath.show.ignore("#1")}}
\unexpanded\def\ShowAsciiMathXML #1#2{\ctxlua{moduledata.asciimath.show.filter("#1","#2")}}
\unexpanded\def\ShowAsciiMathStats {\ctxlua{moduledata.asciimath.show.statistics()}}
\unexpanded\def\ShowAsciiMathMax {\ctxlua{moduledata.asciimath.show.max()}}
\unexpanded\def\ShowAsciiMathResult#1%
{\begingroup
\blank
% if we are in vmode, we don't get positions i.e. a smaller tuc file
\inleft{\ttbf#1\hfill\ctxlua{moduledata.asciimath.show.count(#1,true)}}%
\dontleavehmode
\begingroup
\ttbf
\ctxlua{moduledata.asciimath.show.files(#1)}
\endgroup
\blank[medium,samepage]
\startcolor[darkblue]
\ctxlua{moduledata.asciimath.show.input(#1,true)}
\stopcolor
\blank[medium,samepage]
\doifmode{asciimath:show:dirty} {
\dorecurse{\ctxlua{moduledata.asciimath.show.nofdirty(#1)}} {
\ctxlua{moduledata.asciimath.show.dirty(\recurselevel,true)}
\blank[medium,samepage]
}
}
\ctxlua{moduledata.asciimath.show.result(#1)}
\blank
\endgroup}
\unexpanded\def\ShowAsciiMathStart
{\begingroup
\let\asciimathoptext\asciimathoptexttraced
\setuptyping[\v!buffer][\c!before=,\c!after=]
\setupmargindata[\v!left][\c!style=]}
\unexpanded\def\ShowAsciiMathStop
{\endgroup}
\unexpanded\def\ShowAsciiMath
{\dodoubleempty\doShowAsciiMath}
\unexpanded\def\doShowAsciiMath[#1][#2]%
{\iffirstargument
\ShowAsciiMathStart
\ShowAsciiMathLoad[#1]
\ifsecondargument
\ShowAsciiMathIgnore[#2]
\fi
\dorecurse{\ShowAsciiMathMax}{\ShowAsciiMathResult\recurselevel}
\page
\ShowAsciiMathStats
\ShowAsciiMathStop
\fi}
\unexpanded\def\xmlShowAsciiMath#1#2%
{\iffirstargument
\ShowAsciiMathStart
\ShowAsciiMathXML{#1}{#2}%
\dorecurse{\ShowAsciiMathMax}{\ShowAsciiMathResult\recurselevel}
\page
\ShowAsciiMathStats
\ShowAsciiMathStop
\fi}
\unexpanded\def\ShowAsciiMathSave
{\dosingleempty\doShowAsciiMathSave}
\unexpanded\def\doShowAsciiMathSave[#1]%
{\ctxlua{moduledata.asciimath.show.save("#1")}}
\protect
\startsetups asciimath:layout
\setupbodyfont
% [pagella,10pt]
[dejavu,10pt]
\setuplayout
[backspace=35mm,
leftmargin=20mm,
rightmargindistance=0pt,
leftmargindistance=5mm,
cutspace=1cm,
topspace=1cm,
bottomspace=1cm,
width=middle,
height=middle,
header=0cm,
footer=1cm]
\setupheadertexts
[]
\setupfootertexts
[\currentdate][\pagenumber]
\setupalign
[flushleft,verytolerant,stretch]
\dontcomplain
\stopsetups
\stopmodule
\continueifinputfile{x-asciimath.mkiv}
%D This will become an extra.
