summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/source/latex/unicode-math/unicode-math.dtx
blob: fe8cdb34302cb77b98002caf5dc5d09e971329c8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
% \iffalse
% ^^A %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% ^^A   SELF-EXTRACTION BEGINS HERE
% ^^A %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%<*internal>
\begingroup
\input docstrip.tex
\keepsilent
\preamble
Copyright 2006-2010 by Will Robertson <will.robertson@latex-project.org>

This package is free software and may be redistributed and/or modified under
the conditions of the LaTeX Project Public License, version 1.3c or higher
(your choice): <http://www.latex-project.org/lppl/>.

This work is "author-maintained" by Will Robertson.
\endpreamble
\nopostamble
\askforoverwritefalse
\generate{\file{unicode-math.sty}{
  \from{unicode-math.dtx}{preamble}
  \from{unicode-math.dtx}{msg}
  \from{unicode-math.dtx}{package,stix}
}}
\nopreamble
\def\tempa{plain}
\ifx\tempa\fmtname\endgroup\expandafter\bye\fi
\generate{\file{dtx-style.sty}{\from{\jobname.dtx}{dtx-style}}}
\endgroup
\ProvidesFile{unicode-math.dtx}
%</internal>
%<preamble>\ProvidesPackage{unicode-math}
%<*preamble>
  [2010/07/14 v0.5a Unicode maths in XeLaTeX]
%</preamble>
%<*internal>
\documentclass{ltxdoc}
\usepackage{dtx-style}
\begin{document}
  \DocInput{\jobname.dtx}
\end{document}
%</internal>
% \fi
%
% ^^A %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% ^^A   DOCUMENTATION BEGINS HERE
% ^^A %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% \title{Experimental Unicode mathematical typesetting: The \pkg{unicode-math} package}
% \author{Will Robertson\\\texttt{will.robertson@latex-project.org}}
% \date{\umfiledate \qquad \umfileversion}
%
% \maketitle
%
% \begin{abstract}
% \noindent
% \begingroup
% \bfseries
% Warning! This package is experimental and subject to change without regard
% for backwards compatibility.
% Performance issues may be encountered until algorithms are refined.
% \endgroup
%
% (But don't take the warning too seriously, either.
% I hope the package is now ready to use.)
%
% This is the first release of the \pkg{unicode-math} package, which is
% intended to be a complete implementation of Unicode
% maths for \LaTeX\ using the \XeTeX\ and Lua\TeX\ typesetting engines.
% With this package, changing maths fonts will be as easy as changing
% text fonts --- not that there are many Unicode maths fonts yet.
% Maths input can also be simplified with Unicode since literal glyphs may be
% entered instead of control sequences in your document source.
%
% The package is fulled tested under \XeTeX, but Lua\TeX\ support is not
% yet complete. User beware, but let me know of any troubles.
%
% Alongside this documentation file, you should be able to find a minimal
% example demonstrating the use of the package,
% `\texttt{unimath-example.ltx}'. It also comes with a separate document,
% `\texttt{unimath-symbols.pdf}',
% containing a complete listing of mathematical symbols defined by
% \pkg{unicode-math}.
%
% Finally, while the STIX fonts may be used with this package, accessing
% their alphabets in their `private user area' is not yet supported.
% (Of these additional alphabets there is a separate caligraphic design
% distinct to the script design already included.)
% Better support for the STIX fonts is planned for an upcoming revision of the
% package after any problems have been ironed out with the initial version.
%
% \end{abstract}
%
% \newpage
% \tableofcontents
%
% \newpage
% \section{Introduction}
%
% This document describes the \pkg{unicode-math} package, which is an
% \emph{experimental} implementation of a macro to Unicode glyph encoding for
% mathematical characters. Its intended use is for \XeTeX, although it is
% conjectured that some effect could be spent to create a cross-format
% package that would also work with Lua\TeX.
%
% Users who desire to specify maths alphabets only (Greek and Latin letters,
% and Arabic numerals)
% may wish to use Andrew Moschou's \pkg{mathspec} package instead.
%
% \section{Acknowledgements}
%
% Many thanks to:
% Microsoft for developing the mathematics extension to OpenType as part of
% Microsoft Office~2007;
% Jonathan Kew for implementing Unicode math support in \XeTeX;
% Barbara Beeton for her prodigious effort compiling the definitive list of Unicode math
% glyphs and their \LaTeX\ names (inventing them where necessary), and also
% for her thoughtful replies to my sometimes incessant questions.
% Ross Moore and Chris Rowley have provided moral and technical support
% from the very early days with great insight into the issues we face trying
% to extend and use \TeX\ in the future.
% Apostolos Syropoulos, Joel Salomon, Khaled Hosny, and Mariusz Wodzicki
% have been fantastic beta testers.
%
% \section{Getting started}
%
% Load \pkg{unicode-math} as a regular \LaTeX\ package. It should be loaded
% after any other maths or font-related package in case it needs to overwrite
% their definitions. Here's an example:
% \begin{quote}
% \begin{verbatim}
% \usepackage{amsmath} % if desired
% \usepackage{unicode-math}
% \setmathfont{Cambria Math}
% \end{verbatim}
% \end{quote}
%
% \subsection{Package options}
% Package options may be set when the package as loaded or at any later
% stage with the \cs{unimathsetup} command. Therefore, the following two
% examples are equivalent:
% \begin{quote}
% \begin{verbatim}
% \usepackage[math-style=TeX]{unicode-math}
% % OR
% \usepackage{unicode-math}
% \unimathsetup{math-style=TeX}
% \end{verbatim}
% \end{quote}
% Note, however, that some package options affects how maths is initialised
% and changing an option such as |math-style| will not take effect until a
% new maths font is set up.
%
% Package options may \emph{also} be used when declaring new maths fonts,
% passed via options to the \cs{setmathfont} command.
% Therefore, the following two examples are equivalent:
% \begin{quote}
% \begin{verbatim}
% \unimathsetup{math-style=TeX}
% \setmathfont{Cambria Math}
% % OR
% \setmathfont[math-style=TeX]{Cambria Math}
% \end{verbatim}
% \end{quote}
%
% A short list of package options is shown in \tabref{pkgopt}.
% See following sections for more information.
%
% \begin{table}\centering
%   \topcaption{Package options.}
%   \tablabel{pkgopt}
%   \begin{tabular}{lll}
%     \toprule
%     Option & Description & See\dots \\
%     \midrule
%     |math-style| & Style of letters & \secref{math-style} \\
%     |bold-style| & Style of bold letters & \secref{bold-style} \\
%     |sans-style| & Style of sans serif letters & \secref{sans-style} \\
%     |nabla|      & Style of the nabla symbol & \secref{nabla} \\
%     |partial|    & Style of the partial symbol & \secref{partial} \\
%     |vargreek-shape|  & Style of phi and epsilon & \secref{vargreek-shape} \\
%     |colon| & Behaviour of \cs{colon} & \secref{colon} \\
%     |slash-delimiter| & Glyph to use for `stretchy' slash & \secref{slash-delimiter} \\
%     \bottomrule
%   \end{tabular}
% \end{table}
%
% \subsection{Known issues}
%
% In some cases, \XeTeX's math support is either missing or I have not
% discovered how to access features for various types of maths construct.
% An example of this are horizontal extensible symbols, such as underbraces,
% overbraces, and arrows that can grow longer if necessary. Behaviour with
% such symbols is not necessarily going to be consistent; please report
% problem areas to me.
%
% \LaTeX's concept of math `versions' is not yet supported. The only way to
% get bold maths is to add markup for it all. This is still an area that
% requires investigation.
%
% Symbols for maths characters have been inherited from the STIX project and
% may change slightly in the long term. We have tried to preserve backwards
% compatibility with \LaTeX\ conventions as best as possible; again, please
% report areas of concern.
%
% \section{Unicode maths font setup}
%
% In the ideal case, a single Unicode font will contain all maths glyphs we
% need. The file |unicode-math-table.tex| (based on Barbara Beeton's \STIX\ table)
% provides the mapping between Unicode
% maths glyphs and macro names (all 3298 — or however many — of them!). A
% single command
% \codeline{\cmd\setmathfont\oarg{font features}\marg{font name}}
% implements this for every every symbol and alphabetic variant.
% That means |x| to $x$, |\xi| to $\xi$, |\leq| to $\leq$, etc., |\mathscr{H}|
% to $\mathscr{H}$ and so on, all for Unicode glyphs within a single font.
%
% This package deals well with Unicode characters for maths
% input. This includes using literal Greek letters in formulae,
% resolving to upright or italic depending on preference.
%
% Font features specific to \pkg{unicode-math} are shown in \tabref{mathfontfeatures}.
% Package options (see \tabref{pkgopt}) may also be used.
% Other \pkg{fontspec} features are also valid.
%
% \begin{table}\centering
%   \topcaption{Maths font options.}
%   \tablabel{mathfontfeatures}
%   \begin{tabular}{lll}
%     \toprule
%     Option & Description & See\dots \\
%     \midrule
%     |range| & Style of letters & \secref{range} \\
%     |script-font| & Font to use for sub- and super-scripts & \secref{sscript} \\
%     |script-features| & Font features for sub- and super-scripts & \secref{sscript} \\
%     |sscript-font| & Font to use for nested sub- and super-scripts & \secref{sscript} \\
%     |sscript-features| & Font features for nested sub- and super-scripts & \secref{sscript} \\
%     \bottomrule
%   \end{tabular}
% \end{table}
%
% \subsection{Using multiple fonts}
% \seclabel{range}
%
% There will probably be few cases where a single Unicode maths font suffices
% (simply due to glyph coverage). The upcoming \STIX\ font comes to mind as a
% possible exception. It will therefore be necessary to delegate specific
% Unicode ranges of glyphs to separate fonts:
%   \codeline{\cmd\setmathfont|[range=|\meta{unicode range}|,|\meta{font features}|]|\marg{font name}}
% where \meta{unicode range} is a comma-separated list of Unicode slots and
% ranges such as |{"27D0-"27EB,"27FF,"295B-"297F}|. You may also use the macro
% for accessing the glyph, such as \cs{int}, or whole collection of symbols with
% the same math type, such as \cs{mathopen}, or complete math alphabets such as \cs{mathbb}.
% (Only numerical slots, however, can be used in ranged declarations.)
%
% \subsubsection{Control over maths alphabets}
%
% Exact control over maths alphabets can be somewhat involved.
% Here is the current plan.
% \begin{itemize}
% \item |[range=\mathbb]| to use the font for `bb' letters only.
% \item |[range=\mathbfsfit/{greek,Greek}]| for Greek lowercase and uppercase only (with |latin|, |Latin|, |num| as well for Latin lower-/upper-case and numbers).
% \item |[range=\mathsfit->\mathbfsfit]| to map to different output alphabet(s) (which is rather useless right now but will become less useless in the future).
% \end{itemize}
%
% And now the trick.
% If a particular math alphabet is not defined in the font, fall back onto the lower-base plane (i.e., upright) glyphs.
% Therefore, to use an \ascii-encoded fractur font, for example, write
% \par{\centering|\setmathfont[range=\mathfrak]{SomeFracturFont}|\par}\noindent
% and because the math plane fractur glyphs will be missing, \pkg{unicode-math} will know to use the \ascii\ ones instead.
% If necessary (but why?) this behaviour can be forced with |[range=\mathfrac->\mathup]|.
%
%
% \subsection{Script and scriptscript fonts/features}
% \seclabel{sscript}
%
% Cambria Math uses OpenType font features to activate smaller optical sizes
% for scriptsize and scriptscriptsize symbols (the $B$ and $C$, respectively,
% in $A_{B_C}$). Other fonts will possibly use entirely separate fonts.
%
% Not yet implemented: Both of these options
% must be taken into account. I hope this will be mostly automatic from the
% users' points of view. The |+ssty| feature can be detected and applied
% automatically, and appropriate optical size information embedded in the
% fonts will ensure this latter case. Fine tuning should be possible
% automatically with \pkg{fontspec} options. We might have to wait until
% MnMath, for example, before we really know.
%
% \section{Maths input}
%
% \XeTeX's Unicode support allows maths input through two methods. Like
% classical \TeX, macros such as \cmd\alpha, \cmd\sum, \cmd\pm, \cmd\leq, and
% so on, provide verbose access to the entire repertoire of characters defined
% by Unicode. The literal characters themselves may be used instead, for more
% readable input files.
%
% \subsection{Math `style'}
% \seclabel{math-style}
%
% Classically, \TeX\ uses italic lowercase Greek letters and \emph{upright}
% uppercase Greek letters for variables in mathematics. This is contrary to
% the \textsc{iso} standards of using italic forms for both upper- and lowercase.
% Furthermore, the French (contrary again, \emph{quelle surprise}) have been
% known to use upright uppercase \emph{Latin} letters as well as upright
% upper- and lowercase Greek. Finally, it is not unknown to use upright letters
% for all characters, as seen in the Euler fonts.
%
% The \pkg{unicode-math} package accommodates these possibilities with an
% interface heavily inspired by Walter Schmidt's \pkg{lucimatx} package: a
% package option \opt{math-style} that takes one of four arguments:
% \opt{TeX}, \opt{ISO}, \opt{french}, or \opt{upright}.
%
% The philosophy behind the interface to the mathematical alphabet symbols
% lies in \LaTeX's attempt of separating content and formatting. Because input
% source text may come from a variety of places, the upright and
% `mathematical' italic Latin and Greek alphabets are \emph{unified} from the
% point of view of having a specified meaning in the source text. That is, to
% get a mathematical ‘$x$’, either the ascii (`keyboard') letter |x| may
% be typed, or the actual Unicode character may be used. Similarly for Greek
% letters. The upright or italic forms are then chosen based on the
% |math-style| package option.
%
% If glyphs are desired that do not map as per the package option (for
% example, an upright `g' is desired but typing |$g$| yields `$g$'),
% \emph{markup} is required to specify this; to follow from the example:
% |\mathup{g}|. Maths alphabets commands such as \cmd\mathup\ are detailed
% later.
%
% \paragraph{Alternative interface}
% However, some users may not like this convention of normalising their input.
% For them, an upright |x| is an upright `x' and that's that.
% (This will be the case when obtaining source text from copy/pasting PDF or
% Microsoft Word documents, for example.)
% For these users, the |literal| option to |math-style| will effect this behaviour.
%
% The \opt{math-style} options' effects are shown in brief in \tabref{math-style}.
%
% \begin{table}
%   \centering
%   \topcaption{Effects of the \opt{math-style} package option.}
%   \tablabel{math-style}
%   \begin{tabular}{@{}>{\ttfamily}lcc@{}}
%     \toprule
%       & \multicolumn{2}{c}{Example} \\
%        \cmidrule(l){2-3}
%       \rmfamily Package option & Latin & Greek \\
%     \midrule
%       math-style=ISO & $(a,z,B,X)$ & $\mathit{(\alpha,\beta,\Gamma,\Xi)}$ \\
%       math-style=TeX & $(a,z,B,X)$ & $(\mathit\alpha,\mathit\beta,\mathup\Gamma,\mathup\Xi)$ \\
%       math-style=french & $(a,z,\mathup B,\mathup X)$ & $(\mathup\alpha,\mathup\beta,\mathup\Gamma,\mathup\Xi)$ \\
%       math-style=upright & $(\mathup a,\mathup z,\mathup B,\mathup X)$ & $(\mathup\alpha,\mathup\beta,\mathup\Gamma,\mathup\Xi)$ \\
%     \bottomrule
%   \end{tabular}
% \end{table}
%
%
% \subsection{Bold style}
% \seclabel{bold-style}
%
% Similar as in the previous section, ISO standards differ somewhat to \TeX's
% conventions (and classical typesetting) for `boldness' in mathematics. In
% the past, it has been customary to use bold \emph{upright} letters to denote
% things like vectors and matrices. For example, \( \mathbfup{M} =
% (\mitM_x,\mitM_y,\mitM_z) \). Presumably, this was due to the relatively
% scarcity of bold italic fonts in the pre-digital typesetting era. It has
% been suggested that \emph{italic} bold symbols are used nowadays instead.
%
% Bold Greek letters have simply been bold variant glyphs of their regular
% weight, as in \( \mbfitxi = (\mitxi_\mitr,\mitxi_\mitphi,\mitxi_\mittheta)
% \). Confusingly, the syntax in \LaTeX\ has been different for these two
% examples: \cmd\mathbf\ in the former (`$\mathbfup{M}$'), and \cmd\bm\ (or
% \cmd\boldsymbol, deprecated) in the latter (`$\mbfitxi$').
%
% In \pkg{unicode-math}, the \cmd\mathbf\ command works directly with both
% Greek and Latin maths alphabet characters and depending on package option
% either switches to upright for Latin letters (|bold-style=TeX|) as well or
% keeps them italic (|bold-style=ISO|).
%
% To match the package options for non-bold characters, for
% |bold-style=upright| all bold characters are upright, and
% |bold-style=literal| does not change the upright/italic shape of the letter.
%
% Upright and italic bold mathematical letters input as direct Unicode
% characters are normalised with the same rules. For example, with
% |bold-style=TeX|, a literal bold italic latin character will be typeset
% upright.
%
% Note that \opt{bold-style} is independent of \opt{math-style}, although if
% the former is not specified then sensible defaults are chosen based on the
% latter.
%
% The \opt{bold-style} options' effects are shown in brief in
% \tabref{bold-style}.
%
% \begin{table}
%   \centering
%   \topcaption{Effects of the \opt{bold-style} package option.}
%   \tablabel{bold-style}
%   \begin{tabular}{@{}>{\ttfamily}lcc@{}}
%     \toprule
%       & \multicolumn{2}{c}{Example} \\
%        \cmidrule(l){2-3}
%       \rmfamily Package option & Latin & Greek \\
%     \midrule
%       bold-style=ISO & $(\mathbfit a, \mathbfit z, \mathbfit B, \mathbfit X)$ & $(\mathbfit\alpha, \mathbfit\beta, \mathbfit\Gamma, \mathbfit\Xi)$ \\
%       bold-style=TeX & $(\mathbfup a,\mathbfup z,\mathbfup B,\mathbfup X)$ & $(\mathbfit\alpha, \mathbfit\beta,\mathbfup \Gamma,\mathbfup \Xi)$ \\
%       bold-style=upright & $(\mathbfup a,\mathbfup z,\mathbfup B,\mathbfup X)$ & $(\mathbfup \alpha,\mathbfup \beta,\mathbfup \Gamma,\mathbfup \Xi)$ \\
%     \bottomrule
%   \end{tabular}
% \end{table}
%
%
% \subsection{Sans serif style}
% \seclabel{sans-style}
%
% Unicode contains upright and italic, medium and bold mathematical alphabet characters.
% These may be explicitly selected with the \cs{mathsfup}, \cs{mathsfit}, \cs{mathbfsfup}, and \cs{mathbfsfit}
% commands discussed in \secref{all-math-alphabets}.
%
% How should the generic \cs{mathsf} behave? Unlike bold, sans serif is used much more sparingly
% in mathematics. I've seen recommendations to typeset tensors in sans serif italic
% or sans serif italic bold (e.g., examples in the \pkg{isomath} and \pkg{mattens} packages).
% But \LaTeX's \cs{mathsf} is \textsl{upright} sans serif.
%
% Therefore I reluctantly add the package options |[sans-style=upright]| and |[sans-style=italic]| to control the behaviour of \cs{mathsf}.
% The |upright| style sets up the command to use the seemingly-useless upright sans serif, including Greek;
% the |italic| style switches to using italic in both Latin and Greek alphabets.
% In other words, this option simply changes the meaning of \cs{mathsf} to either \cs{mathsfup} or \cs{mathsfit}, respectively.
% Please let me know if more granular control is necessary here.
%
% There is also a |[sans-style=literal]| setting, set automatically with |[math-style=literal]|, which retains the uprightness of the input characters used when selecting the sans serif output.
%
% \subsubsection{What about bold sans serif?}
%
% While you might want your bold upright and your sans serif italic, I don't believe you'd also want
% your bold sans serif upright (or all vice versa, if that's even conceivable). Therefore, bold sans
% serif follows from the setting for sans serif; it is completely independent of the setting for bold.
%
% In other words, \cs{mathbfsf} is \cs{mathbfsfup} or \cs{mathbfsfit} based on |[sans-style=upright]| or |[sans-style=italic]|, respectively. And |[sans-style=literal]| causes \cs{mathbfsf} to retain the same italic or upright shape as the input, and turns it bold sans serif.
%
% Note well! There is no medium-weight sans serif Greek alphabet in Unicode; therefore, |\mathsf{\alpha}| does not make sense (simply produces `$\mathsf{\alpha}$') while |\mathbfsf{\alpha}| gives `$\mathsf{\alpha}$'.
%
% \subsection{All (the rest) of the mathematical alphabets}
% \seclabel{all-math-alphabets}
%
% Unicode contains separate codepoints for most if not all variations of alphabet
% shape one may wish to use in mathematical notation. The complete list is shown
% in \tabref{mathalphabets}. Some of these have been covered in the previous sections.
%
% At present, the math font switching commands do not nest; therefore if you want
% sans serif bold, you must write |\mathsfbf{...}| rather than |\mathbf{\mathsf{...}}|.
% This may change in the future.
%
% \begin{table}
% \caption{Mathematical alphabets defined in Unicode. Black dots indicate an alphabet exists in the font specified; grey dots indicate shapes that should always be taken from the upright font even in the italic style. See main text for description of \cs{mathbbit}.}
% \tablabel{mathalphabets}
% \centering
% \def\Y{\textbullet}
% \def\M{\textcolor{gray}{\textbullet}}
% \begin{tabular}{@{} lll l ccc @{}}
% \toprule
% \multicolumn{3}{c}{Font} & & \multicolumn{3}{c}{Alphabet} \\
% \cmidrule(r){1-3}
% \cmidrule(l){5-7}
% Style & Shape & Series & Switch & Latin & Greek & Numerals \\
% \midrule
% Serif      & Upright & Normal & \cs{mathup}     & \Y & \Y & \Y  \\
%            &         & Bold   & \cs{mathbfup}   & \Y & \Y & \Y  \\
%            & Italic  & Normal & \cs{mathit}     & \Y & \Y & \M  \\
%            &         & Bold   & \cs{mathbfit}   & \Y & \Y & \M  \\
% Sans serif & Upright & Normal & \cs{mathsfup}   & \Y &    & \Y  \\
%            & Italic  & Normal & \cs{mathsfit}   & \Y &    & \M  \\
%            & Upright & Bold   & \cs{mathbfsfup} & \Y & \Y & \Y  \\
%            & Italic  & Bold   & \cs{mathbfsfit} & \Y & \Y & \M  \\
% Typewriter & Upright & Normal & \cs{mathtt}     & \Y &    & \Y  \\
% Double-struck & Upright & Normal & \cs{mathbb}     & \Y &    & \Y  \\
%               & Italic  & Normal & \cs{mathbbit}   & \Y &    &  \\
% Script     & Upright & Normal & \cs{mathscr}    & \Y &    &     \\
%            &         & Bold   & \cs{matbfscr}   & \Y &    &     \\
% Fraktur    & Upright & Normal & \cs{mathfrak}   & \Y &    &     \\
%            &         & Bold   & \cs{mathbffrac} & \Y &    &     \\
% \bottomrule
% \end{tabular}
% \end{table}
%
% \subsubsection{Double-struck}
%
% The double-struck alphabet (also known as `blackboard bold') consists of
% upright Latin letters $\{\mathbb{a}$--$\mathbb{z}$,$\mathbb{A}$$\mathbb{Z}\}$,
% numerals $\mathbb{0}$--$\mathbb{9}$, summation symbol $\mathbb\sum$, and four
% Greek letters only: $\{\mathbb{\gamma\pi\Gamma\Pi}\}$.
%
% While |\mathbb{\sum}| does produce a double-struck summation symbol,
% its limits aren't properly aligned. Therefore,
% either the literal character or the control sequence \cs{Bbbsum} are
% recommended instead.
%
% There are also five Latin \emph{italic} double-struck letters: $\mathbbit{Ddeij}$.
% These can be accessed (if not with their literal characters or control sequences)
% with the \cs{mathbbit} alphabet switch, but note that only those five letters
% will give the expected output.
%
% \subsubsection{Caligraphic vs.\ Script variants}
%
% The Unicode maths encoding contains an alphabet style for `Script' letters,
% and while by default \cs{mathcal} and \cs{mathscr}
% are synonyms, there are some situations when a
% separate `Caligraphic' style is needed as well.
%
% If a font contains alternate glyphs for a separat caligraphic style,
% they can be selected explicitly as shown below.
% This feature is currently only supported by the XITS~Math font, where
% the caligraphic letters are accessed with the same glyph slots as the
% script letters but with the first stylistic set feature (|ss01|) applied.
% \begin{verbatim}
%   \setmathfont[range={\mathcal,\mathbfcal},StylisticSet=1]{XITS Math}
% \end{verbatim}
% An example is shown below.
% \begin{quote}
% \setmathfont[range=\mathscr]{XITS Math}
% \setmathfont[range=\mathcal,StylisticSet=1]{XITS Math}
% The Script style (\cs{mathscr}) in XITS Math is: $\mathscr{ABCXYZ}$\par
% The Caligraphic style (\cs{mathcal}) in XITS Math is: $\mathcal{ABCXYZ}$
% \end{quote}
%
%
% \subsection{Miscellanea}
%
%
% \subsubsection{Nabla}
% \seclabel{nabla}
%
%  The symbol $\nabla$ comes in the six forms shown in \tabref{nabla}.
%  We want an individual option to specify whether we want upright or italic
%  nabla by default (when either upright or italic nabla is used in the
%  source). \TeX\ classically uses an upright nabla, and \textsc{iso}
%  standards agree with this convention.
%  The package options |nabla=upright| and
%  |nabla=italic| switch between the two choices, and |nabla=literal| respects
%  the shape of the input character. This is then inherited
%  through \cmd\mathbf; \cmd\mathit\ and \cmd\mathup\ can be used to force one
%  way or the other.
%
% |nabla=italic| is the default. |nabla=literal| is
% activated automatically after |math-style=literal|.
%
% \begin{table}
%   \centering
%   \topcaption{The various forms of nabla.}
%   \tablabel{nabla}
%   \let \tmpshow\empty
%   \begin{tabular}{@{}llc@{}}
%       \toprule
%     \multicolumn{2}{@{}l}{Description} & Glyph
%      \\ \cmidrule(r){1-2}\cmidrule(l){3-3}
%     Upright & Serif & $\mathup\nabla$ \\
%     & Bold serif & $\mathbfup\nabla$ \\
%     & Bold sans & \umfont\char"1D76F \\
%       \cmidrule(lr){1-2}\cmidrule(lr){3-3}
%     Italic & Serif & $\mathit\nabla$ \\
%     & Bold serif & $\mathbfit\nabla$ \\
%     & Bold sans  & \umfont\char"1D7A9 \\
%       \bottomrule
%   \end{tabular}
% \end{table}
%
% \subsubsection{Partial}
% \seclabel{partial}
%
% The same applies to the symbols \unichar{2202} partial differential and
% \unichar{1D715} math italic partial differential.
%
% At time of writing, both the Cambria Math and STIX fonts display these
% two glyphs in the same italic style, but this is hopefully a bug that will
% be corrected in the future~--- the `plain' partial differential should
% really have an upright shape.
