blob: 4a8af171c6151fe5779668155d491e7a554ca3a4 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
|
% Example for an interconnection of signal flow diagrams.
%
% Author: Dr. Karlheinz Ochs, Ruhr-University of Bochum, Germany
% Version: 0.1
% Date: 2007/01/05
\documentclass{article}
\usepackage{signalflowdiagram}
\begin{document}
% An FIR filter
\begin{signalflow}[node distance=9mm]{Finite impulse response filter of order $n$}%
% building blocks
\tikzgrid{
\node[input] (in) {$x(t)$} &
\node[node] (n0) {} &
\node[delay] (d1) {$T$} &
\node[node] (n1) {} &
\node[delay] (d2) {$T$} &
\node[node] (n2) {} &
\node[coordinate] (c1) {} &
\node[coordinate] (c3) {} &
\node[delay] (dn) {$T$} &
\\ &
\node[multiplier] (m0) {$\alpha_0$} & &
\node[multiplier] (m1) {$\alpha_1$} & &
\node[multiplier] (m2) {$\alpha_2$} & & & &
\node[multiplier] (mn) {$\alpha_n$}
\\ & & &
\node[adder] (a1) {} & &
\node[adder] (a2) {} &
\node[coordinate] (c2) {} &
\node[coordinate] (c4) {} & &
\node[adder] (an) {} &
\node[output] (out) {$y(t)$}
}
% signal paths
\path[r>] (in) -- (n0);
\path[r>] (n0) -- (d1);
\path[r>] (d1) -- (n1);
\path[r>] (n1) -- (d2);
\path[r>] (d2) -- (n2);
\path[r>] (n2) -- (c1); % continuation
\path[r.] (c1) -- (c3); % continuation
\path[r>] (c3) -- (dn); % continuation
\path[r>] (n0) -- (m0);
\path[r>] (n1) -- (m1);
\path[r>] (n2) -- (m2);
\path[r>] (dn) -| (mn);
\path[r>] (m0) |- (a1);
\path[r>] (m1) -- (a1);
\path[r>] (m2) -- (a2);
\path[r>] (mn) -- (an);
\path[r>] (a1) -- (a2);
\path[r>] (a2) -- (c2); % continuation
\path[r.] (c2) -- (c4); % continuation
\path[r>] (c4) -- (an); % continuation
\path[r>] (an) -- (out);
\end{signalflow}
\end{document}
|