1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
|
% \iffalse meta-comment
% An Infrastructure for Semantic Macros and Module Scoping
% Copyright (C) 2004-2010 Michael Kohlhase, all rights reserved
% this file is released under the
% LaTeX Project Public License (LPPL)
%
% The development version of this file can be found at
% $HeadURL: https://svn.kwarc.info/repos/stex/trunk/sty/modules/modules.dtx $
% \fi
%
% \iffalse
%<package>\NeedsTeXFormat{LaTeX2e}[1999/12/01]
%<package>\ProvidesPackage{modules}[2012/01/28 v1.1 Semantic Markup]
%
%<*driver>
\documentclass{ltxdoc}
\usepackage{stex-logo,modules}
\usepackage{url,array,float,textcomp}
\usepackage[show]{ed}
\usepackage[hyperref=auto,style=alphabetic]{biblatex}
\usepackage{listings}
\usepackage{amsfonts}
\bibliography{kwarc}
\usepackage[eso-foot,today]{svninfo}
\svnInfo $Id: modules.dtx 1999 2012-01-28 07:32:11Z kohlhase $
\svnKeyword $HeadURL: https://svn.kwarc.info/repos/stex/trunk/sty/modules/modules.dtx $
\usepackage{../ctansvn}
\usepackage{hyperref}
\makeindex
\floatstyle{boxed}
\newfloat{exfig}{thp}{lop}
\floatname{exfig}{Example}
\def\tracissue#1{\cite{sTeX:online}, \hyperlink{http://trac.kwarc.info/sTeX/ticket/#1}{issue #1}}
\begin{document}\DocInput{modules.dtx}\end{document}
%</driver>
% \fi
%
% \CheckSum{941}
%
% \changes{v0.9}{2005/06/14}{First Version with Documentation}
% \changes{v0.9a}{2005/07/01}{Completed Documentation}
% \changes{v0.9b}{2005/08/06}{Complete functionality and Updated Documentation}
% \changes{v0.9c}{2006/01/13}{more packaging}
% \changes{v0.9d}{2007/12/12}{fixing double loading of .tex and .sms}
% \changes{v0.9e}{2008/06/17}{fixing LaTeXML}
% \changes{v0.9f}{2008/06/17}{remove unused options uses and usesqualified}
% \changes{v0.9g}{2009/05/02}{adding resymdef functionality}
% \changes{v0.9g}{2009/08/12}{adding importOMDocmodule}
% \changes{v0.9h}{2010/01/19}{using {\texttt{\textbackslash mod@newcommand}} instead of
% {\texttt{\textbackslash providecommand}} for more intuitive inheritance.}
% \changes{v0.9h}{2010/03/05}{adding {\texttt{\textbackslash metalanguage}}}
% \changes{v1.0}{2010/06/18}{minor fixes}
% \changes{v1.1}{2010/12/30}{adding optional arguments to semantic macros for display
% variants. The resymdef functionality introduced in 0.9g is now deprecated. It was hardly
% used.}
%
% \GetFileInfo{modules.sty}
%
% \MakeShortVerb{\|}
%\def\scsys#1{{{\sc #1}}\index{#1@{\sc #1}}}
% \def\xml{\scsys{Xml}}
% \def\mathml{\scsys{MathML}}
% \def\omdoc{\scsys{OMDoc}}
% \def\openmath{\scsys{OpenMath}}
% \def\latexml{\scsys{LaTeXML}}
% \def\perl{\scsys{Perl}}
% \def\cmathml{Content-{\sc MathML}\index{Content {\sc MathML}}\index{MathML@{\sc MathML}!content}}
% \def\activemath{\scsys{ActiveMath}}
% \def\twin#1#2{\index{#1!#2}\index{#2!#1}}
% \def\twintoo#1#2{{#1 #2}\twin{#1}{#2}}
% \def\atwin#1#2#3{\index{#1!#2!#3}\index{#3!#2 (#1)}}
% \def\atwintoo#1#2#3{{#1 #2 #3}\atwin{#1}{#2}{#3}}
% \def\cT{\mathcal{T}}\def\cD{\mathcal{D}}
% \title{{\texttt{modules.sty}}: Semantic Macros and Module Scoping in {\stex}\thanks{Version {\fileversion} (last revised
% {\filedate})}}
% \author{Michael Kohlhase \& Deyan Ginev \& Rares Ambrus\\
% Jacobs University, Bremen\\
% \url{http://kwarc.info/kohlhase}}
% \maketitle
%
% \begin{abstract}
% The |modules| package is a central part of the {\stex} collection, a version of
% {\TeX/\LaTeX} that allows to markup {\TeX/\LaTeX} documents semantically without
% leaving the document format, essentially turning {\TeX/\LaTeX} into a document format
% for mathematical knowledge management (MKM).
%
% This package supplies a definition mechanism for semantic macros and a non-standard
% scoping construct for them, which is oriented at the semantic dependency relation
% rather than the document structure. This structure can be used by MKM systems for
% added-value services, either directly from the {\sTeX} sources, or after translation.
% \end{abstract}
%
% \newpage\setcounter{tocdepth}{2}\tableofcontents\newpage
%
% \section{Introduction}\label{sec:intro}
%
% Following general practice in the {\TeX/\LaTeX} community, we use the term ``semantic
% macro'' for a macro whose expansion stands for a mathematical object, and whose name
% (the command sequence) is inspired by the name of the mathematical object. This can
% range from simple definitions like |\def\Reals{\mathbb{R}}| for individual mathematical
% objects to more complex (functional) ones object constructors like
% |\def\SmoothFunctionsOn#1{\mathcal{C}^\infty(#1,#1)}|. Semantic macros are traditionally
% used to make {\TeX/\LaTeX} code more portable. However, the {\TeX/\LaTeX} scoping model
% (macro definitions are scoped either in the local group or until the rest of the
% document), does not mirror mathematical practice, where notations are scoped by
% mathematical environments like statements, theories, or such. For an in-depth discussion
% of semantic macros and scoping we refer the reader~\cite{Kohlhase:ulsmf08}.
%
% The |modules| package provides a {\LaTeX}-based markup infrastructure for defining
% module-scoped semantic macros and {\latexml} bindings~\cite{Miller:latexml:online} to
% create {\omdoc}~\cite{Kohlhase:omdoc1.2} from {\stex} documents. In the {\stex} world
% semantic macros have a special status, since they allow the transformation of
% {\TeX/\LaTeX} formulae into a content-oriented markup format like
% {\openmath}~\cite{BusCapCar:2oms04} and (strict) content
% {\mathml}~\cite{CarlisleEd:MathML3}; see Figure~\ref{fig:omsemmac} for an example, where
% the semantic macros above have been defined by the |\symdef| macros (see
% Section~\ref{sec:symdef}) in the scope of a |\begin{module}[id=calculus]| (see
% Section~\ref{sec:modules}).
%
% \begin{exfig}\lstset{basicstyle=\scriptsize,aboveskip=-.5em,belowskip=-1.5em}
% \begin{tabular}{l|p{9.7cm}}
% \LaTeX & \verb|\SmoothFunctionsOn\Reals| \\\hline
% PDF/DVI & ${\mathcal{C}^\infty(\mathbb{R},\mathbb{R})}$\\\hline
% {\openmath} & \lstset{morekeywords={OMA,OMS}}
% \begin{lstlisting}
% <OMA>
% <OMS cd="calculus" name="SmoothFunctionsOn"/>
% <OMS cd="calculus" name="Reals"/>
% </OMA>\end{lstlisting}\\\hline
% {\mathml} & \lstset{morekeywords={apply,csymbol}}
% \begin{lstlisting}
% <apply>
% <csymbol cd="calculus">SmoothFunctionsOn</csymbol>
% <csymbol cd="calculus">Reals</csymbol>
% </apply>\end{lstlisting}\\
% \end{tabular}
% \caption{{\openmath} and {\mathml} generated from Semantic Macros}\label{fig:omsemmac}
% \end{exfig}
%
% \section{The User Interface}
%
% The main contributions of the |modules| package are the |module| environment, which
% allows for lexical scoping of semantic macros with inheritance and the |\symdef| macro
% for declaration of semantic macros that underly the |module| scoping.
%
% \subsection{Package Options}\label{sec:options}
%
% The |modules| package takes two options: If we set \DescribeMacro{showviews}|showviews|,
% then the views (see Section~\ref{sec:user:views}) are shown. If we set the
% \DescribeMacro{qualifiedimports}|qualifiedimports| option, then qualified imports are
% enabled. Qualified imports give more flexibility in module inheritance, but consume more
% internal memory. As qualified imports are not fully implemented at the moment, they are
% turned off by default see Limitation~\ref{sec:limitations:qualified-imports}.
%
% If the \DescribeMacro{showmeta}|showmeta| is set, then the metadata keys are shown
% (see~\cite{Kohlhase:metakeys:ctan} for details and customization options).
%
% \subsection{Semantic Macros}\label{sec:symdef}
%
% The \DescribeMacro{\symdef} is the main constructor for semantic macros in {\sTeX}. A
% call to the |\symdef| macro has the general form
% \begin{quote}
% |\symdef[|\meta{keys}|]{|\meta{cseq}|}[|\meta{args}|]{|\meta{definiens}|}|
% \end{quote}
% where {\meta{cseq}} is a control sequence (the name of the semantic macro) {\meta{args}}
% is a number between 0 and 9 for the number of arguments {\meta{definiens}} is the token
% sequence used in macro expansion for {\meta{cseq}}. Finally {\meta{keys}} is a keyword
% list that further specifies the semantic status of the defined macro.
%
% The two semantic macros in Figure~\ref{fig:omsemmac} would have been declared by
% invocations of the |\symdef| macro of the form:
% \begin{verbatim}
% \symdef{Reals}{\mathbb{R}}
% \symdef{SmoothFunctionsOn}[1]{\mathcal{C}^\infty(#1,#1)}
% \end{verbatim}
%
% Note that both semantic macros correspond to {\openmath} or {\mathml} ``symbols'',
% i.e. named representations of mathematical concepts (the real numbers and the
% constructor for the space of smooth functions over a set); we call these names the
% {\textbf{symbol name}} of a semantic macro. Normally, the symbol name of a semantic
% macro declared by a |\symdef| directive is just \meta{cseq}. The key-value pair
% \DescribeMacro{name}|name=|\meta{symname} can be used to override this behavior and
% specify a differing name. There are two main use cases for this.
%
% The first one is shown in Example~\ref{fig:symvariant}, where we define semantic macros
% for the ``exclusive or'' operator. Note that we define two semantic macros: |\xorOp| and
% |\xor| for the applied form and the operator. As both relate to the same mathematical
% concept, their symbol names should be the same, so we specify |name=xor| on the
% definition of |\xorOp|.
%
% A key \DescribeMacro{local}|local| can be added to {\meta{keys}} to specify that the
% symbol is local to the module and is invisible outside. Note that even though |\symdef|
% has no advantage over |\def| for defining local semantic macros, it is still considered
% good style to use |\symdef| and |\abbrdef|, if only to make switching between local and
% exported semantic macros easier.
%
% \DescribeMacro{\abbrdef}The |\abbrdef| macro is a variant of |\symdef| that is only
% different in semantics, not in presentation. An abbreviative macro is like a semantic
% macro, and underlies the same scoping and inheritance rules, but it is just an
% abbreviation that is meant to be expanded, it does not stand for an atomic mathematical
% object.
%
% We will use a simple module for natural number arithmetics as a running example. It
% defines exponentiation and summation as new concepts while drawing on the basic
% operations like $+$ and $-$ from {\LaTeX}. In our example, we will define a semantic
% macro for summation |\Sumfromto|, which will allow us to express an expression like
% $\sum{i=1}^nx^i$ as |\Sumfromto{i}1n{2i-1}| (see Example~\ref{fig:semmodule} for an
% example). In this example we have also made use of a local semantic symbol for $n$,
% which is treated as an arbitrary (but fixed) symbol.
%
%\begin{exfig}
% \begin{verbatim}
% \begin{module}[id=arith]
% \symdef{Sumfromto}[4]{\sum_{#1=#2}^{#3}{#4}}
% \symdef[local]{arbitraryn}{n}
% What is the sum of the first $\arbitraryn$ odd numbers, i.e.
% $\Sumfromto{i}1\arbitraryn{2i-1}?$
% \end{module}
% \end{verbatim}
% \vspace*{-3.5ex}\hrule\vspace*{1ex}
% \begin{module}[id=arith]
% \symdef{Sumfromto}[4]{\sum_{#1=#2}^{#3}{#4}}
% \symdef[local]{arbitraryn}{n}
% What is the sum of the first $\arbitraryn$ odd numbers, i.e.
% $\Sumfromto{i}1\arbitraryn{2i-1}?$
% \end{module}
% \caption{Semantic Markup in a {\texttt{module}} Context}\label{fig:semmodule}
% \end{exfig}
%
% The \DescribeMacro{\symvariant}|\symvariant| macro can be used to define presentation
% variants for semantic macros previously defined via the |\symdef| directive. In an
% invocation
% \begin{quote}
% |\symdef[|\meta{keys}|]{|\meta{cseq}|}[|\meta{args}|]{|\meta{pres}|}|\\
% |\symvariant{|\meta{cseq}|}[|\meta{args}|]{|\meta{var}|}{|\meta{varpres}|}|
% \end{quote}
% the first line defines the semantic macro |\|\meta{cseq} that when applied to
% \meta{args} arguments is presented as \meta{pres}. The second line allows the semantic
% macro to be called with an optional argument \meta{var}: |\|\meta{cseq}|[var]| (applied
% to \meta{args} arguments) is then presented as \meta{varpres}. We can define a variant
% presentation for |\xor|; see Figure~\ref{fig:symvariant} for an example.