%
% Use the |partial=upright| or |partial=italic| package options to specify
% which one you would like, or |partial=literal| to have the same character
% used in the output as was used for the input.
% The default is (always, unless someone requests and
% argues otherwise) |partial=italic|.\footnote{A good argument would revolve
% around some international standards body recommending upright over italic.
% I just don't have the time right now to look it up.} |partial=literal|
% is activated following |math-style=literal|.
%
% See \tabref{partial} for the variations on the partial differential symbol.
%
% \begin{table}
%   \centering
%   \topcaption{The various forms of the partial differential. Note that in
% the fonts used to display these glyphs, the first upright partial is
% incorrectly shown in an italic style.}
%   \tablabel{partial}
%   \begin{tabular}{@{}llc@{}}
%       \toprule
%     \multicolumn{2}{@{}l}{Description} & Glyph
%      \\ \cmidrule(r){1-2}\cmidrule(l){3-3}
%     Regular   & Upright & $\mathup\partial$ \\
%               & Italic  & $\mathit\partial$ \\
%     Bold      & Upright & $\mathbfup\partial$ \\
%               & Italic  & $\mathbfit\partial$ \\
%     Sans bold & Upright & \umfont\char"1D789 \\
%               & Italic  & \umfont\char"1D7C3 \\
%       \bottomrule
%   \end{tabular}
% \end{table}
%
% \subsubsection{Epsilon and phi: $\epsilon$ vs.\ $\varepsilon$ and $\phi$ vs.\ $\varphi$}
% \seclabel{vargreek-shape}
%
% \TeX\ defines \cs{epsilon} to look like $\varepsilon$ and \cs{varepsilon} to
% look like $\epsilon$. The Unicode glyph directly after delta and before zeta
% is `epsilon' and looks like $\epsilon$; there is a subsequent variant of
% epsilon that looks like $\varepsilon$. This creates a problem. People who
% use Unicode input won't want their glyphs transforming; \TeX\ users will be
% confused that what they think as `normal epsilon' is actual the `variant
% epsilon'. And the same problem exists for `phi'.
%
% We have a package option to control this behaviour.
% With |vargreek-shape=TeX|,
% \cs{phi} and \cs{epsilon} produce $\phi$ and $\epsilon$ and
% \cs{varphi} and \cs{varepsilon} produce $\varphi$ and $\varepsilon$.
% With |vargreek-shape=unicode|, these symbols are swapped.
% Note, however, that Unicode characters are not affected by this option.
% That is, no remapping occurs of the characters/glyphs, only the control sequences.
%
% The package default is to use |vargreek-shape=TeX|.
%
% \subsubsection{Primes}
%
% Primes ($x'$) may be input in several ways. You may use any combination
% of \ascii\ straight quote (\texttt{\char`\'}), Unicode prime \unichar{2032}
% ($'$), and \cs{prime}; when multiple primes occur next to each other, they chain
% together to form double, triple, or quadruple primes if the font contains
% pre-drawn glyphs. These may also be accessed with \cs{dprime},
% \cs{trprime}, and \cs{qprime}, respectively.
%
% If the font does not contain the pre-drawn glyphs or more than four primes
% are used, the single prime glyph is used multiple times with a negative
% kern to get the spacing right. There is no user interface to adjust this
% negative kern yet (because I haven't decided what it should look like);
% if you need to, write something like this:
% \begin{verbatim}
% \ExplSyntaxOn
% \muskip_gset:Nn \g_um_primekern_muskip { -\thinmuskip/2 }
% \ExplySyntaxOff
% \end{verbatim}
%
% Backwards or reverse primes behave in exactly the same way; use any of \ascii\
% back tick (\texttt{\char`\`}), Unicode reverse prime \unichar{2035}
% ({\umfont\char"2035}), or \cs{backprime} to access it.
% Multiple backwards primes can also be called with \cs{backdprime},
% \cs{backtrprime}, and \cs{backqprime}.
%
% If you ever need to enter the straight quote |'| or the backtick |`| in
% maths mode, these glyphs can be accessed with \cs{mathstraightquote} and
% \cs{mathbacktick}.
%
% \subsubsection{Unicode subscripts and superscripts}
%
% You may, if you wish, use Unicode subscripts and superscripts in your
% source document. For basic expressions, the use of these characters
% can make the input more readable.
% Adjacent sub- or super-scripts will be concatenated into a single
% expression.
%
% The range of subscripts and superscripts supported by this package
% are shown in \figref{superscripts,subscripts}. Please request more if
% you think it is appropriate.
%
% \begin{figure}\centering
% \fbox{\fontspec{Charis SIL}\Large
% A
% ^^^^2070
% ^^^^00b9
% ^^^^00b2
% ^^^^00b3
% ^^^^2074
% ^^^^2075
% ^^^^2076
% ^^^^2077
% ^^^^2078
% ^^^^2079
% ^^^^207a
% ^^^^207b
% ^^^^207c
% ^^^^207d
% ^^^^207e
% ^^^^2071
% ^^^^207f
% Z}
% \caption{
%   The Unicode superscripts supported as input characters.
%   These are the literal glyphs from Charis SIL,
%   not the output seen when used for maths input.
%   The `A' and `Z' are to provide context for the size and
%   location of the superscript glyphs.
% }
% \figlabel{superscripts}
% \end{figure}
%
% \begin{figure}\centering
% \fbox{\fontspec{Charis SIL}\Large
% A
% ^^^^2080
% ^^^^2081
% ^^^^2082
% ^^^^2083
% ^^^^2084
% ^^^^2085
% ^^^^2086
% ^^^^2087
% ^^^^2088
% ^^^^2089
% ^^^^208a
% ^^^^208b
% ^^^^208c
% ^^^^208d
% ^^^^208e
% ^^^^2090
% ^^^^2091
% ^^^^1d62
% ^^^^2092
% ^^^^1d63
% ^^^^1d64
% ^^^^1d65
% ^^^^2093
% ^^^^1d66
% ^^^^1d67
% ^^^^1d68
% ^^^^1d69
% ^^^^1d6a
% Z}
% \caption{
%   The Unicode subscripts supported as input characters.
%   See note from \figref{superscripts}.
% }
% \figlabel{subscripts}
% \end{figure}
%
% \subsubsection{Colon}
% \seclabel{colon}
%
% The colon is one of the few confusing characters of Unicode maths.
% In \TeX, \texttt{:} is defined as a colon with relation spacing: `$a:b$'.
% While \cs{colon} is defined as a colon with punctuation spacing: `$a\colon b$'.
%
% In Unicode, \unichar{003A} {colon} is defined as a punctuation symbol,
% while \unichar{2236} {ratio} is the colon-like symbol used in mathematics to denote
% ratios and other things.
%
% This breaks the usual straightforward mapping from control sequence to Unicode input character
% to (the same) Unicode glyph.
%
% To preserve input compatibility, we remap the \ascii\ input character `\texttt{:}' to \unichar{2236}.
% Typing a literal \unichar{2236} char will result in the same output.
% If \pkg{amsmath} is loaded, then the definition of \cs{colon} is inherited from there
% (it looks like a punctuation colon with additional space around it).
% Otherwise, \cs{colon} is made to output a colon with \cs{mathpunct} spacing.
%
% The package option |colon=literal| forces \ascii\ input `|:|' to be printed as \cs{mathcolon} instead.
%
%
% \subsubsection{Slashes and backslashes}
% \seclabel{slash-delimiter}
%
% There are several slash-like symbols defined in Unicode. The complete list is shown in \tabref{slashes}.
%
% \begin{table}\centering
% \caption{Slashes and backslashes.}
% \tablabel{slashes}
% \begin{tabular}{@{}cl@{}cl@{}}
% \toprule
% Slot & Name & Glyph & Command  \\
% \midrule
% \unichar{002F} & \textsc{solidus}                 & \umfont \char"002F & \cs{slash} \\
% \unichar{2044} & \textsc{fraction slash}          & \umfont \char"2044 & \cs{fracslash} \\
% \unichar{2215} & \textsc{division slash}          & \umfont \char"2215 & \cs{divslash} \\
% \unichar{29F8} & \textsc{big solidus}             & \umfont \char"29F8 & \cs{xsol} \\
% \midrule
% \unichar{005C} & \textsc{reverse solidus}         & \umfont \char"005C & \cs{backslash} \\
% \unichar{2216} & \textsc{set minus}               & \umfont \char"2216 & \cs{smallsetminus} \\
% \unichar{29F5} & \textsc{reverse solidus operator}& \umfont \char"29F5 & \cs{setminus} \\
% \unichar{29F9} & \textsc{big reverse solidus}     & \umfont \char"29F9 & \cs{xbsol} \\
% \bottomrule
% \end{tabular}
% \end{table}
%
% In regular \LaTeX\ we can write \cs{left}\cs{slash}\dots\cs{right}\cs{backslash}
% and so on and obtain extensible delimiter-like symbols. Not all of the Unicode slashes
% are suitable for this (and do not have the font support to do it).
%
% \paragraph{Slash}
%
% Of \unichar{2044} {fraction slash}, TR25 says that it is:
% \begin{quote}
% \dots used to build up simple fractions in running text\dots 
% however parsers of mathematical texts should be prepared to handle fraction slash 
% when it is received from other sources.
% \end{quote}
%
% \unichar{2215} {division slash} should be used when division is represented
% without a built-up fraction; $\pi\approx22/7$, for example.
%
% \unichar{29F8} {big solidus} is a `big operator' (like $\sum$).
%
% \paragraph{Backslash}
%
% The \unichar{005C} {reverse solidus} character \cs{backslash} is used for denoting
% double cosets: $A\backslash B$. (So I'm led to believe.) 
% It may be used as a `stretchy' delimiter if supported by the font.
%
% MathML uses \unichar{2216} {set minus} like this: $A\smallsetminus B$.\footnote{\S4.4.5.11 \url{http://www.w3.org/TR/MathML3/}}
% The \LaTeX\ command name \cs{smallsetminus} is used for backwards compatibility.
%
% Presumably, \unichar{29F5} {reverse solidus operator} is intended to
% be used in a similar way, but it could also (perhaps?) be used to
% represent `inverse division': $\pi\approx7\mathbin{\backslash}22$.^^A
% \footnote{This is valid syntax in the Octave and Matlab programming languages,
% in which it means matrix inverse pre-multiplication. I.e., $A\mathbin{\backslash} B\equiv A^{-1}B$.}
% The \LaTeX\ name for this character is \cs{setminus}.
%
% Finally, \unichar{29F9} {big reverse solidus} is a `big operator' (like $\sum$).
%
% \paragraph{How to use all of these things}
%
% Unfortunately, font support for the above characters/glyphs is rather inconsistent.
% In Cambria Math, the only slash that grows (say when writing
% \[
% \left.\left[\begin{array}{cc} a & b \\ c & d\end{array}\right]\middle\slash
%       \left[\begin{array}{cc} 1 & 1 \\ 1 & 0\end{array}\right] \right.\quad )
% \]
% is the \textsc{fraction slash}, which we just established above is
% sort of only supposed to be used in text.
%
% Of the above characters, the following are allowed to be used after
% \cs{left}, \cs{middle}, and \cs{right}:
% \begin{itemize}
% \item \cs{solidus};
% \item \cs{fracslash};
% \item \cs{slash}; and,
% \item \cs{backslash} (the only reverse slash).
% \end{itemize}
%
% However, we assume that there is only \emph{one} stretchy slash
% in the font; this is assumed by default to be \unichar{002F} {solidus}.
% Writing \cs{left/} or \cs{left}\cs{slash} or \cs{left}{fracslash}
% will all result in the same stretchy delimiter being used.
%
% The delimiter used can be changed with the |slash-delimiter| package option.
% Allowed values are |ascii|, |frac|, and |div|, corresponding to the respective
% Unicode slots.
%
% For example: as mentioned above, Cambria Math's stretchy slash is
% \unichar{2044} {fraction slash}. When using Cambria Math, then
% \pkg{unicode-math} should be loaded with the |slash-delimiter=frac| option.
% (This should be a font option rather than a package option, but
% it will change soon.)
%
% \subsubsection{Pre-drawn fraction characters}
%
% Pre-drawn fractions \unichar{00BC}--\unichar{00BE}, \unichar{2150}--\unichar{215E}
% are not suitable for use in mathematics output. However, they can be useful
% as input characters to abbreviate common fractions.
%
% \centerline{\fontspec{Calibri}
% ¼ ½ ¾  ↉ ⅐ ⅑ ⅒ ⅓ ⅔ ⅕ ⅖ ⅗ ⅘ ⅙ ⅚ ⅛ ⅜ ⅝ ⅞}
%
% For example, instead of writing `|\tfrac12 x|', it's more readable to have
% `|½x|' in the source instead. (There are four missing glyphs above for
% $0/3$, $1/7$, $1/9$, and $1/10$; I don't have a font that contains them.)
%
% If the \cs{tfrac} command exists (i.e., if \pkg{amsmath} is loaded or
% you have specially defined \cs{tfrac} for this purpose), it will be used
% to typeset the fractions. If not, regular \cs{frac} will be used. The command
% to use (\cs{tfrac} or \cs{frac}) can be forced either way with the package
% option |active-frac=small| or |active-frac=normalsize|, respectively.
%
% \subsubsection{Circles}
%
% Unicode defines a large number of different types of circles for a variety
% of mathematical purposes. There are thirteen alone just considering the
% all white and all black ones, shown in \tabref{circles}.
%
% \LaTeX\ defines considerably fewer: \cs{circ} and cs{bigcirc} for white;
% \cs{bullet} for black. This package maps those commands to \cs{vysmwhtcircle},
% \cs{mdlgwhtcircle}, and \cs{smblkcircle}, respectively.
%
% \begin{table}
% \def\showchar#1#2#3{ \textsc{u}+{\small\ttfamily #1} & \texttt{\string#3} & \umfont \char"#1 \\}
% \begin{tabular}{@{}llc@{}}
% \toprule
% Slot & Command & Glyph \\
% \midrule
% \showchar{00B7}{centerdot}{\cdotp}
% \showchar{22C5}{small middle dot}{\cdot}
% \showchar{2219}{bullet operator}{\vysmblkcircle}
% \showchar{2022}{round bullet, filled}{\smblkcircle}
% \showchar{2981}{z notation spot}{\mdsmblkcircle}
% \showchar{26AB}{medium black circle}{\mdblkcircle}
% \showchar{25CF}{circle, filled}{\mdlgblkcircle}
% \showchar{2B24}{black large circle}{\lgblkcircle}
% \bottomrule
% \end{tabular}
% \def\showchar#1#2#3{ \umfont \char"#1 & \texttt{\string#3} & \textsc{u}+{\small\ttfamily #1} \\}
% \begin{tabular}{@{}cll@{}}
% \toprule
% Glyph & Command & Slot \\
% \midrule
% \\
% \\
% \showchar{2218}{composite function (small circle)}{\vysmwhtcircle}
% \showchar{25E6}{white bullet}{\smwhtcircle}
% \showchar{26AC}{medium small white circle}{\mdsmwhtcircle}
% \showchar{26AA}{medium white circle}{\mdwhtcircle}
% \showchar{25CB}{large circle}{\mdlgwhtcircle}
% \showchar{25EF}{large circle}{\lgwhtcircle}
% \bottomrule
% \end{tabular}
% \caption{Filled and hollow Unicode circles.}
% \tablabel{circles}
% \end{table}
%
% \subsubsection{Triangles}
%
% While there aren't as many different sizes of triangle as there are circle,
% there's some important distinctions to make between a few similar characters. See \tabref{uptriangles} for the full summary.
%
% These triangles all have different intended meanings. Note for backwards
% compatibility with \TeX, \unichar{25B3} has \emph{two} different mappings
% in \pkg{unicode-math}. \cs{bigtriangleup} is intended as a binary operator
% whereas \cs{triangle} is intended to be used as a letter-like symbol.
%
% But you're better off if you're using the latter form to indicate an
% increment to use the glyph intended for this purpose, \unichar{2206}: $\increment x$.
%
% Finally, given that $\triangle$ and $\increment$ are provided for you
% already, it is better off to only use upright Greek Delta $\Delta$ if you're
% actually using it as a symbolic entity such as a variable on its own.
%
% \begin{table}
% \begin{tabular}{@{}llcl@{}}
% \toprule
% Slot & Command & Glyph & Class \\
% \midrule
% \unichar{25B5} & \cs{vartriangle}      & \umfont \char"25B5 & binary \\
% \unichar{25B3} & \cs{bigtriangleup}    & \umfont \char"25B3 & binary \\
% \unichar{25B3} & \cs{triangle}         & \umfont \char"25B3 & ordinary \\
% \unichar{2206} & \cs{increment}        & \umfont \char"2206 & ordinary \\
% \unichar{0394} & \cs{mathup}\cs{Delta} & \umfont \char"0394 & ordinary \\
% \bottomrule
% \end{tabular}
% \caption{Different upwards pointing triangles.}
% \tablabel{uptriangles}
% \end{table}
%
% \iffalse
% \subsubsection{Normalising some input characters}
%
% I believe
% all variant forms should be used as legal input that is normalised to
% a consistent output glyph, because we want to be fault-tolerant in the input.
% Here are the duplicates:
% \begin{quote}\obeylines
% \unichar {251} {latin small letter alpha}
% \unichar {25B} {latin small letter epsilon}
% \unichar {263} {latin small letter gamma}
% \unichar {269} {latin small letter iota}
% \unichar {278} {latin small letter phi}
% \unichar {28A} {latin small letter upsilon}
% \unichar {190} {latin capital letter epsilon}
% \unichar {194} {latin capital letter gamma}
% \unichar {196} {latin capital letter iota}
% \unichar {1B1} {latin capital letter upsilon}
% \end{quote}
%
% (Not yet implemented.)
% \fi
%
%
% \StopEventually{}
%
% \part{The \pkg{unicode-math} package}
%
%<*preamble>
%
% \section{Things we need}
%
%    \begin{macrocode}
\usepackage{ifxetex,ifluatex}
\ifxetex\else\ifluatex\else
  \PackageError{unicode-math}{%
    Cannot be run with pdfLaTeX!\MessageBreak
    Use XeLaTeX or LuaLaTeX instead.%
  }\@ehd
\fi\fi
%    \end{macrocode}
%
% \paragraph{Packages}
%    \begin{macrocode}
\RequirePackage{expl3}[2009/08/12]
\RequirePackage{xparse}[2009/08/31]
\RequirePackage{l3keys2e}
\RequirePackage{fontspec}[2010/05/18]
\RequirePackage{catchfile}
%    \end{macrocode}
%
% Start using \LaTeX3 --- finally!
%    \begin{macrocode}
\ExplSyntaxOn
\@ifclassloaded{memoir}{
  \cs_set_eq:NN \um_after_pkg:nn \AtEndPackage
}{
  \RequirePackage{scrlfile}
  \cs_set_eq:NN \um_after_pkg:nn \AfterPackage
}
%    \end{macrocode}
%
% \paragraph{Extra \pkg{expl3} variants}
%    \begin{macrocode}
\cs_generate_variant:Nn \tl_put_right:Nn {cx}
\cs_generate_variant:Nn \seq_if_in:NnTF {NV}
\cs_generate_variant:Nn \prop_gput:Nnn {Nxn}
\cs_generate_variant:Nn \prop_get:NnN {cxN}
\cs_generate_variant:Nn \prop_if_in:NnTF {cx}
%    \end{macrocode}
%
%    \begin{macrocode}
\cs_new:Npn \exp_args:NNcc #1#2#3#4 {
  \exp_after:wN #1 \exp_after:wN #2
    \cs:w #3 \exp_after:wN \cs_end:
    \cs:w #4 \cs_end:
}
%    \end{macrocode}
%
%
% \paragraph{Conditionals}
%    \begin{macrocode}
\bool_new:N \l_um_fontspec_feature_bool
\bool_new:N \l_um_ot_math_bool
\bool_new:N \l_um_init_bool
\bool_new:N \l_um_implicit_alph_bool
%    \end{macrocode}
% For \opt{math-style}:
%    \begin{macrocode}
\bool_new:N \g_um_literal_bool
\bool_new:N \g_um_upLatin_bool
\bool_new:N \g_um_uplatin_bool
\bool_new:N \g_um_upGreek_bool
\bool_new:N \g_um_upgreek_bool
%    \end{macrocode}
% For \opt{bold-style}:
%    \begin{macrocode}
\bool_new:N \g_um_bfliteral_bool
\bool_new:N \g_um_bfupLatin_bool
\bool_new:N \g_um_bfuplatin_bool
\bool_new:N \g_um_bfupGreek_bool
\bool_new:N \g_um_bfupgreek_bool
%    \end{macrocode}
% For \opt{sans-style}:
%    \begin{macrocode}
\bool_new:N \g_um_upsans_bool
\bool_new:N \g_um_sfliteral_bool
%    \end{macrocode}
% For assorted package options:
%    \begin{macrocode}
\bool_new:N \g_um_upNabla_bool
\bool_new:N \g_um_uppartial_bool
\bool_new:N \g_um_literal_Nabla_bool
\bool_new:N \g_um_literal_partial_bool
\bool_new:N \g_um_texgreek_bool
\bool_new:N \l_um_smallfrac_bool
\bool_new:N \g_um_literal_colon_bool
%    \end{macrocode}
%
% \paragraph{Variables}
%    \begin{macrocode}
\int_new:N \g_um_fam_int
%    \end{macrocode}
%
%    \begin{macrocode}
\tl_set:Nn \g_um_math_alphabet_name_latin_tl {Latin,~lowercase}
\tl_set:Nn \g_um_math_alphabet_name_Latin_tl {Latin,~uppercase}
\tl_set:Nn \g_um_math_alphabet_name_greek_tl {Greek,~lowercase}
\tl_set:Nn \g_um_math_alphabet_name_Greek_tl {Greek,~uppercase}
\tl_set:Nn \g_um_math_alphabet_name_num_tl   {Numerals}
\tl_set:Nn \g_um_math_alphabet_name_misc_tl  {Misc.}
%    \end{macrocode}
%
% \subsection{Extras}
%
% \begin{macro}{\um_glyph_if_exist:nTF}
%: TODO: Generalise for arbitrary fonts! \cs{\l_um_font} is not always the one used for a specific glyph!!
%    \begin{macrocode}
\prg_new_conditional:Nnn \um_glyph_if_exist:n {p,TF,T,F} {
  \etex_iffontchar:D \l_um_font #1 \scan_stop:
    \prg_return_true:
  \else:
    \prg_return_false:
  \fi:
}
\cs_generate_variant:Nn \um_glyph_if_exist_p:n {c}
\cs_generate_variant:Nn \um_glyph_if_exist:nTF {c}
\cs_generate_variant:Nn \um_glyph_if_exist:nT  {c}
\cs_generate_variant:Nn \um_glyph_if_exist:nF  {c}
%    \end{macrocode}
% \end{macro}
%
% \subsection{Compatibility with Lua\TeX}
%
%    \begin{macrocode}
\xetex_or_luatex:nnn { \cs_new:Npn \um_cs_compat:n #1 }
  { \cs_set_eq:cc {U#1} {XeTeX#1}   }
  { \cs_set_eq:cc {U#1} {luatexU#1} }
\um_cs_compat:n {mathcode}
\um_cs_compat:n {delcode}
\um_cs_compat:n {mathcodenum}
\um_cs_compat:n {mathcharnum}
\um_cs_compat:n {mathchardef}
\um_cs_compat:n {radical}
\um_cs_compat:n {mathaccent}
\um_cs_compat:n {delimiter}
%    \end{macrocode}
%
% \subsubsection{Function variants}
%
%    \begin{macrocode}
\cs_generate_variant:Nn \fontspec_select:nn {x}
%    \end{macrocode}
%
%    \begin{macrocode}
%</preamble>
%    \end{macrocode}
%
% (Error messages and warning definitions go here from the |msg| chunk
%  defined in \secref[vref]{codemsg}.)
%
%    \begin{macrocode}
%<*package>
%    \end{macrocode}
%
% \subsection{Alphabet Unicode positions}
%
% Before we begin, let's define the positions of the various Unicode
% alphabets so that our code is a little more readable.\footnote{`\textsc{u.s.v.}' stands
% for `Unicode scalar value'.}
%
% Rather than `readable', in the end, this makes the code more extensible.
%    \begin{macrocode}
\cs_new:Npn \usv_set:nnn #1#2#3 {
  \tl_set:cn { \um_to_usv:nn {#1}{#2} } {#3}
}
\cs_new:Npn \um_to_usv:nn #1#2 { g_um_#1_#2_usv }
%    \end{macrocode}
% \paragraph{Alphabets}
%    \begin{macrocode}
\usv_set:nnn {up}{num}{48}
\usv_set:nnn {up}{Latin}{65}
\usv_set:nnn {up}{latin}{97}
\usv_set:nnn {up}{Greek}{"391}
\usv_set:nnn {up}{greek}{"3B1}
\usv_set:nnn {it}{Latin}{"1D434}
\usv_set:nnn {it}{latin}{"1D44E}
\usv_set:nnn {it}{Greek}{"1D6E2}
\usv_set:nnn {it}{greek}{"1D6FC}
\usv_set:nnn {bb}{num}{"1D7D8}
\usv_set:nnn {bb}{Latin}{"1D538}
\usv_set:nnn {bb}{latin}{"1D552}
\usv_set:nnn {scr}{Latin}{"1D49C}
\usv_set:nnn {cal}{Latin}{"1D49C}
\usv_set:nnn {scr}{latin}{"1D4B6}
\usv_set:nnn {frak}{Latin}{"1D504}
\usv_set:nnn {frak}{latin}{"1D51E}
\usv_set:nnn {sf}{num}{"1D7E2}
\usv_set:nnn {sfup}{num}{"1D7E2}
\usv_set:nnn {sfit}{num}{"1D7E2}
\usv_set:nnn {sfup}{Latin}{"1D5A0}
\usv_set:nnn {sf}{Latin}{"1D5A0}
\usv_set:nnn {sfup}{latin}{"1D5BA}
\usv_set:nnn {sf}{latin}{"1D5BA}
\usv_set:nnn {sfit}{Latin}{"1D608}
\usv_set:nnn {sfit}{latin}{"1D622}
\usv_set:nnn {tt}{num}{"1D7F6}
\usv_set:nnn {tt}{Latin}{"1D670}
\usv_set:nnn {tt}{latin}{"1D68A}
%    \end{macrocode}
% Bold:
%    \begin{macrocode}
\usv_set:nnn {bf}{num}{"1D7CE}
\usv_set:nnn {bfup}{num}{"1D7CE}
\usv_set:nnn {bfit}{num}{"1D7CE}
\usv_set:nnn {bfup}{Latin}{"1D400}
\usv_set:nnn {bfup}{latin}{"1D41A}
\usv_set:nnn {bfup}{Greek}{"1D6A8}
\usv_set:nnn {bfup}{greek}{"1D6C2}
\usv_set:nnn {bfit}{Latin}{"1D468}
\usv_set:nnn {bfit}{latin}{"1D482}
\usv_set:nnn {bfit}{Greek}{"1D71C}
\usv_set:nnn {bfit}{greek}{"1D736}
\usv_set:nnn {bffrak}{Latin}{"1D56C}
\usv_set:nnn {bffrak}{latin}{"1D586}
\usv_set:nnn {bfscr}{Latin}{"1D4D0}
\usv_set:nnn {bfcal}{Latin}{"1D4D0}
\usv_set:nnn {bfscr}{latin}{"1D4EA}
\usv_set:nnn {bfsf}{num}{"1D7EC}
\usv_set:nnn {bfsfup}{num}{"1D7EC}
\usv_set:nnn {bfsfit}{num}{"1D7EC}
\usv_set:nnn {bfsfup}{Latin}{"1D5D4}
\usv_set:nnn {bfsfup}{latin}{"1D5EE}
\usv_set:nnn {bfsfup}{Greek}{"1D756}
\usv_set:nnn {bfsfup}{greek}{"1D770}
\usv_set:nnn {bfsfit}{Latin}{"1D63C}
\usv_set:nnn {bfsfit}{latin}{"1D656}
\usv_set:nnn {bfsfit}{Greek}{"1D790}
\usv_set:nnn {bfsfit}{greek}{"1D7AA}
%    \end{macrocode}
%
%    \begin{macrocode}
\usv_set:nnn {bfsf}{Latin}{ \bool_if:NTF \g_um_upLatin_bool \g_um_bfsfup_Latin_usv \g_um_bfsfit_Latin_usv }
\usv_set:nnn {bfsf}{latin}{ \bool_if:NTF \g_um_uplatin_bool \g_um_bfsfup_latin_usv \g_um_bfsfit_latin_usv }
\usv_set:nnn {bfsf}{Greek}{ \bool_if:NTF \g_um_upGreek_bool \g_um_bfsfup_Greek_usv \g_um_bfsfit_Greek_usv }
\usv_set:nnn {bfsf}{greek}{ \bool_if:NTF \g_um_upgreek_bool \g_um_bfsfup_greek_usv \g_um_bfsfit_greek_usv }
\usv_set:nnn {bf}{Latin}{ \bool_if:NTF \g_um_bfupLatin_bool \g_um_bfup_Latin_usv \g_um_bfit_Latin_usv }
\usv_set:nnn {bf}{latin}{ \bool_if:NTF \g_um_bfuplatin_bool \g_um_bfup_latin_usv \g_um_bfit_latin_usv }
\usv_set:nnn {bf}{Greek}{ \bool_if:NTF \g_um_bfupGreek_bool \g_um_bfup_Greek_usv \g_um_bfit_Greek_usv }
\usv_set:nnn {bf}{greek}{ \bool_if:NTF \g_um_bfupgreek_bool \g_um_bfup_greek_usv \g_um_bfit_greek_usv }
%    \end{macrocode}
% Greek variants:
%    \begin{macrocode}
\usv_set:nnn {up}{varTheta}{"3F4}
\usv_set:nnn {up}{Digamma}{"3DC}
\usv_set:nnn {up}{varepsilon}{"3F5}
\usv_set:nnn {up}{vartheta}{"3D1}
\usv_set:nnn {up}{varkappa}{"3F0}
\usv_set:nnn {up}{varphi}{"3D5}
\usv_set:nnn {up}{varrho}{"3F1}
\usv_set:nnn {up}{varpi}{"3D6}
\usv_set:nnn {up}{digamma}{"3DD}
%    \end{macrocode}
% Bold:
%    \begin{macrocode}
\usv_set:nnn {bfup}{varTheta}{"1D6B9}
\usv_set:nnn {bfup}{Digamma}{"1D7CA}
\usv_set:nnn {bfup}{varepsilon}{"1D6DC}
\usv_set:nnn {bfup}{vartheta}{"1D6DD}
\usv_set:nnn {bfup}{varkappa}{"1D6DE}
\usv_set:nnn {bfup}{varphi}{"1D6DF}
\usv_set:nnn {bfup}{varrho}{"1D6E0}
\usv_set:nnn {bfup}{varpi}{"1D6E1}
\usv_set:nnn {bfup}{digamma}{"1D7CB}
%    \end{macrocode}
% Italic Greek variants:
%    \begin{macrocode}
\usv_set:nnn {it}{varTheta}{"1D6F3}
\usv_set:nnn {it}{varepsilon}{"1D716}
\usv_set:nnn {it}{vartheta}{"1D717}
\usv_set:nnn {it}{varkappa}{"1D718}
\usv_set:nnn {it}{varphi}{"1D719}
\usv_set:nnn {it}{varrho}{"1D71A}
\usv_set:nnn {it}{varpi}{"1D71B}
%    \end{macrocode}
% Bold italic:
%    \begin{macrocode}
\usv_set:nnn {bfit}{varTheta}{"1D72D}
\usv_set:nnn {bfit}{varepsilon}{"1D750}
\usv_set:nnn {bfit}{vartheta}{"1D751}
\usv_set:nnn {bfit}{varkappa}{"1D752}
\usv_set:nnn {bfit}{varphi}{"1D753}
\usv_set:nnn {bfit}{varrho}{"1D754}
\usv_set:nnn {bfit}{varpi}{"1D755}
%    \end{macrocode}
% Bold sans:
%    \begin{macrocode}
\usv_set:nnn {bfsfup}{varTheta}{"1D767}
\usv_set:nnn {bfsfup}{varepsilon}{"1D78A}
\usv_set:nnn {bfsfup}{vartheta}{"1D78B}
\usv_set:nnn {bfsfup}{varkappa}{"1D78C}
\usv_set:nnn {bfsfup}{varphi}{"1D78D}
\usv_set:nnn {bfsfup}{varrho}{"1D78E}
\usv_set:nnn {bfsfup}{varpi}{"1D78F}
%    \end{macrocode}
% Bold sans italic:
%    \begin{macrocode}
\usv_set:nnn {bfsfit}{varTheta}  {"1D7A1}
\usv_set:nnn {bfsfit}{varepsilon}{"1D7C4}
\usv_set:nnn {bfsfit}{vartheta}  {"1D7C5}
\usv_set:nnn {bfsfit}{varkappa}  {"1D7C6}
\usv_set:nnn {bfsfit}{varphi}    {"1D7C7}
\usv_set:nnn {bfsfit}{varrho}    {"1D7C8}
\usv_set:nnn {bfsfit}{varpi}     {"1D7C9}
%    \end{macrocode}
% Nabla:
%    \begin{macrocode}
\usv_set:nnn {up}    {Nabla}{"02207}
\usv_set:nnn {it}    {Nabla}{"1D6FB}
\usv_set:nnn {bfup}  {Nabla}{"1D6C1}
\usv_set:nnn {bfit}  {Nabla}{"1D735}
\usv_set:nnn {bfsfup}{Nabla}{"1D76F}
\usv_set:nnn {bfsfit}{Nabla}{"1D7A9}
%    \end{macrocode}
% Partial:
%    \begin{macrocode}
\usv_set:nnn {up}    {partial}{"02202}
\usv_set:nnn {it}    {partial}{"1D715}
\usv_set:nnn {bfup}  {partial}{"1D6DB}
\usv_set:nnn {bfit}  {partial}{"1D74F}
\usv_set:nnn {bfsfup}{partial}{"1D789}
\usv_set:nnn {bfsfit}{partial}{"1D7C3}
%    \end{macrocode}
% \paragraph{Exceptions}
% These are need for mapping with the exceptions in other alphabets:
% (coming up)
%    \begin{macrocode}
\usv_set:nnn {up}{B}{`\B}
