1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
|
%D \module
%D [ file=math-frc,
%D version=2013.04.06, % 2007.07.19,
%D title=\CONTEXT\ Math Macros,
%D subtitle=Fractions,
%D author=Hans Hagen,
%D date=\currentdate,
%D copyright={PRAGMA ADE \& \CONTEXT\ Development Team}]
%C
%C This module is part of the \CONTEXT\ macro||package and is
%C therefore copyrighted by \PRAGMA. See mreadme.pdf for
%C details.
\writestatus{loading}{ConTeXt Math Macros / Fractions}
\unprotect
%D todo: struts ... depends on demand
%D This module is reimplemented in \MKIV\ style.
\registerctxluafile{math-frc}{1.001}
%D \macros
%D {frac, xfrac, xxfrac}
%D
%D This is another one Tobias asked for. It replaces the primitive \type
%D {\over}. We also take the opportunity to handle math style restoring,
%D which makes sure units and chemicals come out ok. The \type {\frac}
%D macro kind of replaces the awkward \type {\over} primitive. Say that
%D we have the following formulas:
%D
%D \startbuffer[sample]
%D test $\frac {1}{2}$ test $$1 + \frac {1}{2} = 1.5$$
%D test $\xfrac {1}{2}$ test $$1 + \xfrac {1}{2} = 1.5$$
%D test $\xxfrac{1}{2}$ test $$1 + \xxfrac{1}{2} = 1.5$$
%D \stopbuffer
%D
%D \typebuffer[sample]
%D
%D With the most straightforward definitions, we get:
%D
%D \startbuffer[code]
%D \def\dofrac#1#2#3{\relax\mathematics{{{#1{#2}}\over{#1{#3}}}}}
%D
%D \def\frac {\dofrac\mathstyle}
%D \def\xfrac {\dofrac\scriptstyle}
%D \def\xxfrac{\dofrac\scriptscriptstyle}
%D \stopbuffer
%D
%D \typebuffer[code] \getbuffer[code,sample]
%D
%D Since this does not work well, we can try:
%D
%D \startbuffer[code]
%D \def\xfrac #1#2{\hbox{$\dofrac\scriptstyle {#1}{#2}$}}
%D \def\xxfrac#1#2{\hbox{$\dofrac\scriptscriptstyle{#1}{#2}$}}
%D \stopbuffer
%D
%D \typebuffer[code] \getbuffer[code,sample]
%D
%D This for sure looks better than:
%D
%D \startbuffer[code]
%D \def\xfrac #1#2{{\scriptstyle \dofrac\relax{#1}{#2}}}
%D \def\xxfrac#1#2{{\scriptscriptstyle\dofrac\relax{#1}{#2}}}
%D \stopbuffer
%D
%D \typebuffer[code] \getbuffer[code,sample]
%D
%D So we stick to the next definitions (watch the local overloading of
%D \type {\xfrac}).
%D
%D In the meantime, in \LUATEX, we have better control over styles so the
%D following macros are different from the \MKII\ ones.