%
%\begin{exfig}
% \begin{verbatim}
% \begin{module}[id=xbool]
% \symdef[name=xor]{xorOp}{\oplus}
% \symvariant{xorOp}{uvee}{\underline{\vee}}
% \symdef{xor}[2]{#1\xorOp #2}
% \symvariant{xor}[2]{uvee}{#1\xorOp[uvee] #2}
% Exclusive disjunction is commutative: $\xor{p}q=\xor{q}p$\\
% Some authors also write exclusive or with the $\xorOp[uvee]$ operator,
% then the formula above is $\xor[uvee]{p}q=\xor[uvee]{q}p$
% \end{module}
% \end{verbatim}
% \vspace*{-3.5ex}\hrule\vspace*{1ex}
% \begin{module}[id=xbool]
% \symdef[name=xor]{xorOp}{\oplus}
% \symvariant{xorOp}{uvee}{\underline{\vee}}
% \symdef{xor}[2]{#1\xorOp #2}
% \symvariant{xor}[2]{uvee}{#1\xorOp[uvee] #2}
% Exclusive disjunction is commutative: $\xor{p}q=\xor{q}p$\\
% Some authors also write exclusive or with the $\xorOp[uvee]$ operator,
% then the formula above is $\xor[uvee]{p}q=\xor[uvee]{q}p$
% \end{module}
% \caption{Presentation Variants of a Semantic Macro}\label{fig:symvariant}
% \end{exfig}
%
% Version 1.0 of the |modules| package had the \DescribeMacro{\resymdef}|\resymdef| macro
% that allowed to locally redefine the presentation of a macro. But this did not interact
% well with the |beamer| package and was less useful than the |\symvariant|
% functionality. Therefore it is deprecated now and leads to an according error message.
%
% \subsection{Symbol and Concept Names}\label{sec:user:termdef}
%
% Just as the |\symdef| declarations define semantic macros for mathematical symbols, the
% |modules| package provides an infrastructure for {\emph{mathematical concepts}} that are
% expressed in mathematical vernacular. The key observation here is that concept names
% like ``finite symplectic group'' follow the same scoping rules as mathematical symbols,
% i.e. they are module-scoped. The \DescribeMacro{\termdef}|\termdef| macro is an analogue
% to |\symdef| that supports this: use
% |\termdef[|\meta{keys}|]{|\meta{cseq}|}{|\meta{concept}|}| to declare the macro
% |\|\meta{cseq} that expands to \meta{concept}. See Figure~\ref{fig:termref} for an
% example, where we use the \DescribeMacro{\capitalize}|\captitalize| macro to adapt
% \meta{concept} to the sentence beginning.\ednote{continue, describe \meta{keys}, they
% will have to to with plurals,\ldots once implemented}. The main use of the
% |\termdef|-defined concepts lies in automatic cross-referencing facilities via the
% \DescribeMacro{\termref}|\termref| and \DescribeMacro{\symref}|\symref| macros provided
% by the |statements| package~\ctancite{Kohlhase:smms}. Together with the |hyperref|
% package~\cite{RahObe:hmlmh10}, this provide cross-referencing to the definitions of the
% symbols and concepts. As discussed in section~\ref{sec:limitations:crossref}, the
% |\symdef| and |\termdef| declarations must be on top-level in a module, so the
% infrastructure provided in the |modules| package alone cannot be used to locate the
% definitions, so we use the infrastructure for mathematical statements for that.
%
%\begin{exfig}
% \begin{verbatim}
% \termdef[name=xor]{xdisjunction}{exclusive disjunction}
% \captitalize\xdisjunction is commutative: $\xor{p}q=\xor{q}p$
% \end{verbatim}
% \vspace*{-3.5ex}
% \caption{Extending Example~\ref{fig:symvariant} with Term References}\label{fig:termref}
% \end{exfig}
%
% \subsection{Modules and Inheritance}\label{sec:modules}
%
% The\DescribeEnv{module}|module| environment takes an optional |KeyVal|
% argument. Currently, only the |id| key is supported for specifying the identifier of a
% module (also called the {\twintoo{module}{name}}). A module introduced by
% |\begin{module}[id=foo]| restricts the scope the semantic macros defined by the
% |\symdef| form to the end of this module given by the corresponding |\end{module}|,
% and to any other |module| environments that import them by a |\importmodule{foo}|
% directive. If the module |foo| contains |\importmodule| directives of its own, these are
% also exported to the importing module.
%
% Thus the \DescribeMacro{\importmodule}|\importmodule| declarations induce the
% {\atwintoo{semantic}{inheritance}{relation}}. Figure~\ref{exf:importmodule} shows a
% module that imports the semantic macros from three others. In the simplest form,
% |\importmodule{|\meta{mod}|}| will activate the semantic macros and concepts declared by
% |\symdef| and |\termdef| in module \meta{mod} in the current module\footnote{Actually,
% in the current {\TeX} group, therefore \texttt{\textbackslash importmodule} should be
% placed directly after the \texttt{\textbackslash begin\{module\}}.}. To understand the
% mechanics of this, we need to understand a bit of the internals. The |module|
% environment sets up an internal macro pool, to which all the macros defined by the
% |\symdef| and |\termdef| declarations are added; |\importmodule| only activates this
% macro pool. Therefore |\importmodule{|\meta{mod}|}| can only work, if the {\TeX} parser
% --- which linearly goes through the {\sTeX} sources --- already came across the module
% \meta{mod}. In many situations, this is not obtainable; e.g. for ``semantic forward
% references'', where symbols or concepts are previewed or motivated to knowledgeable
% readers before they are formally introduced or for modularizations of documents into
% multiple files. To enable situations like these, the |module| package uses auxiliary
% files called {\textbf{\sTeX module signatures}}. For any file, \meta{file}|.tex|, we
% generate a corresponding \sTeX module signature \meta{file}|.sms| with the |sms| utility
% (see also Limitation~\ref{sec:limitations:sms}), which contains (copies of) all
% |\begin|/|\end{module}|, |\importmodule|, |\symdef|, and |\termdef| invocations in
% \meta{file}|.tex|. The value of an \sTeX module signature is that it can be loaded
% instead its corresponding \sTeX document, if we are only interested in the semantic
% macros. So |\importmodule[|\meta{filepath}|]{|\meta{mod}|}| will load the \sTeX module
% signature \meta{filepath}|.sms| (if it exists and has not been loaded before) and
% activate the semantic macros from module \meta{mod} (which was supposedly defined in
% \meta{filepath}|.tex|). Note that since \meta{filepath}|.sms| contains all
% |\importmodule| statements that \meta{filepath}|.tex| does, an |\importmodule|
% recursively loads all necessary files to supply the semantic macros inherited by the
% current module.
%
% The |\importmodule| macro has a variant
% \DescribeMacro{importmodulevia}|\importmodulevia| that allows the specification of a
% theory morphism to be applied. |\importmodulevia{|\meta{thyid}|}{|\meta{assignments}|}|
% specifies the ``source theory'' via its identifier \meta{thyid} and the morphism by
% \meta{assignments}. There are three kinds:
% \begin{compactdesc}
% \item[symbol assignments] via
% \DescribeMacro{\vassign}|\vassign{|\meta{sym}|}{|\meta{exp}|}|, which defines the
% symbol \meta{sym} introduced in the current theory by an expression \meta{exp} in the
% source theory.
% \item[term assignments] via
% \DescribeMacro{\tassign}|\tassign[||\meta{source-cd}]{|\meta{tname}|}{|\meta{source-tname}|}|,
% which defines the term with name \meta{tname} in the current via a term with
% name\meta{source-tname} in the theory \meta{source-cd} whose default value is the
% source theory.
% \item[term text assignments] via
% \DescribeMacro{\ttassign}|\tassign{|\meta{tname}|}{|\meta{text}|}|, which defines a
% term with name \meta{tname} in the current theory via a definitional text.
% \end{compactdesc}
%
%\begin{exfig}
% \begin{verbatim}
% \begin{module}[id=ring]
% \begin{importmodulevia}{monoid}
% \vassign{rbase}\magbase
% \vassign{rtimesOp}\magmaop
% \vassign{rone}\monunit
% \end{importmodulevia}
% \symdef{rbase}{G}
% \symdef[name=rtimes]{rtimesOp}{\cdot}
% \symdef{rtimes}[2]{\infix\rtimesOp{#1}{#2}}
% \symdef{rone}{1}
% \begin{importmodulevia}{cgroup}
% \vassign{rplus}\magmaop
% \vassign{rzero}\monunit
% \vassign{rinvOp}\cginvOp
% \end{importmodulevia}
% \symdef[name=rplus]{rplusOp}{+}
% \symdef{rplus}[2]{\infix\rplusOp{#1}{#2}}
% \symdef[name=rminus]{rminusOp}{-}
% \symdef{rminus}[1]{\infix\rminusOp{#1}{#2}}
% ...
% \end{module}
% \end{verbatim}
% \caption{A Module for Rings with inheritance from monoids and commutative groups}\label{fig:ring}
% \end{exfig}
%
% The \DescribeMacro{\metalanguage} |metalanguage| macro is a variant of
% \lstinline|importmodule| that imports the meta language, i.e. the language in which the
% meaning of the new symbols is expressed. For mathematics this is often first-order logic
% with some set theory; see~\cite{RabKoh:WSMSML10} for discussion.
%
% \subsection{Dealing with multiple Files}\label{sec:user:multiple}
%
% The infrastructure presented above works well if we are dealing with small files or
% small collections of modules. In reality, collections of modules tend to grow, get
% re-used, etc, making it much more difficult to keep everything in one file. This general
% trend towards increasing entropy is aggravated by the fact that modules are very
% self-contained objects that are ideal for re-used. Therefore in the absence of a
% content management system for {\LaTeX} document (fragments), module collections tend to
% develop towards the ``one module one file'' rule, which leads to situations with lots
% and lots of little files.
%
% Moreover, most mathematical documents are not self-contained, i.e. they do not build up
% the theory from scratch, but pre-suppose the knowledge (and notation) from other
% documents. In this case we want to make use of the semantic macros from these
% prerequisite documents without including their text into the current document. One way
% to do this would be to have {\LaTeX} read the prerequisite documents without producing
% output. For efficiency reasons, {\stex} chooses a different route. It comes with a
% utility |sms| (see Section~\ref{sec:utilities}) that exports the modules and macros
% defined inside them from a particular document and stores them inside |.sms| files. This
% way we can avoid overloading LaTeX with useless information, while retaining the
% important information which can then be imported in a more efficient way.
%
% \DescribeMacro{\importmodule} For such situations, the |\importmodule| macro can be
% given an optional first argument that is a path to a file that contains a path to the
% module file, whose module definition (the |.sms| file) is read. Note that the
% |\importmodule| macro can be used to make module files truly self-contained. To arrive
% at a file-based content management system, it is good practice to reuse the module
% identifiers as module names and to prefix module files with corresponding
% |\importmodule| statements that pre-load the corresponding module files.
%
%\begin{exfig}
% \begin{verbatim}
% \begin{module}[id=foo]
% \importmodule[../other/bar]{bar}
% \importmodule[../mycolleaguesmodules]{baz}
% \importmodule[../other/bar]{foobar}
% ...
% \end{module}
% \end{verbatim}
% \vspace{-1.7em}
% \caption{Self-contained Modules via {\texttt{importmodule}}}\label{exf:importmodule}
% \end{exfig}
%
% In Example~\ref{exf:importmodule}, we have shown the typical setup of a module
% file. The |\importmodule| macro takes great care that files are only read once, as
% {\sTeX} allows multiple inheritance and this setup would lead to an exponential (in the
% module inheritance depth) number of file loads.
%
% Sometimes we want to import an existing {\omdoc} theory\footnote{{\omdoc} theories are
% the counterpart of {\stex} modules.} $\widehat\cT$ into (the {\omdoc} document
% $\widehat\cD$ generated from) a {\stex} document $\cD$. Naturally, we have to provide an
% {\stex} stub module $\cT$ that provides |\symdef| declarations for all symbols we use in
% $\cD$. In this situation, we use\DescribeMacro{\importOMDocmodule}
% |\importOMDocmodule[|\meta{spath}|]{|\meta{OURI}|}{|\meta{name}|}|, where \meta{spath}
% is the file system path to $\cT$ (as in |\importmodule|, this argument must not contain
% the file extension), \meta{OURI} is the URI to the {\omdoc} module (this time with
% extension), and \meta{name} is the name of the theory $\widehat\cT$ and the module in
% $\cT$ (they have to be identical for this to work). Note that since the \meta{spath}
% argument is optional, we can make ``local imports'', where the stub $\cT$ is in $\cD$
% and only contains the |\symdef|s needed there.