\starttext
\setups[asciimath:layout]
% \enabletrackers[modules.asciimath.mapping]
% \enabletrackers[modules.asciimath.detail]
% \starttext
% \enablemode[asciimath:show:dirty]
% \ShowAsciiMath[e:/temporary/asciimath/*.xml]
% % \ShowAsciiMathSave[e:/temporary/asciimath/asciimath.lua]
% \stoptext
\subject{Some tests}
% \unexpanded\def\MyAsciiMath#1{\startformula\asciimath{#1}\stopformula}
%
% \startlines
% \MyAsciiMath{x^2 / 10 // z_12^34 / 20}
% \MyAsciiMath{{:{:x^2:} / 10:} // {:{:z_12^34 :} / 20:}}
% \MyAsciiMath{x^2+y_1+z_12^34}
% \MyAsciiMath{sin^-1(x)}
% \MyAsciiMath{d/dx f(x)=lim_(h->0) (f(x+h)-f(x))/h}
% \MyAsciiMath{f(x)=sum_(n=0)^oo(f^((n))(a))/(n!)(x-a)^n}
% \MyAsciiMath{int_0^1 f(x)dx}
% \MyAsciiMath{int^1_0 f(x)dx}
% \MyAsciiMath{a//b}
% \MyAsciiMath{a//\alpha}
% \MyAsciiMath{(a/b)/(d/c)}
% \MyAsciiMath{((a*b))/(d/c)}
% \MyAsciiMath{[[a,b],[c,d]]((n),(k))}
% \MyAsciiMath{1/x={(1,text{if } x!=0),(text{undefined},if x=0):}}
% \MyAsciiMath{{ (1,2), (x,(x + text(x))) }}
% \MyAsciiMath{{(1,2),(x,(x+text(x))),(x,text(x))}}
% \MyAsciiMath{{(1,2),(x,(x+text(x))),(x,x text(x))}}
% \MyAsciiMath{{(1,2/2),(x,(x+x^22+sqrt(xx))),(x,x text(xyz))}}
% \MyAsciiMath{{(1,2/2),(x,(x+x^22+sqrt(xx))),(x,text(xyz)+1+text(hans))}}
% \MyAsciiMath{<<a,b>> text{and} {:(x,y),(u,v):}}
% \MyAsciiMath{(a,b] = {x text(in) RR | a < x <= b}}
% \MyAsciiMath{a/b / c/d = (a * d) / (b * d) / (b * c) / (b * d) = (a * d) / (b * c)}
% \MyAsciiMath{ (a/b) // (c/d) = ( (a * d) / (b * d) ) // ( (b * c) / (b * d) ) = (a * d) / (b * c)}
% \MyAsciiMath{sin(x+1)_3^2/b / c/d}
% \MyAsciiMath{{:{:sin(x+1)_3^2:}/b:} / {:c/d:}}
% \MyAsciiMath{cos(a) + sin(x+1)_3^2/b / c/d = (a * d) / (b * d) / (b * c) / (b * d) = (a * d) / (b * c)}
% \MyAsciiMath{S_(11)}
% \MyAsciiMath{f(x)}
% \MyAsciiMath{sin(x)}
% \MyAsciiMath{sin(x+1)}
% \MyAsciiMath{sin^-1(x)}
% \MyAsciiMath{sin(2x)}
% \MyAsciiMath{a_2^2}
% \MyAsciiMath{( (S_(11),S_(12),S_(1n)),(vdots,ddots,vdots),(S_(m1),S_(m2),S_(mn)) ]}
% \MyAsciiMath{frac a b}
% \MyAsciiMath{sin(x)/2 // cos(x)/pi}
% \MyAsciiMath{a/13 // c/d}
% \MyAsciiMath{a/b // c/d}
% \MyAsciiMath{x}
% \MyAsciiMath{x^2}
% \MyAsciiMath{sqrt x}
% \MyAsciiMath{sqrt (x)}
% \MyAsciiMath{root 2 x}
% \MyAsciiMath{x+x}
% \MyAsciiMath{x/3}
% \MyAsciiMath{x^2 / 10}
% \MyAsciiMath{x^2 / 10 // z_12^34 / 20}
% \MyAsciiMath{a^23}
% \MyAsciiMath{a^{:b^23:}+3x}
% \MyAsciiMath{a/b / c/d}
% \MyAsciiMath{sin(x)/b / c/d}
% \MyAsciiMath{sin(x)/b // c/d}
% \MyAsciiMath{a/b / c/d = (a * d) / (b * d) / (b * c) / (b * d) = (a * d) / (b * c) }
% \MyAsciiMath{{:{:x^2:} / 10:} // {:{:z_12^34 :} / 20:}}
% \MyAsciiMath{x^2+y_1+z_12^34}
% \MyAsciiMath{sin^-1(x)}
% \MyAsciiMath{d/dx f(x)=lim_(h->0) (f(x+h)-f(x))/h}
% \MyAsciiMath{f(x)=sum_(n=0)^oo(f^((n))(a))/(n!)(x-a)^n}
% \MyAsciiMath{int_0^1 f(x)dx}
% \MyAsciiMath{int^1_0 f(x)dx}
% \MyAsciiMath{2x}
% \MyAsciiMath{a//b}
% \MyAsciiMath{a//\alpha}
% \MyAsciiMath{(a/b)/(d/c)}