% obsolete, is now c!mathstyle
%
% 0=auto, 1=displaystyle, 2=textstyle, 3=scriptstyle, 4=scriptscriptstyle, 5=mathstyle
%
% $\mathfracmode0 \frac{1}{2}$
% $\mathfracmode1 \frac{1}{2}$
% $\mathfracmode2 \frac{1}{2}$
% $\mathfracmode3 \frac{1}{2}$
% $\mathfracmode4 \frac{1}{2}$
% $\mathfracmode5 \frac{1}{2}$
%
% we keep the constant for a while
\setnewconstant\mathfracmode\zerocount
\installcorenamespace{mathfractions}
\installcorenamespace{mathfractionstyle}
\installcorenamespace{mathfractionalternative}
\installcommandhandler \??mathfractions {mathfraction} \??mathfractions
\let\setupmathfractions\setupmathfraction
% color only applies to rule, use regular color for rest
\setupmathfractions
[\c!mathstyle=,
\c!alternative=\v!inner,
\c!margin=\zeropoint,
\c!rulethickness=.25\exheight,
\c!left=0x2E,
\c!right=0x2E,
\c!rule=\v!auto]
\appendtoks
\setuevalue{\currentmathfraction}{\math_frac{\currentmathfraction}}%
\to \everydefinemathfraction
\newdimen\d_math_fraction_margin
\unexpanded\def\math_frac#1%
{\begingroup
\edef\currentmathfraction{#1}%
\d_math_fraction_margin\mathfractionparameter\c!margin
\edef\p_math_fractions_color{\mathfractionparameter\c!color}%
\ifx\p_math_fractions_color\empty
\expandafter\math_frac_normal
\else
\expandafter\math_frac_colored
\fi}
\unexpanded\def\math_frac_colored#1#2%
{\savecolor
\colo_helpers_activate\p_math_fractions_color
\math_frac_normal{\restorecolor#1}{\restorecolor#2}}
\unexpanded\def\math_frac_normal
{\expandnamespaceparameter\??mathfractionalternative\mathfractionparameter\c!alternative\v!inner}
% we use utfchar anyway so we can as well do all at the lua end
\def\math_frac_command
{\ctxcommand{math_frac(%
"\mathfractionparameter\c!rule",%
\number\mathfractionparameter\c!left,%
\number\mathfractionparameter\c!right,%
\number\dimexpr\mathfractionparameter\c!rulethickness%
)}}
% Having a \withmarginornot{#1}{#2} makes not much sense nor do
% 4 tests or 4 redundant kerns (longer node lists plus possible
% interference). A split in normal and margin also makes testing
% easier. When left and right margins are needed we might merge
% the variants again. After all, these are not real installers.
\setvalue{\??mathfractionalternative\v!inner}%
{\ifcase\d_math_fraction_margin
\expandafter\math_fraction_inner_normal
\else
\expandafter\math_fraction_inner_margin
\fi}
\def\math_fraction_inner_normal#1#2%
{\Ustack{%
{\usemathstyleparameter\mathfractionparameter{#1}}% we should store this one
\math_frac_command
{\usemathstyleparameter\mathfractionparameter{#2}}% and reuse it here
}\endgroup}
\def\math_fraction_inner_margin#1#2%
{\Ustack{%
{\kern\d_math_fraction_margin
\usemathstyleparameter\mathfractionparameter{#1}% we should store this one
\kern\d_math_fraction_margin}%
\math_frac_command
{\kern\d_math_fraction_margin
\usemathstyleparameter\mathfractionparameter{#2}% and reuse it here
\kern\d_math_fraction_margin}%
}\endgroup}
\setvalue{\??mathfractionalternative\v!outer}%
{\ifcase\d_math_fraction_margin
\expandafter\math_fraction_outer_normal
\else
\expandafter\math_fraction_outer_margin
\fi}
\def\math_fraction_outer_normal#1#2%
{\Ustack{%
\usemathstyleparameter\mathfractionparameter
{{#1}\math_frac_command{#2}}%
}\endgroup}
\def\math_fraction_outer_margin#1#2%