%
% Note that the recursive (depth-first) nature of the file loads induced by this setup is
% very natural, but can lead to problems with the depth of the file stack in the {\TeX}
% formatter (it is usually set to something like 15\footnote{If you have sufficient rights
% to change your {\TeX} installation, you can also increase the variable
% {\texttt{max\_in\_open}} in the relevant {\texttt{texmf.cnf}} file. Setting it to 50
% usually suffices}). Therefore, it may be necessary to circumvent the recursive load
% pattern providing (logically spurious) |\importmodule| commands. Consider for instance
% module |bar| in Example~\ref{exf:importmodule}, say that |bar| already has load depth
% 15, then we cannot naively import it in this way. If module |bar| depended say on a
% module |base| on the critical load path, then we could add a statement
% \DescribeMacro{\requiremodules} |\requiremodules{../base}| in the second line. This
% would load the modules from |../base.sms| in advance (uncritical, since it has load
% depth 10) without activating them, so that it would not have to be re-loaded in the
% critical path of the module |foo|. Solving the load depth problem.
%
% \DescribeMacro{\sinput} In all of the above, we do not want to load an |sms| file, if
% the corresponding file has already been loaded, since the semantic macros are already in
% memory. Therefore the |modules| package supplies a semantic variant of the |\input|
% macro, which records in an internal register that the modules in the file have already
% been loaded. Thus if we consistently use |\sinput| instead of |\input| or |\include| for
% files that contain modules\footnote{files without modules should be treated by the
% regular {\LaTeX} input mechanism, since they do not need to be registered.}, we can
% prevent double loading of files and therefore gain efficiency. The
% \DescribeMacro{\sinputref} |\sinputref| macro behaves just like |\sinput| in the
% {\LaTeX} workflow, but in the {\latexml} conversion process creates a reference to the
% transformed version of the input file instead.
%
% Finally, the separation of documents into multiple modules often profits from a symbolic
% management of file paths. To simplify this, the |modules| package supplies the
% \DescribeMacro{\defpath}|\defpath| macro: |\defpath{|\meta{cname}|}{|\meta{path}|}|
% defines a command, so that |\|\meta{csname}|{|\meta{name}|}| expands to
% \meta{path}|/|\meta{name}. So we could have used
% \begin{lstlisting}
% \defpath{OPaths}{../other}
% \importmodule[\OPhats{bar}]{bar}
% \end{lstlisting}
% instead of the second line in Example~\ref{exf:importmodule}. The variant |\OPaths| has
% the big advantage that we can get around the fact that {\TeX/\LaTeX} does not set the
% current directory in |\input|, so that we can use systematically deployed
% |\defpath|-defined path macros to make modules relocatable by defining the path macros
% locally.
%
% \subsection{Including Externally Defined Semantic Macros }
%
% In some cases, we use an existing {\LaTeX} macro package for typesetting objects that
% have a conventionalized mathematical meaning. In this case, the macros are ``semantic''
% even though they have not been defined by a |\symdef|. This is no problem, if we are
% only interested in the {\LaTeX} workflow. But if we want to e.g. transform them to
% {\omdoc} via {\latexml}, the {\latexml} bindings will need to contain references to an
% {\omdoc} theory that semantically corresponds to the {\LaTeX} package. In particular,
% this theory will have to be imported in the generated {\omdoc} file to make it
% {\omdoc}-valid.
%
% \DescribeMacro{\requirepackage} To deal with this situation, the |modules| package
% provides the |\requirepackage| macro. It takes two arguments: a package name, and a URI
% of the corresponding {\omdoc} theory. In the {\LaTeX} workflow this macro behaves like a
% |\usepackage| on the first argument, except that it can --- and should --- be used
% outside the {\LaTeX} preamble. In the {\latexml} workflow, this loads the {\latexml}
% bindings of the package specified in the first argument and generates an appropriate
% |imports| element using the URI in the second argument.
%
% \subsection{Views}\label{sec:user:views}
%
% A view is a mapping between modules, such that all model assumptions (axioms) of the
% source module are satisfied in the target module. \ednote{Document and make Examples}
%
% \section{Limitations \& Extensions}\label{sec:limitations}
%
% In this section we will discuss limitations and possible extensions of the |modules|
% package. Any contributions and extension ideas are welcome; please discuss ideas,
% requests, fixes, etc on the {\sTeX} TRAC~\cite{sTeX:online}.
%
% \subsection{Perl Utility \texttt{sms}}\label{sec:limitations:sms}
%
% Currently we have to use an external perl utility |sms| to extract \sTeX module
% signatures from \sTeX files. This considerably adds to the complexity of the \sTeX
% installation and workflow. If we can solve security setting problems that allows us to
% write to \sTeX module signatures outside the current directory, writing them from \sTeX
% may be an avenue of future development see~\cite[issue \#1522]{sTeX:online} for a
% discussion.
%
% \subsection{Qualified Imports}\label{sec:limitations:qualified-imports}
%
% In an earlier version of the \texttt{modules} package we used the \texttt{usesqualified}
% for importing macros with a disambiguating prefix (this is used whenever we have
% conflicting names for macros inherited from different modules). This is not accessible
% from the current interface. We need something like a |\importqualified| macro for this;
% see~\cite[issue \#1505]{sTeX:online}. Until this is implemented the infrastructure is
% turned off by default, but we have already introduced the
% \DescribeMacro{qualifiedimports}|qualifiedimports| option for the future.
%
% \subsection{Error Messages}\label{sec:limitations:errormsg}
%
% The error messages generated by the |modules| package are still quite bad. For instance
% if |thyA| does note exists we get the cryptic error message
% \begin{verbatim}
% ! Undefined control sequence.
% \module@defs@thyA ...hy
% \expandafter \mod@newcomma...
% l.490 ...ortmodule{thyA}
% \end{verbatim}
% This should definitely be improved.
%
% \subsection{Crossreferencing}\label{sec:limitations:crossref}
%
% Note that the macros defined by |\symdef| are still subject to the normal {\TeX} scoping
% rules. Thus they have to be at the top level of a module to be visible throughout the
% module as intended. As a consequence, the location of the |\symdef| elements cannot be
% used as targets for crossreferencing, which is currently supplied by the |statement|
% package~\ctancite{Kohlhase:smms}. A way around this limitation would be to import
% the current module from the \sTeX module signature (see Section~\ref{sec:modules}) via
% the |\importmodule| declaration.
%
% \subsection{No Forward Imports}\label{sec:limitations:forward-imports}
%
% {\sTeX} allows imports in the same file via |\importmodule{|\meta{mod}|}|, but due to
% the single-pass linear processing model of {\TeX}, \meta{mod} must be the name of a
% module declared {\emph{before}} the current point. So we cannot have forward imports as
% in
% \begin{verbatim}
% \begin{module}[id=foo]
% \importmodule{mod}
% ...
% \end{module}
% ...
% \begin{module}[id=mod]
% ...
% \end{module}
% \end{verbatim}
% a workaround, we can extract the module \meta{mod} into a file {{{mod.tex}}} and replace
% it with |\sinput{mod}|, as in
% \begin{verbatim}
% \begin{module}[id=foo]
% \importmodule[mod]{mod}
% ...
% \end{module}
% ...
% \sinput{mod}
% \end{verbatim}
% then the |\importmodule| command can read |mod.sms| (created via the |sms| utility)
% without having to wait for the module \meta{mod} to be defined.
%
% \StopEventually{\newpage\PrintIndex\newpage\PrintChanges\newpage\printbibliography}\newpage
%
% \section{The Implementation}
%
% The |modules| package generates two files: the {\LaTeX} package (all the code between
% {\textlangle\textsf{*package}\textrangle} and {\textsf{\textlangle/package\textrangle}})
% and the {\latexml} bindings (between {\textsf{\textlangle*ltxml\textrangle}} and
% {\textsf{\textlangle/ltxml\textrangle}}). We keep the corresponding code fragments
% together, since the documentation applies to both of them and to prevent them from
% getting out of sync.
%
% \subsection{Package Options}\label{sec:impl:options}
%
% We declare some switches which will modify the behavior according to the package
% options. Generally, an option |xxx| will just set the appropriate switches to true
% (otherwise they stay false).
% \begin{macrocode}
%<*package>
\DeclareOption{showmeta}{\PassOptionsToPackage{\CurrentOption}{metakeys}}
\newif\ifmod@show\mod@showfalse
\DeclareOption{showmods}{\mod@showtrue}
\newif\ifmod@qualified\mod@qualifiedfalse
\DeclareOption{qualifiedimports}{\mod@qualifiedtrue}
% \end{macrocode}
% Finally, we need to declare the end of the option declaration section to {\LaTeX}.
% \begin{macrocode}
\ProcessOptions
%</package>
% \end{macrocode}
%
% {\latexml} does not support module options yet, so we do not have to do anything here
% for the {\latexml} bindings. We only set up the {\perl} packages (and tell {\texttt{emacs}}
% about the appropriate mode for convenience
%
% The next measure is to ensure that the |sref| and |xcomment| packages are loaded (in the
% right version). For {\latexml}, we also initialize the package inclusions.
% \begin{macrocode}
%<*package>
\RequirePackage{sref}
\RequirePackage{xspace}
\RequirePackage{xcomment}
%</package>
%<*ltxml>
# -*- CPERL -*-
package LaTeXML::Package::Pool;
use strict;
use LaTeXML::Global;
use LaTeXML::Package;
%</ltxml>
% \end{macrocode}
%
% \subsection{Modules and Inheritance}\label{sec:impl:modules}
%
% We define the keys for the |module| environment and the actions that are undertaken,
% when the keys are encountered.
%
% \begin{macro}{module:cd}
% This |KeyVal| key is only needed for {\latexml} at the moment; use this to specify a
% content dictionary name that is different from the module name.
% \begin{macrocode}
%<*package>
\addmetakey{module}{cd}
\addmetakey{module}{title}
%</package>
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{module:id}
% For a module with |[id=|\meta{name}|]|, we have a macro |\module@defs@|\meta{name}
% that acts as a repository for semantic macros of the current module. I will be called
% by |\importmodule| to activate them. We will add the internal forms of the semantic
% macros whenever |\symdef| is invoked. To do this, we will need an unexpended form
% |\this@module| that expands to |\module@defs@|\meta{name}; we define it first and then
% initialize |\module@defs@|\meta{name} as empty. Then we do the same for qualified
% imports as well (if the |qualifiedimports| option was specified). Furthermore, we save
% the module name in |\mod@id| and the module path in |\|\meta{name}|@cd@file@base|
% which we add to |\module@defs@|\meta{name}, so that we can use it in the importing
% module.
% \begin{macrocode}
%<*package>
\define@key{module}{id}{%
\edef\this@module{\expandafter\noexpand\csname module@defs@#1\endcsname}%
\global\@namedef{module@defs@#1}{}%
\ifmod@qualified
\edef\this@qualified@module{\expandafter\noexpand\csname module@defs@qualified@#1\endcsname}%
\global\@namedef{module@defs@qualified@#1}{}%
\fi
\def\mod@id{#1}%
\expandafter\edef\csname #1@cd@file@base\endcsname{\mod@path}%
\expandafter\g@addto@macro\csname module@defs@#1\expandafter\endcsname\expandafter%
{\expandafter\def\csname #1@cd@file@base\expandafter\endcsname\expandafter{\mod@path}}}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{module@heading}
% Then we make a convenience macro for the module heading. This can be customized.
% \begin{macrocode}
\newcounter{module}[section]
\newcommand\module@heading{\stepcounter{module}%
\noindent{\textbf{Module} \thesection.\themodule [\mod@id]}%
\sref@label@id{Module \thesection.\themodule [\mod@id]}%
\ifx\module@title\@empty :\quad\else\quad(\module@title)\hfill\\\fi}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{module@footer}
% Then we make a convenience macro for the module heading. This can be customized.
% \begin{macrocode}
\newcommand\module@footer{\noindent{\textbf{EndModule} \thesection.\themodule}}
% \end{macrocode}
% \end{macro}
%
% \begin{environment}{module}
% Finally, we define the begin module command for the module environment. All the work
% has already been done in the keyval bindings, so this is very simple.
% \begin{macrocode}
\newenvironment{module}[1][]%
{\metasetkeys{module}{#1}\ifmod@show\module@heading\fi}
{\ifmod@show\module@footer\fi}
%</package>
% \end{macrocode}
% for the {\latexml} bindings, we have to do the work all at once.
