1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
|
if not modules then modules = { } end modules ['math-ini'] = {
version = 1.001,
comment = "companion to math-ini.tex",
author = "Hans Hagen, PRAGMA-ADE, Hasselt NL",
copyright = "PRAGMA ADE / ConTeXt Development Team",
license = "see context related readme files"
}
--[[ldx--
<p>Math definitions. This code may move.</p>
--ldx]]--
-- if needed we can use the info here to set up xetex definition files
-- the "8000 hackery influences direct characters (utf) as indirect \char's
mathematics = mathematics or { }
mathematics.data = mathematics.data or { }
mathematics.slots = mathematics.slots or { }
mathematics.classes = {
ord = 0, -- mathordcomm mathord
op = 1, -- mathopcomm mathop
bin = 2, -- mathbincomm mathbin
rel = 3, -- mathrelcomm mathrel
open = 4, -- mathopencomm mathopen
close = 5, -- mathclosecomm mathclose
punct = 6, -- mathpunctcomm mathpunct
alpha = 7, -- mathalphacomm firstofoneargument
accent = 8,
radical = 9,
inner = 0, -- mathinnercomm mathinner
nothing = 0, -- mathnothingcomm firstofoneargument
choice = 0, -- mathchoicecomm @@mathchoicecomm
box = 0, -- mathboxcomm @@mathboxcomm
limop = 1, -- mathlimopcomm @@mathlimopcomm
nolop = 1, -- mathnolopcomm @@mathnolopcomm
}
mathematics.classes.alphabetic = mathematics.classes.alpha
mathematics.classes.unknown = mathematics.classes.nothing
mathematics.classes.punctuation = mathematics.classes.punct
mathematics.classes.normal = mathematics.classes.nothing
mathematics.classes.opening = mathematics.classes.open
mathematics.classes.closing = mathematics.classes.close
mathematics.classes.binary = mathematics.classes.bin
mathematics.classes.relation = mathematics.classes.rel
mathematics.classes.fence = mathematics.classes.unknown
mathematics.classes.diacritic = mathematics.classes.accent
mathematics.classes.large = mathematics.classes.op
mathematics.classes.variable = mathematics.classes.alphabetic
mathematics.classes.number = mathematics.classes.nothing
mathematics.families = {
mr = 0, bs = 8,
mi = 1, bi = 9,
sy = 2, sc = 10,
ex = 3, tf = 11,
it = 4, ma = 12,
sl = 5, mb = 13,
bf = 6, mc = 14,
nn = 7, md = 15,
}
mathematics.families.letters = mathematics.families.mr
mathematics.families.numbers = mathematics.families.mr
mathematics.families.variables = mathematics.families.mi
mathematics.families.operators = mathematics.families.sy
mathematics.families.lcgreek = mathematics.families.mi
mathematics.families.ucgreek = mathematics.families.mr
mathematics.families.vargreek = mathematics.families.mi
mathematics.families.mitfamily = mathematics.families.mi
mathematics.families.calfamily = mathematics.families.sy
mathematics.families[0] = mathematics.families.mr
mathematics.families[1] = mathematics.families.mi
mathematics.families[2] = mathematics.families.sy
mathematics.families[3] = mathematics.families.ex
function mathematics.mathcode(target,class,family,slot)
return ("\\omathcode%s=\"%X%02X%04X"):format(target,class,family,slot)
end
function mathematics.delcode(target,small_family,small_slot,large_family,large_slot)
return ("\\odelcode%s=\"%02X%04X\"%02X%04X"):format(target,small_family,small_slot,large_family,large_slot)
end
function mathematics.radical(small_family,small_slot,large_family,large_slot)
return ("\\radical%s=\"%02X%04X%\"02X%04X"):format(target,small_family,small_slot,large_family,large_slot)
end
function mathematics.mathchar(class,family,slot)
return ("\\omathchar\"%X%02X%04X "):format(class,family,slot)
end
function mathematics.mathaccent(class,family,slot)
return ("\\omathaccent\"%X%02X%04X "):format(class,family,slot)
end
function mathematics.delimiter(class,family,slot,largefamily,largeslot)
return ("\\odelimiter\"%X%02X%04X\"%02X%04X "):format(class,family,slot,largefamily,largeslot)
end
function mathematics.mathchardef(name,class,family,slot) -- we can avoid this one
return ("\\omathchardef\\%s\"%X%02X%04X"):format(name,class,family,slot)
end
function mathematics.setmathsymbol(name,class,family,slot,largefamily,largeslot,unicode)
class = mathematics.classes[class] or class -- no real checks needed
family = mathematics.families[family] or family
-- \unexpanded ? \relax needed for the codes?
