1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
|
% \iffalse meta-comment
%
%% File: l3prg.dtx Copyright (C) 2005-2013 The LaTeX3 Project
%%
%% It may be distributed and/or modified under the conditions of the
%% LaTeX Project Public License (LPPL), either version 1.3c of this
%% license or (at your option) any later version. The latest version
%% of this license is in the file
%%
%% http://www.latex-project.org/lppl.txt
%%
%% This file is part of the "l3kernel bundle" (The Work in LPPL)
%% and all files in that bundle must be distributed together.
%%
%% The released version of this bundle is available from CTAN.
%%
%% -----------------------------------------------------------------------
%%
%% The development version of the bundle can be found at
%%
%% http://www.latex-project.org/svnroot/experimental/trunk/
%%
%% for those people who are interested.
%%
%%%%%%%%%%%
%% NOTE: %%
%%%%%%%%%%%
%%
%% Snapshots taken from the repository represent work in progress and may
%% not work or may contain conflicting material! We therefore ask
%% people _not_ to put them into distributions, archives, etc. without
%% prior consultation with the LaTeX3 Project.
%%
%% -----------------------------------------------------------------------
%
%<*driver|package>
\RequirePackage{l3bootstrap}
\GetIdInfo$Id: l3prg.dtx 4482 2013-04-24 21:05:12Z joseph $
{L3 Control structures}
%</driver|package>
%<*driver>
\documentclass[full]{l3doc}
\begin{document}
\DocInput{\jobname.dtx}
\end{document}
%</driver>
% \fi
%
% \title{^^A
% The \pkg{l3prg} package\\ Control structures^^A
% \thanks{This file describes v\ExplFileVersion,
% last revised \ExplFileDate.}^^A
% }
%
% \author{^^A
% The \LaTeX3 Project\thanks
% {^^A
% E-mail:
% \href{mailto:latex-team@latex-project.org}
% {latex-team@latex-project.org}^^A
% }^^A
% }
%
% \date{Released \ExplFileDate}
%
% \maketitle
%
% \begin{documentation}
%
% Conditional processing in \LaTeX3 is defined as something that
% performs a series of tests, possibly involving assignments and
% calling other functions that do not read further ahead in the input
% stream. After processing the input, a \emph{state} is returned. The
% typical states returned are \meta{true} and \meta{false} but other
% states are possible, say an \meta{error} state for erroneous
% input, \emph{e.g.}, text as input in a function comparing integers.
%
% \LaTeX3 has two forms of conditional flow processing based
% on these states. The firs form is predicate functions that turn the
% returned state into a boolean \meta{true} or \meta{false}. For
% example, the function \cs{cs_if_free_p:N} checks whether the control
% sequence given as its argument is free and then returns the boolean
% \meta{true} or \meta{false} values to be used in testing with
% \cs{if_predicate:w} or in functions to be described below. The second form
% is the kind of functions choosing a particular argument from the
% input stream based on the result of the testing as in
% \cs{cs_if_free:NTF} which also takes one argument (the |N|) and then
% executes either \texttt{true} or \texttt{false} depending on the
% result. Important to note here is that the arguments are executed
% after exiting the underlying |\if...\fi:| structure.
%
% \section{Defining a set of conditional functions}
%
% \begin{function}[updated = 2012-02-06]
% {
% \prg_new_conditional:Npnn, \prg_set_conditional:Npnn,
% \prg_new_conditional:Nnn, \prg_set_conditional:Nnn
% }
% \begin{syntax}
% \cs{prg_new_conditional:Npnn} \cs{\meta{name}:\meta{arg spec}} \meta{parameters} \Arg{conditions} \Arg{code} \\
% \cs{prg_new_conditional:Nnn} \cs{\meta{name}:\meta{arg spec}} \Arg{conditions} \Arg{code}
% \end{syntax}
% These functions create a family of conditionals using the same
% \Arg{code} to perform the test created. Those conditionals are
% expandable if \meta{code} is. The \texttt{new} versions will check
% for existing definitions and perform assignments globally
% (\emph{cf.}~\cs{cs_new:Npn}) whereas the \texttt{set} versions do no
% check and perform assignments locally (\emph{cf.}~\cs{cs_set:Npn}).
% The conditionals created are dependent on the comma-separated list
% of \meta{conditions}, which should be one or more of \texttt{p},
% \texttt{T}, \texttt{F} and \texttt{TF}.
% \end{function}
%
% \begin{function}[updated = 2012-02-06]
% {
% \prg_new_protected_conditional:Npnn, \prg_set_protected_conditional:Npnn,
% \prg_new_protected_conditional:Nnn, \prg_set_protected_conditional:Nnn
% }
% \begin{syntax}
% \cs{prg_new_protected_conditional:Npnn} \cs{\meta{name}:\meta{arg spec}} \meta{parameters} \Arg{conditions} \Arg{code} \\
% \cs{prg_new_protected_conditional:Nnn} \cs{\meta{name}:\meta{arg spec}} \Arg{conditions} \Arg{code}
% \end{syntax}
% These functions create a family of protected conditionals using the
% same \Arg{code} to perform the test created. The \meta{code} does
% not need to be expandable. The \texttt{new} version will check for
% existing definitions and perform assignments globally
% (\emph{cf.}~\cs{cs_new:Npn}) whereas the \texttt{set} version will
% not (\emph{cf.}~\cs{cs_set:Npn}). The conditionals created are
% depended on the comma-separated list of \meta{conditions}, which
% should be one or more of \texttt{T}, \texttt{F} and \texttt{TF} (not
% \texttt{p}).
% \end{function}
%
% The conditionals are defined by \cs{prg_new_conditional:Npnn} and
% friends as:
% \begin{itemize}
% \item \cs{\meta{name}_p:\meta{arg spec}} --- a predicate function
% which will supply either a logical \texttt{true} or logical
% \texttt{false}. This function is intended for use in cases where
% one or more logical tests are combined to lead to a final outcome.
% This function will not work properly for \texttt{protected}
% conditionals.
% \item \cs{\meta{name}:\meta{arg spec}T} --- a function with one more
% argument than the original \meta{arg spec} demands. The \meta{true
% branch} code in this additional argument will be left on the
% input stream only if the test is \texttt{true}.
% \item \cs{\meta{name}:\meta{arg spec}F} --- a function with one more
% argument than the original \meta{arg spec} demands. The
% \meta{false branch} code in this additional argument will be left
% on the input stream only if the test is \texttt{false}.