% \begin{macrocode}
%<*ltxml>
DefKeyVal('Module','id','Semiverbatim');
DefKeyVal('Module','cd','Semiverbatim');
DefEnvironment('{module} OptionalKeyVals:Module',
"?#excluded()(<omdoc:theory "
. "?&defined(&KeyVal(#1,'id'))(xml:id='&KeyVal(#1,'id')')(xml:id='#id')>#body</omdoc:theory>)",
# beforeDigest=>\&useTheoryItemizations,
afterDigestBegin=>sub {
my($stomach, $whatsit)=@_;
$whatsit->setProperty(excluded=>LookupValue('excluding_modules'));
my $keys = $whatsit->getArg(1);
my($id, $cd)=$keys
&& map(ToString($keys->getValue($_)),qw(id cd));
#make sure we have an id or give a stub one otherwise:
if (not $id) {
#do magic to get a unique id for this theory
#$whatsit->setProperties(beginItemize('theory'));
#$id = ToString($whatsit->getProperty('id'));
# changed: beginItemize returns the hash returned by RefStepCounter.
# RefStepCounter deactivates any scopes for the current value of the
# counter which causes the stored prop. of the env. not to be
# visible anymore.
$id = LookupValue('stex:theory:id') || 0;
AssignValue('stex:theory:id', $id+1);
$id = "I$id";
}
$cd = $id unless $cd;
# update the catalog with paths for modules
my $module_paths = LookupValue('module_paths') || {};
$module_paths->{$id} = LookupValue('last_module_path');
AssignValue('module_paths', $module_paths, 'global');
#Update the current module position
AssignValue(current_module => $id);
AssignValue(module_cd => $cd) if $cd;
#activate the module in our current scope
$STATE->activateScope("module:".$id);
#Activate parent scope, if present
my $parentmod = LookupValue('parent_module');
use_module($parentmod) if $parentmod;
#Update the current parent module
AssignValue("parent_of_$id"=>$parentmod,'global');
AssignValue("parent_module" => $id);
return; },
afterDigest => sub {
#Move a step up on the module ancestry
AssignValue("parent_module" => LookupValue("parent_of_".LookupValue("parent_module")));
return;
});
%</ltxml>
% \end{macrocode}
% \end{environment}
%
%
% \begin{macro}{usemodule}
% The |use_module| subroutine performs depth-first load of definitions of the used
% modules
% \begin{macrocode}
%<*ltxml>
sub use_module {
my($module,%ancestors)=@_;
$module = ToString($module);
if (defined $ancestors{$module}) {
Fatal(":module \"$module\" leads to import cycle!");
}
$ancestors{$module}=1;
# Depth-first load definitions from used modules, disregarding cycles
foreach my $used_module (@{ LookupValue("module_${module}_uses") || []}){
use_module($used_module,%ancestors);
}
# then load definitions for this module
$STATE->activateScope("module:$module"); }#$
%</ltxml>
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\activate@defs}
% To activate the |\symdef|s from a given module \meta{mod}, we call the macro
% |\module@defs@|\meta{mod}.
% \begin{macrocode}
%<*package>
\def\activate@defs#1{\csname module@defs@#1\endcsname}
%</package>
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\export@defs}
% To export a the |\symdef|s from the current module, we all the macros
% |\module@defs@|\meta{mod} to |\module@defs@|\meta{mod} (if the current module has a
% name and it is \meta{mod})
% \begin{macrocode}
%<*package>
\def\export@defs#1{\@ifundefined{mod@id}{}%
{\expandafter\expandafter\expandafter\g@addto@macro\expandafter%
\this@module\expandafter{\csname module@defs@#1\endcsname}}}
%</package>
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\coolurion/off}
% \ednote{@DG: this needs to be documented somewhere in section 1}
% \begin{macrocode}
%<*package>
\def\coolurion{}
\def\coolurioff{}
%</package>
%<*ltxml>
DefMacro('\coolurion',sub {AssignValue('cooluri'=>1);});
DefMacro('\coolurioff',sub {AssignValue('cooluri'=>0);});
%</ltxml>
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\importmodule}
% The |\importmodule[|\meta{file}|]{|\meta{mod}|}| macro is an interface macro that
% loads \meta{file} and activates and re-exports the |\symdef|s from module
% \meta{mod}. It also remembers the file name in |\mod@path|.
% \begin{macrocode}
%<*package>
\newcommand{\importmodule}[2][]{{\def\mod@path{#1}%
\ifx\mod@path\@empty\else\requiremodules{#1}\fi}%
\activate@defs{#2}\export@defs{#2}}
%</package>
%<*ltxml>
sub omext {
my ($mod)=@_; my $dest='';
$mod = ToString($mod);
if ($mod) {
#We need a constellation of abs_path invocations
# to make sure that all symbolic links get resolved
if ($mod=~/^(\w)+:\/\//) { $dest=$mod; } else {
my ($d,$f,$t) = pathname_split(abs_path($mod));
$d = pathname_relative(abs_path($d),abs_path(cwd()));
$dest=$d."/".$f;
}
}
$dest.=".omdoc" if (ToString($mod) && !LookupValue('cooluri'));
return Tokenize($dest);}
sub importmoduleI {
my($stomach,$whatsit)=@_;
my $file = ToString($whatsit->getArg(1));
my $omdocmod = $file.".omdoc" if $file;
my $module = ToString($whatsit->getArg(2));
my $containing_module = LookupValue('current_module');
AssignValue('last_import_module',$module);
#set the relation between the current module and the one to be imported
PushValue("module_".$containing_module."_uses"=>$module) if $containing_module;
#check if we've already loaded this module file or no file path given
if((!$file) || (LookupValue('file_'.$module.'_loaded'))) {use_module($module);} #if so activate it!
else {
#if not:
my $gullet = $stomach->getGullet;
#1) mark as loaded
AssignValue('file_'.$module.'_loaded' => 1, 'global');
#open a group for its definitions so that they are localized
$stomach->bgroup;
#update the last module path
AssignValue('last_module_path', $file);
#queue the closing tag for this module in the gullet where it will be executed
#after all other definitions of the imported module have been taken care of
$gullet->unread(Invocation(T_CS('\end@requiredmodule'), Tokens(Explode($module)))->unlist);
#we only need to load the sms definitions without generating any xml output, so we set the flag to 1
AssignValue('excluding_modules' => 1);
#queue this module's sms file in the gullet so that its definitions are imported
$gullet->input($file,['sms']);
}
return;}
DefConstructor('\importmodule OptionalSemiverbatim {}',
"<omdoc:imports from='?#1(&omext(#1))\##2'/>",
afterDigest=>sub{ importmoduleI(@_)});
%</ltxml>
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\importmodulevia}
% The |importmodulevia| environment just calls |\importmodule|, but to get around the
% group, we first define a local macro |\@@doit|, which does that and can be called with
% an |\aftergroup| to escape the environment groupling introduced by
% |importmodulevia|. For {\latexml}, we have to\ednote{MK@DG: needs implementation}
% \begin{macrocode}
%<*package>
\newenvironment{importmodulevia}[2][]{\gdef\@@doit{\importmodule[#1]{#2}}%
\ifmod@show\par\noindent importing module #2 via \@@doit\fi}
{\aftergroup\@@doit\ifmod@show end import\fi}
%</package>
%<*ltxml>
DefMacro('\importmodulevia OptionalSemiverbatim {}','\endgroup\importmoduleI[#1]{#2}\begin{importmoduleenv}[#1]{#2}');
DefMacroI('\end{importmodulevia}',undef,'\end{importmoduleenv}');
DefEnvironment('{importmoduleenv} OptionalSemiverbatim {}',
"<omdoc:imports from='?#1(&omext(#1))\##2'>"
. "<omdoc:morphism>#body</omdoc:morphism>"
."</omdoc:imports>");
DefConstructor('\importmoduleI OptionalSemiverbatim {}', '',
afterDigest=>sub{ importmoduleI(@_)});
%</ltxml>
% \end{macrocode}
% \end{macro}
%
% \begin{environment}{vassign}
% \begin{macrocode}
%<*package>
\newcommand\vassign[2]{\ifmod@show\ensuremath{#1\mapsto #2}, \fi}
%</package>
%<*ltxml>
DefConstructor('\vassign{}{}',
"<omdoc:requation>"
. "<ltx:Math><ltx:XMath>#1</ltx:XMath></ltx:Math>"
. "<ltx:Math><ltx:XMath>#2</ltx:XMath></ltx:Math>"
."</omdoc:requation>");
%</ltxml>
% \end{macrocode}
% \end{environment}
%
% \begin{environment}{tassign}
% \begin{macrocode}
%<*package>
\newcommand\tassign[3][]{\ifmod@show #2\ensuremath{\mapsto} #3, \fi}
%</package>
%<*ltxml>
DefConstructor('\tassign[]{}{}',
"<omdoc:requation>"
. "<om:OMOBJ><om:OMS cd='?#1(#1)(#lastImportModule)' name='#2'/></om:OMOBJ>"
. "<om:OMOBJ><om:OMS cd='#currentModule' name='#3'/></om:OMOBJ>"
."</omdoc:requation>",
afterDigest=> sub {
my ($stomach,$whatsit) = @_;
$whatsit->setProperty('currentModule',LookupValue("current_module"));
$whatsit->setProperty('lastImportModule',LookupValue("last_import_module"));
});
%</ltxml>
% \end{macrocode}
% \end{environment}
%
% \begin{environment}{ttassign}
% \begin{macrocode}
%<*package>
\newcommand\ttassign[3][]{\ifmod@show #1\ensuremath{\mapsto} ``#2'', \fi}
%</package>
%<*ltxml>
DefConstructor('\ttassign{}{}',
"<omdoc:requation>"
. "<ltx:Math><ltx:XMath>#1</ltx:XMath></ltx:Math>"
. "<ltx:Math><ltx:XMath>#2</ltx:XMath></ltx:Math>"
."</omdoc:requation>");
%</ltxml>
% \end{macrocode}
% \end{environment}
%
% \begin{macro}{\importOMDocmodule}
% for the {\LaTeX} side we can just re-use |\importmodule|, for the {\latexml} side we
% have a full URI anyways. So things are easy.
% \begin{macrocode}
%<*package>
\newcommand{\importOMDocmodule}[3][]{\importmodule[#1]{#3}}
%</package>
%<*ltxml>
DefConstructor('\importOMDocmodule OptionalSemiverbatim {}{}',"<omdoc:imports from='#3\##2'/>",
afterDigest=>sub{
#Same as \importmodule, just switch second and third argument.
my ($stomach,$whatsit) = @_;
my $path = $whatsit->getArg(1);
my $ouri = $whatsit->getArg(2);
my $module = $whatsit->getArg(3);
$whatsit->setArgs(($path, $module,$ouri));
importmoduleI($stomach,$whatsit);
return;
});
%</ltxml>
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\metalanguage}
% |\metalanguage| behaves exactly like |\importmodule| for formatting. For {\latexml},
% we only add the |type| attribute.
% \begin{macrocode}
%<*package>
\let\metalanguage=\importmodule
%</package>
%<*ltxml>
DefConstructor('\metalanguage OptionalSemiverbatim {}',
"<omdoc:imports type='metalanguage' from='?#1(&omext(#1))\##2'/>",
afterDigest=>sub{ importmoduleI(@_)});
%</ltxml>
% \end{macrocode}
% \end{macro}
%
% \subsection{Semantic Macros}\label{sec:impl:symdef}
%
% \begin{macro}{\mod@newcommand}
% We first hack the {\LaTeX} kernel macros to obtain a version of the |\newcommand|
% macro that does not check for definedness. This is just a copy of the code from
% |latex.ltx| where I have removed the |\@ifdefinable| check.\footnote{Someone must have
% done this before, I would be very happy to hear about a package that provides this.}
% \begin{macrocode}
%<*package>
\def\mod@newcommand{\@star@or@long\mod@new@command}
\def\mod@new@command#1{\@testopt{\@mod@newcommand#1}0}
\def\@mod@newcommand#1[#2]{\kernel@ifnextchar [{\mod@xargdef#1[#2]}{\mod@argdef#1[#2]}}
\long\def\mod@argdef#1[#2]#3{\@yargdef#1\@ne{#2}{#3}}
\long\def\mod@xargdef#1[#2][#3]#4{\expandafter\def\expandafter#1\expandafter{%
\expandafter\@protected@testopt\expandafter #1\csname\string#1\endcsname{#3}}%
\expandafter\@yargdef\csname\string#1\endcsname\tw@{#2}{#4}}
%</package>
% \end{macrocode}
% \end{macro}
%
% Now we define the optional KeyVal arguments for the |\symdef| form and the actions that
% are taken when they are encountered.
%
% \begin{macro}{symdef:keys}
% The optional argument local specifies the scope of the function to be defined. If
% local is not present as an optional argument then |\symdef| assumes the scope of the
% function is global and it will include it in the pool of macros of the current
% module. Otherwise, if local is present then the function will be defined only locally
% and it will not be added to the current module (i.e. we cannot inherit a local
% function). Note, the optional key local does not need a value: we write
% |\symdef[local]{somefunction}[0]{some expansion}|. The other keys are not used in the
% {\LaTeX} part.
% \begin{macrocode}
%<*package>
\newif\if@symdeflocal
\define@key{symdef}{local}[true]{\@symdeflocaltrue}
\define@key{symdef}{name}{}
\define@key{symdef}{assocarg}{}
\define@key{symdef}{bvars}{}
\define@key{symdef}{bvar}{}
\define@key{symdef}{bindargs}{}
%</package>
% \end{macrocode}
% \end{macro}
% \ednote{MK@MK: we need to document the binder keys above.}
% \begin{macro}{\symdef}
% The the |\symdef|, and |\@symdef| macros just handle optional arguments.
% \begin{macrocode}
%<*package>
\def\symdef{\@ifnextchar[{\@symdef}{\@symdef[]}}
\def\@symdef[#1]#2{\@ifnextchar[{\@@symdef[#1]{#2}}{\@@symdef[#1]{#2}[0]}}
% \end{macrocode}
% next we locally abbreviate |\mod@newcommand| to simplify argument passing.
% \begin{macrocode}
\def\@mod@nc#1{\mod@newcommand{#1}[1]}
% \end{macrocode}
% now comes the real meat: the |\@@symdef| macro does two things, it adds the macro
% definition to the macro definition pool of the current module and also provides it.