\usv_set:nnn {up}{C}{`\C}
\usv_set:nnn {up}{D}{`\D}
\usv_set:nnn {up}{E}{`\E}
\usv_set:nnn {up}{F}{`\F}
\usv_set:nnn {up}{H}{`\H}
\usv_set:nnn {up}{I}{`\I}
\usv_set:nnn {up}{L}{`\L}
\usv_set:nnn {up}{M}{`\M}
\usv_set:nnn {up}{N}{`\N}
\usv_set:nnn {up}{P}{`\P}
\usv_set:nnn {up}{Q}{`\Q}
\usv_set:nnn {up}{R}{`\R}
\usv_set:nnn {up}{Z}{`\Z}
%    \end{macrocode}
%
%    \begin{macrocode}
\usv_set:nnn {it}{B}{"1D435}
\usv_set:nnn {it}{C}{"1D436}
\usv_set:nnn {it}{D}{"1D437}
\usv_set:nnn {it}{E}{"1D438}
\usv_set:nnn {it}{F}{"1D439}
\usv_set:nnn {it}{H}{"1D43B}
\usv_set:nnn {it}{I}{"1D43C}
\usv_set:nnn {it}{L}{"1D43F}
\usv_set:nnn {it}{M}{"1D440}
\usv_set:nnn {it}{N}{"1D441}
\usv_set:nnn {it}{P}{"1D443}
\usv_set:nnn {it}{Q}{"1D444}
\usv_set:nnn {it}{R}{"1D445}
\usv_set:nnn {it}{Z}{"1D44D}
%    \end{macrocode}
%
%    \begin{macrocode}
\usv_set:nnn {up}{d}{`\d}
\usv_set:nnn {up}{e}{`\e}
\usv_set:nnn {up}{g}{`\g}
\usv_set:nnn {up}{h}{`\h}
\usv_set:nnn {up}{i}{`\i}
\usv_set:nnn {up}{j}{`\j}
\usv_set:nnn {up}{o}{`\o}
%    \end{macrocode}
%
%    \begin{macrocode}
\usv_set:nnn {it}{d}{"1D451}
\usv_set:nnn {it}{e}{"1D452}
\usv_set:nnn {it}{g}{"1D454}
\usv_set:nnn {it}{h}{"0210E}
\usv_set:nnn {it}{i}{"1D456}
\usv_set:nnn {it}{j}{"1D457}
\usv_set:nnn {it}{o}{"1D45C}
%    \end{macrocode}
% Latin `h':
%    \begin{macrocode}
\usv_set:nnn {bb}    {h}{"1D559}
\usv_set:nnn {tt}    {h}{"1D691}
\usv_set:nnn {scr}   {h}{"1D4BD}
\usv_set:nnn {frak}  {h}{"1D525}
\usv_set:nnn {bfup}  {h}{"1D421}
\usv_set:nnn {bfit}  {h}{"1D489}
\usv_set:nnn {sfup}  {h}{"1D5C1}
\usv_set:nnn {sfit}  {h}{"1D629}
\usv_set:nnn {bffrak}{h}{"1D58D}
\usv_set:nnn {bfscr} {h}{"1D4F1}
\usv_set:nnn {bfsfup}{h}{"1D5F5}
\usv_set:nnn {bfsfit}{h}{"1D65D}
%    \end{macrocode}
% Dotless `i' and `j:
%    \begin{macrocode}
\usv_set:nnn {up}{dotlessi}{"00131}
\usv_set:nnn {up}{dotlessj}{"00237}
\usv_set:nnn {it}{dotlessi}{"1D6A4}
\usv_set:nnn {it}{dotlessj}{"1D6A5}
%    \end{macrocode}
% Blackboard:
%    \begin{macrocode}
\usv_set:nnn {bb}{C}{"2102}
\usv_set:nnn {bb}{H}{"210D}
\usv_set:nnn {bb}{N}{"2115}
\usv_set:nnn {bb}{P}{"2119}
\usv_set:nnn {bb}{Q}{"211A}
\usv_set:nnn {bb}{R}{"211D}
\usv_set:nnn {bb}{Z}{"2124}
\usv_set:nnn {up}{Pi}       {"003A0}
\usv_set:nnn {up}{pi}       {"003C0}
\usv_set:nnn {up}{Gamma}    {"00393}
\usv_set:nnn {up}{gamma}    {"003B3}
\usv_set:nnn {up}{summation}{"02211}
\usv_set:nnn {it}{Pi}       {"1D6F1}
\usv_set:nnn {it}{pi}       {"1D70B}
\usv_set:nnn {it}{Gamma}    {"1D6E4}
\usv_set:nnn {it}{gamma}    {"1D6FE}
\usv_set:nnn {bb}{Pi}       {"0213F}
\usv_set:nnn {bb}{pi}       {"0213C}
\usv_set:nnn {bb}{Gamma}    {"0213E}
\usv_set:nnn {bb}{gamma}    {"0213D}
\usv_set:nnn {bb}{summation}{"02140}
%    \end{macrocode}
% Italic blackboard:
%    \begin{macrocode}
\usv_set:nnn {bbit}{D}{"2145}
\usv_set:nnn {bbit}{d}{"2146}
\usv_set:nnn {bbit}{e}{"2147}
\usv_set:nnn {bbit}{i}{"2148}
\usv_set:nnn {bbit}{j}{"2149}
%    \end{macrocode}
% Script exceptions:
%    \begin{macrocode}
\usv_set:nnn {scr}{B}{"212C}
\usv_set:nnn {scr}{E}{"2130}
\usv_set:nnn {scr}{F}{"2131}
\usv_set:nnn {scr}{H}{"210B}
\usv_set:nnn {scr}{I}{"2110}
\usv_set:nnn {scr}{L}{"2112}
\usv_set:nnn {scr}{M}{"2133}
\usv_set:nnn {scr}{R}{"211B}
\usv_set:nnn {scr}{e}{"212F}
\usv_set:nnn {scr}{g}{"210A}
\usv_set:nnn {scr}{o}{"2134}
%    \end{macrocode}
%
%    \begin{macrocode}
\usv_set:nnn {cal}{B}{"212C}
\usv_set:nnn {cal}{E}{"2130}
\usv_set:nnn {cal}{F}{"2131}
\usv_set:nnn {cal}{H}{"210B}
\usv_set:nnn {cal}{I}{"2110}
\usv_set:nnn {cal}{L}{"2112}
\usv_set:nnn {cal}{M}{"2133}
\usv_set:nnn {cal}{R}{"211B}
%    \end{macrocode}
% Fractur exceptions:
%    \begin{macrocode}
\usv_set:nnn {frak}{C}{"212D}
\usv_set:nnn {frak}{H}{"210C}
\usv_set:nnn {frak}{I}{"2111}
\usv_set:nnn {frak}{R}{"211C}
\usv_set:nnn {frak}{Z}{"2128}
%    \end{macrocode}
%
% \subsection{STIX fonts}
%
% Version 1.0.0 of the STIX fonts contains a number of
% alphabets in the private use area of Unicode; i.e.,
% it contains many math glyphs that have not (yet or if ever)
% been accepted into the Unicode standard.
%
% But we still want to be able to use them if possible.
%
%    \begin{macrocode}
%</package>
%<*stix>
%    \end{macrocode}
%
% \paragraph{Upright}
%    \begin{macrocode}
\usv_set:nnn {stixsfup}{partial}{"E17C}
\usv_set:nnn {stixsfup}{Greek}{"E17D}
\usv_set:nnn {stixsfup}{greek}{"E196}
\usv_set:nnn {stixsfup}{varTheta}{"E18E}
\usv_set:nnn {stixsfup}{varepsilon}{"E1AF}
\usv_set:nnn {stixsfup}{vartheta}{"E1B0}
\usv_set:nnn {stixsfup}{varkappa}{0000} % ???
\usv_set:nnn {stixsfup}{varphi}{"E1B1}
\usv_set:nnn {stixsfup}{varrho}{"E1B2}
\usv_set:nnn {stixsfup}{varpi}{"E1B3}
\usv_set:nnn {stixupslash}{Greek}{"E2FC}
%    \end{macrocode}
%
% \paragraph{Italic}
%    \begin{macrocode}
\usv_set:nnn {stixbbit}{A}{"E154}
\usv_set:nnn {stixbbit}{B}{"E155}
\usv_set:nnn {stixbbit}{E}{"E156}
\usv_set:nnn {stixbbit}{F}{"E157}
\usv_set:nnn {stixbbit}{G}{"E158}
\usv_set:nnn {stixbbit}{I}{"E159}
\usv_set:nnn {stixbbit}{J}{"E15A}
\usv_set:nnn {stixbbit}{K}{"E15B}
\usv_set:nnn {stixbbit}{L}{"E15C}
\usv_set:nnn {stixbbit}{M}{"E15D}
\usv_set:nnn {stixbbit}{O}{"E15E}
\usv_set:nnn {stixbbit}{S}{"E15F}
\usv_set:nnn {stixbbit}{T}{"E160}
\usv_set:nnn {stixbbit}{U}{"E161}
\usv_set:nnn {stixbbit}{V}{"E162}
\usv_set:nnn {stixbbit}{W}{"E163}
\usv_set:nnn {stixbbit}{X}{"E164}
\usv_set:nnn {stixbbit}{Y}{"E165}
%    \end{macrocode}
%
%    \begin{macrocode}
\usv_set:nnn {stixbbit}{a}{"E166}
\usv_set:nnn {stixbbit}{b}{"E167}
\usv_set:nnn {stixbbit}{c}{"E168}
\usv_set:nnn {stixbbit}{f}{"E169}
\usv_set:nnn {stixbbit}{g}{"E16A}
\usv_set:nnn {stixbbit}{h}{"E16B}
\usv_set:nnn {stixbbit}{k}{"E16C}
\usv_set:nnn {stixbbit}{l}{"E16D}
\usv_set:nnn {stixbbit}{m}{"E16E}
\usv_set:nnn {stixbbit}{n}{"E16F}
\usv_set:nnn {stixbbit}{o}{"E170}
\usv_set:nnn {stixbbit}{p}{"E171}
\usv_set:nnn {stixbbit}{q}{"E172}
\usv_set:nnn {stixbbit}{r}{"E173}
\usv_set:nnn {stixbbit}{s}{"E174}
\usv_set:nnn {stixbbit}{t}{"E175}
\usv_set:nnn {stixbbit}{u}{"E176}
\usv_set:nnn {stixbbit}{v}{"E177}
\usv_set:nnn {stixbbit}{w}{"E178}
\usv_set:nnn {stixbbit}{x}{"E179}
\usv_set:nnn {stixbbit}{y}{"E17A}
\usv_set:nnn {stixbbit}{z}{"E17B}
%    \end{macrocode}
%
%    \begin{macrocode}
\usv_set:nnn {stixsfit}{Numerals}{"E1B4}
\usv_set:nnn {stixsfit}{partial}{"E1BE}
\usv_set:nnn {stixsfit}{Greek}{"E1BF}
\usv_set:nnn {stixsfit}{greek}{"E1D8}
\usv_set:nnn {stixsfit}{varTheta}{"E1D0}
\usv_set:nnn {stixsfit}{varepsilon}{"E1F1}
\usv_set:nnn {stixsfit}{vartheta}{"E1F2}
\usv_set:nnn {stixsfit}{varkappa}{0000} % ???
\usv_set:nnn {stixsfit}{varphi}{"E1F3}
\usv_set:nnn {stixsfit}{varrho}{"E1F4}
\usv_set:nnn {stixsfit}{varpi}{"E1F5}
%    \end{macrocode}
%
%    \begin{macrocode}
\usv_set:nnn {stixcal}{Latin}{"E22D}
\usv_set:nnn {stixcal}{num}{"E262}
\usv_set:nnn {scr}{num}{48}
\usv_set:nnn {it}{num}{48}
%    \end{macrocode}
%
%    \begin{macrocode}
\usv_set:nnn {stixsfitslash}{Latin}{"E294}
\usv_set:nnn {stixsfitslash}{latin}{"E2C8}
\usv_set:nnn {stixsfitslash}{greek}{"E32C}
\usv_set:nnn {stixsfitslash}{varepsilon}{"E37A}
\usv_set:nnn {stixsfitslash}{vartheta}{"E35E}
\usv_set:nnn {stixsfitslash}{varkappa}{"E374}
\usv_set:nnn {stixsfitslash}{varphi}{"E360}
\usv_set:nnn {stixsfitslash}{varrho}{"E376}
\usv_set:nnn {stixsfitslash}{varpi}{"E362}
\usv_set:nnn {stixsfitslash}{digamma}{"E36A}
%    \end{macrocode}
%
% \paragraph{Bold}
%
%    \begin{macrocode}
\usv_set:nnn {stixbfupslash}{Greek}{"E2FD}
\usv_set:nnn {stixbfupslash}{Digamma}{"E369}
%    \end{macrocode}
%
%    \begin{macrocode}
\usv_set:nnn {stixbfbb}{A}{"E38A}
\usv_set:nnn {stixbfbb}{B}{"E38B}
\usv_set:nnn {stixbfbb}{E}{"E38D}
\usv_set:nnn {stixbfbb}{F}{"E38E}
\usv_set:nnn {stixbfbb}{G}{"E38F}
\usv_set:nnn {stixbfbb}{I}{"E390}
\usv_set:nnn {stixbfbb}{J}{"E391}
\usv_set:nnn {stixbfbb}{K}{"E392}
\usv_set:nnn {stixbfbb}{L}{"E393}
\usv_set:nnn {stixbfbb}{M}{"E394}
\usv_set:nnn {stixbfbb}{O}{"E395}
\usv_set:nnn {stixbfbb}{S}{"E396}
\usv_set:nnn {stixbfbb}{T}{"E397}
\usv_set:nnn {stixbfbb}{U}{"E398}
\usv_set:nnn {stixbfbb}{V}{"E399}
\usv_set:nnn {stixbfbb}{W}{"E39A}
\usv_set:nnn {stixbfbb}{X}{"E39B}
\usv_set:nnn {stixbfbb}{Y}{"E39C}
%    \end{macrocode}
%
%    \begin{macrocode}
\usv_set:nnn {stixbfbb}{a}{"E39D}
\usv_set:nnn {stixbfbb}{b}{"E39E}
\usv_set:nnn {stixbfbb}{c}{"E39F}
\usv_set:nnn {stixbfbb}{f}{"E3A2}
\usv_set:nnn {stixbfbb}{g}{"E3A3}
\usv_set:nnn {stixbfbb}{h}{"E3A4}
\usv_set:nnn {stixbfbb}{k}{"E3A7}
\usv_set:nnn {stixbfbb}{l}{"E3A8}
\usv_set:nnn {stixbfbb}{m}{"E3A9}
\usv_set:nnn {stixbfbb}{n}{"E3AA}
\usv_set:nnn {stixbfbb}{o}{"E3AB}
\usv_set:nnn {stixbfbb}{p}{"E3AC}
\usv_set:nnn {stixbfbb}{q}{"E3AD}
\usv_set:nnn {stixbfbb}{r}{"E3AE}
\usv_set:nnn {stixbfbb}{s}{"E3AF}
\usv_set:nnn {stixbfbb}{t}{"E3B0}
\usv_set:nnn {stixbfbb}{u}{"E3B1}
\usv_set:nnn {stixbfbb}{v}{"E3B2}
\usv_set:nnn {stixbfbb}{w}{"E3B3}
\usv_set:nnn {stixbfbb}{x}{"E3B4}
\usv_set:nnn {stixbfbb}{y}{"E3B5}
\usv_set:nnn {stixbfbb}{z}{"E3B6}
%    \end{macrocode}
%
%    \begin{macrocode}
\usv_set:nnn {stixbfsfup}{Numerals}{"E3B7}
%    \end{macrocode}
%
% \paragraph{Bold Italic}
%    \begin{macrocode}
\usv_set:nnn {stixbfsfit}{Numerals}{"E1F6}
%    \end{macrocode}
%
%    \begin{macrocode}
\usv_set:nnn {stixbfbbit}{A}{"E200}
\usv_set:nnn {stixbfbbit}{B}{"E201}
\usv_set:nnn {stixbfbbit}{E}{"E203}
\usv_set:nnn {stixbfbbit}{F}{"E204}
\usv_set:nnn {stixbfbbit}{G}{"E205}
\usv_set:nnn {stixbfbbit}{I}{"E206}
\usv_set:nnn {stixbfbbit}{J}{"E207}
\usv_set:nnn {stixbfbbit}{K}{"E208}
\usv_set:nnn {stixbfbbit}{L}{"E209}
\usv_set:nnn {stixbfbbit}{M}{"E20A}
\usv_set:nnn {stixbfbbit}{O}{"E20B}
\usv_set:nnn {stixbfbbit}{S}{"E20C}
\usv_set:nnn {stixbfbbit}{T}{"E20D}
\usv_set:nnn {stixbfbbit}{U}{"E20E}
\usv_set:nnn {stixbfbbit}{V}{"E20F}
\usv_set:nnn {stixbfbbit}{W}{"E210}
\usv_set:nnn {stixbfbbit}{X}{"E211}
\usv_set:nnn {stixbfbbit}{Y}{"E212}
%    \end{macrocode}
%
%    \begin{macrocode}
\usv_set:nnn {stixbfbbit}{a}{"E213}
\usv_set:nnn {stixbfbbit}{b}{"E214}
\usv_set:nnn {stixbfbbit}{c}{"E215}
\usv_set:nnn {stixbfbbit}{e}{"E217}
\usv_set:nnn {stixbfbbit}{f}{"E218}
\usv_set:nnn {stixbfbbit}{g}{"E219}
\usv_set:nnn {stixbfbbit}{h}{"E21A}
\usv_set:nnn {stixbfbbit}{k}{"E21D}
\usv_set:nnn {stixbfbbit}{l}{"E21E}
\usv_set:nnn {stixbfbbit}{m}{"E21F}
\usv_set:nnn {stixbfbbit}{n}{"E220}
\usv_set:nnn {stixbfbbit}{o}{"E221}
\usv_set:nnn {stixbfbbit}{p}{"E222}
\usv_set:nnn {stixbfbbit}{q}{"E223}
\usv_set:nnn {stixbfbbit}{r}{"E224}
\usv_set:nnn {stixbfbbit}{s}{"E225}
\usv_set:nnn {stixbfbbit}{t}{"E226}
\usv_set:nnn {stixbfbbit}{u}{"E227}
\usv_set:nnn {stixbfbbit}{v}{"E228}
\usv_set:nnn {stixbfbbit}{w}{"E229}
\usv_set:nnn {stixbfbbit}{x}{"E22A}
\usv_set:nnn {stixbfbbit}{y}{"E22B}
\usv_set:nnn {stixbfbbit}{z}{"E22C}
%    \end{macrocode}
%
%    \begin{macrocode}
\usv_set:nnn {stixbfcal}{Latin}{"E247}
%    \end{macrocode}
%
%    \begin{macrocode}
\usv_set:nnn {stixbfitslash}{Latin}{"E295}
\usv_set:nnn {stixbfitslash}{latin}{"E2C9}
\usv_set:nnn {stixbfitslash}{greek}{"E32D}
\usv_set:nnn {stixsfitslash}{varepsilon}{"E37B}
\usv_set:nnn {stixsfitslash}{vartheta}{"E35F}
\usv_set:nnn {stixsfitslash}{varkappa}{"E375}
\usv_set:nnn {stixsfitslash}{varphi}{"E361}
\usv_set:nnn {stixsfitslash}{varrho}{"E377}
\usv_set:nnn {stixsfitslash}{varpi}{"E363}
\usv_set:nnn {stixsfitslash}{digamma}{"E36B}
%    \end{macrocode}
%
%    \begin{macrocode}
%</stix>
%<*package>
%    \end{macrocode}
%
% \subsection{Package options}
%
% \begin{macro}{\unimathsetup}
% This macro can be used in lieu of or later to override
% options declared when the package is loaded.
%    \begin{macrocode}
\DeclareDocumentCommand \unimathsetup {m} {
  \clist_clear:N \l_um_unknown_keys_clist
  \keys_set:nn {unicode-math} {#1}
}
%    \end{macrocode}
% \end{macro}
%
%
% \paragraph{math-style}
%    \begin{macrocode}
\keys_define:nn {unicode-math} {
  normal-style .choice_code:n =
  {
    \bool_set_false:N \g_um_literal_bool
    \ifcase \l_keys_choice_int
      \bool_set_false:N \g_um_upGreek_bool
      \bool_set_false:N \g_um_upgreek_bool
      \bool_set_false:N \g_um_upLatin_bool
      \bool_set_false:N \g_um_uplatin_bool
    \or
      \bool_set_true:N \g_um_upGreek_bool
      \bool_set_false:N \g_um_upgreek_bool
      \bool_set_false:N \g_um_upLatin_bool
      \bool_set_false:N \g_um_uplatin_bool
    \or
      \bool_set_true:N \g_um_upGreek_bool
      \bool_set_true:N \g_um_upgreek_bool
      \bool_set_true:N \g_um_upLatin_bool
      \bool_set_false:N \g_um_uplatin_bool
    \or
      \bool_set_true:N \g_um_upGreek_bool
      \bool_set_true:N \g_um_upgreek_bool
      \bool_set_true:N \g_um_upLatin_bool
      \bool_set_true:N \g_um_uplatin_bool
    \or
      \bool_set_true:N \g_um_literal_bool
    \fi
  } ,
  normal-style .generate_choices:n = {ISO,TeX,french,upright,literal} ,
}
%    \end{macrocode}
%
%    \begin{macrocode}
\keys_define:nn {unicode-math} {
  math-style .choice_code:n =
  {
    \ifcase \l_keys_choice_int
      \unimathsetup {
        normal-style=ISO,
        bold-style=ISO,
        sans-style=italic,
        nabla=upright,
        partial=italic,
      }
    \or
      \unimathsetup {
        normal-style=TeX,
        bold-style=TeX,
        sans-style=upright,
        nabla=upright,
        partial=italic,
      }
    \or
      \unimathsetup {
        normal-style=french,
        bold-style=upright,
        sans-style=upright,
        nabla=upright,
        partial=upright,
      }
    \or
      \unimathsetup {
        normal-style=upright,
        bold-style=upright,
        sans-style=upright,
        nabla=upright,
        partial=upright,
      }
    \or
      \unimathsetup {
        normal-style=literal,
        bold-style=literal,
        sans-style=literal,
        colon=literal,
        nabla=literal,
        partial=literal,
      }
    \fi
  } ,
  math-style .generate_choices:n = {ISO,TeX,french,upright,literal} ,
}
%    \end{macrocode}
%
% \paragraph{bold-style}
%    \begin{macrocode}
\keys_define:nn {unicode-math} {
  bold-style .choice_code:n = {
    \bool_set_false:N \g_um_bfliteral_bool
    \ifcase \l_keys_choice_int
      \bool_set_false:N \g_um_bfupGreek_bool
      \bool_set_false:N \g_um_bfupgreek_bool
      \bool_set_false:N \g_um_bfupLatin_bool
      \bool_set_false:N \g_um_bfuplatin_bool
    \or
      \bool_set_true:N \g_um_bfupGreek_bool
      \bool_set_false:N \g_um_bfupgreek_bool
      \bool_set_true:N \g_um_bfupLatin_bool
      \bool_set_true:N \g_um_bfuplatin_bool
    \or
      \bool_set_true:N \g_um_bfupGreek_bool
      \bool_set_true:N \g_um_bfupgreek_bool
      \bool_set_true:N \g_um_bfupLatin_bool
      \bool_set_true:N \g_um_bfuplatin_bool
    \or
      \bool_set_true:N \g_um_bfliteral_bool
    \fi
  } ,
  bold-style .generate_choices:n = {ISO,TeX,upright,literal} ,
}
%    \end{macrocode}
%
% \paragraph{sans-style}
%    \begin{macrocode}
\keys_define:nn {unicode-math} {
  sans-style .choice_code:n = {
    \ifcase \l_keys_choice_int
      \bool_set_false:N \g_um_upsans_bool
    \or
      \bool_set_true:N \g_um_upsans_bool
    \or
      \bool_set_true:N \g_um_sfliteral_bool
    \fi
  } ,
  sans-style .generate_choices:n = {italic,upright,literal} ,
}
%    \end{macrocode}
%
% \paragraph{Nabla and partial}
%    \begin{macrocode}
\keys_define:nn {unicode-math} {
  nabla .choice_code:n = {
    \bool_set_false:N \g_um_literal_Nabla_bool
    \ifcase \l_keys_choice_int
      \bool_set_true:N \g_um_upNabla_bool
    \or
      \bool_set_false:N \g_um_upNabla_bool
    \or
      \bool_set_true:N \g_um_literal_Nabla_bool
    \fi
  } ,
  nabla .generate_choices:n = {upright,italic,literal} ,
}
%    \end{macrocode}
%
%    \begin{macrocode}
\keys_define:nn {unicode-math} {
  partial .choice_code:n = {
    \bool_set_false:N \g_um_literal_partial_bool
    \ifcase \l_keys_choice_int
      \bool_set_true:N \g_um_uppartial_bool
    \or
      \bool_set_false:N \g_um_uppartial_bool
    \or
      \bool_set_true:N \g_um_literal_partial_bool
    \fi
  } ,
  partial .generate_choices:n = {upright,italic,literal} ,
}
%    \end{macrocode}
%
% \paragraph{Epsilon and phi shapes}
%    \begin{macrocode}
\keys_define:nn {unicode-math} {
  vargreek-shape .choice: ,
  vargreek-shape / unicode .code:n = {
    \bool_set_false:N \g_um_texgreek_bool
  } ,
  vargreek-shape / TeX .code:n = {
    \bool_set_true:N \g_um_texgreek_bool
  }
}
%    \end{macrocode}
%
% \paragraph{Colon style}
%    \begin{macrocode}
\keys_define:nn {unicode-math} {
  colon .choice: ,
  colon / literal .code:n = {
    \bool_set_true:N \g_um_literal_colon_bool
  } ,
  colon / TeX .code:n = {
    \bool_set_false:N \g_um_literal_colon_bool
  }
}
%    \end{macrocode}
%
% \paragraph{Slash delimiter style}
%    \begin{macrocode}
\keys_define:nn {unicode-math} {
  slash-delimiter .choice: ,
  slash-delimiter / ascii .code:n = {
    \tl_set:Nn \g_um_slash_delimiter_usv {"002F}
  } ,
  slash-delimiter / frac .code:n = {
    \tl_set:Nn \g_um_slash_delimiter_usv {"2044}
  } ,
  slash-delimiter / div .code:n = {
    \tl_set:Nn \g_um_slash_delimiter_usv {"2215}
  }
}
%    \end{macrocode}
%
%
% \paragraph{Active fraction style}
%    \begin{macrocode}
\keys_define:nn {unicode-math} {
  active-frac .choice: ,
  active-frac / small .code:n = {
    \cs_if_exist:NTF \tfrac {
      \bool_set_true:N \l_um_smallfrac_bool
    }{
      \um_warning:n {no-tfrac}
      \bool_set_false:N \l_um_smallfrac_bool
    }
    \use:c{um_setup_active_frac:}
  } ,
  active-frac / normalsize .code:n = {
    \bool_set_false:N \l_um_smallfrac_bool
    \use:c{um_setup_active_frac:}
  }
}
%    \end{macrocode}
%
% \paragraph{Debug/tracing}
%    \begin{macrocode}
\keys_define:nn {unicode-math} {
  trace .choice: ,
  trace / debug .code:n = {
    \msg_redirect_module:nnn { unicode-math } { trace } { warning }
  } ,
  trace / on .code:n = {
    \msg_redirect_module:nnn { unicode-math } { trace } { trace }
  } ,
  trace / off .code:n = {
    \msg_redirect_module:nnn { unicode-math } { trace } { none }
  } ,
}
%    \end{macrocode}
%
%    \begin{macrocode}
\clist_new:N \l_um_unknown_keys_clist
\keys_define:nn {unicode-math} {
  unknown .code:n = {
    \clist_put_right:No \l_um_unknown_keys_clist {
      \l_keys_key_tl = {#1}
    }
  }
}
%    \end{macrocode}
%
%    \begin{macrocode}
\unimathsetup {math-style=TeX}
\unimathsetup {slash-delimiter=ascii}
\unimathsetup {trace=off}
\cs_if_exist:NT \tfrac {
  \unimathsetup {active-frac=small}
}
\ProcessKeysOptions {unicode-math}
%    \end{macrocode}
%
% \subsection{Overcoming \cmd\@onlypreamble}
%
% The requirement of only setting up the maths fonts in the preamble is now removed. The following list might be overly ambitious.
%    \begin{macrocode}
\tl_map_inline:nn {
  \new@mathgroup\cdp@list\cdp@elt\DeclareMathSizes
  \@DeclareMathSizes\newmathalphabet\newmathalphabet@@\newmathalphabet@@@
  \DeclareMathVersion\define@mathalphabet\define@mathgroup\addtoversion
  \version@list\version@elt\alpha@list\alpha@elt
  \restore@mathversion\init@restore@version\dorestore@version\process@table
  \new@mathversion\DeclareSymbolFont\group@list\group@elt
  \new@symbolfont\SetSymbolFont\SetSymbolFont@\get@cdp
  \DeclareMathAlphabet\new@mathalphabet\SetMathAlphabet\SetMathAlphabet@
  \DeclareMathAccent\set@mathaccent\DeclareMathSymbol\set@mathchar
  \set@mathsymbol\DeclareMathDelimiter\@xxDeclareMathDelimiter
  \@DeclareMathDelimiter\@xDeclareMathDelimiter\set@mathdelimiter
  \set@@mathdelimiter\DeclareMathRadical\mathchar@type
  \DeclareSymbolFontAlphabet\DeclareSymbolFontAlphabet@
}{
  \tl_remove_in:Nn \@preamblecmds {\do#1}
}
%    \end{macrocode}
%
% \section{Fundamentals}
%
% \subsection{Enlarging the number of maths families}
%
% To start with, we've got a power of two as many \cmd\fam s as before. So (from |ltfssbas.dtx|) we want to redefine
%    \begin{macrocode}
\def\new@mathgroup{\alloc@8\mathgroup\chardef\@cclvi}
\let\newfam\new@mathgroup
%    \end{macrocode}
%
% This is sufficient for \LaTeX's \cmd\DeclareSymbolFont-type commands to be able
% to define 256 named maths fonts.
%
% \subsection{Setting math chars, math codes, etc.}
%
% \begin{macro}{\um_set_mathsymbol:nNNn}
% \darg{A \LaTeX\ symbol font, e.g., \texttt{operators}}
% \darg{Symbol macro, \eg, \cmd\alpha}
% \darg{Type, \eg, \cmd\mathalpha}
% \darg{Slot, \eg, \texttt{"221E}}
% There are a bunch of tests to perform to process the various characters.
% The following assignments should all be fairly straightforward.
%    \begin{macrocode}
\cs_set:Npn \um_set_mathsymbol:nNNn #1#2#3#4 {
  \prg_case_tl:Nnn #3 {
    \mathop {
      \um_set_big_operator:nnn {#1} {#2} {#4}
    }
    \mathopen {
      \tl_if_in:NnTF \l_um_radicals_tl {#2} {
        \cs_gset:cpx {\cs_to_str:N #2 sign} { \um_radical:nn {#1} {#4} }
        \tl_set:cn {l_um_radical_\cs_to_str:N #2_tl} {\use:c{sym #1}~ #4}
      }{
        \um_set_delcode:nnn {#1} {#4} {#4}
        \um_set_mathcode:nnn {#4} \mathopen {#1}
        \cs_gset:Npx #2 { \um_delimiter:Nnn \mathopen {#1} {#4} }
      }
    }
    \mathclose {
      \um_set_delcode:nnn {#1} {#4} {#4}
      \um_set_mathcode:nnn {#4} \mathclose {#1}
      \cs_gset:Npx #2 { \um_delimiter:Nnn \mathclose {#1} {#4} }
    }
    \mathaccent {
      \cs_gset:Npx #2 { \um_accent:Nnn #3 {#1} {#4} }
    }
    \mathfence {
      \um_set_mathcode:nnn {#4} {#3} {#1}
      \um_set_delcode:nnn {#1} {#4} {#4}
      \cs_gset:cpx {l \cs_to_str:N #2} { \um_delimiter:Nnn \mathopen  {#1} {#4} }
      \cs_gset:cpx {r \cs_to_str:N #2} { \um_delimiter:Nnn \mathclose {#1} {#4} }
    }
    \mathover { % LuaTeX only
      \cs_set:Npn #2 ##1 { \mathop { \um_overbrace:nnn {#1} {#4} {##1} } \limits }
    }
    \mathunder { % LuaTeX only
      \cs_set:Npn #2 ##1 { \mathop { \um_underbrace:nnn {#1} {#4} {##1} } \limits }
    }
  }{
    \um_set_mathcode:nnn {#4} {#3} {#1}
  }
}
%    \end{macrocode}
% \end{macro}
%
%
% \begin{macro}{\um_set_big_operator:nnn}
% \darg{Symbol font name}
% \darg{Macro to assign}
% \darg{Glyph slot}
% In the examples following, say we're defining for the symbol \cmd\sum ($\sum$).
% In order for literal Unicode characters to be used in the source and still
% have the correct limits behaviour, big operators are made math-active.
% This involves three steps:
% \begin{itemize}
% \item
% The active math char is defined to expand to the macro \cs{sum_sym}.
% (Later, the control sequence \cs{sum} will be assigned the math char.)
% \item
% Declare the plain old mathchardef for the control sequence \cmd\sumop.
% (This follows the convention of \LaTeX/\pkg{amsmath}.)
% \item
% Define \cs{sum_sym} as \cmd\sumop, followed by \cmd\nolimits\ if necessary.
% \end{itemize}
% Whether the \cmd\nolimits\ suffix is inserted is controlled by the
% token list \cs{l_um_nolimits_tl}, which contains a list of such characters.
% This list is checked dynamically to allow it to be updated mid-document.
%
% Examples of expansion, by default, for two big operators:
% \begin{quote}
% (~\cs{sum} $\to$~) $\sum$ $\to$ \cs{sum_sym} $\to$ \cs{sumop}\cs{nolimits}\par
% (~\cs{int} $\to$~) $\int$ $\to$ \cs{int_sym} $\to$ \cs{intop}
% \end{quote}
%    \begin{macrocode}
\cs_new:Npn \um_set_big_operator:nnn #1#2#3 {
  \group_begin:
    \char_make_active:n {#3}
    \char_gmake_mathactive:n {#3}
    \um@scanactivedef #3 \@nil { \csname\cs_to_str:N #2 _sym\endcsname }
  \group_end:
  \um_set_mathchar:cNnn {\cs_to_str:N #2 op} \mathop {#1} {#3}
  \cs_gset:cpx { \cs_to_str:N #2 _sym } {
    \exp_not:c { \cs_to_str:N #2 op   }
    \exp_not:n { \tl_if_in:NnT \l_um_nolimits_tl {#2} \nolimits }
  }
}
%    \end{macrocode}
% \end{macro}
%
%
% \begin{macro}{\um_set_mathcode:nnnn}
% \begin{macro}{\um_set_mathcode:nnn}
% \begin{macro}{\um_set_mathchar:NNnn}
% \begin{macro}{\um_set_mathchar:cNnn}
% \begin{macro}{\um_set_delcode:nnn}
% \begin{macro}{\um_radical:nn}
% \begin{macro}{\um_delimiter:Nnn}
% \begin{macro}{\um_accent:Nnn}
% These are all wrappers for the primitive commands that take numerical
% input only.
%    \begin{macrocode}
\cs_set:Npn \um_set_mathcode:nnnn #1#2#3#4 {
  \Umathcode \intexpr_eval:n {#1} =
    \mathchar@type#2 \csname sym#3\endcsname \intexpr_eval:n {#4} \scan_stop:
}
\cs_set:Npn \um_set_mathcode:nnn #1#2#3 {
  \Umathcode \intexpr_eval:n {#1} =
    \mathchar@type#2 \csname sym#3\endcsname \intexpr_eval:n {#1} \scan_stop:
}
\cs_set:Npn \um_set_mathchar:NNnn #1#2#3#4 {
  \Umathchardef #1 =
    \mathchar@type#2 \csname sym#3\endcsname \intexpr_eval:n {#4} \scan_stop:
}
\cs_new:Npn \um_set_delcode:nnn #1#2#3 {
  \Udelcode#2 = \csname sym#1\endcsname #3
}
\cs_new:Npn \um_radical:nn #1#2 {
  \Uradical \csname sym#1\endcsname #2 \scan_stop:
}
\cs_new:Npn \um_delimiter:Nnn #1#2#3 {
  \Udelimiter \mathchar@type#1 \csname sym#2\endcsname #3 \scan_stop:
}
\cs_new:Npn \um_accent:Nnn #1#2#3 {
  \Umathaccent \mathchar@type#1 \csname sym#2\endcsname #3 \scan_stop:
}
%    \end{macrocode}
%
%    \begin{macrocode}
\cs_generate_variant:Nn \um_set_mathchar:NNnn {c}
%    \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
%
%
% \begin{macro}{\um_overbrace:nnn}
% \begin{macro}{\um_underbrace:nnn}
% \LuaTeX\ functions for defining over/under-braces
%    \begin{macrocode}
\cs_set:Npn \um_overbrace:nnn #1#2#3 {
  \luatexUdelimiterover \csname sym#1\endcsname #2 {#3}
}
\cs_set:Npn \um_underbrace:nnn #1#2#3 {
  \luatexUdelimiterunder \csname sym#1\endcsname #2 {#3}
}
%    \end{macrocode}
% \end{macro}
% \end{macro}
%
%
%
% \begin{macro}{\char_gmake_mathactive:N}
% \begin{macro}{\char_gmake_mathactive:n}
%    \begin{macrocode}
\cs_new:Npn \char_gmake_mathactive:N #1 {
  \global\mathcode `#1 = "8000 \scan_stop:
}
\cs_new:Npn \char_gmake_mathactive:n #1 {
  \global\mathcode #1 = "8000 \scan_stop:
}
%    \end{macrocode}
% \end{macro}
% \end{macro}
%
%
% \subsection{The main \cs{setmathfont} macro}
%
% Using a |range| including large character sets such as \cmd\mathrel,
% \cmd\mathalpha, \etc, is \emph{very slow}!
% I hope to improve the performance somehow.
%
% \begin{macro}{\setmathfont}
% \doarg{font features}
% \darg{font name}
%    \begin{macrocode}
\cs_new:Npn \um_init: {
%    \end{macrocode}
% \begin{itemize}
% \item Erase any conception \LaTeX\ has of previously defined math symbol fonts;
% this allows \cmd\DeclareSymbolFont\ at any point in the document.
%    \begin{macrocode}
  \let\glb@currsize\relax
%    \end{macrocode}
% \item To start with, assume we're defining the font for every math symbol character.
%    \begin{macrocode}
  \bool_set_true:N \l_um_init_bool
  \seq_clear:N \l_um_char_range_seq
  \clist_clear:N \l_um_char_num_range_clist
  \seq_clear:N \l_um_mathalph_seq
  \clist_clear:N \l_um_unknown_keys_clist
  \seq_clear:N \l_um_missing_alph_seq