% \item \cs{\meta{name}:\meta{arg spec}TF} --- a function with two
% more argument than the original \meta{arg spec} demands. The
% \meta{true branch} code in the first additional argument will be
% left on the input stream if the test is \texttt{true}, while the
% \meta{false branch} code in the second argument will be left on
% the input stream if the test is \texttt{false}.
% \end{itemize}
% The \meta{code} of the test may use \meta{parameters} as specified by
% the second argument to \cs{prg_set_conditional:Npnn}: this should
% match the \meta{argument specification} but this is not enforced. The
% |Nnn| versions infer the number of arguments from the argument
% specification given (\emph{cf.}~\cs{cs_new:Nn}, \emph{etc.}). Within
% the \meta{code}, the functions \cs{prg_return_true:} and
% \cs{prg_return_false:} are used to indicate the logical outcomes of
% the test.
%
% An example can easily clarify matters here:
% \begin{verbatim}
% \prg_set_conditional:Npnn \foo_if_bar:NN #1#2 { p , T , TF }
% {
% \if_meaning:w \l_tmpa_tl #1
% \prg_return_true:
% \else:
% \if_meaning:w \l_tmpa_tl #2
% \prg_return_true:
% \else:
% \prg_return_false:
% \fi:
% \fi:
% }
% \end{verbatim}
% This defines the function |\foo_if_bar_p:NN|, |\foo_if_bar:NNTF| and
% |\foo_if_bar:NNT| but not |\foo_if_bar:NNF| (because |F| is missing
% from the \meta{conditions} list). The return statements take care of
% resolving the remaining \cs{else:} and \cs{fi:} before returning the
% state. There must be a return statement for each branch; failing to do
% so will result in erroneous output if that branch is executed.
%
% \begin{function}{\prg_new_eq_conditional:NNn, \prg_set_eq_conditional:NNn}
% \begin{syntax}
% \cs{prg_new_eq_conditional:NNn} \cs{\meta{name_1}:\meta{arg spec_1}} \cs{\meta{name_2}:\meta{arg spec_2}} \Arg{conditions}
% \end{syntax}
% These functions copies a family of conditionals. The \texttt{new} version
% will check for existing definitions (\emph{cf.}~\cs{cs_new:Npn}) whereas
% the \texttt{set} version will not (\emph{cf.}~\cs{cs_set:Npn}). The
% conditionals copied are depended on the comma-separated list of
% \meta{conditions}, which should be one or more of \texttt{p}, \texttt{T},
% \texttt{F} and \texttt{TF}.
% \end{function}
%
% \begin{function}[EXP]{\prg_return_true:, \prg_return_false:}
% \begin{syntax}
% \cs{prg_return_true:}
% \cs{prg_return_false:}
% \end{syntax}
% These `return' functions define the logical state of a conditional statement.
% They appear within the code for a conditional
% function generated by \cs{prg_set_conditional:Npnn}, \emph{etc}, to indicate
% when a true or false branch has been taken.
% While they may appear multiple times each within the code of such conditionals,
% the execution of the conditional must result in the expansion of one of these
% two functions \emph{exactly once}.
%
% The return functions trigger what is internally an f-expansion process to complete
% the evaluation of the conditional. Therefore, after \cs{prg_return_true:} or \cs{prg_return_false:}
% there must be no non-expandable material in the input stream for the remainder of
% the expansion of the conditional code. This includes other instances of either of these functions.
% \end{function}
%
% \section{The boolean data type}
%
% This section describes a boolean data type which is closely
% connected to conditional processing as sometimes you want to
% execute some code depending on the value of a switch
% (\emph{e.g.},~draft/final) and other times you perhaps want to use it as a
% predicate function in an \cs{if_predicate:w} test. The problem of the
% primitive \cs{if_false:} and \cs{if_true:} tokens is that it is not
% always safe to pass them around as they may interfere with scanning
% for termination of primitive conditional processing. Therefore, we
% employ two canonical booleans: \cs{c_true_bool} or
% \cs{c_false_bool}. Besides preventing problems as described above, it
% also allows us to implement a simple boolean parser supporting the
% logical operations And, Or, Not, \emph{etc.}\ which can then be used on
% both the boolean type and predicate functions.
%
% All conditional |\bool_| functions except assignments are expandable
% and expect the input to also be fully expandable (which will generally
% mean being constructed from predicate functions, possibly nested).
%
% \begin{function}{\bool_new:N, \bool_new:c}
% \begin{syntax}
% \cs{bool_new:N} \meta{boolean}
% \end{syntax}
% Creates a new \meta{boolean} or raises an error if the
% name is already taken. The declaration is global. The
% \meta{boolean} will initially be \texttt{false}.
% \end{function}
%
% \begin{function}
% {
% \bool_set_false:N , \bool_set_false:c ,
% \bool_gset_false:N, \bool_gset_false:c
% }
% \begin{syntax}
% \cs{bool_set_false:N} \meta{boolean}
% \end{syntax}
% Sets \meta{boolean} logically \texttt{false}.
% \end{function}
%
% \begin{function}
% {
% \bool_set_true:N , \bool_set_true:c ,
% \bool_gset_true:N , \bool_gset_true:c
% }
% \begin{syntax}
% \cs{bool_set_true:N} \meta{boolean}
% \end{syntax}
% Sets \meta{boolean} logically \texttt{true}.
% \end{function}
%
% \begin{function}
% {
% \bool_set_eq:NN , \bool_set_eq:cN , \bool_set_eq:Nc , \bool_set_eq:cc ,
% \bool_gset_eq:NN, \bool_gset_eq:cN, \bool_gset_eq:Nc, \bool_gset_eq:cc
% }
% \begin{syntax}
% \cs{bool_set_eq:NN} \meta{boolean_1} \meta{boolean_2}
% \end{syntax}
% Sets the content of \meta{boolean_1} equal to that of \meta{boolean_2}.
% \end{function}
%
% \begin{function}[updated = 2012-07-08]
% {\bool_set:Nn, \bool_set:cn, \bool_gset:Nn, \bool_gset:cn}
% \begin{syntax}
% \cs{bool_set:Nn} \meta{boolean} \Arg{boolexpr}
% \end{syntax}
% Evaluates the \meta{boolean expression} as described for
% \cs{bool_if:n(TF)}, and sets the \meta{boolean} variable to
% the logical truth of this evaluation.