local classes = mathematics.classes
if largefamily and largeslot then
largefamily = mathematics.families[largefamily] or largefamily
if class == classes.radical then
tex.sprint(("\\unexpanded\\xdef\\%s{%s }"):format(name,mathematics.radical(class,family,slot,largefamily,largeslot)))
elseif class == classes.open or class == classes.close then
tex.sprint(("\\unexpanded\\xdef\\%s{%s}"):format(name,mathematics.delimiter(class,family,slot,largefamily,largeslot)))
end
elseif class == classes.accent then
tex.sprint(("\\unexpanded\\xdef\\%s{%s }"):format(name,mathematics.mathaccent(class,family,slot)))
elseif unicode then
-- beware, open/close and other specials should not end up here
local ch = utf.char(unicode)
if characters.filters.utf.private.escapes[ch] then
tex.sprint(("\\xdef\\%s{\\char%s }"):format(name,unicode))
else
tex.sprint(("\\xdef\\%s{%s}"):format(name,ch))
end
else
tex.sprint(mathematics.mathchardef(name,class,family,slot))
end
end
-- direct sub call
function mathematics.setmathcharacter(target,class,family,slot,largefamily,largeslot)
class = mathematics.classes[class] or class -- no real checks needed
family = mathematics.families[family] or family
if largefamily and largeslot then
largefamily = mathematics.families[largefamily] or largefamily
tex.sprint(mathematics.delcode(target,family,slot,largefamily,largeslot))
else
tex.sprint(mathematics.mathcode(target,class,family,slot))
end
end
-- definitions (todo: expand commands to utf instead of codes)
mathematics.trace = false --
function mathematics.define()
local slots = mathematics.slots.current
local setmathcharacter = mathematics.setmathcharacter
local setmathsymbol = mathematics.setmathsymbol
local trace = mathematics.trace
local function report(k,c,f,i,fe,ie)
if fe then
logs.report("mathematics",string.format("a - symbol 0x%05X -> %s -> %s %s (%s %s)",k,c,f,i,fe,ie))
elseif c then
logs.report("mathematics",string.format("b - symbol 0x%05X -> %s -> %s %s",k,c,f,i))
else
logs.report("mathematics",string.format("c - symbol 0x%05X -> %s %s",k,f,i))
end
end
for k,v in pairs(characters.data) do
local m = v.mathclass
-- i need to clean this up a bit
if m then
local c = v.mathname
if c == false then
-- no command
local s = slots[k]
if s then
local f, i, fe, ie = s[1], s[2], s[3], s[4]
if trace then
report(k,c,f,i,fe,ie)
end
setmathcharacter(k,m,f,i,fe,ie)
end
elseif c then
local s = slots[k]
if s then
local f, i, fe, ie = s[1], s[2], s[3], s[4]
if trace then
report(k,c,f,i,fe,ie)
end
setmathsymbol(c,m,f,i,fe,ie,k)
setmathcharacter(k,m,f,i,fe,ie)
end
elseif v.contextname then
local s = slots[k]
local c = v.contextname
if s then
local f, i, fe, ie = s[1], s[2], s[3], s[4]
if trace then
report(k,c,f,i,fe,ie)
end
-- todo: mathortext
-- setmathsymbol(c,m,f,i,fe,ie,k)
setmathcharacter(k,m,f,i,fe,ie)
end
else
local a = v.adobename
if a and m then
local s, f, i, fe, ie = slots[k], nil, nil, nil, nil
if s then