% \begin{macrocode}
\def\@@symdef[#1]#2[#3]#4{%
% \end{macrocode}
% We use a switch to keep track of the local optional argument. We initialize the switch
% to false and set all the keys that have been provided as arguments: |name|, |local|.
% \begin{macrocode}
\@symdeflocalfalse\setkeys{symdef}{#1}%
% \end{macrocode}
% First, using |\mod@newcommand| we initialize the intermediate macro
% |\module@|\meta{sym}|@pres@|, the one that can be extended with |\symvariant|
% \begin{macrocode}
\expandafter\mod@newcommand\csname modules@#2@pres@\endcsname[#3]{#4}%
% \end{macrocode}
% and then we define the actual semantic macro. Note that this can take an optional
% argument, for which we provide with |\@ifnextchar| and an internal macro |\@|\meta{sym},
% which when invoked with an optional argument \meta{opt} calls
% |\modules@|\meta{sym}|@pres@|\meta{opt}.
% \begin{macrocode}
\expandafter\def\csname #2\endcsname%
{\@ifnextchar[{\csname modules@#2\endcsname}{\csname modules@#2\endcsname[]}}%
\expandafter\def\csname modules@#2\endcsname[##1]%
{\csname modules@#2@pres@##1\endcsname}%
% \end{macrocode}
% Finally, we prepare the internal macro to be used in the |\symref| call.
% \begin{macrocode}
\expandafter\@mod@nc\csname mod@symref@#2\expandafter\endcsname\expandafter%
{\expandafter\mod@termref\expandafter{\mod@id}{#2}{##1}}%
% \end{macrocode}
% We check if the switch for the local scope is set: if it is we are done, since this
% function has a local scope. Similarly, if we are not inside a module, which we could
% export from.
% \begin{macrocode}
\if@symdeflocal\else%
\@ifundefined{mod@id}{}{%
% \end{macrocode}
% Otherwise, we add three functions to the module's pool of defined macros using
% |\g@addto@macro|. We first add the definition of the intermediate function
% |\modules@|\meta{sym}|@pres@|.
% \begin{macrocode}
\expandafter\g@addto@macro\this@module%
{\expandafter\mod@newcommand\csname modules@#2@pres@\endcsname[#3]{#4}}%
% \end{macrocode}
% Then we add add the definition of |\|\meta{sym} in terms of the function |\@|\meta{sym}
% to handle the optional argument.
% \begin{macrocode}
\expandafter\g@addto@macro\this@module%
{\expandafter\def\csname#2\endcsname%
{\@ifnextchar[{\csname modules@#2\endcsname}{\csname modules@#2\endcsname[]}}}%
% \end{macrocode}
% Finally, we add add the definition of |\@|\meta{sym}, which calls the intermediate
% function.
% \begin{macrocode}
\expandafter\g@addto@macro\this@module%
{\expandafter\def\csname modules@#2\endcsname[##1]%
{\csname modules@#2@pres@##1\endcsname}}%
% \end{macrocode}
% We also add |\mod@symref@|\meta{sym} macro to the macro pool so that the |\symref| macro
% can pick it up.
% \begin{macrocode}
\expandafter\g@addto@macro\csname module@defs@\mod@id\expandafter\endcsname\expandafter%
{\expandafter\@mod@nc\csname mod@symref@#2\expandafter\endcsname\expandafter%
{\expandafter\mod@termref\expandafter{\mod@id}{#2}{##1}}}%
% \end{macrocode}
% Finally, using |\g@addto@macro| we add the two functions to the qualified version of the
% module if the |qualifiedimports| option was set.
% \begin{macrocode}
\ifmod@qualified%
\expandafter\g@addto@macro\this@qualified@module%
{\expandafter\mod@newcommand\csname modules@#2@pres@qualified\endcsname[#3]{#4}}%
\expandafter\g@addto@macro\this@qualified@module%
{\expandafter\def\csname#2atqualified\endcsname{\csname modules@#2@pres@qualified\endcsname}}%
\fi%
% \end{macrocode}
% So now we only need to close all brackets and the macro is done.
% \begin{macrocode}
}\fi}
%</package>
% \end{macrocode}
% In the {\latexml} bindings, we have a top-level macro that delegates the work to two
% internal macros: |\@symdef|, which defines the content macro and |\@symdef@pres|, which
% generates the {\omdoc} |symbol| and |presentation| elements (see
% Section~\ref{sec:impl:presentation}).
% \begin{macrocode}
%<*package>
\define@key{DefMathOp}{name}{\def\defmathop@name{#1}}
\newcommand\DefMathOp[2][]{%
\setkeys{DefMathOp}{#1}%
\symdef[#1]{\defmathop@name}{#2}}
%</package>
%<*ltxml>
DefMacro('\DefMathOp OptionalKeyVals:symdef {}',
sub {
my($self,$keyval,$pres)=@_;
my $name = KeyVal($keyval,'name') if $keyval;
#Rewrite this token
my $scopes = $STATE->getActiveScopes;
DefMathRewrite(xpath=>'descendant-or-self::ltx:XMath',match=>ToString($pres),
replace=>sub{
map {$STATE->activateScope($_);} @$scopes;
$_[0]->absorb(Digest("\\".ToString($name)));
});
#Invoke symdef
(Invocation(T_CS('\symdef'),$keyval,$name,undef,$pres)->unlist);
});
DefMacro('\symdef OptionalKeyVals:symdef {}[]{}',
sub {
my($self,@args)=@_;
((Invocation(T_CS('\@symdef'),@args)->unlist),
(LookupValue('excluding_modules') ? ()
: (Invocation(T_CS('\@symdef@pres'), @args)->unlist))); });
#Current list of recognized formatter command sequences:
our @PresFormatters = qw (infix prefix postfix assoc mixfixi mixfixa mixfixii mixfixia mixfixai mixfixaii mixfixiii);
DefPrimitive('\@symdef OptionalKeyVals:symdef {}[]{}', sub {
my($stomach,$keys,$cs,$nargs,$presentation)=@_;
my($name,$cd,$role,$bvars,$bvar)=$keys
&& map($_ && $_->toString,map($keys->getValue($_), qw(name cd role
bvars bvar)));
$cd = LookupValue('module_cd') unless $cd;
$name = $cs unless $name;
#Store for later lookup
AssignValue("symdef.".ToString($cs).".cd"=>ToString($cd),'global');
AssignValue("symdef.".ToString($cs).".name"=>ToString($name),'global');
$nargs = (ref $nargs ? $nargs->toString : $nargs || 0);
my $module = LookupValue('current_module');
my $scope = (($keys && ($keys->getValue('local') || '' eq 'true')) ? 'module_local' : 'module').":".$module;
#The DefConstructorI Factory is responsible for creating the \symbol command sequences as dictated by the \symdef
DefConstructorI("\\".$cs->toString,convertLaTeXArgs($nargs+1,'default'), sub {
my ($document,@args) = @_;
my $icvariant = shift @args;
my @props = @args;
#Lookup the presentation from the State, if a variant:
@args = splice(@props,0,$nargs);
my %prs = @props;
my $localpres = $prs{presentation};
$prs{isbound} = "BINDER" if ($bvars || $bvar);
my $wrapped;
my $parent=$document->getNode;
if(! defined $parent->lookupNamespacePrefix("http://omdoc.org/ns")){ # namespace not already declared?
$document->getDocument->documentElement->setNamespace("http://omdoc.org/ns","omdoc",0); }
my $symdef_scope=$parent->exists('ancestor::omdoc:rendering'); #Are we in a \symdef rendering?
if (($localpres =~/^LaTeXML::Token/) && $symdef_scope) {
#Note: We should probably ask Bruce whether this maneuver makes sense
# We jump back to digestion, at a processing stage where it has been already completed
# Hence need to reinitialize all scopes and make a new group. This is probably expensive to do.
my @toks = $localpres->unlist;
while(@toks && $toks[0]->equals(T_SPACE)){ shift(@toks); } # Remove leading space
my $formatters = join("|",@PresFormatters);
$formatters = qr/$formatters/;
$wrapped = (@toks && ($toks[0]->toString =~ /^\\($formatters)$/));
$localpres = Invocation(T_CS('\@use'),$localpres) unless $wrapped;
# Plug in the provided arguments, doing a nasty reversion:
my @sargs = map (Tokens($_->revert), @args);
$localpres = Tokens(LaTeXML::Expandable::substituteTokens($localpres,@sargs)) if $nargs>0;
#Digest:
my $stomach = $STATE->getStomach;
$stomach->beginMode('inline-math');
$STATE->activateScope($scope);
use_module($module);
use_module(LookupValue("parent_of_".$module)) if LookupValue("parent_of_".$module);
$localpres=$stomach->digest($localpres);
$stomach->endMode('inline-math');
}
else { #Some are already digested to Whatsit, usually when dropped from a wrapping constructor
}
if ($nargs == 0) {
if (!$symdef_scope) { #Simple case - discourse flow, only a single XMTok
#Referencing XMTok when not in \symdefs:
$document->insertElement('ltx:XMTok',undef,(name=>$cs->toString, meaning=>$name,omcd=>$cd,role => $role,scriptpos=>$prs{'scriptpos'}));
}
else {
if ($symdef_scope && ($localpres =~/^LaTeXML::Whatsit/) && (!$wrapped)) {#1. Simple case: converts to a single token
$localpres->setProperties((name=>$cs->toString, meaning=>$name,omcd=>$cd,role => $role,scriptpos=>$prs{'scriptpos'}));
}
else {
#Experimental treatment - COMPLEXTOKEN
#$role=$role||'COMPLEXTOKEN';
#$document->openElement('ltx:XMApp',role=>'COMPLEXTOKEN');
#$document->insertElement('ltx:XMTok',undef,(name=>$cs->toString, meaning=>$name, omcd=>$cd, role=>$role, scriptpos=>$prs{'scriptpos'}));
#$document->openElement('ltx:XMWrap');
#$document->absorb($localpres);
#$document->closeElement('ltx:XMWrap');
#$document->closeElement('ltx:XMApp');
}
#We need expanded presentation when invoked in \symdef scope:
#Suppress errors from rendering attributes when absorbing.
#This is bad style, but we have no way around it due to the digestion acrobatics.
my $verbosity = $LaTeXML::Global::STATE->lookupValue('VERBOSITY');
my $errors = $LaTeXML::Global::STATE->getStatus('error');
$LaTeXML::Global::STATE->assignValue('VERBOSITY',-5);
#Absorb presentation:
$document->absorb($localpres);
#Return to original verbosity and error state:
$LaTeXML::Global::STATE->assignValue('VERBOSITY',$verbosity);
$LaTeXML::Global::STATE->setStatus('error',$errors);
#Strip all/any <rendering><Math><XMath> wrappers:
#TODO: Ugly LibXML work, possibly do something smarter
my $parent = $document->getNode;
my @renderings=$parent->findnodes(".//omdoc:rendering");
foreach my $render(@renderings) {
my $content=$render;
while ($content && $content->localname =~/^rendering|[X]?Math/) {
$content = $content->firstChild;
}
my $sibling = $content->parentNode->lastChild;
my $localp = $render->parentNode;
while ((defined $sibling) && (!$sibling->isSameNode($content))) {
my $clone = $sibling->cloneNode(1);
$localp->insertAfter($clone,$render);
$sibling = $sibling->previousSibling;
}
$render->replaceNode($content);
}
}
}
else {#2. Constructors with arguments
if (!$symdef_scope) { #2.1 Simple case, outside of \symdef declarations:
#Referencing XMTok when not in \symdefs:
my %ic = ($icvariant ne 'default') ? (ic=>'variant:'.$icvariant) : ();
$document->openElement('ltx:XMApp',%ic,scriptpos=>$prs{'scriptpos'},role=>$prs{'isbound'});
$document->insertElement('ltx:XMTok',undef,(name=>$cs->toString, meaning=>$name, omcd=>$cd, role=>$role, scriptpos=>$prs{'operator_scriptpos'}));
foreach my $carg (@args) {
if ($carg =~/^LaTeXML::Token/) {
my $stomach = $STATE->getStomach;
$stomach->beginMode('inline-math');
$carg=$stomach->digest($carg);
$stomach->endMode('inline-math');
}
$document->openElement('ltx:XMArg');
$document->absorb($carg);
$document->closeElement('ltx:XMArg');
}
$document->closeElement('ltx:XMApp');
}
else { #2.2 Complex case, inside a \symdef declaration
#We need expanded presentation when invoked in \symdef scope:
#Suppress errors from rendering attributes when absorbing.
#This is bad style, but we have no way around it due to the digestion acrobatics.
my $verbosity = $LaTeXML::Global::STATE->lookupValue('VERBOSITY');
my $errors = $LaTeXML::Global::STATE->getStatus('error');
$LaTeXML::Global::STATE->assignValue('VERBOSITY',-5);
#Absorb presentation:
$document->absorb($localpres);
#Return to original verbosity and error state:
$LaTeXML::Global::STATE->assignValue('VERBOSITY',$verbosity);
$LaTeXML::Global::STATE->setStatus('error',$errors);
#Strip all/any <rendering><Math><XMath> wrappers:
#TODO: Ugly LibXML work, possibly do something smarter?
my $parent = $document->getNode;
if(! defined $parent->lookupNamespacePrefix("http://omdoc.org/ns")){ # namespace not already declared?