% \end{function}
%
% \begin{function}[EXP,pTF]{\bool_if:N, \bool_if:c}
% \begin{syntax}
% \cs{bool_if_p:N} \meta{boolean}
% \cs{bool_if:NTF} \meta{boolean} \Arg{true code} \Arg{false code}
% \end{syntax}
% Tests the current truth of \meta{boolean}, and continues expansion
% based on this result.
% \end{function}
%
% \begin{function}[added = 2012-02-09]{\bool_show:N, \bool_show:c}
% \begin{syntax}
% \cs{bool_show:N} \meta{boolean}
% \end{syntax}
% Displays the logical truth of the \meta{boolean} on the terminal.
% \end{function}
%
% \begin{function}[added = 2012-02-09, updated = 2012-07-08]{\bool_show:n}
% \begin{syntax}
% \cs{bool_show:n} \Arg{boolean expression}
% \end{syntax}
% Displays the logical truth of the \meta{boolean expression} on the
% terminal.
% \end{function}
%
% \begin{function}[EXP, pTF, added=2012-03-03]
% {\bool_if_exist:N, \bool_if_exist:c}
% \begin{syntax}
% \cs{bool_if_exist_p:N} \meta{boolean}
% \cs{bool_if_exist:NTF} \meta{boolean} \Arg{true code} \Arg{false code}
% \end{syntax}
% Tests whether the \meta{boolean} is currently defined. This does not
% check that the \meta{boolean} really is a boolean variable.
% \end{function}
%
% \begin{variable}{\l_tmpa_bool, \l_tmpb_bool}
% A scratch boolean for local assignment. It is never used by
% the kernel code, and so is safe for use with any \LaTeX3-defined
% function. However, it may be overwritten by other non-kernel
% code and so should only be used for short-term storage.
% \end{variable}
%
% \begin{variable}{\g_tmpa_bool, \g_tmpb_bool}
% A scratch boolean for global assignment. It is never used by
% the kernel code, and so is safe for use with any \LaTeX3-defined
% function. However, it may be overwritten by other non-kernel
% code and so should only be used for short-term storage.
% \end{variable}
%
% \section{Boolean expressions}
%
% As we have a boolean datatype and predicate functions returning
% boolean \meta{true} or \meta{false} values, it seems only fitting
% that we also provide a parser for \meta{boolean expressions}.
%
% A boolean expression is an expression which given input in the form
% of predicate functions and boolean variables, return boolean
% \meta{true} or \meta{false}. It supports the logical operations And,
% Or and Not as the well-known infix operators |&&|, \verb"||" and |!|
% with their usual precedences. In
% addition to this, parentheses can be used to isolate
% sub-expressions. For example,
% \begin{verbatim}
% \int_compare_p:n { 1 = 1 } &&
% (
% \int_compare_p:n { 2 = 3 } ||
% \int_compare_p:n { 4 = 4 } ||
% \int_compare_p:n { 1 = \error } % is skipped
% ) &&
% ! ( \int_compare_p:n { 2 = 4 } )
% \end{verbatim}
% is a valid boolean expression. Note that minimal evaluation is
% carried out whenever possible so that whenever a truth value cannot
% be changed any more, the remaining tests within the current group
% are skipped.
%
% \begin{function}[EXP, pTF, updated = 2012-07-08]{\bool_if:n}
% \begin{syntax}
% \cs{bool_if_p:n} \Arg{boolean expression}
% \cs{bool_if:nTF} \Arg{boolean expression} \Arg{true code} \Arg{false code}
% \end{syntax}
% Tests the current truth of \meta{boolean expression}, and
% continues expansion based on this result. The
% \meta{boolean expression} should consist of a series of predicates
% or boolean variables with the logical relationship between these
% defined using |&&| (\enquote{And}), \verb"||" (\enquote{Or}),
% |!| (\enquote{Not}) and parentheses. Minimal evaluation is used
% in the processing, so that once a result is defined there is
% not further expansion of the tests. For example
% \begin{verbatim}
% \bool_if_p:n
% {
% \int_compare_p:nNn { 1 } = { 1 }
% &&
% (
% \int_compare_p:nNn { 2 } = { 3 } ||
% \int_compare_p:nNn { 4 } = { 4 } ||
% \int_compare_p:nNn { 1 } = { \error } % is skipped
% )
% &&
% ! \int_compare_p:nNn { 2 } = { 4 }
% }
% \end{verbatim}
% will be \texttt{true} and will not evaluate
% |\int_compare_p:nNn { 1 } = { \error }|. The logical Not applies to
% the next predicate or group.
% \end{function}
%
% \begin{function}[EXP, updated = 2012-07-08]{\bool_not_p:n}
% \begin{syntax}
% \cs{bool_not_p:n} \Arg{boolean expression}
% \end{syntax}
% Function version of |!(|\meta{boolean expression}|)| within a boolean
% expression.
% \end{function}
%
% \begin{function}[EXP, updated = 2012-07-08]{\bool_xor_p:nn}
% \begin{syntax}
% \cs{bool_xor_p:nn} \Arg{boolexpr_1} \Arg{boolexpr_2}
% \end{syntax}
% Implements an \enquote{exclusive or} operation between two boolean
% expressions. There is no infix operation for this logical
% operator.
% \end{function}
%
% \section{Logical loops}
%
% Loops using either boolean expressions or stored boolean values.
%
% \begin{function}[rEXP]{\bool_do_until:Nn, \bool_do_until:cn}
% \begin{syntax}
% \cs{bool_do_until:Nn} \meta{boolean} \Arg{code}
% \end{syntax}
% Places the \meta{code} in the input stream for \TeX{} to process,
% and then checks the logical value of the \meta{boolean}. If it is
% \texttt{false} then the \meta{code} will be inserted into the input
% stream again and the process will loop until the \meta{boolean} is
% \texttt{true}.
% \end{function}
%
% \begin{function}[rEXP]{\bool_do_while:Nn, \bool_do_while:cn}
% \begin{syntax}
% \cs{bool_do_while:Nn} \meta{boolean} \Arg{code}
% \end{syntax}
% Places the \meta{code} in the input stream for \TeX{} to process,
% and then checks the logical value of the \meta{boolean}. If it is
% \texttt{true} then the \meta{code} will be inserted into the input
% stream again and the process will loop until the \meta{boolean} is
% \texttt{false}.