%    \end{macrocode}
% \end{itemize}
%    \begin{macrocode}
}
\DeclareDocumentCommand \setmathfont { O{} m } {
  \um_init:
%    \end{macrocode}
% \begin{itemize}
% \item Grab the current size information
% (is this robust enough? Maybe it should be preceded by \cmd\normalsize).
%    \begin{macrocode}
  \csname S@\f@size\endcsname
%    \end{macrocode}
% \item Set the name of the math version being defined.
%       (obviously more needs to be done here!)
% \end{itemize}
%    \begin{macrocode}
  \tl_set:Nn \l_um_mversion_tf {normal}
  \DeclareMathVersion{\l_um_mversion_tf}
%    \end{macrocode}
% \item Define default font features for the script and scriptscript font.
%    \begin{macrocode}
  \tl_set:Nn \l_um_script_features_tl  {ScriptStyle}
  \tl_set:Nn \l_um_sscript_features_tl {ScriptScriptStyle}
  \tl_set:Nn \l_um_script_font_tl      {#2}
  \tl_set:Nn \l_um_sscript_font_tl     {#2}
%    \end{macrocode}
% Use \pkg{fontspec} to select a font to use. The macro \cmd\S@\meta{size}
% contains the definitions of the sizes used for maths letters, subscripts and subsubscripts in
% \cmd\tf@size, \cmd\sf@size, and \cmd\ssf@size, respectively.
%    \begin{macrocode}
  \keys_set:nn {unicode-math} {#1}
  \um_fontspec_select_font:n {#2}
%    \end{macrocode}
% Check for the correct number of \cs{fontdimen}s:
%    \begin{macrocode}
%%  \ifdim \dimexpr\fontdimen9\l_um_font*65536\relax =65pt\relax
%%    \bool_set_true:N \l_um_ot_math_bool
%%  \else
%%    \bool_set_false:N \l_um_ot_math_bool
%%    \PackageWarningNoLine{unicode-math}{
%%      The~ font~ '#2' ~is~ not~ a~ valid~ OpenType~ maths~ font.~
%%      Some~ maths~ features~ will~ not~ be~ available~ or~ behave~
%%      in~ a~ substandard~ manner
%%    }
%%  \fi
%    \end{macrocode}
% If we're defining the full Unicode math repetoire, then we skip all
% the parsing processing needed if we're only defining a subset.
% \begin{itemize}
% \item Math symbols are defined with \cmd\_um_sym:nnn; see \secref{mathsymbol}
% for the individual definitions
% \end{itemize}
%    \begin{macrocode}
  \bool_if:NTF \l_um_init_bool {
    \tl_set:Nn \um_symfont_tl {um_allsym}
    \msg_trace:nnx {unicode-math} {default-math-font} {#2}
    \cs_set_eq:NN \_um_sym:nnn \um_process_symbol_noparse:nnn
    \cs_set_eq:NN \um_set_mathalphabet_char:Nnn \um_mathmap_noparse:Nnn
    \cs_set_eq:NN \um_remap_symbol:nnn \um_remap_symbol_noparse:nnn
    \cs_set_eq:NN \um_maybe_init_alphabet:n \um_init_alphabet:n
    \cs_set_eq:NN \um_map_char_single:nn \um_map_char_noparse:nn
    \cs_set_eq:NN \um_assign_delcode:nn \um_assign_delcode_noparse:nn
  }{
    \int_incr:N \g_um_fam_int
    \tl_set:Nx \um_symfont_tl {um_fam\int_use:N\g_um_fam_int}
    \cs_set_eq:NN \_um_sym:nnn \um_process_symbol_parse:nnn
    \cs_set_eq:NN \um_set_mathalphabet_char:Nnn \um_mathmap_parse:Nnn
    \cs_set_eq:NN \um_remap_symbol:nnn \um_remap_symbol_parse:nnn
    \cs_set_eq:NN \um_maybe_init_alphabet:n \use_none:n
    \cs_set_eq:NN \um_map_char_single:nn \um_map_char_parse:nn
    \cs_set_eq:NN \um_assign_delcode:nn \um_assign_delcode_parse:nn
  }
%    \end{macrocode}
% Now defined |\um_symfont_tl| as the \LaTeX\ math font to access everything:
%    \begin{macrocode}
  \DeclareSymbolFont{\um_symfont_tl}
    {\encodingdefault}{\zf@family}{\mddefault}{\updefault}
%    \end{macrocode}
% And now we input every single maths char.
%    \begin{macrocode}
  \um_input_math_symbol_table:
%    \end{macrocode}
% Finally,
% \begin{itemize}
% \item Remap symbols that don't take their natural mathcode
% \item Activate any symbols that need to be math-active
% \item Assign delimiter codes for symbols that need to grow
% \item Setup the maths alphabets (\cs{mathbf} etc.)
% \end{itemize}
%    \begin{macrocode}
  \um_remap_symbols:
  \um_setup_mathactives:
  \um_setup_delcodes:
  \um_setup_alphabets:
%    \end{macrocode}
% Prevent spaces:
%    \begin{macrocode}
  \ignorespaces
}
%    \end{macrocode}
% \end{macro}
%
%
% \begin{macro}{\um_fontspec_select_font:}
% Select the font with \cs{fontspec} and define \cs{l_um_font} from it.
%    \begin{macrocode}
\cs_new:Npn \um_fontspec_select_font:n #1 {
  \bool_set_true:N \l_um_fontspec_feature_bool
  \fontspec_select:xn
    {
      \luatex_if_engine:T { Renderer = Basic, }
      BoldFont = {}, ItalicFont = {},
      Script = Math,
      SizeFeatures = {
        {Size = \tf@size-} ,
        {Size = \sf@size-\tf@size ,
         Font = \l_um_script_font_tl ,
         \l_um_script_features_tl
        } ,
        {Size = -\sf@size ,
         Font = \l_um_sscript_font_tl ,
         \l_um_sscript_features_tl
        }
      },
      \l_um_unknown_keys_clist
    }
    {#1}
  \tl_set_eq:NN \l_um_font \zf@basefont
  \bool_set_false:N \l_um_fontspec_feature_bool
}
%    \end{macrocode}
% \end{macro}
%
%
% \subsubsection{Functions for setting up symbols with mathcodes}
% \seclabel{mathsymbol}
%
% \begin{macro}{\um_process_symbol_noparse:nnn}
% \begin{macro}{\um_process_symbol_parse:nnn}
% If the \feat{range} font feature has been used, then only
% a subset of the Unicode glyphs are to be defined.
% See \secref{rangeproc} for the code that enables this.
%    \begin{macrocode}
\cs_set:Npn \um_process_symbol_noparse:nnn #1#2#3 {
  \um_set_mathsymbol:nNNn {\um_symfont_tl} #2#3{#1}
}
%    \end{macrocode}
%    \begin{macrocode}
\cs_set:Npn \um_process_symbol_parse:nnn #1#2#3 {
  \um@parse@term{#1}{#2}{#3}{
    \um_process_symbol_noparse:nnn {#1}{#2}{#3}
  }
}
%    \end{macrocode}
% \end{macro}
% \end{macro}
%
%
% \begin{macro}{\um_remap_symbols:}
% \begin{macro}{\um_remap_symbol_noparse:nnn}
% \begin{macro}{\um_remap_symbol_parse:nnn}
% This function is used to define the mathcodes for those chars which should
% be mapped to a different glyph than themselves.
%    \begin{macrocode}
\cs_new:Npn \um_remap_symbols: {
  \um_remap_symbol:nnn{`\-}{\mathbin}{"02212}% hyphen to minus
  \um_remap_symbol:nnn{`\*}{\mathbin}{"02217}% text asterisk to "centred asterisk"
  \bool_if:NF \g_um_literal_colon_bool {
    \um_remap_symbol:nnn{`\:}{\mathrel}{"02236}% colon to ratio (i.e., punct to rel)
  }
}
%    \end{macrocode}
% \end{macro}
% Where |\um_remap_symbol:nnn| is defined to be one of these two, depending
% on the range setup:
%    \begin{macrocode}
\cs_new:Npn \um_remap_symbol_parse:nnn #1#2#3 {
  \um@parse@term {#3} {\@nil} {#2} {
    \um_remap_symbol_noparse:nnn {#1} {#2} {#3}
  }
}
\cs_new:Npn \um_remap_symbol_noparse:nnn #1#2#3 {
  \clist_map_inline:nn {#1} {
    \um_set_mathcode:nnnn {##1} {#2} {\um_symfont_tl} {#3}
  }
}
%    \end{macrocode}
% \end{macro}
% \end{macro}
%
%
% \subsubsection{Active math characters}
%
% There are more math active chars later in the subscript/superscript section.
% But they don't need to be able to be typeset directly.
%
% \begin{macro}{\um_setup_mathactives:}
%    \begin{macrocode}
\cs_new:Npn \um_setup_mathactives: {
  \um_make_mathactive:nNN {"2032} \um_prime_single_mchar \mathord
  \um_make_mathactive:nNN {"2033} \um_prime_double_mchar \mathord
  \um_make_mathactive:nNN {"2034} \um_prime_triple_mchar \mathord
  \um_make_mathactive:nNN {"2057} \um_prime_quad_mchar   \mathord
  \um_make_mathactive:nNN {"2035} \um_backprime_single_mchar \mathord
  \um_make_mathactive:nNN {"2036} \um_backprime_double_mchar \mathord
  \um_make_mathactive:nNN {"2037} \um_backprime_triple_mchar \mathord
  \um_make_mathactive:nNN {`\'} \mathstraightquote \mathord
  \um_make_mathactive:nNN {`\`} \mathbacktick      \mathord
}
%    \end{macrocode}
% \end{macro}
%
% \begin{macro}{\um_make_mathactive:nNN}
%: TODO : hook into range feature
% Makes |#1| a mathactive char, and gives cs |#2| the meaning of mathchar |#1|
% with class |#3|.
% You are responsible for giving active |#1| a particular meaning!
%    \begin{macrocode}
\cs_new:Npn \um_make_mathactive:nNN #1#2#3 {
  \um_set_mathchar:NNnn #2 #3 {\um_symfont_tl} {#1}
  \char_gmake_mathactive:n {#1}
}
%    \end{macrocode}
% \end{macro}
%
% \subsubsection{Delimiter codes}
%
%
% \begin{macro}{\um_assign_delcode:nn}
%: TODO : hook csnames into range feature
%    \begin{macrocode}
\cs_new:Npn \um_assign_delcode_noparse:nn #1#2 {
  \um_set_delcode:nnn \um_symfont_tl {#1} {#2}
}
\cs_new:Npn \um_assign_delcode_parse:nn #1#2 {
  \um@parse@term {#2}{\@nil}{\@nil} {
    \um_assign_delcode_noparse:nn {#1} {#2}
  }
}
%    \end{macrocode}
% \end{macro}
%
%
% \begin{macro}{\um_assign_delcode:n}
% Shorthand.
%    \begin{macrocode}
\cs_new:Npn \um_assign_delcode:n #1 {
  \um_assign_delcode:nn {#1} {#1}
}
%    \end{macrocode}
% \end{macro}
%
%
%
% Some symbols that aren't mathopen/mathclose still need to have delimiter codes assigned.
% The list of vertical arrows may be incomplete.
% On the other hand, many fonts won't support them all being stretchy.
% And some of them are probably not meant to stretch, either. But adding them here doesn't hurt.
% \begin{macro}{\um_setup_delcodes:}
%    \begin{macrocode}
\cs_new:Npn \um_setup_delcodes: {
  \um_assign_delcode:nn {`\/}   {\g_um_slash_delimiter_usv}
  \um_assign_delcode:nn {"2044} {\g_um_slash_delimiter_usv} % fracslash
  \um_assign_delcode:nn {"2215} {\g_um_slash_delimiter_usv} % divslash
  \um_assign_delcode:n {"005C} % backslash
  \um_assign_delcode:nn {`\<} {"27E8} % angle brackets with ascii notation
  \um_assign_delcode:nn {`\>} {"27E9} % angle brackets with ascii notation
  \um_assign_delcode:n {"2191} % up arrow
  \um_assign_delcode:n {"2193} % down arrow
  \um_assign_delcode:n {"2195} % updown arrow
  \um_assign_delcode:n {"219F} % up arrow twohead
  \um_assign_delcode:n {"21A1} % down arrow twohead
  \um_assign_delcode:n {"21A5} % up arrow from bar
  \um_assign_delcode:n {"21A7} % down arrow from bar
  \um_assign_delcode:n {"21A8} % updown arrow from bar
  \um_assign_delcode:n {"21BE} % up harpoon right
  \um_assign_delcode:n {"21BF} % up harpoon left
  \um_assign_delcode:n {"21C2} % down harpoon right
  \um_assign_delcode:n {"21C3} % down harpoon left
  \um_assign_delcode:n {"21C5} % arrows up down
  \um_assign_delcode:n {"21F5} % arrows down up
  \um_assign_delcode:n {"21C8} % arrows up up
  \um_assign_delcode:n {"21CA} % arrows down down
  \um_assign_delcode:n {"21D1} % double up arrow
  \um_assign_delcode:n {"21D3} % double down arrow
  \um_assign_delcode:n {"21D5} % double updown arrow
  \um_assign_delcode:n {"21DE} % up arrow double stroke
  \um_assign_delcode:n {"21DF} % down arrow double stroke
  \um_assign_delcode:n {"21E1} % up arrow dashed
  \um_assign_delcode:n {"21E3} % down arrow dashed
  \um_assign_delcode:n {"21E7} % up white arrow
  \um_assign_delcode:n {"21E9} % down white arrow
  \um_assign_delcode:n {"21EA} % up white arrow from bar
  \um_assign_delcode:n {"21F3} % updown white arrow
}
%    \end{macrocode}
% \end{macro}
%
%
%
%
% \subsection{(Big) operators}
%
% Turns out that \XeTeX\ is clever enough to deal with big operators for us
% automatically with \cmd\Umathchardef. Amazing!
%
% However, the limits aren't set automatically; that is, we want to define,
% a la Plain \TeX\ \etc, |\def\int{\intop\nolimits}|, so there needs to be a
% transformation from \cmd\int\ to \cmd\intop\ during the expansion of
% \cmd\_um_sym:nnn\ in the appropriate contexts.
%
% \begin{macro}{\l_um_nolimits_tl}
% This macro is a sequence containing those maths operators that require a
% \cmd\nolimits\ suffix.
% This list is used when processing |unicode-math-table.tex| to define such
% commands automatically (see the macro \cs{um_set_mathsymbol:nNNn}).
% I've chosen essentially just the operators that look like integrals;
% hopefully a better mathematician can help me out here.
% I've a feeling that it's more useful \emph{not} to include the multiple
% integrals such as $\iiiint$, but that might be a matter of preference.
%    \begin{macrocode}
\tl_new:Nn \l_um_nolimits_tl {
  \int\iint\iiint\iiiint\oint\oiint\oiiint
  \intclockwise\varointclockwise\ointctrclockwise\sumint
  \intbar\intBar\fint\cirfnint\awint\rppolint
  \scpolint\npolint\pointint\sqint\intlarhk\intx
  \intcap\intcup\upint\lowint
}
%    \end{macrocode}
% \end{macro}
%
% \begin{macro}{\addnolimits}
% This macro appends material to the macro containing the list of operators
% that don't take limits.
%    \begin{macrocode}
\DeclareDocumentCommand \addnolimits {m} {
  \tl_put_right:Nn \l_um_nolimits_tl {#1}
}
%    \end{macrocode}
% \end{macro}
%
% \begin{macro}{\removenolimits}
% Can this macro be given a better name?
% It removes an item from the nolimits list.
%    \begin{macrocode}
\DeclareDocumentCommand \removenolimits {m} {
  \tl_remove_all_in:Nn \l_um_nolimits_tl {#1}
}
%    \end{macrocode}
% \end{macro}
%
% \subsection{Radicals}
%
% The radical for square root is organised in \cs{um_set_mathsymbol:nNNn}.
% I think it's the only radical ever.
% (Actually, there is also \cs{cuberoot} and \cs{fourthroot}, but they don't
%  seem to behave as proper radicals.)
%
% Also, what about right-to-left square roots?
%
% \begin{macro}{\um@radicals}
% We organise radicals in the same way as nolimits-operators; that is,
% in a comma-list.
%    \begin{macrocode}
\tl_new:Nn \l_um_radicals_tl {\sqrt}
%    \end{macrocode}
% \end{macro}
%
% \subsection{Delimiters}
% \begin{macro}{\left}
% We redefine the primitive to be preceded by \cmd\mathopen;
% this gives much better spacing in cases such as \cmd\sin\cmd\left\dots.
% Courtesy of Frank Mittelbach:\par
% {\small\url{http://www.latex-project.org/cgi-bin/ltxbugs2html?pr=latex/3853&prlatex/3754}}
%    \begin{macrocode}
\let\left@primitive\left
\def\left{\mathopen{}\left@primitive}
%    \end{macrocode}
% \end{macro}
% No re-definition is made for \cmd\right\ because it's not
% necessary.
%
% \subsection{Maths accents}
%
% Maths accents should just work \emph{if they are available in the font}.
%
% \section{Font features}
%
% \begin{macro}{\um@zf@feature}
% Use the same method as \pkg{fontspec} for feature definition
% (\ie, using \pkg{xkeyval}) but with a conditional to restrict
% the scope of these features to \pkg{unicode-math} commands.
%    \begin{macrocode}
\newcommand\um@zf@feature[2]{
  \define@key[zf]{options}{#1}[]{
    \bool_if:NTF \l_um_fontspec_feature_bool {
      #2
    }{
      \um_warning:n {maths-feature-only}
    }
  }
}
%    \end{macrocode}
% \end{macro}
%
% \subsection{OpenType maths font features}
%    \begin{macrocode}
\xetex_or_luatex:nnn { \um@zf@feature {ScriptStyle} }
  { \zf@update@ff{+ssty=0} }
  { \zf@update@ff{+ssty=1} }
\xetex_or_luatex:nnn { \um@zf@feature {ScriptScriptStyle} }
  { \zf@update@ff{+ssty=1} }
  { \zf@update@ff{+ssty=2} }
%    \end{macrocode}
%
% \subsection{Script and scriptscript font options}
%    \begin{macrocode}
\keys_define:nn {unicode-math}
{
  script-features  .tl_set:N =  \l_um_script_features_tl ,
  sscript-features .tl_set:N = \l_um_sscript_features_tl ,
       script-font .tl_set:N =      \l_um_script_font_tl ,
      sscript-font .tl_set:N =     \l_um_sscript_font_tl ,
}
%    \end{macrocode}
%
% \subsection{Range processing}
% \seclabel{rangeproc}
%
%    \begin{macrocode}
\seq_new:N \l_um_mathalph_seq
\seq_new:N \l_um_char_range_seq
\keys_define:nn {unicode-math} {
  range .code:n = {
    \bool_set_false:N \l_um_init_bool
    \seq_clear:N \l_um_char_range_seq
    \seq_clear:N \l_um_mathalph_seq
    \clist_map_inline:nn {#1} {
      \um_if_mathalph_decl:nTF {##1} {
        \seq_put_right:Nx \l_um_mathalph_seq {
          { \exp_not:V \l_um_tmpa_tl }
          { \exp_not:V \l_um_tmpb_tl }
          { \exp_not:V \l_um_tmpc_tl }
        }
      }{
        \seq_put_right:Nn \l_um_char_range_seq {##1}
      }
    }
  }
}
%    \end{macrocode}
%
% \begin{macro}{\um_if_mathalph_decl:nTF}
% Possible forms of input:\\
% |\mathscr|\\
% |\mathscr->\mathup|\\
% |\mathscr/{Latin}|\\
% |\mathscr/{Latin}->\mathup|\\
% Outputs:\\
% |tmpa|: math style (\eg, |\mathscr|)\\
% |tmpb|: alphabets (\eg, |Latin|)\\
% |tmpc|: remap style (\eg, |\mathup|). Defaults to |tmpa|.
%
% The remap style can also be |\mathcal->stixcal|, which I marginally prefer
% in the general case.
%    \begin{macrocode}
\prg_new_conditional:Nnn \um_if_mathalph_decl:n {TF} {
  \KV_remove_surrounding_spaces:nw {\tl_set:Nf\l_um_tmpa_tl} #1 \q_nil
  \tl_clear:N \l_um_tmpb_tl
  \tl_clear:N \l_um_tmpc_tl
  \tl_if_in:NnT \l_um_tmpa_tl {->} {
    \exp_after:wN \um_split_arrow:w \l_um_tmpa_tl \q_nil
  }
  \tl_if_in:NnT \l_um_tmpa_tl {/} {
    \exp_after:wN \um_split_slash:w \l_um_tmpa_tl \q_nil
  }
  \tl_if_empty:NT \l_um_tmpc_tl { \tl_set_eq:NN \l_um_tmpc_tl \l_um_tmpa_tl }
  \seq_if_in:NVTF \g_um_mathstyles_seq \l_um_tmpa_tl {
    \prg_return_true:
  }{
    \prg_return_false:
  }
}
\cs_set:Npn \um_split_arrow:w #1->#2 \q_nil {
  \tl_set:Nn \l_um_tmpa_tl {#1}
  \tl_if_single:nTF {#2}
    { \tl_set:Nn \l_um_tmpc_tl {#2} }
    { \exp_args:NNc \tl_set:Nn \l_um_tmpc_tl {math#2} }
}
\cs_set:Npn \um_split_slash:w #1/#2 \q_nil {
  \tl_set:Nn \l_um_tmpa_tl {#1}
  \tl_set:Nn \l_um_tmpb_tl {#2}
}
%    \end{macrocode}
% \end{macro}
%
% Pretty basic comma separated range processing.
% Donald Arseneau's \pkg{selectp} package has a cleverer technique.
%
% \begin{macro}{\um@parse@term}
% \darg{Unicode character slot}
% \darg{control sequence (character macro)}
% \darg{control sequence (math type)}
% \darg{code to execute}
% This macro expands to |#4|
% if any of its arguments are contained in \cmd\l_um_char_range_seq.
% This list can contain either character ranges (for checking with |#1|) or control sequences.
% These latter can either be the command name of a specific character, \emph{or} the math
% type of one (\eg, \cmd\mathbin).
%
% Character ranges are passed to \cmd\um@parse@range, which accepts input in the form shown in \tabref{ranges}.
%
% \begin{table}[htbp]
% \centering
% \topcaption{Ranges accepted by \cmd\um@parse@range.}
% \label{tab:ranges}
% \begin{tabular}{>{\ttfamily}cc}
% \textrm{Input} & Range \\
% \hline
% x & $r=x$ \\
% x- & $r\geq x$ \\
% -y & $r\leq y$ \\
% x-y & $x \leq r \leq y$ \\
% \end{tabular}
% \end{table}
%
% Start by iterating over the commalist, ignoring empties, and initialising the scratch conditional:
%    \begin{macrocode}
\newcommand\um@parse@term[4]{
  \seq_map_variable:NNn \l_um_char_range_seq \@ii {
    \unless\ifx\@ii\@empty
      \@tempswafalse
%    \end{macrocode}
% Match to either the character macro (\cmd\alpha) or the math type (\cmd\mathbin):
%    \begin{macrocode}
      \expandafter\um@firstchar\expandafter{\@ii}
      \ifx\@tempa\um@backslash
        \expandafter\ifx\@ii#2\relax
          \@tempswatrue
        \else
          \expandafter\ifx\@ii#3\relax
            \@tempswatrue
          \fi
        \fi
%    \end{macrocode}
% Otherwise, we have a number range, which is passed to another macro:
%    \begin{macrocode}
      \else
        \expandafter\um@parse@range\@ii-\@marker-\@nil#1\@nil
      \fi
%    \end{macrocode}
% If we have a match, execute the code!
% It also populates the
% \cmd\l_um_char_num_range_clist\ macro, which is used when defining
% \cmd\mathbf\ (\etc) \cmd\mathchar\ remappings.
%    \begin{macrocode}
      \if@tempswa
        \clist_put_right:Nx \l_um_char_num_range_clist { \intexpr_eval:n {#1} }
        #4
      \fi
    \fi
  }
}
\def\um@firstof#1#2\@nil{#1}
\edef\um@backslash{\expandafter\um@firstof\string\string\@nil}
\def\um@firstchar#1{\edef\@tempa{\expandafter\um@firstof\string#1\@nil}}
%    \end{macrocode}
% \end{macro}
%
% \begin{macro}{\um@parse@range}
% Weird syntax.
% As shown previously in \tabref{ranges}, this macro can be passed four different input types via \cmd\um@parse@term.
%    \begin{macrocode}
\def\um@parse@range#1-#2-#3\@nil#4\@nil{
  \def\@tempa{#1}
  \def\@tempb{#2}
%    \end{macrocode}
% \begin{tabular}{@{}ll}
% \hline
% Range & $r=x$ \\
% C-list input & \cmd\@ii=|X| \\
% Macro input & |\um@parse@range X-\@marker-\@nil#1\@nil| \\
% Arguments &
%     \texttt{\textcolor{red}{\char`\#1}-\textcolor{blue}{\char`\#2}-\textcolor{Green}{\char`\#3}}
%   = \texttt{\textcolor{red}{X}-\textcolor{blue}{\cmd\@marker}-\textcolor{Green}{\char`\{\char`\}}} \\
% \hline
% \end{tabular}
%    \begin{macrocode}
  \expandafter\ifx\expandafter\@marker\@tempb\relax
    \intexpr_compare:nT {#4=#1} \@tempswatrue
  \else
%    \end{macrocode}
% \begin{tabular}{@{}ll}
% \hline
% Range & $r\geq x$ \\
% C-list input & \cmd\@ii=|X-| \\
% Macro input & |\um@parse@range X--\@marker-\@nil#1\@nil|\\
% Arguments &
%    \texttt{\textcolor{red}{\char`\#1}-\textcolor{blue}{\char`\#2}-\textcolor{Green}{\char`\#3}}
% = \texttt{\textcolor{red}{X}-\textcolor{blue}{\char`\{\char`\}}-\textcolor{Green}{\cmd\@marker-}} \\
% \hline
% \end{tabular}
%    \begin{macrocode}
    \ifx\@empty\@tempb
      \intexpr_compare:nT {#4>#1-1} \@tempswatrue
    \else
%    \end{macrocode}
% \begin{tabular}{@{}ll}
% \hline
% Range & $r\leq y$ \\
% C-list input & \cmd\@ii=|-Y|  \\
% Macro input & |\um@parse@range -Y-\@marker-\@nil#1\@nil|\\
% Arguments &
%    \texttt{\textcolor{red}{\char`\#1}-\textcolor{blue}{\char`\#2}-\textcolor{Green}{\char`\#3}}
% = \texttt{\textcolor{red}{\char`\{\char`\}}-\textcolor{blue}{Y}-\textcolor{Green}{\cmd\@marker-}}\\
% \hline
% \end{tabular}
%    \begin{macrocode}
      \ifx\@empty\@tempa
        \intexpr_compare:nT {#4<#2+1} \@tempswatrue
%    \end{macrocode}
% \begin{tabular}{@{}ll}
% \hline
% Range & $x \leq r \leq y$  \\
% C-list input & \cmd\@ii=|X-Y|  \\
% Macro input & |\um@parse@range X-Y-\@marker-\@nil#1\@nil|\\
% Arguments &
%     \texttt{\textcolor{red}{\char`\#1}-\textcolor{blue}{\char`\#2}-\textcolor{Green}{\char`\#3}}
% =  \texttt{\textcolor{red}{X}-\textcolor{blue}{Y}-\textcolor{Green}{\cmd\@marker-}}\\
% \hline
% \end{tabular}
%    \begin{macrocode}
      \else
        \intexpr_compare:nT {#4>#1-1} {
          \intexpr_compare:nT {#4<#2+1} \@tempswatrue
        }
      \fi
    \fi
  \fi
}
%    \end{macrocode}
% \end{macro}
%
%
% \subsection{Resolving Greek symbol name control sequences}
%
% \begin{macro}{\um_resolve_greek:}
% This macro defines \cmd\Alpha\dots\cmd\omega\ as their corresponding
% Unicode (mathematical italic) character. Remember that the mapping
% to upright or italic happens with the mathcode definitions, whereas these macros
% just stand for the literal Unicode characters.
%    \begin{macrocode}
\AtBeginDocument{\um_resolve_greek:}
\cs_new:Npn \um_resolve_greek: {
  \clist_map_inline:nn {
    Alpha,Beta,Gamma,Delta,Epsilon,Zeta,Eta,Theta,Iota,Kappa,Lambda,
    alpha,beta,gamma,delta,        zeta,eta,theta,iota,kappa,lambda,
    Mu,Nu,Xi,Omicron,Pi,Rho,Sigma,Tau,Upsilon,Phi,Chi,Psi,Omega,
    mu,nu,xi,omicron,pi,rho,sigma,tau,upsilon,    chi,psi,omega,
    varTheta,
    varsigma,vartheta,varkappa,varrho,varpi
  }{
    \tl_set:cx {##1} { \exp_not:c { mit ##1 } }
  }
  \tl_set:Nn \epsilon {
    \bool_if:NTF \g_um_texgreek_bool \mitvarepsilon \mitepsilon
  }
  \tl_set:Nn \phi {
    \bool_if:NTF \g_um_texgreek_bool \mitvarphi \mitphi
  }
  \tl_set:Nn \varepsilon {
    \bool_if:NTF \g_um_texgreek_bool \mitepsilon \mitvarepsilon
  }
  \tl_set:Nn \varphi {
    \bool_if:NTF \g_um_texgreek_bool \mitphi \mitvarphi
  }
}
%    \end{macrocode}
% \end{macro}
%
%
% \section{Maths alphabets mapping definitions}
% \label{part:mathmap}
%
% Algorithm for setting alphabet fonts.
% By default, when |range| is empty, we are in \emph{implicit} mode.
% If |range| contains the name of the math alphabet, we are in \emph{explicit}
% mode and do things slightly differently.
%
% Implicit mode:
% \begin{itemize}
% \item Try and set all of the alphabet shapes.
% \item Check for the first glyph of each alphabet to detect if the font supports each
%       alphabet shape.
% \item For alphabets that do exist, overwrite whatever's already there.
% \item For alphabets that are not supported, \emph{do nothing}.
%       (This includes leaving the old alphabet definition in place.)
% \end{itemize}
%
% Explicit mode:
% \begin{itemize}
% \item Only set the alphabets specified.
% \item Check for the first glyph of the alphabet to detect if the font contains
%       the alphabet shape in the Unicode math plane.
% \item For Unicode math alphabets, overwrite whatever's already there.
% \item Otherwise, use the \ascii\ letters instead.
% \end{itemize}
%
% \subsection{Initialising math styles}
%
% \begin{macro}{\um_new_mathstyle:N}
% This function defines a new command like \cs{mathfrak}.
%    \begin{macrocode}
\cs_new:Npn \um_new_mathstyle:N #1 {
  \um_prepare_mathstyle:f {\exp_after:wN \use_none:nnnnn \token_to_str:N #1}
  \seq_put_right:Nn \g_um_mathstyles_seq {#1}
}
%    \end{macrocode}
% \end{macro}
%
% \begin{macro}{\g_um_default_mathalph_seq}
% This sequence stores the alphabets in each math style.
%    \begin{macrocode}
\seq_new:N \g_um_default_mathalph_seq
%    \end{macrocode}
% \end{macro}
%
% \begin{macro}{\g_um_mathstyles_seq}
% This is every math style known to \pkg{unicode-math}.
%    \begin{macrocode}
\seq_new:N \g_um_mathstyles_seq
%    \end{macrocode}
% \end{macro}
%
%    \begin{macrocode}
\AtEndOfPackage{
\clist_map_inline:nn {
  {\mathup    } {latin,Latin,greek,Greek,num,misc} {\mathup    }  ,
  {\mathit    } {latin,Latin,greek,Greek,misc}     {\mathit    }  ,
  {\mathbb    } {latin,Latin,num,misc}             {\mathbb    }  ,
  {\mathbbit  } {misc}                             {\mathbbit  }  ,
  {\mathscr   } {latin,Latin}                      {\mathscr   }  ,
  {\mathcal   } {Latin}                            {\mathscr   }  ,
  {\mathbfcal } {Latin}                            {\mathbfscr }  ,
  {\mathfrak  } {latin,Latin}                      {\mathfrak  }  ,
  {\mathtt    } {latin,Latin,num}                  {\mathtt    }  ,
  {\mathsfup  } {latin,Latin,num}                  {\mathsfup  }  ,
  {\mathsfit  } {latin,Latin}                      {\mathsfit  }  ,
  {\mathbfup  } {latin,Latin,greek,Greek,num,misc} {\mathbfup  }  ,
  {\mathbfit  } {latin,Latin,greek,Greek,misc}     {\mathbfit  }  ,
  {\mathbfscr } {latin,Latin}                      {\mathbfscr }  ,
  {\mathbffrak} {latin,Latin}                      {\mathbffrak}  ,
  {\mathbfsfup} {latin,Latin,greek,Greek,num,misc} {\mathbfsfup}  ,
  {\mathbfsfit} {latin,Latin,greek,Greek,misc}     {\mathbfsfit}
}{
  \seq_put_right:Nn \g_um_default_mathalph_seq {#1}
  \exp_after:wN \um_new_mathstyle:N \use_i:nnn #1
}
%    \end{macrocode}
% These are `false' mathstyles that inherit other definitions:
%    \begin{macrocode}
\um_new_mathstyle:N \mathsf
\um_new_mathstyle:N \mathbf
\um_new_mathstyle:N \mathbfsf
%    \end{macrocode}
%    \begin{macrocode}
}
%    \end{macrocode}
%
%
% \subsection{Defining the math style macros}
%