$document->getDocument->documentElement->setNamespace("http://omdoc.org/ns","omdoc",0); }
my @renderings=$parent->findnodes(".//omdoc:rendering");
foreach my $render(@renderings) {
my $content=$render;
while ($content && $content->localname =~/^rendering|[X]?Math/) {
$content = $content->firstChild;
}
my $sibling = $content->parentNode->lastChild;
my $localp = $render->parentNode;
while ((defined $sibling) && (!$sibling->isSameNode($content))) {
my $clone = $sibling->cloneNode(1);
$localp->insertAfter($clone,$render);
$sibling = $sibling->previousSibling;
}
$render->replaceNode($content);
}
}
}},
properties => {name=>$cs->toString, meaning=>$name,omcd=>$cd,role => $role},
scope=>$scope,
beforeDigest => sub{
my ($gullet, $variant) = @_;
my $icvariant = ToString($variant);
my $localpres = $presentation;
if ($icvariant && $icvariant ne 'default') {
$localpres = LookupValue($cs->toString."$icvariant:pres");
if (!$localpres) {
Error("No variant named '$icvariant' found! Falling back to ".
"default.\n Please consider introducing \\symvariant{".
$cs->toString."}[$nargs]{$icvariant}{... your presentation ...}");
$localpres = $presentation;
}
}
my $count = LookupValue(ToString($cs).'_counter') || 0;
AssignValue(ToString($cs).":pres:$count",$localpres);
AssignValue(ToString($cs).'_counter',$count+1);
return;
},
afterDigest => sub{
my ($stomach,$whatsit) = @_;
my $count = LookupValue(ToString($cs).'_aftercounter') || 0;
$whatsit->setProperty('presentation',LookupValue(ToString($cs).":pres:$count"));
AssignValue(ToString($cs).'_aftercounter',$count+1);
});
return; });
%</ltxml>%$
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\symvariant}
% |\symvariant{|\meta{sym}|}[|\meta{args}|]{|\meta{var}|}{|\meta{cseq}|}| just extends
% the internal macro |\modules@|\meta{sym}|@pres@| defined by
% |\symdef{|\meta{sym}|}[|\meta{args}|]{|\ldots|}| with a variant
% |\modules@|\meta{sym}|@pres@|\meta{var} which expands to \meta{cseq}. Recall that this
% is called by the macro |\|\meta{sym}|[|\meta{var}|]| induced by the
% |\symdef|.\ednote{MK@DG: this needs to
% be implemented in LaTeXML}
% \begin{macrocode}
%<*package>
\def\symvariant#1{\@ifnextchar[{\@symvariant{#1}}{\@symvariant{#1}[0]}}
\def\@symvariant#1[#2]#3#4{%
\expandafter\mod@newcommand\csname modules@#1@pres@#3\endcsname[#2]{#4}%
% \end{macrocode}
% and if we are in a named module, then we need to export the function
% |\modules@|\meta{sym}|@pres@|\meta{opt} just as we have done that in |\symdef|.
% \begin{macrocode}
\@ifundefined{mod@id}{}{%
\expandafter\g@addto@macro\this@module%
{\expandafter\mod@newcommand\csname modules@#1@pres@#3\endcsname[#2]{#4}}}}%
%</package>
%<*ltxml>
DefMacro('\symvariant{}[]{}{}', sub {
my($self,@args)=@_;
my $prestok = Invocation(T_CS('\@symvariant@pres'), @args);
pop @args; push @args, $prestok;
Invocation(T_CS('\@symvariant@construct'),@args)->unlist;
});
DefMacro('\@symvariant@pres{}[]{}{}', sub {
my($self,$cs,$nargs,$ic,$presentation)=@_;
symdef_presentation_pmml($cs,ToString($nargs)||0,$presentation);
});
DefConstructor('\@symvariant@construct{}[]{}{}', sub {
my($document,$cs,$nargs,$icvariant,$presentation)=@_;
$cs = ToString($cs);
$nargs = ToString($nargs);
$icvariant = ToString($icvariant);
# Save presentation for future reference:
#Notation created by \symdef
#Create the rendering at the right place:
my $cnode = $document->getNode;
my $root = $document->getDocument->documentElement;
my $name = LookupValue("symdef.".ToString($cs).".name") || $cs;
# Fix namespace (the LibXML XPath problems...)
$root->setNamespace("http://omdoc.org/ns","omdoc",0);
my ($notation) = $root->findnodes(".//omdoc:notation[\@name='$name' and ".
"preceding-sibling::omdoc:symbol[1]/\@name
= '$name']");
if (!$notation) {
#No symdef found, raise error:
Error("No \\symdef found for \\$cs! Please define symbol prior to introducing variants!");
return;
}
$document->setNode($notation);
$document->absorb($presentation);
$notation->lastChild->setAttribute("ic","variant:$icvariant");
$document->setNode($cnode);
return;
},
beforeDigest => sub {
my($gullet,$cs,$nargs,$icvariant,$presentation)=@_;
$cs = ToString($cs);
$icvariant = ToString($icvariant);
AssignValue("$cs:$icvariant:pres",Digest($presentation),'module:'.LookupValue('current_module'));
});
#mode=>'math'
%</ltxml>
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\resymdef}
% This is now deprecated.
% \begin{macrocode}
%<*package>
\def\resymdef{\@ifnextchar[{\@resymdef}{\@resymdef[]}}
\def\@resymdef[#1]#2{\@ifnextchar[{\@@resymdef[#1]{#2}}{\@@resymdef[#1]{#2}[0]}}
\def\@@resymdef[#1]#2[#3]#4{\PackageError{modules}
{The \protect\resymdef macro is deprecated,\MessageBreak
use the \protect\symvariant instead!}}
%</package>
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\abbrdef}
% The |\abbrdef| macro is a variant of |\symdef| that does the same on the {\LaTeX}
% level.
% \begin{macrocode}
%<*package>
\let\abbrdef\symdef
%</package>
%<*ltxml>
DefPrimitive('\abbrdef OptionalKeyVals:symdef {}[]{}', sub {
my($stomach,$keys,$cs,$nargs,$presentation)=@_;
my $module = LookupValue('current_module');
my $scope = (($keys && ($keys->getValue('local') || '' eq 'true')) ? 'module_local' : 'module').":$module";
DefMacroI("\\".$cs->toString,convertLaTeXArgs($nargs,''),$presentation,
scope=>$scope);
return; });
%</ltxml>
% \end{macrocode}
% \end{macro}
%
% \subsection{Symbol and Concept Names}\label{sec:impl:concepts}
%
% \begin{macro}{\mod@path}
% the |\mod@path| macro is used to remember the local path, so that the |module|
% environment can set it for later cross-referencing of the modules. If |\mod@path| is
% empty, then it signifies the local file.
% \begin{macrocode}
%<*package>
\def\mod@path{}
%</package>
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\termdef}
% \begin{macrocode}
%<*package>
\def\mod@true{true}
\addmetakey[false]{termdef}{local}
\addmetakey{termdef}{name}
\newcommand{\termdef}[3][]{\metasetkeys{termdef}{#1}%
\expandafter\mod@newcommand\csname#2\endcsname[0]{#3\xspace}%
\ifx\termdef@local\mod@true\else%
\@ifundefined{mod@id}{}{\expandafter\g@addto@macro\this@module%
{\expandafter\mod@newcommand\csname#2\endcsname[0]{#3\xspace}}}%
\fi}
%</package>
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\capitalize}
% \begin{macrocode}
%<*package>
\def\@captitalize#1{\uppercase{#1}}
\newcommand\capitalize[1]{\expandafter\@captitalize #1}
%</package>
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\mod@termref}
% |\mod@termref{|\meta{module}|}{|\meta{name}|}{|\meta{nl}|}| determines whether the
% macro |\|\meta{module}|@cd@file@base| is defined. If it is, we make it the prefix of a
% URI reference in the local macro |\@uri|, which we compose to the hyper-reference,
% otherwise we give a warning.
% \begin{macrocode}
%<*package>
\def\mod@termref#1#2#3{\def\@test{#3}
\@ifundefined{#1@cd@file@base}
{\protect\G@refundefinedtrue
\@latex@warning{\protect\termref with unidentified cd "#1": the cd key must
reference an active module}
\def\@label{sref@#2 @target}}
{\def\@label{sref@#2@#1@target}}%
\expandafter\ifx\csname #1@cd@file@base\endcsname\@empty% local reference
\sref@hlink@ifh{\@label}{\ifx\@test\@empty #2\else #3\fi}\else%
\def\@uri{\csname #1@cd@file@base\endcsname.pdf\#\@label}%
\sref@href@ifh{\@uri}{\ifx\@test\@empty #2\else #3\fi}\fi}
%</package>
% \end{macrocode}
% \end{macro}
%
% \subsection{Dealing with Multiple Files}\label{sec:impl:multiple}
%
% Before we can come to the functionality we want to offer, we need some auxiliary
% functions that deal with path names.
%
% \subsubsection{Simplifying Path Names}
%
% The |\mod@simplify| macro is used for simplifying
% path names by removing \meta{xxx}|/..| from a string. eg:
% \meta{aaa}|/|\meta{bbb}|/../|\meta{ddd} goes to \meta{aaa}|/|\meta{ddd} unless
% \meta{bbb} is |..|. This is used to normalize relative path names below.
%
% \begin{macro}{\mod@simplify}
% The macro |\mod@simplify| recursively runs over the path collecting the result in the
% internal |\mod@savedprefix| macro.
% \begin{macrocode}
%<*package>
\def\mod@simplify#1{\expandafter\mod@simpl#1/\relax}
% \end{macrocode}
% It is based on the |\mod@simpl| macro\ednote{what does the mod@blaaa do?}
% \begin{macrocode}
\def\mod@simpl#1/#2\relax{\def\@second{#2}%
\ifx\mod@blaaaa\@empty\edef\mod@savedprefix{}\def\mod@blaaaa{aaa}\else\fi%
\ifx\@second\@empty\edef\mod@savedprefix{\mod@savedprefix#1}%
\else\mod@simplhelp#1/#2\relax\fi}
% \end{macrocode}
% which in turn is based on a helper macro
% \begin{macrocode}
\def\mod@updir{..}
\def\mod@simplhelp#1/#2/#3\relax{\def\@first{#1}\def\@second{#2}\def\@third{#3}%
%\message{mod@simplhelp: first=\@first, second=\@second, third=\@third, result=\mod@savedprefix.}
\ifx\@third\@empty% base case
\ifx\@second\mod@updir\else%
\ifx\mod@second\@empty\edef\mod@savedprefix{\mod@savedprefix#1}%
\else\edef\mod@savedprefix{\mod@savedprefix#1/#2}%
\fi%
\fi%
\else%
\ifx\@first\mod@updir%
\edef\mod@savedprefix{\mod@savedprefix#1/}\mod@simplhelp#2/#3\relax%
\else%
\ifx\@second\mod@updir\mod@simpl#3\relax%
\else\edef\mod@savedprefix{\mod@savedprefix#1/}\mod@simplhelp#2/#3\relax%
\fi%
\fi%
\fi}%
%</package>
% \end{macrocode}
% \end{macro}
%
% We directly test the simplification: \makeatletter
% \def\mod@simpl@test#1{\def\mod@savedprefix{}\mod@simplify{#1}\mod@savedprefix}
% \begin{center}
% \begin{tabular}{|l|l|l|}\hline
% source & result & should be \\\hline\hline
% ../../aaa & \mod@simpl@test{../../aaa} & ../../aaa\\\hline
% aaa/bbb & \mod@simpl@test{aaa/bbb} & aaa/bbb\\\hline
% aaa/.. & \mod@simpl@test{aaa/..} & \\\hline
% ../../aaa/bbb & \mod@simpl@test{../../aaa/bbb} & ../../aaa/bbb\\\hline
% ../aaa/../bbb & \mod@simpl@test{../aaa/../bbb} & ../bbb\\\hline
% ../aaa/bbb & \mod@simpl@test{../aaa/bbb} & ../aaa/bbb\\\hline
% aaa/bbb/../ddd & \mod@simpl@test{aaa/bbb/../ddd} & aaa/ddd\\\hline
% \end{tabular}
% \end{center}
% \makeatother
%
% \begin{macro}{\defpath}
% \begin{macrocode}
%<*package>
\newcommand{\defpath}[2]{\expandafter\newcommand\csname #1\endcsname[1]{#2/##1}}
%</package>
%<*ltxml>
DefMacro('\defpath{}{}', sub {
my ($gullet,$arg1,$arg2)=@_;
$arg1 = ToString($arg1);
$arg2 = ToString($arg2);
my $paths = LookupValue('defpath')||{};
$$paths{"$arg1"}=$arg2;
AssignValue('defpath'=>$paths,'global');
DefMacro('\\'.$arg1.' Semiverbatim',$arg2."/#1");
});#$
%</ltxml>
% \end{macrocode}
% \end{macro}
%
% \subsection{Loading Module Signatures}
%
% We will need a switch\ednote{explain why?}
% \begin{macrocode}
%<*package>
\newif\ifmodules
% \end{macrocode}
% and a ``registry'' macro whose expansion represents the list of added macros (or files)
% \begin{macro}{\mod@reg}
% We initialize the |\mod@reg| macro with the empty string.
% \begin{macrocode}
\gdef\mod@reg{}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\mod@update}
% This macro provides special append functionality. It takes a string and appends it
% to the expansion of the |\mod@reg| macro in the following way: |string@\mod@reg|.