% \end{function}
%
% \begin{function}[rEXP]{\bool_until_do:Nn, \bool_until_do:cn}
% \begin{syntax}
% \cs{bool_until_do:Nn} \meta{boolean} \Arg{code}
% \end{syntax}
% This function firsts checks the logical value of the \meta{boolean}.
% If it is \texttt{false} the \meta{code} is placed in the input stream
% and expanded. After the completion of the \meta{code} the truth
% of the \meta{boolean} is re-evaluated. The process will then loop
% until the \meta{boolean} is \texttt{true}.
% \end{function}
%
% \begin{function}[rEXP]{\bool_while_do:Nn, \bool_while_do:cn}
% \begin{syntax}
% \cs{bool_while_do:Nn} \meta{boolean} \Arg{code}
% \end{syntax}
% This function firsts checks the logical value of the \meta{boolean}.
% If it is \texttt{true} the \meta{code} is placed in the input stream
% and expanded. After the completion of the \meta{code} the truth
% of the \meta{boolean} is re-evaluated. The process will then loop
% until the \meta{boolean} is \texttt{false}.
% \end{function}
%
% \begin{function}[rEXP, updated = 2012-07-08]{\bool_do_until:nn}
% \begin{syntax}
% \cs{bool_do_until:nn} \Arg{boolean expression} \Arg{code}
% \end{syntax}
% Places the \meta{code} in the input stream for \TeX{} to process,
% and then checks the logical value of the \meta{boolean expression}
% as described for \cs{bool_if:nTF}. If it is \texttt{false} then the
% \meta{code} will be inserted into the input stream again and the
% process will loop until the \meta{boolean expression} evaluates to
% \texttt{true}.
% \end{function}
%
% \begin{function}[rEXP, updated = 2012-07-08]{\bool_do_while:nn}
% \begin{syntax}
% \cs{bool_do_while:nn} \Arg{boolean expression} \Arg{code}
% \end{syntax}
% Places the \meta{code} in the input stream for \TeX{} to process,
% and then checks the logical value of the \meta{boolean expression}
% as described for \cs{bool_if:nTF}. If it is \texttt{true} then the
% \meta{code} will be inserted into the input stream again and the
% process will loop until the \meta{boolean expression} evaluates to
% \texttt{false}.
% \end{function}
%
% \begin{function}[rEXP, updated = 2012-07-08]{\bool_until_do:nn}
% \begin{syntax}
% \cs{bool_until_do:nn} \Arg{boolean expression} \Arg{code}
% \end{syntax}
% This function firsts checks the logical value of the
% \meta{boolean expression} (as described for \cs{bool_if:nTF}).
% If it is \texttt{false} the \meta{code} is placed in the input stream
% and expanded. After the completion of the \meta{code} the truth
% of the \meta{boolean expression} is re-evaluated. The process will
% then loop until the \meta{boolean expression} is \texttt{true}.
% \end{function}
%
% \begin{function}[rEXP, updated = 2012-07-08]{\bool_while_do:nn}
% \begin{syntax}
% \cs{bool_while_do:nn} \Arg{boolean expression} \Arg{code}
% \end{syntax}
% This function firsts checks the logical value of the
% \meta{boolean expression} (as described for \cs{bool_if:nTF}).
% If it is \texttt{true} the \meta{code} is placed in the input stream
% and expanded. After the completion of the \meta{code} the truth
% of the \meta{boolean expression} is re-evaluated. The process will
% then loop until the \meta{boolean expression} is \texttt{false}.
% \end{function}
%
% \section{Producing $n$ copies}
%
% \begin{function}[updated = 2011-07-04, EXP]{\prg_replicate:nn}
% \begin{syntax}
% \cs{prg_replicate:nn} \Arg{integer expression} \Arg{tokens}
% \end{syntax}
% Evaluates the \meta{integer expression} (which should be
% zero or positive) and creates the resulting number of copies
% of the \meta{tokens}. The function is both expandable and safe for
% nesting. It yields its result after two expansion steps.
% \end{function}
%
% \section{Detecting \TeX{}'s mode}
%
% \begin{function}[EXP,pTF]{\mode_if_horizontal:}
% \begin{syntax}
% \cs{mode_if_horizontal_p:}
% \cs{mode_if_horizontal:TF} \Arg{true code} \Arg{false code}
% \end{syntax}
% Detects if \TeX{} is currently in horizontal mode.
% \end{function}
%
% \begin{function}[EXP,pTF]{\mode_if_inner:}
% \begin{syntax}
% \cs{mode_if_inner_p:}
% \cs{mode_if_inner:TF} \Arg{true code} \Arg{false code}
% \end{syntax}
% Detects if \TeX{} is currently in inner mode.
% \end{function}
%
% \begin{function}[updated = 2011-09-05, EXP,pTF]{\mode_if_math:}
% \begin{syntax}
% \cs{mode_if_math:TF} \Arg{true code} \Arg{false code}
% \end{syntax}
% Detects if \TeX{} is currently in maths mode.
% \end{function}
%
% \begin{function}[EXP,pTF]{\mode_if_vertical:}
% \begin{syntax}
% \cs{mode_if_vertical_p:}
% \cs{mode_if_vertical:TF} \Arg{true code} \Arg{false code}
% \end{syntax}
% Detects if \TeX{} is currently in vertical mode.
% \end{function}
%
% \section{Primitive conditionals}
%
% \begin{function}[EXP]{\if_predicate:w}
% \begin{syntax}
% "\if_predicate:w" <predicate> <true code> "\else:" <false code> "\fi:"
% \end{syntax}
% This function takes a predicate function and
% branches according to the result. (In practice this function would also
% accept a single boolean variable in place of the <predicate> but to make the
% coding clearer this should be done through "\if_bool:N".)
% \end{function}
%
% \begin{function}[EXP]{\if_bool:N}
% \begin{syntax}
% "\if_bool:N" <boolean> <true code> "\else:" <false code> "\fi:"
% \end{syntax}
% This function takes a boolean variable and
% branches according to the result.