{\Ustack{%
\usemathstyleparameter\mathfractionparameter
{{\kern\d_math_fraction_margin#1\kern\d_math_fraction_margin}%
\math_frac_command
{\kern\d_math_fraction_margin#2\kern\d_math_fraction_margin}}%
}\endgroup}
\definemathfraction[frac][\c!mathstyle=]
\unexpanded\def\xfrac {\begingroup\let\xfrac\xxfrac\math_frac_alternative\scriptstyle}
\unexpanded\def\xxfrac{\begingroup \math_frac_alternative\scriptscriptstyle}
%D The \type {xx} variant looks still ugly, so maybe it's best to say:
\unexpanded\def\xxfrac#1#2%
{\begingroup
\math_frac_alternative\scriptscriptstyle{#1}{\raise.25\exheight\hbox{$\scriptscriptstyle#2$}}}
%D \macros
%D {dfrac, tfrac, frac, dbinom, tbinom, binom}
%D
%D \startbuffer
%D $\dfrac {1}{2} \tfrac {1}{2} \frac {1}{2}$
%D $\dbinom{1}{2} \tbinom{1}{2} \binom{1}{2}$
%D \stopbuffer
%D
%D \typebuffer
%D \getbuffer
% $$
% {{a}\over{b}} +
% {{a}\overwithdelims(){b}} +
% {{a}\atopwithdelims(){b}} +
% {{a}\abovewithdelims()\zeropoint{b}} +
% \left({{a}\over{b}}\right)
% $$
% \dorecurse {10} { % weird
% $$ {{a}\abovewithdelims()#1pt{b}} $$
% }
% \unexpanded\def\dfrac #1#2{{\displaystyle {{#1}\normalover {#2}}}}
% \unexpanded\def\tfrac #1#2{{\textstyle {{#1}\normalover {#2}}}}
\definemathfraction[dfrac][\c!alternative=\v!outer,\c!mathstyle=\s!display]
\definemathfraction[tfrac][\c!alternative=\v!outer,\c!mathstyle=\s!text]
\definemathfraction[sfrac][\c!alternative=\v!outer,\c!mathstyle=\s!script]
% \definemathfraction[ddfrac][\c!mathstyle=\s!display]
% \definemathfraction[ttfrac][\c!mathstyle=\s!text]
% \definemathfraction[ssfrac][\c!mathstyle=\s!script]
% \unexpanded\def\binom #1#2{{\Ustack {{#1}\normalabovewithdelims()\zeropoint{#2}}}}
% \unexpanded\def\dbinom#1#2{{\displaystyle{{#1}\normalabovewithdelims()\zeropoint{#2}}}}
% \unexpanded\def\tbinom#1#2{{\textstyle {{#1}\normalabovewithdelims()\zeropoint{#2}}}}
\definemathfraction[binom] [\c!alternative=\v!outer,\c!rule=\v!no,\c!left=0x28,\c!right=0x29,\c!mathstyle=\s!auto]
\definemathfraction[dbinom][\c!alternative=\v!outer,\c!rule=\v!no,\c!left=0x28,\c!right=0x29,\c!mathstyle=\s!display]
\definemathfraction[tbinom][\c!alternative=\v!outer,\c!rule=\v!no,\c!left=0x28,\c!right=0x29,\c!mathstyle=\s!text]
%D \macros
%D {cfrac}
%D
%D \startbuffer
%D $\cfrac{12}{3} \cfrac[l]{12}{3} \cfrac[c]{12}{3} \cfrac[r]{12}{3}$
%D $\cfrac{1}{23} \cfrac[l]{1}{23} \cfrac[c]{1}{23} \cfrac[r]{1}{23}$
%D \stopbuffer
%D
%D \typebuffer
%D
%D \getbuffer
%D
%D Now we can align every combination we want:
%D
%D \startbuffer
%D $\cfrac{12}{3} \cfrac[l]{12}{3} \cfrac[c]{12}{3} \cfrac[r]{12}{3}$
%D $\cfrac{1}{23} \cfrac[l]{1}{23} \cfrac[c]{1}{23} \cfrac[r]{1}{23}$
%D $\cfrac[cl]{12}{3} \cfrac[cc]{12}{3} \cfrac[cr]{12}{3}$
%D $\cfrac[lc]{1}{23} \cfrac[cc]{1}{23} \cfrac[rc]{1}{23}$
%D \stopbuffer
%D
%D \typebuffer
%D
%D \getbuffer
\unexpanded\def\cfrac
{\doifnextoptionalcselse\math_cfrac_yes\math_cfrac_nop}
\def\math_cfrac_nop {\math_cfrac_indeed[cc]}
\def\math_cfrac_yes[#1]{\math_cfrac_indeed[#1cc]}
\def\math_cfrac_indeed[#1#2#3]#4#5%
{{\displaystyle
\frac
{\strut
\ifx r#1\hfill\fi#4\ifx l#1\hfill\fi}%
{\ifx r#2\hfill\fi#5\ifx l#2\hfill\fi}%
\kern-\nulldelimiterspace}}
%D \macros
%D {splitfrac, splitdfrac}
%D
%D Occasionally one needs to typeset multi||line fractions.