f, i, fe, ie = s[1], s[2], s[3], s[4]
elseif m == "variable" then
f, i = mathematics.families.variables, k
elseif m == "number" then
f, i = mathematics.families.numbers, k
end
if trace then
report(k,a,f,i,fe,ie)
end
setmathcharacter(k,m,f,i,fe,ie)
end
end
end
end
end
-- temporary here: will become separate
-- maybe we should define a nice virtual font so that we have
-- just the base n families repeated for diferent styles
mathematics.slots.traditional = {
[0x03B1] = { "lcgreek", 0x0B }, -- alpha
[0x03B2] = { "lcgreek", 0x0C }, -- beta
[0x03B3] = { "lcgreek", 0x0D }, -- gamma
[0x03B4] = { "lcgreek", 0x0E }, -- delta
[0x03B5] = { "lcgreek", 0x0F }, -- epsilon
[0x03B6] = { "lcgreek", 0x10 }, -- zeta
[0x03B7] = { "lcgreek", 0x11 }, -- eta
[0x03B8] = { "lcgreek", 0x12 }, -- theta
[0x03B9] = { "lcgreek", 0x13 }, -- iota
[0x03BA] = { "lcgreek", 0x14 }, -- kappa
[0x03BB] = { "lcgreek", 0x15 }, -- lambda
[0x03BC] = { "lcgreek", 0x16 }, -- mu
[0x03BD] = { "lcgreek", 0x17 }, -- nu
[0x03BE] = { "lcgreek", 0x18 }, -- xi
[0x03BF] = { "lcgreek", 0x6F }, -- omicron
[0x03C0] = { "lcgreek", 0x19 }, -- po
[0x03C1] = { "lcgreek", 0x1A }, -- rho
-- [0x03C2] = { "lcgreek", 0x00 }, -- varsigma
[0x03C3] = { "lcgreek", 0x1B }, -- sigma
[0x03C4] = { "lcgreek", 0x1C }, -- tau
[0x03C5] = { "lcgreek", 0x1D }, -- upsilon
-- [0x03C6] = { "lcgreek", 0x1E }, -- varphi
[0x03C7] = { "lcgreek", 0x1F }, -- chi
[0x03C8] = { "lcgreek", 0x20 }, -- psi
[0x03C9] = { "lcgreek", 0x21 }, -- omega
[0x0391] = { "ucgreek", 0x41 }, -- Alpha
[0x0392] = { "ucgreek", 0x42 }, -- Beta
[0x0393] = { "ucgreek", 0x00 }, -- Gamma
[0x0394] = { "ucgreek", 0x01 }, -- Delta
[0x0395] = { "ucgreek", 0x45 }, -- Epsilon
[0x0396] = { "ucgreek", 0x5A }, -- Zeta
[0x0397] = { "ucgreek", 0x48 }, -- Eta
[0x0398] = { "ucgreek", 0x02 }, -- Theta
[0x0399] = { "ucgreek", 0x49 }, -- Iota
[0x039A] = { "ucgreek", 0x4B }, -- Kappa
[0x039B] = { "ucgreek", 0x03 }, -- Lambda
[0x039C] = { "ucgreek", 0x4D }, -- Mu
[0x039D] = { "ucgreek", 0x4E }, -- Nu
[0x039E] = { "ucgreek", 0x04 }, -- Xi
[0x039F] = { "ucgreek", 0x4F }, -- Omicron
[0x03A0] = { "ucgreek", 0x05 }, -- Pi
[0x03A1] = { "ucgreek", 0x52 }, -- Rho
[0x03A3] = { "ucgreek", 0x06 }, -- Sigma
[0x03A4] = { "ucgreek", 0x54 }, -- Tau
[0x03A5] = { "ucgreek", 0x07 }, -- Upsilon
[0x03A6] = { "ucgreek", 0x08 }, -- Phi
[0x03A7] = { "ucgreek", 0x58 }, -- Chi
[0x03A8] = { "ucgreek", 0x09 }, -- Psi
[0x03A9] = { "ucgreek", 0x0A }, -- Omega
[0x03F5] = { "vargreek", 0x22 }, -- varepsilon
[0x03D1] = { "vargreek", 0x23 }, -- vartheta
[0x03D6] = { "vargreek", 0x24 }, -- varpi
[0x03F1] = { "vargreek", 0x25 }, -- varrho
[0x03C2] = { "vargreek", 0x26 }, -- varsigma
-- varphi is part of the alphabet, contrary to the other var*s'
[0x03C6] = { "vargreek", 0x27 }, -- varphi
[0x03D5] = { "lcgreek", 0x1E }, -- phi
[0x03F0] = { "lcgreek", 0x14 }, -- varkappa, not in tex fonts
[0x0021] = { "mr", 0x21 }, -- !