% \end{function}
%
% \section{Internal programming functions}
%
% \begin{function}[updated = 2011-08-11, EXP]
% {\group_align_safe_begin:, \group_align_safe_end:}
% \begin{syntax}
% \cs{group_align_safe_begin:}
% \ldots
% \cs{group_align_safe_end:}
% \end{syntax}
% These functions are used to enclose material in a \TeX{} alignment
% environment within a specially-constructed group. This group is
% designed in such a way that it does not add brace groups to the
% output but does act as a group for the |&| token inside
% \tn{halign}. This is necessary to allow grabbing of tokens
% for testing purposes, as \TeX{} uses group level to determine the
% effect of alignment tokens. Without the special grouping, the use of
% a function such as \cs{peek_after:Nw} will result in a forbidden
% comparison of the internal \tn{endtemplate} token, yielding a
% fatal error. Each \cs{group_align_safe_begin:} must be matched by a
% \cs{group_align_safe_end:}, although this does not have to occur
% within the same function.
% \end{function}
%
% \begin{function}[updated = 2011-09-06]{\scan_align_safe_stop:}
% \begin{syntax}
% \cs{scan_align_safe_stop:}
% \end{syntax}
% Stops \TeX{}'s scanner looking for expandable control sequences at
% the beginning of an alignment cell. This function is required, for
% example, to obtain the expected output when testing \cs{mode_if_math:TF}
% at the start of a math array cell: placing
% \cs{scan_align_safe_stop:} before \cs{mode_if_math:TF} will give the
% correct result. This function does not destroy any kerning if used in
% other locations, but \emph{does} render functions non-expandable.
% \begin{texnote}
% This is a protected version of \cs{prg_do_nothing:}, which therefore
% stops \TeX{}'s scanner in the circumstances described without producing
% any affect on the output.
% \end{texnote}
% \end{function}
%
% \begin{function}[EXP]{\__prg_variable_get_scope:N}
% \begin{syntax}
% \cs{__prg_variable_get_scope:N} \meta{variable}
% \end{syntax}
% Returns the scope (\texttt{g} for global, blank otherwise) for the
% \meta{variable}.
% \end{function}
%
% \begin{function}[EXP]{\__prg_variable_get_type:N}
% \begin{syntax}
% \cs{__prg_variable_get_type:N} \meta{variable}
% \end{syntax}
% Returns the type of \meta{variable} (\texttt{tl}, \texttt{int},
% \emph{etc.})
% \end{function}
%
% \begin{function}[EXP]{\__prg_break_point:Nn}
% \begin{syntax}
% \cs{__prg_break_point:Nn} \cs{\meta{type}_map_break:} \meta{tokens}
% \end{syntax}
% Used to mark the end of a recursion or mapping: the functions
% \cs{\meta{type}_map_break:} and \cs{\meta{type}_map_break:n} use
% this to break out of the loop. After the loop ends, the
% \meta{tokens} are inserted into the input stream. This occurs even
% if the break functions are \emph{not} applied:
% \cs{__prg_break_point:Nn} is functionally-equivalent in these cases
% to \cs{use_ii:nn}.
% \end{function}
%
% \begin{function}[EXP]{\__prg_map_break:Nn}
% \begin{syntax}
% \cs{__prg_map_break:Nn} \cs{\meta{type}_map_break:} \Arg{user code}
% \ldots{}
% \cs{__prg_break_point:Nn} \cs{\meta{type}_map_break:} \Arg{ending code}
% \end{syntax}
% Breaks a recursion in mapping contexts, inserting in the input
% stream the \meta{user code} after the \meta{ending code} for the
% loop. The function breaks loops, inserting their \meta{ending
% code}, until reaching a loop with the same \meta{type} as its
% first argument. This \cs{\meta{type}_map_break:} argument is simply
% used as a recognizable marker for the \meta{type}.
% \end{function}
%
% \begin{variable}{\g__prg_map_int}
% This integer is used by non-expandable mapping functions to track
% the level of nesting in force. The functions \cs{__prg_map_1:w},
% \cs{__prg_map_2:w}, \emph{etc.}, labelled by \cs{g__prg_map_int}
% hold functions to be mapped over various list datatypes in inline
% and variable mappings.
% \end{variable}
%
% \begin{function}[EXP]{\__prg_break_point:}
% This copy of \cs{prg_do_nothing:} is used to mark the end of a fast
% short-term recursions: the function \cs{__prg_break:n} uses this to
% break out of the loop.
% \end{function}
%
% \begin{function}[EXP]{\__prg_break:, \__prg_break:n}
% \begin{syntax}
% \cs{__prg_break:n} \Arg{tokens} \ldots{} \cs{__prg_break_point:}
% \end{syntax}
% Breaks a recursion which has no \meta{ending code} and which is not
% a user-breakable mapping (see for instance \cs{prop_get:Nn}), and
% inserts \meta{tokens} in the input stream.
% \end{function}
%
% \end{documentation}
%
% \begin{implementation}
%
% \section{\pkg{l3prg} implementation}
%
% \TestFiles{m3prg001.lvt,m3prg002.lvt,m3prg003.lvt}
%%
% \begin{macrocode}
%<*initex|package>
% \end{macrocode}
%
% \begin{macrocode}
%<*package>
\ProvidesExplPackage
{\ExplFileName}{\ExplFileDate}{\ExplFileVersion}{\ExplFileDescription}
\__expl_package_check:
%</package>
% \end{macrocode}
%
% \subsection{Primitive conditionals}
%
% \begin{macro}{\if_bool:N}
% \begin{macro}{\if_predicate:w}
% Those two primitive \TeX{} conditionals are synonyms.
% They should not be used outside the kernel code.
% \begin{macrocode}
\tex_let:D \if_bool:N \tex_ifodd:D
\tex_let:D \if_predicate:w \tex_ifodd:D
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \subsection{Defining a set of conditional functions}
%
% \begin{macro}
% {
% \prg_set_conditional:Npnn,
% \prg_new_conditional:Npnn,
% \prg_set_protected_conditional:Npnn,
% \prg_new_protected_conditional:Npnn
% }
% \begin{macro}
% {
% \prg_set_conditional:Nnn,
% \prg_new_conditional:Nnn,
% \prg_set_protected_conditional:Nnn,
% \prg_new_protected_conditional:Nnn
% }
% \begin{macro}{\prg_set_eq_conditional:NNn, \prg_new_eq_conditional:NNn}
% \begin{macro}{\prg_return_true:}
% \TestMissing
% {This function is implicitly tested with all other conditionals!}
% \begin{macro}{\prg_return_false:}
% \TestMissing
% {This function is also implicitly tested with all other conditionals!}
% These are all defined in \pkg{l3basics}, as they are needed
% \enquote{early}. This is just a reminder that that is the case!