% \MyAsciiMath{((a*b))/(d/c)}
% \MyAsciiMath{[[a,b],[c,d]]((n),(k))}
% \MyAsciiMath{1/x={(1,text{if } x!=0),(text{undefined},if x=0):}}
% \MyAsciiMath{{ (1,2), (x,(x + text(x))) }}
% \MyAsciiMath{{(1,2),(x,(x+text(x))),(x,text(x))}}
% \MyAsciiMath{{(1,2),(x,(x+text(x))),(x,x text(x))}}
% \MyAsciiMath{{(1,2/2),(x,(x+x^22+sqrt(xx))),(x,x text(xyz))}}
% \MyAsciiMath{{(1,2/2),(x,(x+x^22+sqrt(xx))),(x,text(xyz)+1+text(hans))}}
% \MyAsciiMath{<<a,b>> text{and} {:(x,y),(u,v):}}
% \MyAsciiMath{(a,b] = {x text(in) RR | a < x <= b}}
% \MyAsciiMath{x^-2}
% \MyAsciiMath{x^2(x-1/16)=0}
% \MyAsciiMath{y= ((1/4)) ^x}
% \MyAsciiMath{log (0,002) / (log(1/4))}
% \MyAsciiMath{x=ax+b \ oeps}
% \MyAsciiMath{x=\ ^ (1/4) log(x)}
% \MyAsciiMath{x=\ ^ (1/4) log(0 ,002 )= log(0,002) / (log(1/4))}
% \MyAsciiMath{x^ (-1 1/2) =1/x^ (1 1/2)=1/ (x^1*x^ (1/2)) =1/ (xsqrt(x))}
% \MyAsciiMath{x^2(10 -x)>2 x^2}
% \MyAsciiMath{x^4>x}
% \stoplines
% \setupasciimath[splitmethod=3,symbol={{,}}]
%
% \startlines
% \asciimath{sqrt 1}
% \asciimath{sqrt 1.2}
% \asciimath{sqrt 1.2}
% \asciimath{1}
% \asciimath{12}
% \asciimath{123}
% \asciimath{1234}
% \asciimath{12345}
% \asciimath{123456}
% \asciimath{1234567}
% \asciimath{12345678}
% \asciimath{123456789}
% \asciimath{1.1}
% \asciimath{12.12}
% \asciimath{1234.123}
% \asciimath{1234.1234}
% \asciimath{12345.1234}
% \asciimath{1234.12345}
% \asciimath{12345.12345}
% \asciimath{123456.123456}
% \asciimath{1234567.1234567}
% \asciimath{12345678.12345678}
% \asciimath{123456789.123456789}
% \asciimath{0.1234}
% \asciimath{1234.0}
% \asciimath{1234.00}
% \asciimath{0.123456789}
% \stoplines
% \definemixedcolumns[asciimath][n=3,balance=yes]
%
% \startluacode
% local asciimath = moduledata.asciimath
% local variables = { "w", "x", "y", "z", "p", "q", "r" }
% local constants = { "a", "b", "c" }
% local functions = { "g", "h", "i" }
% local iterators = { "i", "j", "k" }
% local vectors = { "A", "B", "C", "D", "E", "P", "Q", "R" }
% local reserved = { }
% local reserved = {
% -- "vdots","ddots","oint",
% "grad", "prod", "prop", "sube", "supe", "sum",
% "vvv", "nnn", "uuu", "sub", "sup",
% "iff", "int", "del",
% "sinh", "cosh", "tanh", "sin", "cos", "tan", "csc", "sec", "cot",
% "atan", "asin", "acos", "arctan", "arcsin", "arccos",
% "log", "ln", "det", "lim", "mod", "gcd", -- "lcm",
% "min", "max",
% "xx", "in", "ox", "vv", "nn", "uu", "oo", "bb",
% "not", "and", "or", "if",
% "AA", "EE", "TT",
% "sqrt", "root", "frac", "stackrel",
% "hat", "overbar", "underline", "vec",
% "dx", "dy", "dz",
% }
% for c=1,#constants do
% for r=1,#reserved do
% context.startmixedcolumns { "asciimath" }
% for v1=1,#variables do
% for v2=1,#variables do
% local str = constants[c] .. variables[v1] .. reserved[r] .. variables[v2]
% context.type(str)
% context.quad()
% commands.asciimath(str)
% context.par()
% end
% end
% context.stopmixedcolumns()
% context.blank()
% end
% end
% \stopluacode
\stoptext
|