% We call the different shapes that a math alphabet can be a `math style'.
% Note that different alphabets can exist within the same math style. E.g.,
% we call `bold' the math style |bf| and within it there are upper and lower
% case Greek and Roman alphabets and Arabic numerals.
%
% \begin{macro}{\um_prepare_mathstyle:n}
% \darg{math style name (e.g., \texttt{it} or \texttt{bb})}
% Define the high level math alphabet macros (\cs{mathit}, etc.) in terms of
% unicode-math definitions. Use \cs{bgroup}/\cs{egroup} so s'scripts scan the
% whole thing.
%    \begin{macrocode}
\cs_new:Npn \um_prepare_mathstyle:n #1 {
  \um_init_alphabet:x {#1}
  \cs_set:cpn {_um_math#1_aux:n} ##1 {
    \use:c {um_switchto_math#1:} ##1 \egroup
  }
  \cs_set_protected:cpx {math#1} {
    \exp_not:n{
      \bgroup
      \mode_if_math:F {
        \egroup\expandafter
        \non@alpherr\expandafter{\csname math#1\endcsname\space}
      }
    }
    \exp_not:c {_um_math#1_aux:n}
  }
}
\cs_generate_variant:Nn \um_prepare_mathstyle:n {f}
%    \end{macrocode}
% \end{macro}
%
% \begin{macro}{\um_init_alphabet:n}
% \darg{math alphabet name (e.g., \texttt{it} or \texttt{bb})}
% This macro initialises the macros used to set up a math alphabet.
% First used with the math alphabet macro is first defined, but then used
% later when redefining a particular maths alphabet.
%    \begin{macrocode}
\cs_set:Npn \um_init_alphabet:n #1 {
  \um_trace:nx {alph-initialise} {#1}
  \cs_set_eq:cN {um_switchto_math#1:} \prg_do_nothing:
}
\cs_generate_variant:Nn \um_init_alphabet:n {x}
%    \end{macrocode}
% Variants
%    \begin{macrocode}
\cs_new:Npn \um_maybe_init_alphabet:V {
  \exp_args:NV \um_maybe_init_alphabet:n
}
%    \end{macrocode}
% \end{macro}
%
% \subsection{Defining the math alphabets per style}
%
%
% Variables:
%    \begin{macrocode}
\seq_new:N \l_um_missing_alph_seq
%    \end{macrocode}
%
% \begin{macro}{\um_setup_alphabets:}
% This function is called within \cs{setmathfont} to configure the
% mapping between characters inside math styles.
%    \begin{macrocode}
\cs_new:Npn \um_setup_alphabets: {
%    \end{macrocode}
% If |range=| has been used to configure styles, those choices will be in
% |\l_um_mathalph_seq|. If not, set up the styles implicitly:
%    \begin{macrocode}
  \seq_if_empty:NTF \l_um_mathalph_seq {
    \um_trace:n {setup-implicit}
    \seq_set_eq:NN \l_um_mathalph_seq \g_um_default_mathalph_seq
    \bool_set_true:N \l_um_implicit_alph_bool
    \um_maybe_init_alphabet:n  {sf}
    \um_maybe_init_alphabet:n  {bf}
    \um_maybe_init_alphabet:n  {bfsf}
  }
%    \end{macrocode}
% If |range=| has been used then we're in explicit mode:
%    \begin{macrocode}
  {
    \um_trace:n {setup-explicit}
    \bool_set_false:N \l_um_implicit_alph_bool
    \cs_set_eq:NN \um_set_mathalphabet_char:Nnn \um_mathmap_noparse:Nnn
    \cs_set_eq:NN \um_map_char_single:nn \um_map_char_noparse:nn
  }
%    \end{macrocode}
% Now perform the mapping:
%    \begin{macrocode}
  \seq_map_inline:Nn \l_um_mathalph_seq {
    \tl_set:No \l_um_tmpa_tl { \use_i:nnn   ##1 }
    \tl_set:No \l_um_tmpb_tl { \use_ii:nnn  ##1 }
    \tl_set:No \l_um_remap_style_tl { \use_iii:nnn ##1 }
    \tl_set:Nx \l_um_remap_style_tl {
      \exp_after:wN \exp_after:wN \exp_after:wN \use_none:nnnnn
      \exp_after:wN \token_to_str:N \l_um_remap_style_tl
    }
    \tl_if_empty:NT \l_um_tmpb_tl {
      \cs_set_eq:NN \um_maybe_init_alphabet:n \um_init_alphabet:n
      \tl_set:Nn \l_um_tmpb_tl { latin,Latin,greek,Greek,num,misc }
    }
    \um_setup_math_alphabet:VVV
      \l_um_tmpa_tl \l_um_tmpb_tl \l_um_remap_style_tl
  }
  \um_warn_missing_alphabets:
}
%    \end{macrocode}
%
%    \begin{macrocode}
\cs_new:Npn \um_warn_missing_alphabets: {
  \seq_if_empty:NF \l_um_missing_alph_seq {
    \typeout{
      Package~unicode-math~Warning:~
      missing~math~alphabets~in~font~ \fontname\l_um_font
    }
    \seq_map_inline:Nn \l_um_missing_alph_seq {
      \typeout{\space\space\space\space##1}
    }
  }
}
%    \end{macrocode}
% \end{macro}
%
% \begin{macro}{\um_setup_math_alphabet:Nnn}
% \darg{Math font style command (e.g., \cs{mathbb})}
% \darg{Math alphabets, comma separated of \{latin,Latin,greek,Greek,num\}}
% \darg{Name of the output math style (usually same as input \texttt{bb})}
%    \begin{macrocode}
\cs_new:Npn \um_setup_math_alphabet:Nnn #1#2#3 {
  \tl_set:Nx \l_um_style_tl {
    \exp_after:wN \use_none:nnnnn \token_to_str:N #1
  }
%    \end{macrocode}
% First check that at least one of the alphabets for the font shape is defined\dots
%    \begin{macrocode}
  \clist_map_inline:nn {#2} {
    \cs_if_exist:cT {um_config_ \l_um_style_tl _##1:n} {
      \tl_if_eq:nnTF {##1}{misc} {
        \um_maybe_init_alphabet:V \l_um_style_tl
        \clist_map_break:
      }{
        \um_glyph_if_exist:cT { \um_to_usv:nn {#3}{##1} }{
          \um_maybe_init_alphabet:V \l_um_style_tl
          \clist_map_break:
        }
      }
    }
  }
%    \end{macrocode}
% \dots and then loop through them defining the individual ranges:
%    \begin{macrocode}
  \clist_map_inline:nn {#2} {
    \cs_if_exist:cT {um_config_ \l_um_style_tl _##1:n} {
      \tl_if_eq:nnTF {##1}{misc} {
        \um_trace:nx {setup-alph} {math \l_um_style_tl~(##1)}
        \use:c {um_config_ \l_um_style_tl _##1:n} {#3}
      }{
        \um_glyph_if_exist:cTF { \um_to_usv:nn {#3}{##1} } {
          \um_trace:nx {setup-alph} {math \l_um_style_tl~(##1)}
          \use:c {um_config_ \l_um_style_tl _##1:n} {#3}
        }{
          \bool_if:NTF \l_um_implicit_alph_bool {
            \seq_put_right:Nx \l_um_missing_alph_seq {
              \@backslashchar math \l_um_style_tl \space
              (\tl_use:c{g_um_math_alphabet_name_##1_tl})
            }
          }{
            \use:c {um_config_ \l_um_style_tl _##1:n} {up}
          }
        }
      }
    }
  }
}
\cs_generate_variant:Nn \um_setup_math_alphabet:Nnn {VVV}
%    \end{macrocode}
% \end{macro}
%
%
%
% \subsection{Mapping `naked' math characters}
%
% Before we show the definitions of the alphabet mappings using the functions
% |\um_config_\l_um_style_tl_##1:n|, we first want to define some functions
% to be used inside them to actually perform the character mapping.
%
% \subsubsection{Functions}
%
% \begin{macro}{\um_map_char_single:nn}
% Wrapper for |\um_map_char_noparse:nn| or |\um_map_char_parse:nn|
% depending on the context.
%    \begin{macrocode}
\cs_new:Npn \um_map_char_single:cc { \exp_args:Ncc \um_map_char_single:nn }
%    \end{macrocode}
% \end{macro}
%
%
% \begin{macro}{\um_map_char_noparse:nn}
% \begin{macro}{\um_map_char_parse:nn}
%    \begin{macrocode}
\cs_new:Npn \um_map_char_noparse:nn #1#2 {
  \um_set_mathcode:nnnn {#1}{\mathalpha}{\um_symfont_tl}{#2}
}
%    \end{macrocode}
%
%    \begin{macrocode}
\cs_new:Npn \um_map_char_parse:nn #1#2 {
  \um@parse@term {#1} {\@nil} {\mathalpha} {
    \um_map_char_noparse:nn {#1}{#2}
  }
}
%    \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\um_map_single:nnn}
% \darg{char name (`dotlessi')}
% \darg{from alphabet(s)}
% \darg{to alphabet}
%    \begin{macrocode}
\cs_new:Npn \um_map_char_single:nnn #1#2#3 {
  \um_map_char_single:cc { \um_to_usv:nn {#1}{#3} }
                         { \um_to_usv:nn {#2}{#3} }
}
\cs_set:Npn \um_map_single:nnn #1#2#3 {
  \cs_if_exist:cT { \um_to_usv:nn {#3} {#1} }
  {
    \clist_map_inline:nn {#2} {
      \um_map_char_single:nnn {##1} {#3} {#1}
    }
  }
}
%    \end{macrocode}
% \end{macro}
%
%
% \begin{macro}{\um_map_chars_range:nnnn}
% \darg{Number of chars (26)}
% \darg{From style, one or more (it)}
% \darg{To style (up)}
% \darg{Alphabet name (Latin)}
% First the function with numbers:
%    \begin{macrocode}
\cs_set:Npn \um_map_chars_range:nnn #1#2#3 {
  \prg_stepwise_inline:nnnn {0}{1}{#1-1} {
    \um_map_char_single:nn {#2+##1}{#3+##1}
  }
}
\cs_generate_variant:Nn \um_map_chars_range:nnn {ncc}
%    \end{macrocode}
% And the wrapper with names:
%    \begin{macrocode}
\cs_new:Npn \um_map_chars_range:nnnn #1#2#3#4 {
  \um_map_chars_range:ncc {#1} { \um_to_usv:nn {#2}{#4} }
                               { \um_to_usv:nn {#3}{#4} }
}
%    \end{macrocode}
% \end{macro}
%
% \subsubsection{Functions for alphabets}
%
%    \begin{macrocode}
\cs_set:Npn \um_map_chars_Latin:nn #1#2 {
  \clist_map_inline:nn {#1} {
    \um_map_chars_range:nnnn {26} {##1} {#2} {Latin}
  }
}
%    \end{macrocode}
%
%    \begin{macrocode}
\cs_set:Npn \um_map_chars_latin:nn #1#2 {
  \clist_map_inline:nn {#1} {
    \um_map_chars_range:nnnn {26} {##1} {#2} {latin}
  }
}
%    \end{macrocode}
%
%    \begin{macrocode}
\cs_set:Npn \um_map_chars_greek:nn #1#2 {
  \clist_map_inline:nn {#1} {
    \um_map_chars_range:nnnn {25} {##1} {#2} {greek}
    \um_map_char_single:nnn {##1} {#2} {varepsilon}
    \um_map_char_single:nnn {##1} {#2} {vartheta}
    \um_map_char_single:nnn {##1} {#2} {varkappa}
    \um_map_char_single:nnn {##1} {#2} {varphi}
    \um_map_char_single:nnn {##1} {#2} {varrho}
    \um_map_char_single:nnn {##1} {#2} {varpi}
  }
}
%    \end{macrocode}
%
%    \begin{macrocode}
\cs_set:Npn \um_map_chars_Greek:nn #1#2 {
  \clist_map_inline:nn {#1} {
    \um_map_chars_range:nnnn {25} {##1} {#2} {Greek}
    \um_map_char_single:nnn {##1} {#2} {varTheta}
  }
}
%    \end{macrocode}
%
%    \begin{macrocode}
\cs_set:Npn \um_map_chars_numbers:nn #1#2 {
  \um_map_chars_range:nnnn {10} {#1} {#2} {num}
}
%    \end{macrocode}
%
%
% \subsection{Mapping chars inside a math style}
%
% \subsubsection{Functions for setting up the maths alphabets}
%
% \begin{macro}{\um_set_mathalphabet_char:Nnn}
% This is a wrapper for either |\um_mathmap_noparse:Nnn| or |\um_mathmap_parse:Nnn|, depending on the context.
%    \begin{macrocode}
\cs_new:Npn \um_set_mathalphabet_char:Ncc {
  \exp_args:NNcc \um_set_mathalphabet_char:Nnn
}
%    \end{macrocode}
% \end{macro}
%
% \begin{macro}{\um_mathmap_noparse:Nnn}
% \darg{Maths alphabet, \eg, \cmd\mathbb}
% \darg{Input slot(s), \eg, the slot for `A' (comma separated)}
% \darg{Output slot, \eg, the slot for `$\mathbb{A}$'}
% Adds \cs{um_set_mathcode:nnnn} declarations to the specified maths alphabet's definition.
%    \begin{macrocode}
\cs_set:Npn \um_mathmap_noparse:Nnn #1#2#3 {
  \clist_map_inline:nn {#2} {
    \tl_put_right:cx {um_switchto_\cs_to_str:N #1:} {
      \um_set_mathcode:nnnn{##1}{\mathalpha}{\um_symfont_tl}{#3}
    }
  }
}
%    \end{macrocode}
% \end{macro}
%
% \begin{macro}{\um_mathmap_parse:Nnn}
% \darg{Maths alphabet, \eg, \cmd\mathbb}
% \darg{Input slot(s), \eg, the slot for `A' (comma separated)}
% \darg{Output slot, \eg, the slot for `$\mathbb{A}$'}
% When \cmd\um@parse@term\ is executed, it populates the \cmd\l_um_char_num_range_clist\
% macro with slot numbers corresponding to the specified range. This range is used to
% conditionally add \cs{um_set_mathcode:nnnn} declaractions to the maths alphabet definition.
%    \begin{macrocode}
\cs_set:Npn \um_mathmap_parse:Nnn #1#2#3 {
  \clist_if_in:NnT \l_um_char_num_range_clist {#3} {
    \um_mathmap_noparse:Nnn {#1}{#2}{#3}
  }
}
%    \end{macrocode}
% \end{macro}
%
% \begin{macro}{\um_set_mathalphabet_char:Nnnn}
% \darg{math style command}
% \darg{input math alphabet name}
% \darg{output math alphabet name}
% \darg{char name to map}
%    \begin{macrocode}
\cs_new:Npn \um_set_mathalphabet_char:Nnnn #1#2#3#4 {
  \um_set_mathalphabet_char:Ncc #1 { \um_to_usv:nn {#2} {#4} }
                                   { \um_to_usv:nn {#3} {#4} }
}
%    \end{macrocode}
% \end{macro}
%
% \begin{macro}{\um_set_mathalph_range:nNnn}
% \darg{Number of iterations}
% \darg{Maths alphabet}
% \darg{Starting input char (single)}
% \darg{Starting output char}
% Loops through character ranges setting \cmd\mathcode.
% First the version that uses numbers:
%    \begin{macrocode}
\cs_new:Npn \um_set_mathalph_range:nNnn #1#2#3#4 {
  \prg_stepwise_inline:nnnn {0}{1}{#1-1} {
    \um_set_mathalphabet_char:Nnn {#2} { ##1 + #3 } { ##1 + #4 }
  }
}
\cs_generate_variant:Nn \um_set_mathalph_range:nNnn {nNcc}
%    \end{macrocode}
% Then the wrapper version that uses names:
%    \begin{macrocode}
\cs_new:Npn \um_set_mathalph_range:nNnnn #1#2#3#4#5 {
  \um_set_mathalph_range:nNcc {#1} #2 { \um_to_usv:nn {#3} {#5} }
                                      { \um_to_usv:nn {#4} {#5} }
}
%    \end{macrocode}
% \end{macro}
%
% \subsubsection{Individual mapping functions for different alphabets}
%
%    \begin{macrocode}
\cs_new:Npn \um_set_mathalphabet_pos:Nnnn #1#2#3#4 {
  \cs_if_exist:cT { \um_to_usv:nn {#4}{#2} } {
    \clist_map_inline:nn {#3} {
      \um_set_mathalphabet_char:Nnnn #1 {##1} {#4} {#2}
    }
  }
}
%    \end{macrocode}
%
%    \begin{macrocode}
\cs_new:Npn \um_set_mathalphabet_numbers:Nnn #1#2#3 {
  \clist_map_inline:nn {#2} {
    \um_set_mathalph_range:nNnnn {10} #1  {##1} {#3} {num}
  }
}
%    \end{macrocode}
%
%    \begin{macrocode}
\cs_new:Npn \um_set_mathalphabet_Latin:Nnn #1#2#3 {
  \clist_map_inline:nn {#2} {
    \um_set_mathalph_range:nNnnn {26} #1 {##1} {#3} {Latin}
  }
}
%    \end{macrocode}
%
%    \begin{macrocode}
\cs_new:Npn \um_set_mathalphabet_latin:Nnn #1#2#3 {
  \clist_map_inline:nn {#2} {
    \um_set_mathalph_range:nNnnn {26} #1 {##1} {#3} {latin}
    \um_set_mathalphabet_char:Nnnn    #1 {##1} {#3} {h}
  }
}
%    \end{macrocode}
%
%    \begin{macrocode}
\cs_new:Npn \um_set_mathalphabet_Greek:Nnn #1#2#3 {
  \clist_map_inline:nn {#2} {
    \um_set_mathalph_range:nNnnn {25} #1 {##1} {#3} {Greek}
    \um_set_mathalphabet_char:Nnnn    #1 {##1} {#3} {varTheta}
  }
}
%    \end{macrocode}
%
%    \begin{macrocode}
\cs_new:Npn \um_set_mathalphabet_greek:Nnn #1#2#3 {
  \clist_map_inline:nn {#2} {
    \um_set_mathalph_range:nNnnn {25} #1 {##1} {#3} {greek}
    \um_set_mathalphabet_char:Nnnn    #1 {##1} {#3} {varepsilon}
    \um_set_mathalphabet_char:Nnnn    #1 {##1} {#3} {vartheta}
    \um_set_mathalphabet_char:Nnnn    #1 {##1} {#3} {varkappa}
    \um_set_mathalphabet_char:Nnnn    #1 {##1} {#3} {varphi}
    \um_set_mathalphabet_char:Nnnn    #1 {##1} {#3} {varrho}
    \um_set_mathalphabet_char:Nnnn    #1 {##1} {#3} {varpi}
  }
}
%    \end{macrocode}
%
% \subsection{Alphabets}
%
% \subsubsection{Upright: \cmd\mathup}
%    \begin{macrocode}
\cs_new:Npn \um_config_up_num:n #1 {
  \um_map_chars_numbers:nn {up}{#1}
  \um_set_mathalphabet_numbers:Nnn \mathup {up}{#1}
}
\cs_new:Npn \um_config_up_Latin:n #1 {
  \bool_if:NTF \g_um_literal_bool {
    \um_map_chars_Latin:nn {up} {#1}
  }{
    \bool_if:NT \g_um_upLatin_bool {
      \um_map_chars_Latin:nn {up,it} {#1}
    }
  }
  \um_set_mathalphabet_Latin:Nnn \mathup {up,it}{#1}
}
\cs_new:Npn \um_config_up_latin:n #1 {
  \bool_if:NTF \g_um_literal_bool {
    \um_map_chars_latin:nn {up} {#1}
  }{
    \bool_if:NT \g_um_uplatin_bool {
      \um_map_chars_latin:nn        {up,it} {#1}
      \um_map_single:nnn        {h} {up,it} {#1}
      \um_map_single:nnn {dotlessi} {up,it} {#1}
      \um_map_single:nnn {dotlessj} {up,it} {#1}
    }
  }
  \um_set_mathalphabet_latin:Nnn \mathup {up,it}{#1}
}
\cs_new:Npn \um_config_up_Greek:n #1 {
  \bool_if:NTF \g_um_literal_bool {
    \um_map_chars_Greek:nn {up}{#1}
  }{
    \bool_if:NT \g_um_upGreek_bool {
      \um_map_chars_Greek:nn {up,it}{#1}
    }
  }
  \um_set_mathalphabet_Greek:Nnn \mathup {up,it}{#1}
}
\cs_new:Npn \um_config_up_greek:n #1 {
  \bool_if:NTF \g_um_literal_bool {
    \um_map_chars_greek:nn {up} {#1}
  }{
    \bool_if:NT \g_um_upgreek_bool {
      \um_map_chars_greek:nn {up,it} {#1}
    }
  }
  \um_set_mathalphabet_greek:Nnn \mathup {up,it} {#1}
}
\cs_new:Npn \um_config_up_misc:n #1 {
  \bool_if:NTF \g_um_literal_Nabla_bool {
    \um_map_single:nnn {Nabla}{up}{up}
  }{
    \bool_if:NT \g_um_upNabla_bool {
      \um_map_single:nnn {Nabla}{up,it}{up}
    }
  }
  \bool_if:NTF \g_um_literal_partial_bool {
    \um_map_single:nnn {partial}{up}{up}
  }{
    \bool_if:NT \g_um_uppartial_bool {
      \um_map_single:nnn {partial}{up,it}{up}
    }
  }
  \um_set_mathalphabet_pos:Nnnn \mathup  {partial} {up,it} {#1}
  \um_set_mathalphabet_pos:Nnnn \mathup    {Nabla} {up,it} {#1}
  \um_set_mathalphabet_pos:Nnnn \mathup {dotlessi} {up,it} {#1}
  \um_set_mathalphabet_pos:Nnnn \mathup {dotlessj} {up,it} {#1}
}
%    \end{macrocode}
%
% \subsubsection{Italic: \cmd\mathit}
%
%    \begin{macrocode}
\cs_new:Npn \um_config_it_Latin:n #1 {
  \bool_if:NTF \g_um_literal_bool {
    \um_map_chars_Latin:nn {it} {#1}
  }{
    \bool_if:NF \g_um_upLatin_bool {
      \um_map_chars_Latin:nn {up,it} {#1}
    }
  }
  \um_set_mathalphabet_Latin:Nnn \mathit {up,it}{#1}
}
\cs_new:Npn \um_config_it_latin:n #1 {
  \bool_if:NTF \g_um_literal_bool {
    \um_map_chars_latin:nn {it} {#1}
    \um_map_single:nnn {h}{it}{#1}
  }{
    \bool_if:NF \g_um_uplatin_bool {
      \um_map_chars_latin:nn {up,it} {#1}
      \um_map_single:nnn {h}{up,it}{#1}
      \um_map_single:nnn {dotlessi}{up,it}{#1}
      \um_map_single:nnn {dotlessj}{up,it}{#1}
    }
  }
  \um_set_mathalphabet_latin:Nnn \mathit            {up,it} {#1}
  \um_set_mathalphabet_pos:Nnnn  \mathit {dotlessi} {up,it} {#1}
  \um_set_mathalphabet_pos:Nnnn  \mathit {dotlessj} {up,it} {#1}
}
\cs_new:Npn \um_config_it_Greek:n #1 {
  \bool_if:NTF \g_um_literal_bool {
    \um_map_chars_Greek:nn {it}{#1}
  }{
    \bool_if:NF \g_um_upGreek_bool {
      \um_map_chars_Greek:nn {up,it}{#1}
    }
  }
  \um_set_mathalphabet_Greek:Nnn \mathit {up,it}{#1}
}
\cs_new:Npn \um_config_it_greek:n #1 {
  \bool_if:NTF \g_um_literal_bool {
    \um_map_chars_greek:nn {it} {#1}
  }{
    \bool_if:NF \g_um_upgreek_bool {
      \um_map_chars_greek:nn {it,up} {#1}
    }
  }
  \um_set_mathalphabet_greek:Nnn \mathit {up,it} {#1}
}
\cs_new:Npn \um_config_it_misc:n #1 {
  \bool_if:NTF \g_um_literal_Nabla_bool {
    \um_map_single:nnn {Nabla}{it}{it}
  }{
    \bool_if:NF \g_um_upNabla_bool {
      \um_map_single:nnn {Nabla}{up,it}{it}
    }
  }
  \bool_if:NTF \g_um_literal_partial_bool {
    \um_map_single:nnn {partial}{it}{it}
  }{
    \bool_if:NF \g_um_uppartial_bool {
      \um_map_single:nnn {partial}{up,it}{it}
    }
  }
  \um_set_mathalphabet_pos:Nnnn \mathit {partial} {up,it}{#1}
  \um_set_mathalphabet_pos:Nnnn \mathit {Nabla}   {up,it}{#1}
}
%    \end{macrocode}
%
% \subsubsection{Blackboard or double-struck: \cmd\mathbb\ and \cmd\mathbbit}
%
%    \begin{macrocode}
\cs_new:Npn \um_config_bb_latin:n #1 {
  \um_set_mathalphabet_latin:Nnn \mathbb {up,it}{#1}
}
\cs_new:Npn \um_config_bb_Latin:n #1 {
  \um_set_mathalphabet_Latin:Nnn \mathbb {up,it}{#1}
  \um_set_mathalphabet_pos:Nnnn  \mathbb {C} {up,it} {#1}
  \um_set_mathalphabet_pos:Nnnn  \mathbb {H} {up,it} {#1}
  \um_set_mathalphabet_pos:Nnnn  \mathbb {N} {up,it} {#1}
  \um_set_mathalphabet_pos:Nnnn  \mathbb {P} {up,it} {#1}
  \um_set_mathalphabet_pos:Nnnn  \mathbb {Q} {up,it} {#1}
  \um_set_mathalphabet_pos:Nnnn  \mathbb {R} {up,it} {#1}
  \um_set_mathalphabet_pos:Nnnn  \mathbb {Z} {up,it} {#1}
}
\cs_new:Npn \um_config_bb_num:n #1 {
  \um_set_mathalphabet_numbers:Nnn \mathbb {up}{#1}
}
\cs_new:Npn \um_config_bb_misc:n #1 {
  \um_set_mathalphabet_pos:Nnnn \mathbb        {Pi} {up,it} {#1}
  \um_set_mathalphabet_pos:Nnnn \mathbb        {pi} {up,it} {#1}
  \um_set_mathalphabet_pos:Nnnn \mathbb     {Gamma} {up,it} {#1}
  \um_set_mathalphabet_pos:Nnnn \mathbb     {gamma} {up,it} {#1}
  \um_set_mathalphabet_pos:Nnnn \mathbb {summation} {up} {#1}
}
\cs_new:Npn \um_config_bbit_misc:n #1 {
  \um_set_mathalphabet_pos:Nnnn \mathbbit {D} {up,it} {#1}
  \um_set_mathalphabet_pos:Nnnn \mathbbit {d} {up,it} {#1}
  \um_set_mathalphabet_pos:Nnnn \mathbbit {e} {up,it} {#1}
  \um_set_mathalphabet_pos:Nnnn \mathbbit {i} {up,it} {#1}
  \um_set_mathalphabet_pos:Nnnn \mathbbit {j} {up,it} {#1}
}
%    \end{macrocode}
%
% \subsubsection{Script and caligraphic: \cmd\mathscr\ and \cmd\mathcal}
%
%    \begin{macrocode}
\cs_new:Npn \um_config_scr_Latin:n #1 {
  \um_set_mathalphabet_Latin:Nnn \mathscr    {up,it}{#1}
  \um_set_mathalphabet_pos:Nnnn  \mathscr {B}{up,it}{#1}
  \um_set_mathalphabet_pos:Nnnn  \mathscr {E}{up,it}{#1}
  \um_set_mathalphabet_pos:Nnnn  \mathscr {F}{up,it}{#1}
  \um_set_mathalphabet_pos:Nnnn  \mathscr {H}{up,it}{#1}
  \um_set_mathalphabet_pos:Nnnn  \mathscr {I}{up,it}{#1}
  \um_set_mathalphabet_pos:Nnnn  \mathscr {L}{up,it}{#1}
  \um_set_mathalphabet_pos:Nnnn  \mathscr {M}{up,it}{#1}
  \um_set_mathalphabet_pos:Nnnn  \mathscr {R}{up,it}{#1}
}
\cs_new:Npn \um_config_scr_latin:n #1 {
  \um_set_mathalphabet_latin:Nnn \mathscr    {up,it}{#1}
  \um_set_mathalphabet_pos:Nnnn  \mathscr {e}{up,it}{#1}
  \um_set_mathalphabet_pos:Nnnn  \mathscr {g}{up,it}{#1}
  \um_set_mathalphabet_pos:Nnnn  \mathscr {o}{up,it}{#1}
}
%    \end{macrocode}
% These are by default synonyms for the above, but with the STIX
% fonts we want to use the alternate alphabet.
%    \begin{macrocode}
\cs_new:Npn \um_config_cal_Latin:n #1 {
  \um_set_mathalphabet_Latin:Nnn  \mathcal  {up,it}{#1}
  \um_set_mathalphabet_pos:Nnnn   \mathcal {B}{up,it}{#1}
  \um_set_mathalphabet_pos:Nnnn   \mathcal {E}{up,it}{#1}
  \um_set_mathalphabet_pos:Nnnn   \mathcal {F}{up,it}{#1}
  \um_set_mathalphabet_pos:Nnnn   \mathcal {H}{up,it}{#1}
  \um_set_mathalphabet_pos:Nnnn   \mathcal {I}{up,it}{#1}
  \um_set_mathalphabet_pos:Nnnn   \mathcal {L}{up,it}{#1}
  \um_set_mathalphabet_pos:Nnnn   \mathcal {M}{up,it}{#1}
  \um_set_mathalphabet_pos:Nnnn   \mathcal {R}{up,it}{#1}
}
%    \end{macrocode}
%
% \subsubsection{Fractur or fraktur or blackletter: \cmd\mathfrak}
%
%    \begin{macrocode}
\cs_new:Npn \um_config_frak_Latin:n #1 {
  \um_set_mathalphabet_Latin:Nnn \mathfrak    {up,it}{#1}
  \um_set_mathalphabet_pos:Nnnn  \mathfrak {C}{up,it}{#1}
  \um_set_mathalphabet_pos:Nnnn  \mathfrak {H}{up,it}{#1}
  \um_set_mathalphabet_pos:Nnnn  \mathfrak {I}{up,it}{#1}
  \um_set_mathalphabet_pos:Nnnn  \mathfrak {R}{up,it}{#1}
  \um_set_mathalphabet_pos:Nnnn  \mathfrak {Z}{up,it}{#1}
}
\cs_new:Npn \um_config_frak_latin:n #1 {
  \um_set_mathalphabet_latin:Nnn \mathfrak {up,it}{#1}
}
%    \end{macrocode}
%
% \subsubsection{Sans serif upright: \cmd\mathsfup}
%    \begin{macrocode}
\cs_new:Npn \um_config_sfup_num:n #1 {
  \um_set_mathalphabet_numbers:Nnn \mathsf   {up}{#1}
  \um_set_mathalphabet_numbers:Nnn \mathsfup {up}{#1}
}
\cs_new:Npn \um_config_sfup_Latin:n #1 {
  \bool_if:NTF \g_um_sfliteral_bool {
    \um_map_chars_Latin:nn {sfup} {#1}
    \um_set_mathalphabet_Latin:Nnn \mathsf {up}{#1}
  }{
    \bool_if:NT \g_um_upsans_bool {
      \um_map_chars_Latin:nn {sfup,sfit} {#1}
      \um_set_mathalphabet_Latin:Nnn \mathsf {up,it}{#1}
    }
  }
  \um_set_mathalphabet_Latin:Nnn \mathsfup {up,it}{#1}
}
\cs_new:Npn \um_config_sfup_latin:n #1 {
  \bool_if:NTF \g_um_sfliteral_bool {
    \um_map_chars_latin:nn {sfup} {#1}
    \um_set_mathalphabet_latin:Nnn \mathsf {up}{#1}
  }{
    \bool_if:NT \g_um_upsans_bool {
      \um_map_chars_latin:nn {sfup,sfit} {#1}
      \um_set_mathalphabet_latin:Nnn \mathsf {up,it}{#1}
    }
  }
  \um_set_mathalphabet_latin:Nnn \mathsfup {up,it}{#1}
}
%    \end{macrocode}
%
% \subsubsection{Sans serif italic: \cmd\mathsfit}
%
%    \begin{macrocode}
\cs_new:Npn \um_config_sfit_Latin:n #1 {
  \bool_if:NTF \g_um_sfliteral_bool {
    \um_map_chars_Latin:nn {sfit} {#1}
    \um_set_mathalphabet_Latin:Nnn \mathsf {it}{#1}
  }{
    \bool_if:NF \g_um_upsans_bool {
      \um_map_chars_Latin:nn {sfup,sfit} {#1}
      \um_set_mathalphabet_Latin:Nnn \mathsf {up,it}{#1}
    }
  }
  \um_set_mathalphabet_Latin:Nnn \mathsfit {up,it}{#1}
}
\cs_new:Npn \um_config_sfit_latin:n #1 {
  \bool_if:NTF \g_um_sfliteral_bool {
    \um_map_chars_latin:nn {sfit} {#1}
    \um_set_mathalphabet_latin:Nnn \mathsf {it}{#1}
  }{
    \bool_if:NF \g_um_upsans_bool {
      \um_map_chars_latin:nn {sfup,sfit} {#1}
      \um_set_mathalphabet_latin:Nnn \mathsf {up,it}{#1}
    }
  }
  \um_set_mathalphabet_latin:Nnn \mathsfit {up,it}{#1}
}
%    \end{macrocode}
%
% \subsubsection{Typewriter or monospaced: \cmd\mathtt}
%    \begin{macrocode}
\cs_new:Npn \um_config_tt_num:n #1 {
  \um_set_mathalphabet_numbers:Nnn \mathtt {up}{#1}
}
\cs_new:Npn \um_config_tt_Latin:n #1 {
  \um_set_mathalphabet_Latin:Nnn \mathtt {up,it}{#1}
}
\cs_new:Npn \um_config_tt_latin:n #1 {
  \um_set_mathalphabet_latin:Nnn \mathtt {up,it}{#1}
}
%    \end{macrocode}
%
%
% \subsubsection{Bold Italic: \cmd\mathbfit}
%    \begin{macrocode}
\cs_new:Npn \um_config_bfit_Latin:n #1 {
  \bool_if:NF \g_um_bfupLatin_bool {
    \um_map_chars_Latin:nn {bfup,bfit} {#1}
  }
  \um_set_mathalphabet_Latin:Nnn \mathbfit {up,it}{#1}
  \bool_if:NTF \g_um_bfliteral_bool {
    \um_map_chars_Latin:nn {bfit} {#1}
    \um_set_mathalphabet_Latin:Nnn \mathbf {it}{#1}
  }{
    \bool_if:NF \g_um_bfupLatin_bool {
      \um_map_chars_Latin:nn {bfup,bfit} {#1}
      \um_set_mathalphabet_Latin:Nnn \mathbf {up,it}{#1}
    }
  }
}
\cs_new:Npn \um_config_bfit_latin:n #1 {
  \bool_if:NF \g_um_bfuplatin_bool {
    \um_map_chars_latin:nn {bfup,bfit} {#1}
  }
  \um_set_mathalphabet_latin:Nnn \mathbfit {up,it}{#1}
  \bool_if:NTF \g_um_bfliteral_bool {
    \um_map_chars_latin:nn {bfit} {#1}
    \um_set_mathalphabet_latin:Nnn \mathbf {it}{#1}
  }{
    \bool_if:NF \g_um_bfuplatin_bool {
      \um_map_chars_latin:nn {bfup,bfit} {#1}
      \um_set_mathalphabet_latin:Nnn \mathbf {up,it}{#1}
    }
  }
}
\cs_new:Npn \um_config_bfit_Greek:n #1 {
  \um_set_mathalphabet_Greek:Nnn \mathbfit {up,it}{#1}
  \bool_if:NTF \g_um_bfliteral_bool {
    \um_map_chars_Greek:nn {bfit}{#1}
    \um_set_mathalphabet_Greek:Nnn \mathbf {it}{#1}
  }{
    \bool_if:NF \g_um_bfupGreek_bool {
      \um_map_chars_Greek:nn {bfup,bfit}{#1}
      \um_set_mathalphabet_Greek:Nnn \mathbf {up,it}{#1}
    }
  }
}
\cs_new:Npn \um_config_bfit_greek:n #1 {
  \um_set_mathalphabet_greek:Nnn \mathbfit {up,it} {#1}
  \bool_if:NTF \g_um_bfliteral_bool {
    \um_map_chars_greek:nn {bfit} {#1}
    \um_set_mathalphabet_greek:Nnn \mathbf {it} {#1}
  }{
    \bool_if:NF \g_um_bfupgreek_bool {
      \um_map_chars_greek:nn {bfit,bfup} {#1}
      \um_set_mathalphabet_greek:Nnn \mathbf {up,it} {#1}
    }
  }
}
\cs_new:Npn \um_config_bfit_misc:n #1 {
  \bool_if:NTF \g_um_literal_Nabla_bool {
    \um_map_single:nnn {Nabla}{bfit}{#1}
  }{
    \bool_if:NF \g_um_upNabla_bool {
      \um_map_single:nnn {Nabla}{bfup,bfit}{#1}
    }
  }
  \bool_if:NTF \g_um_literal_partial_bool {
    \um_map_single:nnn {partial}{bfit}{#1}
  }{
    \bool_if:NF \g_um_uppartial_bool {
      \um_map_single:nnn {partial}{bfup,bfit}{#1}
    }
  }
  \um_set_mathalphabet_pos:Nnnn  \mathbfit {partial} {up,it}{#1}
  \um_set_mathalphabet_pos:Nnnn  \mathbfit {Nabla}   {up,it}{#1}
  \bool_if:NTF \g_um_literal_partial_bool {
    \um_set_mathalphabet_pos:Nnnn  \mathbf {partial} {it}{#1}