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \subsection{The boolean data type}
%
% \begin{macrocode}
%<@@=bool>
% \end{macrocode}
%
% \begin{macro}{\bool_new:N, \bool_new:c}
% \UnitTested
% Boolean variables have to be initiated when they are created. Other
% than that there is not much to say here.
% \begin{macrocode}
\cs_new_protected:Npn \bool_new:N #1 { \cs_new_eq:NN #1 \c_false_bool }
\cs_generate_variant:Nn \bool_new:N { c }
% \end{macrocode}
% \end{macro}
%
% \begin{macro}
% {
% \bool_set_true:N, \bool_set_true:c,
% \bool_gset_true:N, \bool_gset_true:c,
% \bool_set_false:N, \bool_set_false:c,
% \bool_gset_false:N, \bool_gset_false:c
% }
% \UnitTested
% Setting is already pretty easy.
% \begin{macrocode}
\cs_new_protected:Npn \bool_set_true:N #1
{ \cs_set_eq:NN #1 \c_true_bool }
\cs_new_protected:Npn \bool_set_false:N #1
{ \cs_set_eq:NN #1 \c_false_bool }
\cs_new_protected:Npn \bool_gset_true:N #1
{ \cs_gset_eq:NN #1 \c_true_bool }
\cs_new_protected:Npn \bool_gset_false:N #1
{ \cs_gset_eq:NN #1 \c_false_bool }
\cs_generate_variant:Nn \bool_set_true:N { c }
\cs_generate_variant:Nn \bool_set_false:N { c }
\cs_generate_variant:Nn \bool_gset_true:N { c }
\cs_generate_variant:Nn \bool_gset_false:N { c }
% \end{macrocode}
% \end{macro}
%
% \begin{macro}
% {
% \bool_set_eq:NN, \bool_set_eq:cN,
% \bool_set_eq:Nc, \bool_set_eq:cc,
% \bool_gset_eq:NN, \bool_gset_eq:cN,
% \bool_gset_eq:Nc, \bool_gset_eq:cc
% }
% \UnitTested
% The usual copy code.
% \begin{macrocode}
\cs_new_eq:NN \bool_set_eq:NN \cs_set_eq:NN
\cs_new_eq:NN \bool_set_eq:Nc \cs_set_eq:Nc
\cs_new_eq:NN \bool_set_eq:cN \cs_set_eq:cN
\cs_new_eq:NN \bool_set_eq:cc \cs_set_eq:cc
\cs_new_eq:NN \bool_gset_eq:NN \cs_gset_eq:NN
\cs_new_eq:NN \bool_gset_eq:Nc \cs_gset_eq:Nc
\cs_new_eq:NN \bool_gset_eq:cN \cs_gset_eq:cN
\cs_new_eq:NN \bool_gset_eq:cc \cs_gset_eq:cc
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\bool_set:Nn,\bool_set:cn}
% \begin{macro}{\bool_gset:Nn,\bool_gset:cn}
% This function evaluates a boolean expression and assigns the first
% argument the meaning \cs{c_true_bool} or \cs{c_false_bool}.
% \begin{macrocode}
\cs_new_protected:Npn \bool_set:Nn #1#2
{ \tex_chardef:D #1 = \bool_if_p:n {#2} }
\cs_new_protected:Npn \bool_gset:Nn #1#2
{ \tex_global:D \tex_chardef:D #1 = \bool_if_p:n {#2} }
\cs_generate_variant:Nn \bool_set:Nn { c }
\cs_generate_variant:Nn \bool_gset:Nn { c }
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}[pTF]{\bool_if:N, \bool_if:c}
% \UnitTested
% Straight forward here. We could optimize here if we wanted to as
% the boolean can just be input directly.
% \begin{macrocode}
\prg_new_conditional:Npnn \bool_if:N #1 { p , T , F , TF }
{
\if_meaning:w \c_true_bool #1
\prg_return_true:
\else:
\prg_return_false:
\fi:
}
\cs_generate_variant:Nn \bool_if_p:N { c }
\cs_generate_variant:Nn \bool_if:NT { c }
\cs_generate_variant:Nn \bool_if:NF { c }
\cs_generate_variant:Nn \bool_if:NTF { c }
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\bool_show:N, \bool_show:c, \bool_show:n}
% Show the truth value of the boolean, as \texttt{true} or
% \texttt{false}. We use \cs{__msg_show_variable:n} to get a better
% output; this function requires its argument to start with |>~|.
% \begin{macrocode}
\cs_new_protected:Npn \bool_show:N #1
{
\bool_if_exist:NTF #1
{ \bool_show:n {#1} }
{
\__msg_kernel_error:nnx { kernel } { variable-not-defined }
{ \token_to_str:N #1 }
}
}
\cs_new_protected:Npn \bool_show:n #1
{
\bool_if:nTF {#1}
{ \__msg_show_variable:n { > ~ true } }
{ \__msg_show_variable:n { > ~ false } }
}
\cs_generate_variant:Nn \bool_show:N { c }
% \end{macrocode}
% \end{macro}
%
% \begin{variable}{\l_tmpa_bool, \l_tmpb_bool, \g_tmpa_bool, \g_tmpb_bool}
% A few booleans just if you need them.
% \begin{macrocode}
\bool_new:N \l_tmpa_bool
\bool_new:N \l_tmpb_bool
\bool_new:N \g_tmpa_bool
\bool_new:N \g_tmpb_bool
% \end{macrocode}
% \end{variable}
%
% \begin{macro}[pTF]{\bool_if_exist:N, \bool_if_exist:c}
% Copies of the \texttt{cs} functions defined in \pkg{l3basics}.
% \begin{macrocode}
\prg_new_eq_conditional:NNn \bool_if_exist:N \cs_if_exist:N { TF , T , F , p }
\prg_new_eq_conditional:NNn \bool_if_exist:c \cs_if_exist:c { TF , T , F , p }
% \end{macrocode}
% \end{macro}
%
% \subsection{Boolean expressions}
%
% \begin{macro}[pTF]{\bool_if:n}
% \UnitTested
% Evaluating the truth value of a list of predicates is done using an
% input syntax somewhat similar to the one found in other programming
% languages with |(| and |)| for grouping, |!| for logical
% \enquote{Not}, |&&| for logical \enquote{And} and \verb"||" for
% logical \enquote{Or}. We shall use the terms Not, And, Or, Open and
% Close for these operations.