[0x0028] = { "mr", 0x28 }, -- (
[0x0029] = { "mr", 0x29 }, -- )
[0x002A] = { "sy", 0x03 }, -- *
[0x002B] = { "mr", 0x2B }, -- +
[0x002C] = { "mi", 0x3B }, -- ,
[0x002D] = { "sy", 0x00 }, -- -
[0x2212] = { "sy", 0x00 }, -- -
[0x002E] = { "mi", 0x3A }, -- .
[0x002F] = { "mi", 0x3D }, -- /
[0x003A] = { "mr", 0x3A }, -- :
[0x003B] = { "mr", 0x3B }, -- ;
[0x003C] = { "mi", 0x3C }, -- <
[0x003D] = { "mr", 0x3D }, -- =
[0x003E] = { "mi", 0x3E }, -- >
[0x003F] = { "mr", 0x3F }, -- ?
[0x005C] = { "sy", 0x6E }, -- \
[0x007B] = { "sy", 0x66 }, -- {
[0x007C] = { "sy", 0x6A }, -- |
[0x007D] = { "sy", 0x67 }, -- }
[0x00B1] = { "sy", 0x06 }, -- pm
[0x00B7] = { "sy", 0x01 }, -- cdot
[0x00D7] = { "sy", 0x02 }, -- times
[0x2022] = { "sy", 0x0F }, -- bullet
[0x2111] = { "sy", 0x3D }, -- Im
[0x2118] = { "mi", 0x7D }, -- wp
[0x211C] = { "sy", 0x3C }, -- Re
[0x2190] = { "sy", 0x20 }, -- leftarrow
[0x2191] = { "sy", 0x22, "ex", 0x78 }, -- uparrow
[0x2192] = { "sy", 0x21 }, -- rightarrow
[0x2193] = { "sy", 0x23, "ex", 0x79 }, -- downarrow
[0x2194] = { "sy", 0x24 }, -- leftrightarrow
[0x2195] = { "sy", 0x6C, "ex", 0x3F }, -- updownarrow
[0x2196] = { "sy", 0x2D }, -- nwarrow
[0x2197] = { "sy", 0x25 }, -- nearrow
[0x2198] = { "sy", 0x2E }, -- swarrow
[0x2199] = { "sy", 0x26 }, -- searrow
[0x21D0] = { "sy", 0x28 }, -- Leftarrow
[0x21D1] = { "sy", 0x6C, "ex", 0x7E }, -- Uparrow
[0x21D2] = { "sy", 0x29 }, -- Rightarrow
[0x21D3] = { "sy", 0x2B, "ex", 0x7F }, -- Downarrow
[0x21D4] = { "sy", 0x2C }, -- Leftrightarrow
[0x21D5] = { "sy", 0x6D, "ex", 0x77 }, -- Updownarrow
[0x2135] = { "sy", 0x40 }, -- aleph
[0x2113] = { "mi", 0x60 }, -- ell
-- ...
[0x2200] = { "sy", 0x38 }, -- forall
-- [0x2201] = { "sy", 0x00 }, -- complement
[0x2202] = { "mi", 0x40 }, -- partial
[0x2203] = { "sy", 0x39 }, -- exists
-- [0x2204] = { "sy", 0x00 }, -- not exists
[0x2205] = { "sy", 0x3B }, -- empty set
-- [0x2206] = { "sy", 0x00 }, -- increment
[0x2207] = { "sy", 0x72 }, -- nabla
[0x2208] = { "sy", 0x32 }, -- in
[0x2209] = { "sy", 0x33 }, -- ni
[0x220F] = { "ex", 0x51 }, -- prod
[0x2210] = { "ex", 0x60 }, -- coprod
[0x2211] = { "ex", 0x50 }, -- sum
-- [0x2212] = { "sy", 0x00 }, -- -
[0x2213] = { "sy", 0x07 }, -- mp
[0x2215] = { "sy", 0x3D }, -- / AM: Not sure
[0x2216] = { "sy", 0x6E }, -- setminus
[0x2217] = { "sy", 0x03 }, -- *
[0x2218] = { "sy", 0x0E }, -- circ
[0x2219] = { "sy", 0x0F }, -- bullet
-- [0x221A] = { "sy", 0x70, "ex", 0x70 }, -- sqrt. AM: Check surd??
-- ...