  }{
    \bool_if:NF \g_um_uppartial_bool {
      \um_set_mathalphabet_pos:Nnnn  \mathbf {partial} {up,it}{#1}
    }
  }
  \bool_if:NTF \g_um_literal_Nabla_bool {
    \um_set_mathalphabet_pos:Nnnn  \mathbf {Nabla}   {it}{#1}
  }{
    \bool_if:NF \g_um_upNabla_bool {
      \um_set_mathalphabet_pos:Nnnn  \mathbf {Nabla}   {up,it}{#1}
    }
  }
}
%    \end{macrocode}
%
%
% \subsubsection{Bold Upright: \cmd\mathbfup}
%    \begin{macrocode}
\cs_new:Npn \um_config_bfup_num:n #1 {
  \um_set_mathalphabet_numbers:Nnn \mathbf   {up}{#1}
  \um_set_mathalphabet_numbers:Nnn \mathbfup {up}{#1}
}
\cs_new:Npn \um_config_bfup_Latin:n #1 {
  \bool_if:NT \g_um_bfupLatin_bool {
    \um_map_chars_Latin:nn {bfup,bfit} {#1}
  }
  \um_set_mathalphabet_Latin:Nnn \mathbfup {up,it}{#1}
  \bool_if:NTF \g_um_bfliteral_bool {
    \um_map_chars_Latin:nn {bfup} {#1}
    \um_set_mathalphabet_Latin:Nnn \mathbf {up}{#1}
  }{
    \bool_if:NT \g_um_bfupLatin_bool {
      \um_map_chars_Latin:nn {bfup,bfit} {#1}
      \um_set_mathalphabet_Latin:Nnn \mathbf {up,it}{#1}
    }
  }
}
\cs_new:Npn \um_config_bfup_latin:n #1 {
  \bool_if:NT \g_um_bfuplatin_bool {
    \um_map_chars_latin:nn {bfup,bfit} {#1}
  }
  \um_set_mathalphabet_latin:Nnn \mathbfup {up,it}{#1}
  \bool_if:NTF \g_um_bfliteral_bool {
    \um_map_chars_latin:nn {bfup} {#1}
    \um_set_mathalphabet_latin:Nnn \mathbf {up}{#1}
  }{
    \bool_if:NT \g_um_bfuplatin_bool {
      \um_map_chars_latin:nn {bfup,bfit} {#1}
      \um_set_mathalphabet_latin:Nnn \mathbf {up,it}{#1}
    }
  }
}
\cs_new:Npn \um_config_bfup_Greek:n #1 {
  \um_set_mathalphabet_Greek:Nnn \mathbfup {up,it}{#1}
  \bool_if:NTF \g_um_bfliteral_bool {
    \um_map_chars_Greek:nn {bfup}{#1}
    \um_set_mathalphabet_Greek:Nnn \mathbf {up}{#1}
  }{
    \bool_if:NT \g_um_bfupGreek_bool {
      \um_map_chars_Greek:nn {bfup,bfit}{#1}
      \um_set_mathalphabet_Greek:Nnn \mathbf {up,it}{#1}
    }
  }
}
\cs_new:Npn \um_config_bfup_greek:n #1 {
  \um_set_mathalphabet_greek:Nnn \mathbfup {up,it} {#1}
  \bool_if:NTF \g_um_bfliteral_bool {
    \um_map_chars_greek:nn {bfup} {#1}
    \um_set_mathalphabet_greek:Nnn \mathbf {up} {#1}
  }{
    \bool_if:NT \g_um_bfupgreek_bool {
      \um_map_chars_greek:nn {bfup,bfit} {#1}
      \um_set_mathalphabet_greek:Nnn \mathbf {up,it} {#1}
    }
  }
}
\cs_new:Npn \um_config_bfup_misc:n #1 {
  \bool_if:NTF \g_um_literal_Nabla_bool {
    \um_map_single:nnn {Nabla}{bfup}{#1}
  }{
    \bool_if:NT \g_um_upNabla_bool {
      \um_map_single:nnn {Nabla}{bfup,bfit}{#1}
    }
  }
  \bool_if:NTF \g_um_literal_partial_bool {
    \um_map_single:nnn {partial}{bfup}{#1}
  }{
    \bool_if:NT \g_um_uppartial_bool {
      \um_map_single:nnn {partial}{bfup,bfit}{#1}
    }
  }
  \um_set_mathalphabet_pos:Nnnn  \mathbfup {partial} {up,it}{#1}
  \um_set_mathalphabet_pos:Nnnn  \mathbfup {Nabla}   {up,it}{#1}
  \um_set_mathalphabet_pos:Nnnn  \mathbfup {digamma} {up}{#1}
  \um_set_mathalphabet_pos:Nnnn  \mathbfup {Digamma} {up}{#1}
  \um_set_mathalphabet_pos:Nnnn  \mathbf   {digamma} {up}{#1}
  \um_set_mathalphabet_pos:Nnnn  \mathbf   {Digamma} {up}{#1}
  \bool_if:NTF \g_um_literal_partial_bool {
    \um_set_mathalphabet_pos:Nnnn  \mathbf {partial} {up}{#1}
  }{
    \bool_if:NT \g_um_uppartial_bool {
      \um_set_mathalphabet_pos:Nnnn  \mathbf {partial} {up,it}{#1}
    }
  }
  \bool_if:NTF \g_um_literal_Nabla_bool {
    \um_set_mathalphabet_pos:Nnnn  \mathbf {Nabla}   {up}{#1}
  }{
    \bool_if:NT \g_um_upNabla_bool {
      \um_set_mathalphabet_pos:Nnnn  \mathbf {Nabla}   {up,it}{#1}
    }
  }
}
%    \end{macrocode}
%
% \subsubsection{Bold fractur or fraktur or blackletter: \cmd\mathbffrak}
%    \begin{macrocode}
\cs_new:Npn \um_config_bffrak_Latin:n #1 {
  \um_set_mathalphabet_Latin:Nnn \mathbffrak {up,it}{#1}
}
\cs_new:Npn \um_config_bffrak_latin:n #1 {
  \um_set_mathalphabet_latin:Nnn \mathbffrak {up,it}{#1}
}
%    \end{macrocode}
%
% \subsubsection{Bold script or calligraphic: \cmd\mathbfscr}
%    \begin{macrocode}
\cs_new:Npn \um_config_bfscr_Latin:n #1 {
  \um_set_mathalphabet_Latin:Nnn \mathbfscr {up,it}{#1}
}
\cs_new:Npn \um_config_bfscr_latin:n #1 {
  \um_set_mathalphabet_latin:Nnn \mathbfscr {up,it}{#1}
}
\cs_new:Npn \um_config_bfcal_Latin:n #1 {
  \um_set_mathalphabet_Latin:Nnn   \mathbfcal  {up,it}{#1}
}
%    \end{macrocode}
%
% \subsubsection{Bold upright sans serif: \cmd\mathbfsfup}
%    \begin{macrocode}
\cs_new:Npn \um_config_bfsfup_num:n #1 {
  \um_set_mathalphabet_numbers:Nnn \mathbfsf   {up}{#1}
  \um_set_mathalphabet_numbers:Nnn \mathbfsfup {up}{#1}
}
\cs_new:Npn \um_config_bfsfup_Latin:n #1 {
  \bool_if:NTF \g_um_sfliteral_bool {
    \um_map_chars_Latin:nn {bfsfup} {#1}
    \um_set_mathalphabet_Latin:Nnn \mathbfsf {up}{#1}
  }{
    \bool_if:NT \g_um_upsans_bool {
      \um_map_chars_Latin:nn {bfsfup,bfsfit} {#1}
      \um_set_mathalphabet_Latin:Nnn \mathbfsf {up,it}{#1}
    }
  }
  \um_set_mathalphabet_Latin:Nnn \mathbfsfup {up,it}{#1}
}
\cs_new:Npn \um_config_bfsfup_latin:n #1 {
  \bool_if:NTF \g_um_sfliteral_bool {
    \um_map_chars_latin:nn {bfsfup} {#1}
    \um_set_mathalphabet_latin:Nnn \mathbfsf {up}{#1}
  }{
    \bool_if:NT \g_um_upsans_bool {
      \um_map_chars_latin:nn {bfsfup,bfsfit} {#1}
      \um_set_mathalphabet_latin:Nnn \mathbfsf {up,it}{#1}
    }
  }
  \um_set_mathalphabet_latin:Nnn \mathbfsfup {up,it}{#1}
}
\cs_new:Npn \um_config_bfsfup_Greek:n #1 {
  \bool_if:NTF \g_um_sfliteral_bool {
    \um_map_chars_Greek:nn {bfsfup}{#1}
    \um_set_mathalphabet_Greek:Nnn \mathbfsf {up}{#1}
  }{
    \bool_if:NT \g_um_upsans_bool {
      \um_map_chars_Greek:nn {bfsfup,bfsfit}{#1}
      \um_set_mathalphabet_Greek:Nnn \mathbfsf {up,it}{#1}
    }
  }
  \um_set_mathalphabet_Greek:Nnn \mathbfsfup {up,it}{#1}
}
\cs_new:Npn \um_config_bfsfup_greek:n #1 {
  \bool_if:NTF \g_um_sfliteral_bool {
    \um_map_chars_greek:nn {bfsfup} {#1}
    \um_set_mathalphabet_greek:Nnn \mathbfsf {up} {#1}
  }{
    \bool_if:NT \g_um_upsans_bool {
      \um_map_chars_greek:nn {bfsfup,bfsfit} {#1}
      \um_set_mathalphabet_greek:Nnn \mathbfsf {up,it} {#1}
    }
  }
  \um_set_mathalphabet_greek:Nnn \mathbfsfup {up,it} {#1}
}
\cs_new:Npn \um_config_bfsfup_misc:n #1 {
  \bool_if:NTF \g_um_literal_Nabla_bool {
    \um_map_single:nnn {Nabla}{bfsfup}{#1}
  }{
    \bool_if:NT \g_um_upNabla_bool {
      \um_map_single:nnn {Nabla}{bfsfup,bfsfit}{#1}
    }
  }
  \bool_if:NTF \g_um_literal_partial_bool {
    \um_map_single:nnn {partial}{bfsfup}{#1}
  }{
    \bool_if:NT \g_um_uppartial_bool {
      \um_map_single:nnn {partial}{bfsfup,bfsfit}{#1}
    }
  }
  \um_set_mathalphabet_pos:Nnnn  \mathbfsfup {partial} {up,it}{#1}
  \um_set_mathalphabet_pos:Nnnn  \mathbfsfup {Nabla}   {up,it}{#1}
  \bool_if:NTF \g_um_literal_partial_bool {
    \um_set_mathalphabet_pos:Nnnn  \mathbfsf {partial} {up}{#1}
  }{
    \bool_if:NT \g_um_uppartial_bool {
      \um_set_mathalphabet_pos:Nnnn  \mathbfsf {partial} {up,it}{#1}
    }
  }
  \bool_if:NTF \g_um_literal_Nabla_bool {
    \um_set_mathalphabet_pos:Nnnn  \mathbfsf {Nabla}   {up}{#1}
  }{
    \bool_if:NT \g_um_upNabla_bool {
      \um_set_mathalphabet_pos:Nnnn  \mathbfsf {Nabla}   {up,it}{#1}
    }
  }
}
%    \end{macrocode}
%
%
% \subsubsection{Bold italic sans serif: \cmd\mathbfsfit}
%    \begin{macrocode}
\cs_new:Npn \um_config_bfsfit_Latin:n #1 {
  \bool_if:NTF \g_um_sfliteral_bool {
    \um_map_chars_Latin:nn {bfsfit} {#1}
    \um_set_mathalphabet_Latin:Nnn \mathbfsf {it}{#1}
  }{
    \bool_if:NF \g_um_upsans_bool {
      \um_map_chars_Latin:nn {bfsfup,bfsfit} {#1}
      \um_set_mathalphabet_Latin:Nnn \mathbfsf {up,it}{#1}
    }
  }
  \um_set_mathalphabet_Latin:Nnn \mathbfsfit {up,it}{#1}
}
\cs_new:Npn \um_config_bfsfit_latin:n #1 {
  \bool_if:NTF \g_um_sfliteral_bool {
    \um_map_chars_latin:nn {bfsfit} {#1}
    \um_set_mathalphabet_latin:Nnn \mathbfsf {it}{#1}
  }{
    \bool_if:NF \g_um_upsans_bool {
      \um_map_chars_latin:nn {bfsfup,bfsfit} {#1}
      \um_set_mathalphabet_latin:Nnn \mathbfsf {up,it}{#1}
    }
  }
  \um_set_mathalphabet_latin:Nnn \mathbfsfit {up,it}{#1}
}
\cs_new:Npn \um_config_bfsfit_Greek:n #1 {
  \bool_if:NTF \g_um_sfliteral_bool {
    \um_map_chars_Greek:nn {bfsfit}{#1}
    \um_set_mathalphabet_Greek:Nnn \mathbfsf {it}{#1}
  }{
    \bool_if:NF \g_um_upsans_bool {
      \um_map_chars_Greek:nn {bfsfup,bfsfit}{#1}
      \um_set_mathalphabet_Greek:Nnn \mathbfsf {up,it}{#1}
    }
  }
  \um_set_mathalphabet_Greek:Nnn \mathbfsfit {up,it}{#1}
}
\cs_new:Npn \um_config_bfsfit_greek:n #1 {
  \bool_if:NTF \g_um_sfliteral_bool {
    \um_map_chars_greek:nn {bfsfit} {#1}
    \um_set_mathalphabet_greek:Nnn \mathbfsf {it} {#1}
  }{
    \bool_if:NF \g_um_upsans_bool {
      \um_map_chars_greek:nn {bfsfup,bfsfit} {#1}
      \um_set_mathalphabet_greek:Nnn \mathbfsf {up,it} {#1}
    }
  }
  \um_set_mathalphabet_greek:Nnn \mathbfsfit {up,it} {#1}
}
\cs_new:Npn \um_config_bfsfit_misc:n #1 {
  \bool_if:NTF \g_um_literal_Nabla_bool {
    \um_map_single:nnn {Nabla}{bfsfit}{#1}
  }{
    \bool_if:NF \g_um_upNabla_bool {
      \um_map_single:nnn {Nabla}{bfsfup,bfsfit}{#1}
    }
  }
  \bool_if:NTF \g_um_literal_partial_bool {
    \um_map_single:nnn {partial}{bfsfit}{#1}
  }{
    \bool_if:NF \g_um_uppartial_bool {
      \um_map_single:nnn {partial}{bfsfup,bfsfit}{#1}
    }
  }
  \um_set_mathalphabet_pos:Nnnn  \mathbfsfit {partial} {up,it}{#1}
  \um_set_mathalphabet_pos:Nnnn  \mathbfsfit {Nabla}   {up,it}{#1}
  \bool_if:NTF \g_um_literal_partial_bool {
    \um_set_mathalphabet_pos:Nnnn  \mathbfsf {partial} {it}{#1}
  }{
    \bool_if:NF \g_um_uppartial_bool {
      \um_set_mathalphabet_pos:Nnnn  \mathbfsf {partial} {up,it}{#1}
    }
  }
  \bool_if:NTF \g_um_literal_Nabla_bool {
    \um_set_mathalphabet_pos:Nnnn  \mathbfsf {Nabla}   {it}{#1}
  }{
    \bool_if:NF \g_um_upNabla_bool {
      \um_set_mathalphabet_pos:Nnnn  \mathbfsf {Nabla}   {up,it}{#1}
    }
  }
}
%    \end{macrocode}
%
% \section{A token list to contain the data of the math table}
%
% Instead of \cmd\input-ing the unicode math table every time we
% want to re-read its data, we save it within a macro. This has two
% advantages: 1.~it should be slightly faster, at the expense of memory;
% 2.~we don't need to worry about catcodes later, since they're frozen
% at this point.
%
% In time, the case statement inside |set_mathsymbol| will be moved in here
% to avoid re-running it every time.
%    \begin{macrocode}
\xetex_or_luatex:nnn { \cs_set:Npn \um_symbol_setup: }
  {
    \def\mathfence{\mathfence}
    \def\mathover{\mathover}
    \def\mathunder{\mathunder}
    \cs_set:Npn \UnicodeMathSymbol ##1##2##3##4 {
      \prg_case_tl:Nnn ##3 { \mathover {} \mathunder {} }
        {
          \exp_not:n {\_um_sym:nnn{##1}{##2}{##3}}
        }
    }
  }
  {
    \cs_set:Npn \UnicodeMathSymbol ##1##2##3##4 {
      \exp_not:n {\_um_sym:nnn{##1}{##2}{##3}}
    }
  }
%    \end{macrocode}
%
%    \begin{macrocode}
\CatchFileEdef \g_um_mathtable_tl {unicode-math-table.tex} {\um_symbol_setup:}
%    \end{macrocode}
%
%
% \begin{macro}{\um_input_math_symbol_table:}
% This function simply expands to the token list containing all the data.
%    \begin{macrocode}
\cs_new:Npn \um_input_math_symbol_table: {\g_um_mathtable_tl}
%    \end{macrocode}
% \end{macro}
%
%
% \section{Definitions of the active math characters}
%
% Here we define every Unicode math codepoint an equivalent macro name.
% The two are equivalent, in a |\let\xyz=^^^^1234| kind of way.
%
% \begin{macro}{\um@scancharlet}
% \begin{macro}{\um@scanactivedef}
% We need to do some trickery to transform the |\_um_sym:nnn| argument
% |"ABCDEF| into the \XeTeX\ `caret input' form |^^^^^abcdef|. It is \emph{very important}
% that the argument has five characters. Otherwise we need to change the number of |^| chars.
%
% To do this, turn |^| into a regular `other' character and define the macro
% to perform the lowercasing and |\let|. \cmd\scantokens\ changes the carets
% back into their original meaning after the group has ended and |^|'s catcode returns to normal.
%    \begin{macrocode}
\begingroup
  \char_make_other:N \^
  \cs_gset:Npn \um@scancharlet#1="#2\@nil {
    \lowercase{
      \tl_rescan:nn {
        \char_make_other:N \{
        \char_make_other:N \}
        \char_make_other:N \&
        \char_make_other:N \%
        \char_make_other:N \$
      }{
        \global\let#1=^^^^^#2
      }
    }
  }
%    \end{macrocode}
%    Making |^| the right catcode isn't strictly necessary right now but it helps to future proof us with, e.g., breqn.
%    \begin{macrocode}
  \gdef\um@scanactivedef"#1\@nil#2{
    \lowercase{
      \tl_rescan:nn{
        \ExplSyntaxOn
        \char_make_math_superscript:N\^
      }{
        \global\def^^^^^#1{#2}
      }
    }
  }
\endgroup
%    \end{macrocode}
% \end{macro}
% \end{macro}
%
% Now give \cmd\_um_sym:nnn\ a definition in terms of \cmd\um@scancharlet\
% and we're good to go.
%
% Ensure catcodes are appropriate;
% make sure |#| is an `other' so that we don't get confused with \cs{mathoctothorpe}.
%    \begin{macrocode}
\AtBeginDocument{
  \group_begin:
    \char_make_math_superscript:N \^
    \cs_set:Npn \_um_sym:nnn #1#2#3 {
      \bool_if:nF { \cs_if_eq_p:NN #3 \mathaccent ||
                    \cs_if_eq_p:NN #3 \mathopen   ||
                    \cs_if_eq_p:NN #3 \mathclose  ||
                    \cs_if_eq_p:NN #3 \mathover   ||
                    \cs_if_eq_p:NN #3 \mathunder } {
        \um@scancharlet#2=#1\@nil\ignorespaces
      }
    }
    \char_make_other:N \#
    \um_input_math_symbol_table:
  \group_end:
}
%    \end{macrocode}
% Fix \cs{backslash}, which is defined as the escape char character
% above:
%    \begin{macrocode}
\group_begin:
  \lccode`\*=`\\
  \char_make_escape:N \|
  \char_make_other:N \\
  |lowercase{
    |AtBeginDocument{
      |let|backslash=*
    }
  }
|group_end:
%    \end{macrocode}
% Fix \cs{backslash}:
%    \begin{macrocode}
%    \end{macrocode}
%
% \section{Epilogue}
%
% Lots of little things to tidy up.
%
% \subsection{Primes}
%
% We need a new `prime' algorithm. Unicode math has four pre-drawn prime glyphs.
% \begin{quote}\obeylines
% \unichar{2032} {prime} (\cs{prime}): $x\prime$
% \unichar{2033} {double prime} (\cs{dprime}): $x\dprime$
% \unichar{2034} {triple prime} (\cs{trprime}): $x\trprime$
% \unichar{2057} {quadruple prime} (\cs{qprime}): $x\qprime$
% \end{quote}
% As you can see, they're all drawn at the correct height without being superscripted.
% However, in a correctly behaving OpenType font,
% we also see different behaviour after the \texttt{ssty} feature is applied:
% \begin{quote}
% \font\1="Cambria Math:script=math,+ssty=0"\1
% \char"1D465\char"2032\quad
% \char"1D465\char"2033\quad
% \char"1D465\char"2034\quad
% \char"1D465\char"2057
% \end{quote}
% The glyphs are now `full size' so that when placed inside a superscript,
% their shape will match the originally sized ones. Many thanks to Ross Mills
% of Tiro Typeworks for originally pointing out this behaviour.
%
% In regular \LaTeX, primes can be entered with the straight quote character
% |'|, and multiple straight quotes chain together to produce multiple
% primes. Better results can be achieved in \pkg{unicode-math} by chaining
% multiple single primes into a pre-drawn multi-prime glyph; consider
% $x\prime{}\prime{}\prime$ vs.\ $x\trprime$.
%
% For Unicode maths, we wish to conserve this behaviour and augment it with
% the possibility of adding any combination of Unicode prime or any of the
% $n$-prime characters. E.g., the user might copy-paste a double prime from
% another source and then later type another single prime after it; the output
% should be the triple prime.
%
% Our algorithm is:
% \begin{itemize}[nolistsep]
% \item Prime encountered; pcount=1.
% \item Scan ahead; if prime: pcount:=pcount+1; repeat.
% \item If not prime, stop scanning.
% \item If pcount=1, \cs{prime}, end.
% \item If pcount=2, check \cs{dprime}; if it exists, use it, end; if not, goto last step.
% \item Ditto pcount=3 \& \cs{trprime}.
% \item Ditto pcount=4 \& \cs{qprime}.
% \item If pcount>4 or the glyph doesn't exist, insert pcount \cs{prime}s with \cs{primekern} between each.
% \end{itemize}
%
% This is a wrapper to insert a superscript; if there is a subsequent
% trailing superscript, then it is included within the insertion.
%    \begin{macrocode}
\cs_new:Nn \um_arg_i_before_egroup:n {#1\egroup}
\cs_new:Nn \um_superscript:n {
  ^\bgroup #1
  \peek_meaning_remove:NTF ^
    \um_arg_i_before_egroup:n \egroup
}
%    \end{macrocode}
%
%    \begin{macrocode}
\muskip_new:N \g_um_primekern_muskip
\muskip_gset:Nn \g_um_primekern_muskip { -\thinmuskip/2 }% arbitrary
\int_new:N \l_um_primecount_int
%    \end{macrocode}
%
%    \begin{macrocode}
\cs_new:Npn \um_nprimes:Nn #1#2 {
  \um_superscript:n {
    #1
    \prg_replicate:nn {#2-1} { \mskip \g_um_primekern_muskip #1 }
  }
}
\cs_new:Npn \um_nprimes_select:nn #1#2 {
  \prg_case_int:nnn {#2}{
    {1} { \um_superscript:n {#1} }
    {2} {
      \um_glyph_if_exist:nTF {"2033}
        { \um_superscript:n {\um_prime_double_mchar} }
        { \um_nprimes:Nn #1 {#2} }
    }
    {3} {
      \um_glyph_if_exist:nTF {"2034}
        { \um_superscript:n {\um_prime_triple_mchar} }
        { \um_nprimes:Nn #1 {#2} }
    }
    {4} {
      \um_glyph_if_exist:nTF {"2057}
        { \um_superscript:n {\um_prime_quad_mchar} }
        { \um_nprimes:Nn #1 {#2} }
    }
  }{
    \um_nprimes:Nn #1 {#2}
  }
}
\cs_new:Npn \um_nbackprimes_select:nn #1#2 {
  \prg_case_int:nnn {#2}{
    {1} { \um_superscript:n {#1} }
    {2} {
      \um_glyph_if_exist:nTF {"2036}
        { \um_superscript:n {\um_backprime_double_mchar} }
        { \um_nprimes:Nn #1 {#2} }
    }
    {3} {
      \um_glyph_if_exist:nTF {"2037}
        { \um_superscript:n {\um_backprime_triple_mchar} }
        { \um_nprimes:Nn #1 {#2} }
    }
  }{
    \um_nprimes:Nn #1 {#2}
  }
}
%    \end{macrocode}
%
% Scanning is annoying because I'm too lazy to do it for the general case.
%
%    \begin{macrocode}
\cs_new:Npn \um_scan_prime: {
  \int_zero:N \l_um_primecount_int
  \um_scanprime_collect:N \um_prime_single_mchar
}
\cs_new:Npn \um_scan_dprime: {
  \int_set:Nn \l_um_primecount_int {1}
  \um_scanprime_collect:N \um_prime_single_mchar
}
\cs_new:Npn \um_scan_trprime: {
  \int_set:Nn \l_um_primecount_int {2}
  \um_scanprime_collect:N \um_prime_single_mchar
}
\cs_new:Npn \um_scan_qprime: {
  \int_set:Nn \l_um_primecount_int {3}
  \um_scanprime_collect:N \um_prime_single_mchar
}
\cs_new:Npn \um_scanprime_collect:N #1 {
  \int_incr:N \l_um_primecount_int
  \peek_meaning_remove:NTF ' {
    \um_scanprime_collect:N #1
  }{
    \peek_meaning_remove:NTF \um_scan_prime: {
      \um_scanprime_collect:N #1
    }{
      \peek_meaning_remove:NTF ^^^^2032 {
        \um_scanprime_collect:N #1
      }{
        \peek_meaning_remove:NTF \um_scan_dprime: {
          \int_incr:N \l_um_primecount_int
          \um_scanprime_collect:N #1
        }{
          \peek_meaning_remove:NTF ^^^^2033 {
            \int_incr:N \l_um_primecount_int
            \um_scanprime_collect:N #1
          }{
            \peek_meaning_remove:NTF \um_scan_trprime: {
              \int_add:Nn \l_um_primecount_int {2}
              \um_scanprime_collect:N #1
            }{
              \peek_meaning_remove:NTF ^^^^2034 {
                \int_add:Nn \l_um_primecount_int {2}
                \um_scanprime_collect:N #1
              }{
                \peek_meaning_remove:NTF \um_scan_qprime: {
                  \int_add:Nn \l_um_primecount_int {3}
                  \um_scanprime_collect:N #1
                }{
                  \peek_meaning_remove:NTF ^^^^2057 {
                    \int_add:Nn \l_um_primecount_int {3}
                    \um_scanprime_collect:N #1
                  }{
                    \um_nprimes_select:nn {#1} {\l_um_primecount_int}
                  }
                }
              }
            }
          }
        }
      }
    }
  }
}
\cs_new:Npn \um_scan_backprime: {
  \int_zero:N \l_um_primecount_int
  \um_scanbackprime_collect:N \um_backprime_single_mchar
}
\cs_new:Npn \um_scan_backdprime: {
  \int_set:Nn \l_um_primecount_int {1}
  \um_scanbackprime_collect:N \um_backprime_single_mchar
}
\cs_new:Npn \um_scan_backtrprime: {
  \int_set:Nn \l_um_primecount_int {2}
  \um_scanbackprime_collect:N \um_backprime_single_mchar
}
\cs_new:Npn \um_scanbackprime_collect:N #1 {
  \int_incr:N \l_um_primecount_int
  \peek_meaning_remove:NTF ` {
    \um_scanbackprime_collect:N #1
  }{
    \peek_meaning_remove:NTF \um_scan_backprime: {
      \um_scanbackprime_collect:N #1
    }{
      \peek_meaning_remove:NTF ^^^^2035 {
        \um_scanbackprime_collect:N #1
      }{
        \peek_meaning_remove:NTF \um_scan_backdprime: {
          \int_incr:N \l_um_primecount_int
          \um_scanbackprime_collect:N #1
        }{
          \peek_meaning_remove:NTF ^^^^2036 {
            \int_incr:N \l_um_primecount_int
            \um_scanbackprime_collect:N #1
          }{
            \peek_meaning_remove:NTF \um_scan_backtrprime: {
              \int_add:Nn \l_um_primecount_int {2}
              \um_scanbackprime_collect:N #1
            }{
              \peek_meaning_remove:NTF ^^^^2037 {
                \int_add:Nn \l_um_primecount_int {2}
                \um_scanbackprime_collect:N #1
              }{
                \um_nbackprimes_select:nn {#1} {\l_um_primecount_int}
              }
            }
          }
        }
      }
    }
  }
}
%    \end{macrocode}
%
%    \begin{macrocode}
\AtBeginDocument {
  \cs_set_eq:NN \prime       \um_scan_prime:
  \cs_set_eq:NN \drime       \um_scan_dprime:
  \cs_set_eq:NN \trprime     \um_scan_trprime:
  \cs_set_eq:NN \qprime      \um_scan_qprime:
  \cs_set_eq:NN \backprime   \um_scan_backprime:
  \cs_set_eq:NN \backdprime  \um_scan_backdprime:
  \cs_set_eq:NN \backtrprime \um_scan_backtrprime:
}
\group_begin:
  \char_make_active:N \'
  \char_make_active:N \`
  \char_make_active:n {"2032}
  \char_make_active:n {"2033}
  \char_make_active:n {"2034}
  \char_make_active:n {"2057}
  \char_make_active:n {"2035}
  \char_make_active:n {"2036}
  \char_make_active:n {"2037}
  \AtBeginDocument{
    \cs_set_eq:NN '        \um_scan_prime:
    \cs_set_eq:NN ^^^^2032 \um_scan_prime:
    \cs_set_eq:NN ^^^^2033 \um_scan_dprime:
    \cs_set_eq:NN ^^^^2034 \um_scan_trprime:
    \cs_set_eq:NN ^^^^2057 \um_scan_qprime:
    \cs_set_eq:NN `        \um_scan_backprime:
    \cs_set_eq:NN ^^^^2035 \um_scan_backprime:
    \cs_set_eq:NN ^^^^2036 \um_scan_backdprime:
    \cs_set_eq:NN ^^^^2037 \um_scan_backtrprime:
  }
\group_end:
%    \end{macrocode}
%
% \subsection{Unicode radicals}
%
%
% \begin{macro}{\sqrt}
% Redefine this macro for \LuaTeX, which provides us a nice primitive to use.
%    \begin{macrocode}
\luatex_if_engine:T {
  \DeclareDocumentCommand \sqrt { O{} m } {
    \luatexUroot \l_um_radical_sqrt_tl {#1} {#2}
  }
  \cs_set:Npn \root #1 \of #2 {
    \luatexUroot \l_um_radical_sqrt_tl {#1} {#2}
  }
}
%    \end{macrocode}
% \end{macro}
%
%
% \begin{macro}{\r@@t}
% \darg{A mathstyle (for \cmd\mathpalette)}
% \darg{Leading superscript for the sqrt sign}
% A re-implementation of \LaTeX's hard-coded n-root sign using the appropriate \cmd\fontdimen s.
%    \begin{macrocode}
\cs_set_nopar:Npn \r@@t #1#2 {
  \setbox\z@\hbox{$\m@th #1\sqrtsign{#2}$}
  \um_mathstyle_scale:Nnn{#1}{\kern}{\fontdimen63\l_um_font}
  \raise \dimexpr(
      \um_fontdimen_to_percent:nn{65}{\l_um_font}\ht\z@-
      \um_fontdimen_to_percent:nn{65}{\l_um_font}\dp\z@
    )\relax
    \copy \rootbox
  \um_mathstyle_scale:Nnn{#1}{\kern}{\fontdimen64\l_um_font}
  \box \z@
}
%    \end{macrocode}
% \end{macro}
%
%
% \begin{macro}{\um_fontdimen_to_percent:nn}
% \darg{Font dimen number}
% \darg{Font `variable'}
% \cmd\fontdimen s |10|, |11|, and |65| aren't actually dimensions, they're percentage values given in units of |sp|. This macro takes a font dimension number and outputs the decimal value of the associated parameter.
%    \begin{macrocode}
\cs_new:Npn \um_fontdimen_to_percent:nn #1#2 {
  0.\strip@pt\dimexpr\fontdimen#1#2 *65536\relax
}
%    \end{macrocode}
% \end{macro}
%
% \begin{macro}{\um_mathstyle_scale:Nnn}
% \darg{A math style (\cs{scriptstyle}, say)}
% \darg{Macro that takes a non-delimited length argument (like \cmd\kern)}
% \darg{Length control sequence to be scaled according to the math style}
% This macro is used to scale the lengths reported by \cmd\fontdimen\ according to the scale factor for script- and scriptscript-size objects.
%    \begin{macrocode}
\cs_new:Npn \um_mathstyle_scale:Nnn #1#2#3 {
  \ifx#1\scriptstyle
    #2\um_fontdimen_to_percent:nn{10}\l_um_font#3
  \else
    \ifx#1\scriptscriptstyle
      #2\um_fontdimen_to_percent:nn{11}\l_um_font#3
    \else
      #2#3
    \fi
  \fi
}
%    \end{macrocode}
% \end{macro}
%
% \subsection{Unicode sub- and super-scripts}
%
% The idea here is to enter a scanning state after a superscript or subscript
% is encountered.
% If subsequent superscripts or subscripts (resp.) are found,
% they are lumped together.
% Each sub/super has a corresponding regular size
% glyph which is used by \XeTeX\ to typeset the results; this means that the
% actual subscript/superscript glyphs are never seen in the output
% document~--- they are only used as input characters.
%
% Open question: should the superscript-like `modifiers' (\unichar{1D2C}
% {modifier capital letter a} and on) be included here?
%    \begin{macrocode}
\prop_new:N \g_um_supers_prop
\prop_new:N \g_um_subs_prop
\group_begin:
%    \end{macrocode}
% \paragraph{Superscripts}
% Populate a property list with superscript characters; their meaning as their
% key, for reasons that will become apparent soon, and their replacement as
% each key's value.
% Then make the superscript active and bind it to the scanning function.
%
% \cs{scantokens} makes this process much simpler since we can activate the
% char and assign its meaning in one step.
%    \begin{macrocode}
\cs_set:Npn \um_setup_active_superscript:nn #1#2 {
  \prop_gput:Nxn \g_um_supers_prop   {\meaning #1} {#2}
  \char_make_active:N #1
  \char_gmake_mathactive:N #1
  \scantokens{
    \cs_gset:Npn #1 {
      \tl_set:Nn \l_um_ss_chain_tl {#2}
      \cs_set_eq:NN \um_sub_or_super:n \sp
      \tl_set:Nn \l_um_tmpa_tl {supers}
      \um_scan_sscript:
    }
  }
}
%    \end{macrocode}
% Bam:
%    \begin{macrocode}
\um_setup_active_superscript:nn {^^^^2070} {0}
\um_setup_active_superscript:nn {^^^^00b9} {1}
\um_setup_active_superscript:nn {^^^^00b2} {2}
\um_setup_active_superscript:nn {^^^^00b3} {3}
\um_setup_active_superscript:nn {^^^^2074} {4}