%
% Any expression is terminated by a Close operation. Evaluation
% happens from left to right in the following manner using a GetNext
% function:
% \begin{itemize}
% \item If an Open is seen, start evaluating a new expression using
% the Eval function and call GetNext again.
% \item If a Not is seen, remove the |!| and call a GetNotNext
% function, which eventually reverses the logic compared to
% GetNext.
% \item If none of the above, reinsert the token found (this is
% supposed to be a predicate function) in front of an Eval
% function, which evaluates it to the boolean value \meta{true} or
% \meta{false}.
% \end{itemize}
% The Eval function then contains a post-processing operation which
% grabs the instruction following the predicate. This is either And,
% Or or Close. In each case the truth value is used to determine
% where to go next. The following situations can arise:
% \begin{description}
% \item[\meta{true}And] Current truth value is true, logical And
% seen, continue with GetNext to examine truth value of next
% boolean (sub-)expression.
% \item[\meta{false}And] Current truth value is false, logical And
% seen, stop evaluating the predicates within this sub-expression
% and break to the nearest Close. Then return \meta{false}.
% \item[\meta{true}Or] Current truth value is true, logical Or
% seen, stop evaluating the predicates within this sub-expression
% and break to the nearest Close. Then return \meta{true}.
% \item[\meta{false}Or] Current truth value is false, logical Or
% seen, continue with GetNext to examine truth value of next
% boolean (sub-)expression.
% \item[\meta{true}Close] Current truth value is true, Close
% seen, return \meta{true}.
% \item[\meta{false}Close] Current truth value is false, Close
% seen, return \meta{false}.
% \end{description}
% We introduce an additional Stop operation with the same
% semantics as the Close operation.
% \begin{description}
% \item[\meta{true}Stop] Current truth value is true, return
% \meta{true}.
% \item[\meta{false}Stop] Current truth value is false, return
% \meta{false}.
% \end{description}
% The reasons for this follow below.
% \begin{macrocode}
\prg_new_conditional:Npnn \bool_if:n #1 { T , F , TF }
{
\if_predicate:w \bool_if_p:n {#1}
\prg_return_true:
\else:
\prg_return_false:
\fi:
}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}[EXP]{\bool_if_p:n}
% \begin{macro}[EXP, aux]
% {
% \@@_if_left_parentheses:wwwn ,
% \@@_if_right_parentheses:wwwn ,
% \@@_if_or:wwwn
% }
% First issue a \cs{group_align_safe_begin:} as we are using |&&|
% as syntax shorthand for the And operation and we need to hide it for
% \TeX{}. This will be closed at the end of the expression parsing
% (see |S| below).
%
% Minimal (\enquote{short-circuit}) evaluation of boolean expressions
% requires skipping to the end of the current parenthesized group when
% \meta{true}\verb"||" is seen, but to the next \verb"||" or closing
% parenthesis when \meta{false}|&&| is seen. To avoid having separate
% functions for the two cases, we transform the boolean expression by
% doubling each parenthesis and adding parenthesis around each
% \verb"||". This ensures that |&&| will bind tighter than \verb"||".
%
% The replacement is done in three passes, for left and right
% parentheses and for \verb"||". At each pass, the part of the
% expression that has been transformed is stored before \cs{q_nil},
% the rest lies until the first \cs{q_mark}, followed by an empty
% brace group. A trailing marker ensures that the auxiliaries'
% delimited arguments will not run-away. As long as the delimiter
% matches inside the expression, material is moved before \cs{q_nil}
% and we continue. Afterwards, the trailing marker is taken as a
% delimiter, |#4| is the next auxiliary, immediately followed by a new
% \cs{q_nil} delimiter, which indicates that nothing has been treated
% at this pass. The last step calls \cs{@@_if_parse:NNNww} which
% cleans up and triggers the evaluation of the expression itself.
% \begin{macrocode}
\cs_new:Npn \bool_if_p:n #1
{
\group_align_safe_begin:
\@@_if_left_parentheses:wwwn \q_nil
#1 \q_mark { }
( \q_mark { \@@_if_right_parentheses:wwwn \q_nil }
) \q_mark { \@@_if_or:wwwn \q_nil }
|| \q_mark \@@_if_parse:NNNww
\q_stop
}
\cs_new:Npn \@@_if_left_parentheses:wwwn #1 \q_nil #2 ( #3 \q_mark #4
{ #4 \@@_if_left_parentheses:wwwn #1 #2 (( \q_nil #3 \q_mark {#4} }
\cs_new:Npn \@@_if_right_parentheses:wwwn #1 \q_nil #2 ) #3 \q_mark #4
{ #4 \@@_if_right_parentheses:wwwn #1 #2 )) \q_nil #3 \q_mark {#4} }
\cs_new:Npn \@@_if_or:wwwn #1 \q_nil #2 || #3 \q_mark #4
{ #4 \@@_if_or:wwwn #1 #2 )||( \q_nil #3 \q_mark {#4} }
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}[EXP, aux]{\@@_if_parse:NNNww}
% After removing extra tokens from the transformation phase, start
% evaluating. At the end, we will need to finish the special
% \texttt{align_safe} group before finally
% returning a \cs{c_true_bool} or \cs{c_false_bool} as there might
% otherwise be something left in front in the input stream. For this
% we call the Stop operation, denoted simply by a |S| following the
% last Close operation.
% \begin{macrocode}
\cs_new:Npn \@@_if_parse:NNNww #1#2#3#4 \q_mark #5 \q_stop
{
\__bool_get_next:NN \use_i:nn (( #4 )) S
}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}[aux]{\@@_get_next:NN}
% The GetNext operation. This is a switch: if what follows is neither
% |!| nor |(|, we assume it is a predicate. The first argument is
% \cs{use_ii:nn} if the logic must eventually be reversed (after a
% |!|), otherwise it is \cs{use_i:nn}. This function eventually
% expand to the truth value \cs{c_true_bool} or \cs{c_false_bool} of
% the expression which follows until the next unmatched closing
% parenthesis.
% \begin{macrocode}
\cs_new:Npn \@@_get_next:NN #1#2
{
\use:c
{
@@_
\if_meaning:w !#2 ! \else: \if_meaning:w (#2 ( \else: p \fi: \fi:
:Nw
}
#1 #2
}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}[aux]{\@@_!:Nw}
% The Not operation reverses the logic: discard the |!| token and call
% the GetNext operation with its first argument reversed.