%D These commands use \tex{genfrac} to create such fractions.
%D
%D \startbuffer
%D \startformula
%D a=\frac{
%D \splitfrac{xy + xy + xy + xy + xy}
%D {+ xy + xy + xy + xy}
%D }
%D {z}
%D =\frac{
%D \splitdfrac{xy + xy + xy + xy + xy}
%D {+ xy + xy + xy + xy}
%D }
%D {z}
%D \stopformula
%D \stopbuffer
%D
%D \typebuffer \getbuffer
%D
%D These macros are based on Michael J.~Downes posting on
%D comp.text.tex on 2001/12/06 but adapted a bit.
\unexpanded\def\splitfrac #1#2%
{{\textstyle {{\textstyle#1\quad\hfill}\normalabove\zeropoint{\textstyle\hfill\quad\mathstrut#2}}}}
\unexpanded\def\splitdfrac#1#2%
{{\displaystyle{{ #1\quad\hfill}\normalabove\zeropoint{ \hfill\quad\mathstrut#2}}}}
\protect \endinput
% I have no clue what \mthfrac and \mthsqrt are supposed to do but
% I guess that it can be done with tweaking luatex's math parameters.
% Otherwise I'll write something from scratch.
% \def\math_stylebuilders_frac#1#2#3#4#5#6#7%
% {\begingroup
% \mathsurround\zeropoint
% \setbox0\hbox{$#1 #6$}%
% \setbox2\hbox{$#1 #7$}%
% \dimen0\wd\ifdim\wd2>\wd0 2\else 0\fi
% \setbox4\hbox to \dimen0{\leaders\hbox{#4}\hss#5}%
% \mathord{\vcenter{{\offinterlineskip
% \hbox to \dimen0{\hss\box0\hss}%
% \kern\ht4%
% \hbox to \dimen0{\hss\copy4\hss}%
% \kern\ht4%
% \hbox to \dimen0{\hss\box2\hss}}}}%
% \endgroup}
%
% \def\math_stylebuilders_sqrt#1#2#3#4#5%
% {\begingroup
% \mathsurround\zeropoint
% \setbox0\hbox{$#1 #5$}%
% \ht0\dimexpr1.05\ht0+\onepoint\relax
% \dp0\dimexpr1.05\dp0+\onepoint\relax
% \setbox4\hbox to \wd0{\mr#2\leaders\hbox{#3}\hfill#4}%
% \delimitershortfall\zeropoint
% \nulldelimiterspace\zeropoint
% \setbox2\hbox{$\left\delimiter"0270370 \vrule \s!height\ht0 \s!depth \dp0 \s!width\zeropoint\right.$}% is this the right code point?
% \mathord{\vcenter{\hbox{\copy2\rlap{\raise\dimexpr\ht2-\ht4\relax\copy4}\copy0}}}%
% \endgroup}
%
% \def\mthfrac#1#2#3#4#5{\mathchoice
% {\math_stylebuilders_frac\displaystyle \textface {#1}{#2}{#3}{#4}{#5}}%
% {\math_stylebuilders_frac\textstyle \textface {#1}{#2}{#3}{#4}{#5}}%
% {\math_stylebuilders_frac\scriptstyle \scriptface {#1}{#2}{#3}{#4}{#5}}%
% {\math_stylebuilders_frac\scriptscriptstyle\scriptscriptface{#1}{#2}{#3}{#4}{#5}}}
%
% \def\mthsqrt#1#2#3{\mathchoice
% {\math_stylebuilders_sqrt\displaystyle \textface{#1}{#2}{#3}}%
% {\math_stylebuilders_sqrt\textstyle \textface{#1}{#2}{#3}}%
% {\math_stylebuilders_sqrt\scriptstyle \textface{#1}{#2}{#3}}%
% {\math_stylebuilders_sqrt\scriptscriptstyle\textface{#1}{#2}{#3}}}
% \unexpanded\def\mthfrac#1#2#3{[mthfrac: #1 #2 #3]}
% \unexpanded\def\mthsqrt#1#2#3{[mthsqrt: #1 #2 #3]}
|