\um_setup_active_superscript:nn {^^^^2075} {5}
\um_setup_active_superscript:nn {^^^^2076} {6}
\um_setup_active_superscript:nn {^^^^2077} {7}
\um_setup_active_superscript:nn {^^^^2078} {8}
\um_setup_active_superscript:nn {^^^^2079} {9}
\um_setup_active_superscript:nn {^^^^207a} {+}
\um_setup_active_superscript:nn {^^^^207b} {-}
\um_setup_active_superscript:nn {^^^^207c} {=}
\um_setup_active_superscript:nn {^^^^207d} {(}
\um_setup_active_superscript:nn {^^^^207e} {)}
\um_setup_active_superscript:nn {^^^^2071} {i}
\um_setup_active_superscript:nn {^^^^207f} {n}
%    \end{macrocode}
% \paragraph{Subscripts} Ditto above.
%    \begin{macrocode}
\cs_set:Npn \um_setup_active_subscript:nn #1#2 {
  \prop_gput:Nxn \g_um_subs_prop   {\meaning #1} {#2}
  \char_make_active:N #1
  \char_gmake_mathactive:N #1
  \scantokens{
    \cs_gset:Npn #1 {
      \tl_set:Nn \l_um_ss_chain_tl {#2}
      \cs_set_eq:NN \um_sub_or_super:n \sb
      \tl_set:Nn \l_um_tmpa_tl {subs}
      \um_scan_sscript:
    }
  }
}
%    \end{macrocode}
% A few more subscripts than superscripts:
%    \begin{macrocode}
\um_setup_active_subscript:nn {^^^^2080} {0}
\um_setup_active_subscript:nn {^^^^2081} {1}
\um_setup_active_subscript:nn {^^^^2082} {2}
\um_setup_active_subscript:nn {^^^^2083} {3}
\um_setup_active_subscript:nn {^^^^2084} {4}
\um_setup_active_subscript:nn {^^^^2085} {5}
\um_setup_active_subscript:nn {^^^^2086} {6}
\um_setup_active_subscript:nn {^^^^2087} {7}
\um_setup_active_subscript:nn {^^^^2088} {8}
\um_setup_active_subscript:nn {^^^^2089} {9}
\um_setup_active_subscript:nn {^^^^208a} {+}
\um_setup_active_subscript:nn {^^^^208b} {-}
\um_setup_active_subscript:nn {^^^^208c} {=}
\um_setup_active_subscript:nn {^^^^208d} {(}
\um_setup_active_subscript:nn {^^^^208e} {)}
\um_setup_active_subscript:nn {^^^^2090} {a}
\um_setup_active_subscript:nn {^^^^2091} {e}
\um_setup_active_subscript:nn {^^^^1d62} {i}
\um_setup_active_subscript:nn {^^^^2092} {o}
\um_setup_active_subscript:nn {^^^^1d63} {r}
\um_setup_active_subscript:nn {^^^^1d64} {u}
\um_setup_active_subscript:nn {^^^^1d65} {v}
\um_setup_active_subscript:nn {^^^^2093} {x}
\um_setup_active_subscript:nn {^^^^1d66} {\beta}
\um_setup_active_subscript:nn {^^^^1d67} {\gamma}
\um_setup_active_subscript:nn {^^^^1d68} {\rho}
\um_setup_active_subscript:nn {^^^^1d69} {\phi}
\um_setup_active_subscript:nn {^^^^1d6a} {\chi}
%    \end{macrocode}
%
%    \begin{macrocode}
\group_end:
%    \end{macrocode}
% The scanning command, evident in its purpose:
%    \begin{macrocode}
\cs_new:Npn \um_scan_sscript: {
  \um_scan_sscript:TF {
    \um_scan_sscript:
  }{
    \um_sub_or_super:n {\l_um_ss_chain_tl}
  }
}
%    \end{macrocode}
% The main theme here is stolen from the source to the various \cs{peek_} functions.
% Consider this function as simply boilerplate:
%    \begin{macrocode}
\cs_new:Npn \um_scan_sscript:TF #1#2 {
  \tl_set:Nx \l_peek_true_aux_tl { \exp_not:n{ #1 } }
  \tl_set_eq:NN \l_peek_true_tl \c_peek_true_remove_next_tl
  \tl_set:Nx \l_peek_false_tl {\exp_not:n{\group_align_safe_end: #2}}
  \group_align_safe_begin:
    \peek_after:NN \um_peek_execute_branches_ss:
}
%    \end{macrocode}
% We do not skip spaces when scanning ahead, and we explicitly wish to
% bail out on encountering a space or a brace.
%    \begin{macrocode}
\cs_new:Npn \um_peek_execute_branches_ss: {
  \bool_if:nTF {
    \token_if_eq_catcode_p:NN \l_peek_token \c_group_begin_token ||
    \token_if_eq_catcode_p:NN \l_peek_token \c_group_end_token ||
    \token_if_eq_meaning_p:NN \l_peek_token \c_space_token
  }
  { \l_peek_false_tl  }
  { \um_peek_execute_branches_ss_aux: }
}
%    \end{macrocode}
% This is the actual comparison code.
% Because the peeking has already tokenised the next token,
% it's too late to extract its charcode directly. Instead,
% we look at its meaning, which remains a `character' even
% though it is itself math-active. If the character is ever
% made fully active, this will break our assumptions!
%
% If the char's meaning exists as a property list key, we
% build up a chain of sub-/superscripts and iterate. (If not, exit and
% typeset what we've already collected.)
%    \begin{macrocode}
\cs_new:Npn \um_peek_execute_branches_ss_aux: {
  \prop_if_in:cxTF
    {g_um_\l_um_tmpa_tl _prop} 
    {\meaning\l_peek_token} 
    {
      \prop_get:cxN 
        {g_um_\l_um_tmpa_tl _prop} 
        {\meaning\l_peek_token}
        \l_um_tmpb_tl
      \tl_put_right:NV \l_um_ss_chain_tl \l_um_tmpb_tl
      \l_peek_true_tl
    }
    {\l_peek_false_tl}
}
%    \end{macrocode}
%
% \subsubsection{Active fractions}
% Active fractions can be setup independently of any maths font definition;
% all it requires is a mapping from the Unicode input chars to the relevant
% \LaTeX\ fraction declaration.
%
%    \begin{macrocode}
\cs_new:Npn \um_define_active_frac:Nw #1 #2/#3 {
  \char_make_active:N #1
  \char_gmake_mathactive:N #1
  \tl_rescan:nn {
    \ExplSyntaxOn
  }{
    \cs_gset:Npx #1 {
      \bool_if:NTF \l_um_smallfrac_bool {\exp_not:N\tfrac} {\exp_not:N\frac}
          {#2} {#3}
    }
  }
}
%    \end{macrocode}
% These are redefined for each math font selection in case the |active-frac|
% feature changes.
%    \begin{macrocode}
\cs_new:Npn \um_setup_active_frac: {
  \group_begin:
  \um_define_active_frac:Nw  ^^^^2189  0/3
  \um_define_active_frac:Nw  ^^^^2152  1/{10}
  \um_define_active_frac:Nw  ^^^^2151  1/9
  \um_define_active_frac:Nw  ^^^^215b  1/8
  \um_define_active_frac:Nw  ^^^^2150  1/7
  \um_define_active_frac:Nw  ^^^^2159  1/6
  \um_define_active_frac:Nw  ^^^^2155  1/5
  \um_define_active_frac:Nw  ^^^^00bc  1/4
  \um_define_active_frac:Nw  ^^^^2153  1/3
  \um_define_active_frac:Nw  ^^^^215c  3/8
  \um_define_active_frac:Nw  ^^^^2156  2/5
  \um_define_active_frac:Nw  ^^^^00bd  1/2
  \um_define_active_frac:Nw  ^^^^2157  3/5
  \um_define_active_frac:Nw  ^^^^215d  5/8
  \um_define_active_frac:Nw  ^^^^2154  2/3
  \um_define_active_frac:Nw  ^^^^00be  3/4
  \um_define_active_frac:Nw  ^^^^2158  4/5
  \um_define_active_frac:Nw  ^^^^215a  5/6
  \um_define_active_frac:Nw  ^^^^215e  7/8
  \group_end:
}
\um_setup_active_frac:
%    \end{macrocode}
%
% \subsection{Synonyms and all the rest}
%
% These are symbols with multiple names. Eventually to be taken care of
% automatically by the maths characters database.
%    \begin{macrocode}
\def\to{\rightarrow}
\def\overrightarrow{\vec}
\def\le{\leq}
\def\ge{\geq}
\def\neq{\ne}
\def\triangle{\mathord{\bigtriangleup}}
\def\bigcirc{\mdlgwhtcircle}
\def\circ{\vysmwhtcircle}
\def\bullet{\smblkcircle}
\def\mathyen{\yen}
\def\mathsterling{\sterling}
%    \end{macrocode}
%
% \begin{macro}{\colon}
% Define \cs{colon} as a mathpunct `|:|'.
% This is wrong: it should be \unichar{003A} {colon} instead!
% We hope no-one will notice.
%    \begin{macrocode}
\@ifpackageloaded{amsmath}{
  % define their own colon, perhaps I should just steal it. (It does look much better.)
}{
  \cs_set_protected:Npn \colon {
    \bool_if:NTF \g_um_literal_colon_bool {:} { \mathpunct{:} }
  }
}
%    \end{macrocode}
% \end{macro}
%
% \begin{macro}{\mathrm}
%    \begin{macrocode}
\def\mathrm{\mathup}
\let\mathfence\mathord
%    \end{macrocode}
% \end{macro}
%
% \begin{macro}{\digamma}
% \begin{macro}{\Digamma}
% I might end up just changing these in the table.
%    \begin{macrocode}
\def\digamma{\updigamma}
\def\Digamma{\upDigamma}
%    \end{macrocode}
% \end{macro}
% \end{macro}
%
%
% \subsection{Compatibility}
%
% We need to change \LaTeX's idea of the font used to typeset
% things like \cmd\sin\ and \cmd\cos:
%    \begin{macrocode}
\def\operator@font{\um_switchto_mathup:}
%    \end{macrocode}
%
% \begin{macro}{\um_patch_pkg:nn}
% \darg{package}
% \darg{code}
% If \meta{package} is loaded either already or later in the preamble, \meta{code}
% is executed (after the package is loaded in the latter case).
%    \begin{macrocode}
\cs_new:Npn \um_patch_pkg:nn #1#2 {
  \@ifpackageloaded {#1} {
    #2
  }{
    \um_after_pkg:nn {#1} {#2}
  }
}
%    \end{macrocode}
% \end{macro}
%
%
% \paragraph{\pkg{url}}
% Simply need to get \pkg{url} in a state such that
% when it switches to math mode and enters \ascii\ characters, the maths
% setup (i.e., \pkg{unicode-math}) doesn't remap the symbols into Plane 1.
% Which is, of course, what \cs{mathup} is doing.
%
% This is the same as writing, e.g., |\def\UrlFont{\ttfamily\um_switchto_mathup:}|
% but activates automatically so old documents that might change the \cs{url}
% font still work correctly.
%    \begin{macrocode}
\um_patch_pkg:nn {url} {
  \tl_put_left:Nn \Url@FormatString { \um_switchto_mathup: }
  \tl_put_right:Nn \UrlSpecials {
    \do\`{\mathchar`\`}
    \do\'{\mathchar`\'}
    \do\${\mathchar`\$}
    \do\&{\mathchar`\&}
  }
}
%    \end{macrocode}
%
% \paragraph{\pkg{amsmath}}
% Since the mathcode of |`\-| is greater than eight bits, this piece of |\AtBeginDocument| code from \pkg{amsmath} dies if we try and set the maths font in the preamble:
%    \begin{macrocode}
\um_patch_pkg:nn {amsmath} {
  \tl_remove_in:Nn \@begindocumenthook {
    \mathchardef\std@minus\mathcode`\-\relax
    \mathchardef\std@equal\mathcode`\=\relax
  }
  \def\std@minus{\Umathcharnum\Umathcodenum`\-\relax}
  \def\std@equal{\Umathcharnum\Umathcodenum`\=\relax}
%    \end{macrocode}
%
%    \begin{macrocode}
  \cs_set:Npn \@cdots {\mathinner{\cdots}}
  \cs_set_eq:NN \dotsb@ \cdots
%    \end{macrocode}
% This isn't as clever as the \pkg{amsmath} definition but I think it works:
%    \begin{macrocode}
  \def \resetMathstrut@ {%
    \setbox\z@\hbox{$($}%
    \ht\Mathstrutbox@\ht\z@ \dp\Mathstrutbox@\dp\z@
  }
}
%    \end{macrocode}
% \paragraph{\pkg{amsopn}}
% This code is to improve the output of analphabetic symbols in text of operator names (\cs{sin}, \cs{cos}, etc.). Just comment out the offending lines for now:
%    \begin{macrocode}
\um_patch_pkg:nn {amsopn} {
  \cs_set:Npn \newmcodes@ {
    \mathcode`\'39\scan_stop:
    \mathcode`\*42\scan_stop:
    \mathcode`\."613A\scan_stop:
%%  \ifnum\mathcode`\-=45 \else
%%    \mathchardef\std@minus\mathcode`\-\relax
%%  \fi
    \mathcode`\-45\scan_stop:
    \mathcode`\/47\scan_stop:
    \mathcode`\:"603A\scan_stop:
  }
}
%    \end{macrocode}
% \paragraph{Symbols}
%    \begin{macrocode}
\cs_set:Npn \| {\Vert}
%    \end{macrocode}
% \cs{mathinner} items:
%    \begin{macrocode}
\cs_set:Npn \mathellipsis {\mathinner{\unicodeellipsis}}
\cs_set:Npn \cdots {\mathinner{\unicodecdots}}
%    \end{macrocode}
% \paragraph{Accents}
%    \begin{macrocode}
\AtBeginDocument{
  \def\widehat{\hat}
  \def\widetilde{\tilde}
}
%    \end{macrocode}
%
% \paragraph{\pkg{beamer}}
% At end of the package so the warnings are defined.
%    \begin{macrocode}
\AtEndOfPackage{
  \@ifclassloaded{beamer}{
    \ifbeamer@suppressreplacements\else
      \um_warning:n {disable-beamer}
      \beamer@suppressreplacementstrue
    \fi
  }{}
}
%    \end{macrocode}
%
%    \begin{macrocode}
\ExplSyntaxOff
%    \end{macrocode}
%
%    \begin{macrocode}
%</package>
%    \end{macrocode}
%
% \section{Error messages}
% \seclabel{codemsg}
%
% These are defined at the beginning of the package, but we leave their
% definition until now in the source to keep them out of the way.
%
%    \begin{macrocode}
%<*msg>
%    \end{macrocode}
%
% Wrapper functions:
%    \begin{macrocode}
\cs_new:Npn \um_warning:n { \msg_warning:nn {unicode-math} }
\cs_new:Npn \um_trace:n   { \msg_trace:nn   {unicode-math} }
\cs_new:Npn \um_trace:nx  { \msg_trace:nnx  {unicode-math} }
%    \end{macrocode}
%
%    \begin{macrocode}
\msg_new:nnn {unicode-math} {maths-feature-only}
{
  The~ '#1'~ font~ feature~ can~ only~ be~ used~ for~ maths~ fonts.
}
\msg_new:nnn {unicode-math} {disable-beamer}
{
  Disabling~ beamer's~ math~ setup.\\
  Please~ load~ beamer~ with~ the~ [professionalfonts]~ class~ option.
}
\msg_new:nnn {unicode-math} {no-tfrac}
{
  Small~ fraction~ command~ \protect\tfrac\ not~ defined.\\
  Load~ amsmath~ or~ define~ it~ manually~ before~ loading~ unicode-math.
}
\msg_new:nnn {unicode-math} {default-math-font}
{
  Defining~ the~ default~ maths~ font~ as~ '#1'.
}
\msg_new:nnn {unicode-math} {setup-implicit}
{
  Setup~ alphabets:~ implicit~ mode.
}
\msg_new:nnn {unicode-math} {setup-explicit}
{
  Setup~ alphabets:~ explicit~ mode.
}
\msg_new:nnn {unicode-math} {alph-initialise}
{
  Initialising~ \@backslashchar math#1.
}
\msg_new:nnn {unicode-math} {setup-alph}
{
  Setup~ alphabet:~ #1.
}
%    \end{macrocode}
%
%    \begin{macrocode}
%</msg>
%    \end{macrocode}
%
% The end.
%
%
% \section{\STIX\ table data extraction}\label{part:awk}
%\iffalse
%<*awk>
%\fi
%
% The source for the \TeX\ names for the very large number of mathematical
% glyphs are provided via Barbara Beeton's table file for the \STIX\ project
% (|ams.org/STIX|). A version is located at
% |http://www.ams.org/STIX/bnb/stix-tbl.asc|
% but check |http://www.ams.org/STIX/| for more up-to-date info.
%
% This table is converted into a form suitable for reading by \XeTeX.
% A single file is produced containing all (more than 3298) symbols.
% Future optimisations might include generating various (possibly overlapping) subsets
% so not all definitions must be read just to redefine a small range of symbols.
% Performance for now seems to be acceptable without such measures.
%
% This file is currently developed outside this DTX file. It will be
% incorporated when the final version is ready. (I know this is not how
% things are supposed to work!)
%
%    \begin{macrocode}
< See stix-extract.sh for now. >
%    \end{macrocode}
%\iffalse
%</awk>
%\fi
%
% \appendix
%
% \section{Documenting maths support in the NFSS}
%
% In the following, \meta{NFSS decl.} stands for something like |{T1}{lmr}{m}{n}|.
%
% \begin{description}
% \item[Maths symbol fonts] Fonts for symbols: $\propto$, $\leq$, $\rightarrow$
%
% \cmd\DeclareSymbolFont\marg{name}\meta{NFSS decl.}\\
% Declares a named maths font such as |operators| from which symbols are defined with \cmd\DeclareMathSymbol.
%
% \item[Maths alphabet fonts] Fonts for {\font\1=cmmi10 at 10pt\1 ABC}\,–\,{\font\1=cmmi10 at 10pt\1 xyz}, {\font\1=eufm10 at 10pt\1 ABC}\,–\,{\font\1=cmsy10 at 10pt\1 XYZ}, etc.
%
% \cmd\DeclareMathAlphabet\marg{cmd}\meta{NFSS decl.}
%
% For commands such as \cmd\mathbf, accessed
% through maths mode that are unaffected by the current text font, and which are used for
% alphabetic symbols in the \ascii\ range.
%
% \cmd\DeclareSymbolFontAlphabet\marg{cmd}\marg{name}
%
% Alternative (and optimisation) for \cmd\DeclareMathAlphabet\ if a single font is being used
% for both alphabetic characters (as above) and symbols.
%
% \item[Maths `versions'] Different maths weights can be defined with the following, switched
% in text with the \cmd\mathversion\marg{maths version} command.
%
% \cmd\SetSymbolFont\marg{name}\marg{maths version}\meta{NFSS decl.}\\
% \cmd\SetMathAlphabet\marg{cmd}\marg{maths version}\meta{NFSS decl.}
%
% \item[Maths symbols] Symbol definitions in maths for both characters (=) and macros (\cmd\eqdef):
% \cmd\DeclareMathSymbol\marg{symbol}\marg{type}\marg{named font}\marg{slot}
% This is the macro that actually defines which font each symbol comes from and how they behave.
% \end{description}
% Delimiters and radicals use wrappers around \TeX's \cmd\delimiter/\cmd\radical\ primitives,
% which are re-designed in \XeTeX. The syntax used in \LaTeX's NFSS is therefore not so relevant here.
% \begin{description}
% \item[Delimiters] A special class of maths symbol which enlarge themselves in certain contexts.
%
% \cmd\DeclareMathDelimiter\marg{symbol}\marg{type}\marg{sym.\ font}\marg{slot}\marg{sym.\ font}\marg{slot}
%
% \item[Radicals] Similar to delimiters (\cmd\DeclareMathRadical\ takes the same syntax) but
% behave `weirdly'. \cmd\sqrt\ might very well be the only one.
% \end{description}
% In those cases, glyph slots in \emph{two} symbol fonts are required; one for the small (`regular') case,
% the other for situations when the glyph is larger. This is not the case in \XeTeX.
%
% Accents are not included yet.
%
% \paragraph{Summary}
%
% For symbols, something like:
% \begin{verbatim}
% \def\DeclareMathSymbol#1#2#3#4{
%   \global\mathchardef#1"\mathchar@type#2
%     \expandafter\hexnumber@\csname sym#2\endcsname
%     {\hexnumber@{\count\z@}\hexnumber@{\count\tw@}}}
% \end{verbatim}
% For characters, something like:
% \begin{verbatim}
% \def\DeclareMathSymbol#1#2#3#4{
%   \global\mathcode`#1"\mathchar@type#2
%     \expandafter\hexnumber@\csname sym#2\endcsname
%     {\hexnumber@{\count\z@}\hexnumber@{\count\tw@}}}
% \end{verbatim}
%
%
% \section{\XeTeX\ math font dimensions}
%
% These are the extended \cmd\fontdimen s available for suitable fonts
% in \XeTeX. Note that Lua\TeX\ takes an alternative route, and this package
% will eventually provide a wrapper interface to the two (I hope).
%
% \newcounter{mfdimen}
% \setcounter{mfdimen}{9}
% \newcommand\mathfontdimen[2]{^^A
%   \stepcounter{mfdimen}^^A
%   \themfdimen & {\scshape\small #1} & #2\vspace{0.5ex} \tabularnewline}
%
% \begin{longtable}{
%   @{}c>{\raggedright\parfillskip=0pt}p{4cm}>{\raggedright}p{7cm}@{}}
% \toprule \cmd\fontdimen & Dimension name & Description\tabularnewline\midrule \endhead
% \bottomrule\endfoot
% \mathfontdimen{Script\-Percent\-Scale\-Down}
% {Percentage of scaling down for script level 1. Suggested value: 80\%.}
% \mathfontdimen{Script\-Script\-Percent\-Scale\-Down}
% {Percentage of scaling down for script level 2 (Script\-Script). Suggested value: 60\%.}
% \mathfontdimen{Delimited\-Sub\-Formula\-Min\-Height}
% {Minimum height required for a delimited expression to be treated as a subformula. Suggested value: normal line height\,×\,1.5.}
% \mathfontdimen{Display\-Operator\-Min\-Height}
% {Minimum height of n-ary operators (such as integral and summation) for formulas in display mode.}
% \mathfontdimen{Math\-Leading}
% {White space to be left between math formulas to ensure proper line spacing. For example, for applications that treat line gap as a part of line ascender, formulas with ink  going above (os2.sTypoAscender + os2.sTypoLineGap – MathLeading) or with ink going below os2.sTypoDescender will result in increasing line height.}
% \mathfontdimen{Axis\-Height}
% {Axis height of the font. }
% \mathfontdimen{Accent\-Base\-Height}
% {Maximum (ink) height of accent base that does not require raising the accents. Suggested: x-height of the font (os2.sxHeight) plus any possible overshots. }
% \mathfontdimen{Flattened\-Accent\-Base\-Height}
% {Maximum (ink) height of accent base that does not require flattening the accents. Suggested: cap height of the font (os2.sCapHeight).}
% \mathfontdimen{Subscript\-Shift\-Down}
% {The standard shift down applied to subscript elements. Positive for moving in the downward direction. Suggested: os2.ySubscriptYOffset.}
% \mathfontdimen{Subscript\-Top\-Max}
% {Maximum allowed height of the (ink) top of subscripts that does not require moving subscripts further down. Suggested: /5 x-height.}
% \mathfontdimen{Subscript\-Baseline\-Drop\-Min}
% {Minimum allowed drop of the baseline of subscripts relative to the (ink) bottom of the base. Checked for bases that are treated as a box or extended shape. Positive for subscript baseline dropped below the base bottom.}
% \mathfontdimen{Superscript\-Shift\-Up}
% {Standard shift up applied to superscript elements. Suggested: os2.ySuperscriptYOffset.}
% \mathfontdimen{Superscript\-Shift\-Up\-Cramped}
% {Standard shift of superscripts relative to the base, in cramped style.}
% \mathfontdimen{Superscript\-Bottom\-Min}
% {Minimum allowed height of the (ink) bottom of superscripts that does not require moving subscripts further up. Suggested: ¼ x-height.}
% \mathfontdimen{Superscript\-Baseline\-Drop\-Max}
% {Maximum allowed drop of the baseline of superscripts relative to the (ink) top of the base. Checked for bases that are treated as a box or extended shape. Positive for superscript baseline below the base top.}
% \mathfontdimen{Sub\-Superscript\-Gap\-Min}
% {Minimum gap between the superscript and subscript ink. Suggested: 4×default rule thickness.}
% \mathfontdimen{Superscript\-Bottom\-Max\-With\-Subscript}
% {The maximum level to which the (ink) bottom of superscript can be pushed to increase the gap between superscript and subscript, before subscript starts being moved down. 
% Suggested: /5 x-height.}
% \mathfontdimen{Space\-After\-Script}
% {Extra white space to be added after each subscript and superscript. Suggested: 0.5pt for a 12 pt font.}
% \mathfontdimen{Upper\-Limit\-Gap\-Min}
% {Minimum gap between the (ink) bottom of the upper limit, and the (ink) top of the base operator. }
% \mathfontdimen{Upper\-Limit\-Baseline\-Rise\-Min}
% {Minimum distance between baseline of upper limit and (ink) top of the base operator.}
% \mathfontdimen{Lower\-Limit\-Gap\-Min}
% {Minimum gap between (ink) top of the lower limit, and (ink) bottom of the base operator.}
% \mathfontdimen{Lower\-Limit\-Baseline\-Drop\-Min}
% {Minimum distance between baseline of the lower limit and (ink) bottom of the base operator.}
% \mathfontdimen{Stack\-Top\-Shift\-Up}
% {Standard shift up applied to the top element of a stack.}
% \mathfontdimen{Stack\-Top\-Display\-Style\-Shift\-Up}
% {Standard shift up applied to the top element of a stack in display style.}
% \mathfontdimen{Stack\-Bottom\-Shift\-Down}
% {Standard shift down applied to the bottom element of a stack. Positive for moving in the downward direction.}
% \mathfontdimen{Stack\-Bottom\-Display\-Style\-Shift\-Down}
% {Standard shift down applied to the bottom element of a stack in display style. Positive for moving in the downward direction.}
% \mathfontdimen{Stack\-Gap\-Min}
% {Minimum gap between (ink) bottom of the top element of a stack, and the (ink) top of the bottom element. Suggested: 3×default rule thickness.}
% \mathfontdimen{Stack\-Display\-Style\-Gap\-Min}
% {Minimum gap between (ink) bottom of the top element of a stack, and the (ink) top of the bottom element in display style. Suggested: 7×default rule thickness.}
% \mathfontdimen{Stretch\-Stack\-Top\-Shift\-Up}
% {Standard shift up applied to the top element of the stretch stack.}
% \mathfontdimen{Stretch\-Stack\-Bottom\-Shift\-Down}
% {Standard shift down applied to the bottom element of the stretch stack. Positive for moving in the downward direction.}
% \mathfontdimen{Stretch\-Stack\-Gap\-Above\-Min}
% {Minimum gap between the ink of the stretched element, and the (ink) bottom of the element above. Suggested: Upper\-Limit\-Gap\-Min}
% \mathfontdimen{Stretch\-Stack\-Gap\-Below\-Min}
% {Minimum gap between the ink of the stretched element, and the (ink) top of the element below. Suggested: Lower\-Limit\-Gap\-Min.}
% \mathfontdimen{Fraction\-Numerator\-Shift\-Up}
% {Standard shift up applied to the numerator. }
% \mathfontdimen{Fraction\-Numerator\-Display\-Style\-Shift\-Up}
% {Standard shift up applied to the numerator in display style. Suggested: Stack\-Top\-Display\-Style\-Shift\-Up.}
% \mathfontdimen{Fraction\-Denominator\-Shift\-Down}
% {Standard shift down applied to the denominator. Positive for moving in the downward direction.}
% \mathfontdimen{Fraction\-Denominator\-Display\-Style\-Shift\-Down}
% {Standard shift down applied to the denominator in display style. Positive for moving in the downward direction. Suggested: Stack\-Bottom\-Display\-Style\-Shift\-Down.}
% \mathfontdimen{Fraction\-Numerator\-Gap\-Min}
% {Minimum tolerated gap between the (ink) bottom of the numerator and the ink of the fraction bar. Suggested: default rule thickness}
% \mathfontdimen{Fraction\-Num\-Display\-Style\-Gap\-Min}
% {Minimum tolerated gap between the (ink) bottom of the numerator and the ink of the fraction bar in display style. Suggested: 3×default rule thickness.}
% \mathfontdimen{Fraction\-Rule\-Thickness}
% {Thickness of the fraction bar. Suggested: default rule thickness.}
% \mathfontdimen{Fraction\-Denominator\-Gap\-Min}
% {Minimum tolerated gap between the (ink) top of the denominator and the ink of the fraction bar. Suggested: default rule thickness}
% \mathfontdimen{Fraction\-Denom\-Display\-Style\-Gap\-Min}
% {Minimum tolerated gap between the (ink) top of the denominator and the ink of the fraction bar in display style. Suggested: 3×default rule thickness.}
% \mathfontdimen{Skewed\-Fraction\-Horizontal\-Gap}
% {Horizontal distance between the top and bottom elements of a skewed fraction.}
% \mathfontdimen{Skewed\-Fraction\-Vertical\-Gap}
% {Vertical distance between the ink of the top and bottom elements of a skewed fraction.}
% \mathfontdimen{Overbar\-Vertical\-Gap}
% {Distance between the overbar and the (ink) top of he base. Suggested: 3×default rule thickness.}
% \mathfontdimen{Overbar\-Rule\-Thickness}
% {Thickness of overbar. Suggested: default rule thickness.}
% \mathfontdimen{Overbar\-Extra\-Ascender}
% {Extra white space reserved above the overbar. Suggested: default rule thickness.}
% \mathfontdimen{Underbar\-Vertical\-Gap}
% {Distance between underbar and (ink) bottom of the base. Suggested: 3×default rule thickness.}
% \mathfontdimen{Underbar\-Rule\-Thickness}
% {Thickness of underbar. Suggested: default rule thickness.}
% \mathfontdimen{Underbar\-Extra\-Descender}
% {Extra white space reserved below the underbar. Always positive. Suggested: default rule thickness.}
% \mathfontdimen{Radical\-Vertical\-Gap}
% {Space between the (ink) top of the expression and the bar over it. Suggested: 1¼ default rule thickness.}
% \mathfontdimen{Radical\-Display\-Style\-Vertical\-Gap}
% {Space between the (ink) top of the expression and the bar over it. Suggested: default rule thickness + ¼ x-height. }
% \mathfontdimen{Radical\-Rule\-Thickness}
% {Thickness of the radical rule. This is the thickness of the rule in designed or constructed radical signs. Suggested: default rule thickness.}
% \mathfontdimen{Radical\-Extra\-Ascender}
% {Extra white space reserved above the radical. Suggested: Radical\-Rule\-Thickness.}
% \mathfontdimen{Radical\-Kern\-Before\-Degree}
% {Extra horizontal kern before the degree of a radical, if such is present. Suggested: 5/18 of em.}
% \mathfontdimen{Radical\-Kern\-After\-Degree}
% {Negative kern after the degree of a radical, if such is present. Suggested: −10/18 of em.}
% \mathfontdimen{Radical\-Degree\-Bottom\-Raise\-Percent}
% {Height of the bottom of the radical degree, if such is present, in proportion to the ascender of the radical sign. Suggested: 60\%.}
% \end{longtable}
%
% \Finale
%
% \iffalse
%
%<*dtx-style>
%    \begin{macrocode}
\ProvidesPackage{dtx-style}