[0x221D] = { "sy", 0x2F }, -- propto
[0x221E] = { "sy", 0x31 }, -- infty
[0x2225] = { "sy", 0x6B }, -- parallel
[0x2227] = { "sy", 0x5E }, -- wedge
[0x2228] = { "sy", 0x5F }, -- vee
[0x2229] = { "sy", 0x5C }, -- cap
[0x222A] = { "sy", 0x5B }, -- cup
[0x222B] = { "ex", 0x52 }, -- intop
-- ... other integrals
[0x2236] = { "mr", 0x3A }, -- colon
[0x223C] = { "sy", 0x18 }, -- sim
[0x2243] = { "sy", 0x27 }, -- simeq
[0x2248] = { "sy", 0x19 }, -- approx
[0x2261] = { "sy", 0x11 }, -- equiv
[0x2264] = { "sy", 0x14 }, -- leq
[0x2265] = { "sy", 0x15 }, -- geq
[0x226A] = { "sy", 0x1C }, -- ll
[0x226B] = { "sy", 0x1D }, -- gg
[0x227A] = { "sy", 0x1E }, -- prec
[0x227B] = { "sy", 0x1F }, -- succ
-- [0x227C] = { "sy", 0x16 }, -- preceq, AM:No see 2AAF
-- [0x227D] = { "sy", 0x17 }, -- succeq, AM:No see 2AB0
[0x2282] = { "sy", 0x1A }, -- subset
[0x2283] = { "sy", 0x1B }, -- supset
[0x2286] = { "sy", 0x12 }, -- subseteq
[0x2287] = { "sy", 0x13 }, -- supseteq
[0x2293] = { "sy", 0x75 }, -- sqcap
[0x2294] = { "sy", 0x74 }, -- sqcup
[0x2295] = { "sy", 0x08 }, -- oplus
[0x2296] = { "sy", 0x09 }, -- ominus
[0x2297] = { "sy", 0x0A }, -- otimes
[0x2298] = { "sy", 0x0B }, -- oslash
[0x2299] = { "sy", 0x0C }, -- odot
[0x22A4] = { "sy", 0x3E }, -- top
[0x22A5] = { "sy", 0x3F }, -- bop
[0x22C0] = { "ex", 0x56 }, -- bigwedge
[0x22C1] = { "ex", 0x57 }, -- bigvee
[0x22C2] = { "ex", 0x54 }, -- bigcap
[0x22C3] = { "ex", 0x53 }, -- bigcup
[0x22C4] = { "sy", 0x05 }, -- diamond
[0x22C5] = { "sy", 0x01 }, -- cdot
[0x22C6] = { "sy", 0x3F }, -- star
[0x25B3] = { "sy", 0x34 }, -- triangle up
[0x1D6A4] = { "mi", 0x7B }, -- imath
[0x1D6A5] = { "mi", 0x7C }, -- jmath
[0x0028] = { "mr", 0x28, "ex", 0x00 }, -- (
[0x0029] = { "mr", 0x29, "ex", 0x01 }, -- )
[0x002F] = { "mr", 0x2F, "ex", 0x0E }, -- /
[0x003C] = { "sy", 0x3C, "ex", 0x0A }, -- <
[0x003E] = { "sy", 0x3E, "ex", 0x0B }, -- >
[0x005B] = { "mr", 0x5B, "ex", 0x02 }, -- [
[0x005D] = { "mr", 0x5D, "ex", 0x03 }, -- ]
[0x007C] = { "sy", 0x6A, "ex", 0x0C }, -- |
[0x005C] = { "sy", 0x6E, "ex", 0x0F }, -- \
[0x007B] = { "sy", 0x66, "ex", 0x08 }, -- {
[0x007D] = { "sy", 0x67, "ex", 0x09 }, -- }
[0x005E] = { "mr", 0x5E, "ex", 0x62 }, -- widehat
[0x007E] = { "mr", 0x7E, "ex", 0x65 }, -- widetilde
[0x2AAF] = { "sy", 0x16 }, -- preceq
[0x2AB0] = { "sy", 0x17 }, -- succeq
}
mathematics.slots.current = mathematics.slots.traditional
function mathematics.utfmathclass(chr, default)
local cd = characters.data[utf.byte(chr)]
return (cd and cd.mathclass) or default or "unknown"
end
function mathematics.utfmathcommand(chr, default)
local cd = characters.data[utf.byte(chr)]
return (cd and cd.mathname) or default or "unknown"
end
|