% \begin{macrocode}
\def\mod@update#1{\ifx\mod@reg\@empty\xdef\mod@reg{#1}\else\xdef\mod@reg{#1@\mod@reg}\fi}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\mod@check}
% The |\mod@check| takes as input a file path (arg 3), and searches the registry. If the
% file path is not in the registry it means it means it has not been already added, so
% we make |\ifmodules| true, otherwise make |\ifmodules| false. The macro |\mod@search|
% will look at |\ifmodules| and update the registry for |\modulestrue| or do nothing for
% |\modulesfalse|.
% \begin{macrocode}
\def\mod@check#1@#2///#3\relax{%
\def\mod@one{#1}\def\mod@two{#2}\def\mod@three{#3}%
% \end{macrocode}
% Define a few intermediate macros so that we can split the registry into separate file
% paths and compare to the new one
% \begin{macrocode}
\expandafter%
\ifx\mod@three\mod@one\modulestrue%
\else%
\ifx\mod@two\@empty\modulesfalse\else\mod@check#2///#3\relax\fi%
\fi}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\mod@search}
% Macro for updating the registry after the execution of |\mod@check|
% \begin{macrocode}
\def\mod@search#1{%
% \end{macrocode}
% We put the registry as the first argument for |\mod@check| and the other
% argument is the new file path.
% \begin{macrocode}
\modulesfalse\expandafter\mod@check\mod@reg @///#1\relax%
% \end{macrocode}
% We run |\mod@check| with these arguments and the check |\ifmodules| for
% the result
% \begin{macrocode}
\ifmodules\else\mod@update{#1}\fi}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\mod@reguse}
% The macro operates almost as the |mod@search| function, but it does not update the
% registry. Its purpose is to check whether some file is or not inside the registry but
% without updating it. Will be used before deciding on a new sms file
% \begin{macrocode}
\def\mod@reguse#1{\modulesfalse\expandafter\mod@check\mod@reg @///#1\relax}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\mod@prefix}
% This is a local macro for storing the path prefix, we initialize it as the empty
% string.
% \begin{macrocode}
\def\mod@prefix{}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\mod@updatedpre}
% This macro updates the path prefix |\mod@prefix| with the last word in the path given
% in its argument.
% \begin{macrocode}
\def\mod@updatedpre#1{%
\edef\mod@prefix{\mod@prefix\mod@pathprefix@check#1/\relax}}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\mod@pathprefix@check}
% |\mod@pathprefix@check| returns the last word in a string composed of words separated
% by slashes
% \begin{macrocode}
\def\mod@pathprefix@check#1/#2\relax{%
\ifx\\#2\\% no slash in string
\else\mod@ReturnAfterFi{#1/\mod@pathprefix@help#2\relax}%
\fi}
% \end{macrocode}
% It needs two helper macros:
% \begin{macrocode}
\def\mod@pathprefix@help#1/#2\relax{%
\ifx\\#2\\% end of recursion
\else\mod@ReturnAfterFi{#1/\mod@pathprefix@help#2\relax}%
\fi}
\long\def\mod@ReturnAfterFi#1\fi{\fi#1}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\mod@pathpostfix@check}
% |\mod@pathpostfix@check| takes a string composed of words separated by slashes and
% returns the part of the string until the last slash
% \begin{macrocode}
\def\mod@pathpostfix@check#1/#2\relax{% slash
\ifx\\#2\\%no slash in string
#1\else\mod@ReturnAfterFi{\mod@pathpostfix@help#2\relax}%
\fi}
% \end{macrocode}
% Helper function for the |\pathpostfix@check| macro defined above
% \begin{macrocode}
\def\mod@pathpostfix@help#1/#2\relax{%
\ifx\\#2\\%
#1\else\mod@ReturnAfterFi{\mod@pathpostfix@help#2\relax}%
\fi}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\mod@updatedpost}
% This macro updates |\mod@savedprefix| with leading path (all but the last word) in the path given
% in its argument.
% \begin{macrocode}
\def\mod@updatedpost#1{%
\edef\mod@savedprefix{\mod@savedprefix\mod@pathpostfix@check#1/\relax}}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\mod@updatedsms}
% Finally: A macro that will add a |.sms| extension to a path. Will be used when adding a |.sms| file
% \begin{macrocode}
\def\mod@updatesms{\edef\mod@savedprefix{\mod@savedprefix.sms}}
%</package>
% \end{macrocode}
% \end{macro}
%
% \subsubsection{Selective Inclusion}
%
% \begin{macro}{\requiremodules}
% \begin{macrocode}
%<*package>
\newcommand\requiremodules[1]{%
{\mod@showfalse% save state and ensure silence while reading sms
\mod@updatedpre{#1}% add the new file to the already existing path
\let\mod@savedprefix\mod@prefix% add the path to the new file to the prefix
\mod@updatedpost{#1}%
\def\mod@blaaaa{}% macro used in the simplify function (remove .. from the prefix)
\mod@simplify{\mod@savedprefix}% remove |xxx/..| from the path (in case it exists)
\mod@reguse{\mod@savedprefix}%
\ifmodules\else%
\mod@updatesms% update the file to contain the .sms extension
\let\newreg\mod@reg% use to compare, in case the .sms file was loaded before
\mod@search{\mod@savedprefix}% update registry
\ifx\newreg\mod@reg\else\input{\mod@savedprefix}\fi% check if the registry was updated and load if necessary
\fi}}
%</package>
%<*ltxml>
DefPrimitive('\requiremodules{}', sub {
my($stomach,$module)=@_;
my $GULLET = $stomach->getGullet;
$module = Digest($module)->toString;
if(LookupValue('file_'.$module.'_loaded')) {}
else {
AssignValue('file_'.$module.'_loaded' => 1, 'global');
$stomach->bgroup;
AssignValue('last_module_path', $module);
$GULLET->unread(T_CS('\end@requiredmodule'));
AssignValue('excluding_modules' => 1);
$GULLET->input($module,['sms']);
}
return;});
DefPrimitive('\end@requiredmodule{}',sub {
#close the group
$_[0]->egroup;
#print STDERR "END: ".ToString(Digest($_[1])->toString);
#Take care of any imported elements in this current module by activating it and all its dependencies
#print STDERR "Important: ".ToString(Digest($_[1])->toString)."\n";
use_module(ToString(Digest($_[1])->toString));
return; });#$
%</ltxml>
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\sinput}
% \begin{macrocode}
%<*package>
\def\sinput#1{
{\mod@updatedpre{#1}% add the new file to the already existing path
\let\mod@savedprefix\mod@prefix% add the path to the new file to the prefix
\mod@updatedpost{#1}%
\def\mod@blaaaa{}% macro used in the simplify function (remove .. from the prefix)
\mod@simplify{\mod@savedprefix}% remove |xxx/..| from the path (in case it exists)
\mod@reguse{\mod@savedprefix}%
\let\newreg\mod@reg% use to compare, in case the .sms file was loaded before
\mod@search{\mod@savedprefix}% update registry
\ifx\newreg\mod@reg%\message{This file has been previously introduced}
\else\input{\mod@savedprefix}%
\fi}}
%</package>
%<*ltxml>
DefPrimitive('\sinput Semiverbatim', sub {
my($stomach,$module)=@_;
my $GULLET = $stomach->getGullet;
$module = Digest($module)->toString;
AssignValue('file_'.$module.'_loaded' => 1, 'global');
$stomach->bgroup;
AssignValue('last_module_path', $module);
$GULLET->unread(Invocation(T_CS('\end@requiredmodule'),Tokens(Explode($module)))->unlist);
$GULLET->input($module,['tex']);
return;});#$
%</ltxml>
% \end{macrocode}
% \end{macro}
% \ednote{the sinput macro is just faked, it should be more like requiremodules, except
% that the tex file is inputted; I wonder if this can be simplified.}
%
% \begin{macrocode}
%<*package>
\let\sinputref=\sinput
\let\inputref=\input
%</package>
%<*ltxml>
DefConstructor('\sinputref{}',"<omdoc:oref href='#1.omdoc' class='expandable'/>");
DefConstructor('\inputref{}',"<omdoc:oref href='#1.omdoc' class='expandable'/>");
%</ltxml>
% \end{macrocode}
%
% \subsubsection{Generating {\texorpdfstring\omdoc{OMDoc}} Presentation Elements}\label{sec:impl:presentation}
%
% Additional bundle of code to generate presentation encodings. Redefined to an expandable
% (macro) so that we can add conversions.
%
% \begin{macrocode}
%<*ltxml>
DefMacro('\@symdef@pres OptionalKeyVals:symdef {}[]{}', sub {
my($self,$keys, $cs,$nargs,$presentation)=@_;
my($name,$cd,$role)=$keys
&& map($_ && $_->toString,map($keys->getValue($_), qw(name cd role)));
$cd = LookupValue('module_cd') unless $cd;
$name = $cs unless $name;
AssignValue('module_name'=>$name) if $name;
$nargs = 0 unless ($nargs);
my $nargkey = ToString($name).'_args';
AssignValue($nargkey=>ToString($nargs)) if $nargs;
$name=ToString($name);
Invocation(T_CS('\@symdef@pres@aux'),
$cs,
($nargs || Tokens(T_OTHER(0))),
symdef_presentation_pmml($cs,ToString($nargs)||0,$presentation),
(Tokens(Explode($name))),
(Tokens(Explode($cd))),
$keys)->unlist; });#$
% \end{macrocode}
% Generate the expansion of a symdef's macro using special arguments.
%
% Note that the |symdef_presentation_pmml| subroutine is responsible for preserving the
% rendering structure of the original definition. Hence, we keep a
% collection of all known formatters in the |@PresFormatters| array,
% which should be updated whenever the list of allowed formatters has
% been altered.
%
% \begin{macrocode}
sub symdef_presentation_pmml {
my($cs,$nargs,$presentation)=@_;
my @toks = $presentation->unlist;
while(@toks && $toks[0]->equals(T_SPACE)){ shift(@toks); } # Remove leading space
$presentation = Tokens(@toks);
# Wrap with \@use, unless already has a recognized formatter.
my $formatters = join("|",@PresFormatters);
$formatters = qr/$formatters/;
$presentation = Invocation(T_CS('\@use'),$presentation)
unless (@toks && ($toks[0]->toString =~ /^\\($formatters)$/));
# Low level substitution.
my @args =
map(Invocation(T_CS('\@SYMBOL'),T_OTHER("arg:".($_))),1..$nargs);
$presentation = Tokens(LaTeXML::Expandable::substituteTokens($presentation,@args));
$presentation; }#$
% \end{macrocode}
% The |\@use| macro just generates the contents of the notation element
% \begin{macrocode}
sub getSymmdefProperties {
my $cd = LookupValue('module_cd');
my $name = LookupValue('module_name');
my $nargkey = ToString($name).'_args';
my $nargs = LookupValue($nargkey);
$nargs = 0 unless ($nargs);
my %props = ('cd'=>$cd,'name'=>$name,'nargs'=>$nargs);
return %props;}
DefConstructor('\@use{}', sub{
my ($document,$args,%properties) = @_;
#Notation created at \@symdef@pres@aux
#Create the rendering:
$document->openElement('omdoc:rendering');
$document->openElement('ltx:Math');
$document->openElement('ltx:XMath');
if ($args->isMath) {$document->absorb($args);}
else { $document->insertElement('ltx:XMText',$args);}
$document->closeElement('ltx:XMath');
$document->closeElement('ltx:Math');
$document->closeElement('omdoc:rendering');
},
properties=>sub { getSymmdefProperties($_[1]);},
mode=>'inline_math');
% \end{macrocode}
% The |get_cd| procedure reads of the cd from our list of keys.
% \begin{macrocode}
sub get_cd {
my($name,$cd,$role)=@_;
return $cd;}
% \end{macrocode}
% The |\@symdef@pres@aux| creates the |symbol| element and the outer layer of the of the
% |notation| element. The content of the latter is generated by applying the {\latexml} to
% the definiens of the |\symdef| form.
% \begin{macrocode}
DefConstructor('\@symdef@pres@aux{}{}{}{}{} OptionalKeyVals:symdef', sub {
my ($document,$cs,$nargs,$pmml,$name,$cd,$keys)=@_;
my $assocarg = ToString($keys->getValue('assocarg')) if $keys;
$assocarg = $assocarg||"0";
my $bvars = ToString($keys->getValue('bvars')) if $keys;
$bvars = $bvars||"0";
my $bvar = ToString($keys->getValue('bvar')) if $keys;
$bvar = $bvar||"0";
my $appElement = 'om:OMA'; $appElement = 'om:OMBIND' if ($bvars || $bvar);
my $root = $document->getDocument->documentElement;
my $name_str = ToString($name);
my ($notation) = $root->findnodes(".//omdoc:notation[\@name='$name_str' and ".