\GetFileInfo{\jobname.dtx}
\let\umfiledate\filedate
\let\umfileversion\fileversion

\CheckSum{0}
\EnableCrossrefs
\CodelineIndex

\errorcontextlines=999

\def\@dotsep{1000}
\setcounter{tocdepth}{2}
\setlength\columnseprule{0.4pt}
\renewcommand\tableofcontents{\relax
  \begin{multicols}{2}[\section*{\contentsname}]\relax
    \@starttoc{toc}\relax
  \end{multicols}}

\setcounter{IndexColumns}{2}
\renewenvironment{theglossary}
  {\small\list{}{}
     \item\relax
     \glossary@prologue\GlossaryParms 
     \let\item\@idxitem \ignorespaces 
     \def\pfill{\hspace*{\fill}}}
  {\endlist}

\usepackage[svgnames]{xcolor}
\usepackage{array,booktabs,calc,enumitem,fancyvrb,graphicx,ifthen,longtable,refstyle,subfig,topcapt,url,varioref,underscore}
\setcounter{LTchunksize}{100}
\usepackage[slash-delimiter=frac,nabla=literal]{unicode-math}
\usepackage{metalogo}

%\usepackage[rm,small]{titlesec}

\setmainfont[Mapping=tex-text]{TeX Gyre Pagella}
\setsansfont[Scale=MatchLowercase,Mapping=tex-text]{Candara}
\setmonofont[Scale=MatchLowercase]{Consolas}
\setmathfont{Cambria Math}
\newfontface\umfont{STIXGeneral}

\usepackage{hypdoc}

\linespread{1.069}      % A bit more space between lines
\frenchspacing         % Remove ugly extra space after punctuation

\definecolor{niceblue}{rgb}{0.2,0.4,0.8}

\def\theCodelineNo{\textcolor{niceblue}{\sffamily\tiny\arabic{CodelineNo}}}

\newcommand*\name[1]{{#1}}
\newcommand*\pkg[1]{\textsf{#1}}
\newcommand*\feat[1]{\texttt{#1}}
\newcommand*\opt[1]{\texttt{#1}}

\newcommand*\note[1]{\unskip\footnote{#1}}

\let\latin\textit
\def\eg{\latin{e.g.}}
\def\Eg{\latin{E.g.}}
\def\ie{\latin{i.e.}}
\def\etc{\@ifnextchar.{\latin{etc}}{\latin{etc.}\@}}

\def\STIX{\textsc{stix}}
\def\MacOSX{Mac~OS~X}
\def\ascii{\textsc{ascii}}
\def\OMEGA{Omega}

\newcounter{argument}
\g@addto@macro\endmacro{\setcounter{argument}{0}}
\newcommand*\darg[1]{%
  \stepcounter{argument}%
  {\ttfamily\char`\#\theargument~:~}#1\par\noindent\ignorespaces
}
\newcommand*\doarg[1]{%
  \stepcounter{argument}%
  {\ttfamily\makebox[0pt][r]{[}\char`\#\theargument]:~}#1\par\noindent\ignorespaces
}

\newcommand\codeline[1]{\par{\centering#1\par\noindent}\ignorespaces}

\newcommand\unichar[1]{\textsc{u}+\texttt{\small#1}}

\setlength\parindent{2em}

\def \MakePrivateLetters {%
  \catcode`\@=11\relax
  \catcode`\_=11\relax
  \catcode`\:=11\relax
}
%    \end{macrocode}
%</dtx-style>
%\fi
%
% \typeout{*************************************************************}
% \typeout{*}
% \typeout{* To finish the installation you have to move the following}
% \typeout{* file into a directory searched by XeTeX:}
% \typeout{*}
% \typeout{* \space\space\space unicode-math.sty}
% \typeout{*}
% \typeout{*************************************************************}
%
\endinput