"preceding-sibling::omdoc:symbol[1]/\@name
= '$name_str']");
if (!$notation) {
$document->insertElement("omdoc:symbol",undef,(name=>$name,"xml:id"=>$name_str.".sym"));
}
$document->openElement("omdoc:notation",(name=>$name,cd=>$cd));
#First, generate prototype:
$nargs = ToString($nargs)||0;
$document->openElement('omdoc:prototype');
$document->openElement($appElement) if $nargs;
my $cr="fun" if $nargs;
$document->insertElement('om:OMS',undef,
(cd=>$cd,
name=>$name,
"cr"=>$cr));
if ($bvar || $bvars) {
$document->openElement('om:OMBVAR');
if ($bvar) {
$document->insertElement('omdoc:expr',undef,(name=>"arg$bvar"));
} else {
$document->openElement('omdoc:exprlist',(name=>"args"));
$document->insertElement('omdoc:expr',undef,(name=>"arg"));
$document->closeElement('omdoc:exprlist');
}
$document->closeElement('om:OMBVAR');
}
for my $id(1..$nargs) {
next if ($id==$bvars || $id==$bvar);
if ($id!=$assocarg) {
my $argname="arg$id";
$document->insertElement('omdoc:expr',undef,(name=>"$argname"));
}
else {
$document->openElement('omdoc:exprlist',(name=>"args"));
$document->insertElement('omdoc:expr',undef,(name=>"arg"));
$document->closeElement('omdoc:exprlist');
}
}
$document->closeElement($appElement) if $nargs;
$document->closeElement('omdoc:prototype');
#Next, absorb rendering:
$document->absorb($pmml);
$document->closeElement("omdoc:notation");
}, afterDigest=>sub { my ($stomach, $whatsit) = @_;
my $keys = $whatsit->getArg(6);
my $module = LookupValue('current_module');
$whatsit->setProperties(for=>ToString($whatsit->getArg(1)));
$whatsit->setProperty(role=>($keys ? $keys->getValue('role')
: (ToString($whatsit->getArg(2)) ? 'applied'
: undef))); });
% \end{macrocode}
% Convert a macro body (tokens with parameters |#1|,..) into a Presentation |style=TeX| form.
% walk through the tokens, breaking into chunks of neutralized (|T_OTHER|) tokens and
% parameter specs.
% \begin{macrocode}
sub symdef_presentation_TeX {
my($presentation)=@_;
my @tokens = $presentation->unlist;
my(@frag,@frags) = ();
while(my $tok = shift(@tokens)){
if($tok->equals(T_PARAM)){
push(@frags,Invocation(T_CS('\@symdef@pres@text'),Tokens(@frag))) if @frag;
@frag=();
my $n = shift(@tokens)->getString;
push(@frags,Invocation(T_CS('\@symdef@pres@arg'),T_OTHER($n+1))); }
else {
push(@frag,T_OTHER($tok->getString)); }} # IMPORTANT! Neutralize the tokens!
push(@frags,Invocation(T_CS('\@symdef@pres@text'),Tokens(@frag))) if @frag;
Tokens(map($_->unlist,@frags)); }
DefConstructor('\@symdef@pres@arg{}', "<omdoc:recurse select='#select'/>",
afterDigest=>sub { my ($stomach, $whatsit) = @_;
my $select = $whatsit->getArg(1);
$select = ref $select ? $select->toString : '';
$whatsit->setProperty(select=>"*[".$select."]"); });
DefConstructor('\@symdef@pres@text{}', "<omdoc:text>#1</omdoc:text>");
%</ltxml>#$
% \end{macrocode}
%
%
% \subsection{Including Externally Defined Semantic Macros }\label{sec:impl:packages}
%
% \begin{macro}{\requirepackage}
% \begin{macrocode}
%<*package>
\def\requirepackage#1#2{\makeatletter\input{#1.sty}\makeatother}
%</package>
%<*ltxml>
DefConstructor('\requirepackage{} Semiverbatim',"<omdoc:imports from='#2'/>",
afterDigest=>sub { my ($stomach, $whatsit) = @_;
my $select = $whatsit->getArg(1);
RequirePackage($select->toString); });#$
%</ltxml>
% \end{macrocode}
% \end{macro}
%
% \subsection{Views}\label{sec:impl:views}
%
% We first prepare the ground by defining the keys for the |view| environment.
% \begin{macrocode}
%<*package>
\srefaddidkey{view}
\addmetakey*{view}{title}
\define@key{view}{load}{\requiremodules{#1}}
% \end{macrocode}
%
% \begin{macro}{\view@heading}
% Then we make a convenience macro for the view heading. This can be customized.
% \begin{macrocode}
\newcounter{view}[section]
\newcommand\view@heading[2]{\stepcounter{view}%
{\textbf{View} \thesection.\theview: from #1 to #2}%
\sref@label@id{View \thesection.\theview}%
\ifx\view@title\@empty :\quad\else\quad(\view@title)\hfill\\\fi}
% \end{macrocode}
% \end{macro}
%
% \begin{environment}{view}
% The |view| environment only has an effect if the |showmods| option is set.
% \begin{macrocode}
\ifmod@show\newsavebox{\viewbox}
\newenvironment{view}[3][]{\metasetkeys{view}{#1}\sref@target\stepcounter{view}
\begin{lrbox}{\viewbox}\begin{minipage}{.9\textwidth}
\importmodule{#1}\importmodule{#2}\gdef\view@@heading{\view@heading{#2}{#3}}}
{\end{minipage}\end{lrbox}
\setbox0=\hbox{\begin{minipage}{.9\textwidth}%
\noindent\view@@heading\rm%
\end{minipage}}
\smallskip\noindent\fbox{\vbox{\box0\vspace*{.2em}\usebox\viewbox}}\smallskip}
\else\newxcomment[]{view}\fi%ifmod@show
%</package>
%<*ltxml>
DefKeyVal('view','id','Semiverbatim');
DefEnvironment('{view} OptionalKeyVals:view {}{}',
"<omdoc:theory-inclusion from='#2' to='#3'>"
. "<omdoc:morphism>#body</omdoc:morphism>"
."</omdoc:theory-inclusion>");
%</ltxml>
% \end{macrocode}
% \end{environment}
%
% \subsection{Deprecated Functionality}\label{sec:impl:deprecated}
%
% In this section we centralize old interfaces that are only partially supported any more.
% \begin{macro}{module:uses}
% For each the module name |xxx| specified in the |uses| key, we activate their symdefs
% and we export the local symdefs.\ednote{this issue is deprecated, it will be removed
% before 1.0.}
% \begin{macrocode}
%<*package>
\define@key{module}{uses}{%
\@for\module@tmp:=#1\do{\activate@defs\module@tmp\export@defs\module@tmp}}
%</package>
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{module:usesqualified}
% This option operates similarly to the module:uses option defined above. The only
% difference is that here we import modules with a prefix. This is useful when two
% modules provide a macro with the same name.
% \begin{macrocode}
%<*package>
\define@key{module}{usesqualified}{%
\@for\module@tmp:=#1\do{\activate@defs{qualified@\module@tmp}\export@defs\module@tmp}}
%</package>
% \end{macrocode}
% \end{macro}
%
% \subsection{Providing IDs for {\omdoc} Elements}\label{sec:impl:ids}
%
% To provide default identifiers, we tag all {\omdoc} elements that allow |xml:id|
% attributes by executing the |numberIt| procedure below.
%
% \begin{macrocode}
%<*ltxml>
Tag('omdoc:recurse',afterOpen=>\&numberIt,afterClose=>\&locateIt);
Tag('omdoc:imports',afterOpen=>\&numberIt,afterClose=>\&locateIt);
Tag('omdoc:theory',afterOpen=>\&numberIt,afterClose=>\&locateIt);
%</ltxml>
% \end{macrocode}
%
% \subsection{Experiments}
% In this section we develop experimental functionality. Currently support for complex
% expressions, see
% \url{https://svn.kwarc.info/repos/stex/doc/blue/comlex_semmacros/note.pdf} for details.
%
% \begin{macro}{\csymdef}
% For the {\LaTeX} we use |\symdef| and forget the last argument. The code here is just
% needed for parsing the (non-standard) argument structure.
% \begin{macrocode}
%<*package>
\def\csymdef{\@ifnextchar[{\@csymdef}{\@csymdef[]}}
\def\@csymdef[#1]#2{\@ifnextchar[{\@@csymdef[#1]{#2}}{\@@csymdef[#1]{#2}[0]}}
\def\@@csymdef[#1]#2[#3]#4#5{\@@symdef[#1]{#2}[#3]{#4}}
%</package>
%<*ltxml>
%</ltxml>
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\notationdef}
% For the {\LaTeX} side, we just make |\notationdef| invisible.
% \begin{macrocode}
%<*package>
\def\notationdef[#1]#2#3{}
%</package>
%<*ltxml>
%</ltxml>
% \end{macrocode}
% \end{macro}
%
% \subsection{Finale}
%
% Finally, we need to terminate the file with a success mark for perl.
% \begin{macrocode}
%<ltxml>1;
% \end{macrocode}
%
% \Finale
\endinput
%%% Local Variables:
%%% mode: doctex
%%% TeX-master: t
%%% End:
% LocalWords: GPL structuresharing STR dtx env envfalse idfalse displayfalse
% LocalWords: usesfalse usesqualified usesqualifiedfalse envtrue idtrue CPERL
% LocalWords: usestrue displaytrue usesqualifiedtrue RequirePackage keyval tmp
% LocalWords: defs foreach LookupValue activateScope DefEnvironment keyvals cd
% LocalWords: OptionalKeyVals getValue toString AssignValue openElement omdoc
% LocalWords: closeElement beforeDigest useTheoryItemizations afterDigestBegin
% LocalWords: whatsit setProperty getArg qw symdef iffalse importOMDocmodule
% LocalWords: DefKeyVal Semiverbatim symdeflocal atqualified DefMacro STDERR
% LocalWords: args unlist DefPrimitive nargs Stringify eq attr omcd ltx XMTok
% LocalWords: DefConstructorI convertLaTeXArgs scriptpos XMApp OMA XMArg simpl
% LocalWords: DefMacroI blaaaa savedprefix aaa simplhelp tust tist tost reguse
% LocalWords: updatedpre ReturnAfterFi updateall updatedpost updatesms bgroup
% LocalWords: texclude tinclude getGullet requiredmodule tex sms egroup pmml
% LocalWords: toks mixfixi mixfixa mixfixii mixfixia mixfixai mixfixiii arg cr
% LocalWords: DefConstructor afterDigest setProperties undef tok PARAM thyid
% LocalWords: getString showfalse showtrue xcomment stex srcref KeyVal omext
% LocalWords: beginItemize getProperty introdcue afterOpen numberIt Tokenize
% LocalWords: OptionalSemiverbatim omdocmod PushValue assocarg getStomach prs
% LocalWords: begingroup beginMode endMode endgroup insertElement resymdef sym
% LocalWords: updir nargkey PresFormatters mixfixaii formatters argname expr
% LocalWords: getSymmdefProperties XMath mcdcr exprlist recurse texttt scsys
% LocalWords: textbackslash newcommand providecommand sc sc mathml openmath nx
% LocalWords: latexml cmathml activemath twintoo atwin atwintoo mathcal Deyan
% LocalWords: mathcal fileversion Ginev maketitle newpage infty ulsmf08 exfig
% LocalWords: omsemmac lstset basicstyle scriptsize aboveskip belowskip hline
% LocalWords: morekeywords lstlisting csymbol showviews showviews foo exf cseq
% LocalWords: qualifiedimports qualifiedimports termdef textbf filepath RabKoh
% LocalWords: symname varSmoothfunctionsOn ednote abbrdef Sumfromto semmodule
% LocalWords: vspace hrule vspace arith arbitraryn xbool oplus xdisjunction tw
% LocalWords: emph captitalize ldots termref termref symref symref ctancite nc
% LocalWords: smms hyperref RahObe hmlmh10 widehat texmf.cnf requiremodules cs
% LocalWords: sinput sinputref sinputref defpath defpath defpath cname csname
% LocalWords: OPhats usepackage importqualified Crossreferencing jobname ltxml
% LocalWords: jobname printbibliography textsf langle textsf langle textlangle
% LocalWords: textrangle textlangle newif ifmod qualifiedfalse qualifiedtrue
% LocalWords: sref xspace expandafter noexpand endcsname namedef setkeys ifx
% LocalWords: newenvironment parentmod usemodule ifundefined coolurion cooluri
% LocalWords: coolurioff cwd ouri ifdefinable testopt ifnextchar xargdef bvars
% LocalWords: argdef yargdef somefunction symdeflocaltrue bvar xpath assoc qr
% LocalWords: symdeflocalfalse localpres isbound symdefs COMPLEXTOKEN localp
% LocalWords: findnodes localname carg renewcommand bbb showmeta showmeta exp
% LocalWords: refundefinedtrue subsubsection blaaa makeatletter makeatother rm
% LocalWords: ifmodules gdef xdef xdef modulestrue modulesfalse pathpostfix
% LocalWords: updatedsms newreg xref texorpdfstring srefaddidkey newsavebox
% LocalWords: viewbox newcounter thesection theview theproblem hfill lrbox
% LocalWords: stepcounter textwidth hbox noindent smallskip fbox vbox usebox
% LocalWords: smallskip newxcomment vassign ensuremath mapsto doctex tocdepth
% LocalWords: setcounter tableofcontents mathbb symvariant importmodulevia
% LocalWords: importmodulevia compactdesc tassign tassign tname source-tname
% LocalWords: ttassign metakeys addmetakey themodule metasetkeys aftergroup
% LocalWords: groupling requation IMPORTCD CURRENTCD bindargs defmathop cnode
% LocalWords: icvariant aftercounter prestok inputref oref loadfrom loadto
% LocalWords: csymdef notationdef
|