% \begin{macrocode}
\cs_new:cpn { @@_!:Nw } #1#2
{ \exp_after:wN \@@_get_next:NN #1 \use_ii:nn \use_i:nn }
% \end{macrocode}
% \end{macro}
%
% \begin{macro}[aux]{\@@_(:Nw}
% The Open operation starts a sub-expression after discarding the
% token. This is done by calling GetNext, with a post-processing step
% which looks for And, Or or Close afterwards.
% \begin{macrocode}
\cs_new:cpn { @@_(:Nw } #1#2
{
\exp_after:wN \@@_choose:NNN \exp_after:wN #1
\__int_value:w \@@_get_next:NN \use_i:nn
}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}[aux]{\@@_p:Nw}
% If what follows GetNext is neither |!| nor |(|, evaluate the
% predicate using the primitive \cs{__int_value:w}. The canonical
% true and false values have numerical values $1$ and $0$
% respectively. Look for And, Or or Close afterwards.
% \begin{macrocode}
\cs_new:cpn { @@_p:Nw } #1
{ \exp_after:wN \@@_choose:NNN \exp_after:wN #1 \__int_value:w }
% \end{macrocode}
% \end{macro}
%
% \begin{macro}[aux]{\@@_choose:NNN}
% Branching the eight-way switch. The arguments are 1: \cs{use_i:nn}
% or \cs{use_ii:nn}, 2: $0$ or $1$ encoding the current truth value,
% 3: the next operation, And, Or, Close or Stop. If |#1| is
% \cs{use_ii:nn}, the logic of |#2| must be reversed.
% \begin{macrocode}
\cs_new:Npn \@@_choose:NNN #1#2#3
{
\use:c
{
@@_ #3 _
#1 #2 { \if_meaning:w 0 #2 1 \else: 0 \fi: }
:w
}
}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}[aux]
% {
% \@@_)_0:w,
% \@@_)_1:w,
% \@@_S_0:w,
% \@@_S_1:w,
% }
% Closing a group is just about returning the result. The Stop
% operation is similar except it closes the special alignment group
% before returning the boolean.
% \begin{macrocode}
\cs_new_nopar:cpn { @@_)_0:w } { \c_false_bool }
\cs_new_nopar:cpn { @@_)_1:w } { \c_true_bool }
\cs_new_nopar:cpn { @@_S_0:w } { \group_align_safe_end: \c_false_bool }
\cs_new_nopar:cpn { @@_S_1:w } { \group_align_safe_end: \c_true_bool }
% \end{macrocode}
% \end{macro}
%
% \begin{macro}[aux]+\@@_&_1:w+
% \begin{macro}[aux]+\@@_|_0:w+
% Two cases where we simply continue scanning. We must remove the
% second "&" or \verb"|".
% \begin{macrocode}
\cs_new_nopar:cpn { @@_&_1:w } & { \@@_get_next:NN \use_i:nn }
\cs_new_nopar:cpn { @@_|_0:w } | { \@@_get_next:NN \use_i:nn }
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}[aux]+\@@_&_0:w+
% \begin{macro}[aux]+\@@_|_1:w+
% \begin{macro}[aux]
% {
% \@@_eval_skip_to_end_auxi:Nw,
% \@@_eval_skip_to_end_auxii:Nw,
% \@@_eval_skip_to_end_auxiii:Nw
% }
% When the truth value has already been decided, we have to throw away
% the remainder of the current group as we are doing minimal
% evaluation. This is slightly tricky as there are no braces so we
% have to play match the |()| manually.
% \begin{macrocode}
\cs_new_nopar:cpn { @@_&_0:w } & { \@@_eval_skip_to_end_auxi:Nw \c_false_bool }
\cs_new_nopar:cpn { @@_|_1:w } | { \@@_eval_skip_to_end_auxi:Nw \c_true_bool }
% \end{macrocode}
% There is always at least one |)| waiting, namely the outer
% one. However, we are facing the problem that there may be more than
% one that need to be finished off and we have to detect the correct
% number of them. Here is a complicated example showing how this is
% done. After evaluating the following, we realize we must skip
% everything after the first And. Note the extra Close at the end.
% \begin{quote}
% |\c_false_bool && ((abc) && xyz) && ((xyz) && (def)))|
% \end{quote}
% First read up to the first Close. This gives us the list we first
% read up until the first right parenthesis so we are looking at the
% token list
% \begin{quote}
% |((abc|
% \end{quote}
% This contains two Open markers so we must remove two groups. Since
% no evaluation of the contents is to be carried out, it doesn't
% matter how we remove the groups as long as we wind up with the
% correct result. We therefore first remove a |()| pair and what
% preceded the Open -- but leave the contents as it may contain Open
% tokens itself -- leaving
% \begin{quote}
% |(abc && xyz) && ((xyz) && (def)))|
% \end{quote}
% Another round of this gives us
% \begin{quote}
% |(abc && xyz|
% \end{quote}
% which still contains an Open so we remove another |()| pair, giving us
% \begin{quote}
% |abc && xyz && ((xyz) && (def)))|
% \end{quote}
% Again we read up to a Close and again find Open tokens:
% \begin{quote}
% |abc && xyz && ((xyz|
% \end{quote}
% Further reduction gives us
% \begin{quote}
% |(xyz && (def)))|
% \end{quote}
% and then
% \begin{quote}
% |(xyz && (def|
% \end{quote}
% with reduction to
% \begin{quote}
% |xyz && (def))|
% \end{quote}
% and ultimately we arrive at no Open tokens being skipped and we can
% finally close the group nicely.
% \begin{macrocode}
%% (
\cs_new:Npn \@@_eval_skip_to_end_auxi:Nw #1#2 )
{
\@@_eval_skip_to_end_auxii:Nw #1#2 ( % )
\q_no_value \q_stop
{#2}
}
% \end{macrocode}
% If no right parenthesis, then |#3| is no_value and we are done, return
% the boolean |#1|. If there is, we need to grab a |()| pair and then
% recurse
% \begin{macrocode}
\cs_new:Npn \@@_eval_skip_to_end_auxii:Nw #1#2 ( #3#4 \q_stop #5 % )
{
\quark_if_no_value:NTF #3
{#1}
{ \@@_eval_skip_to_end_auxiii:Nw #1 #5 }
}
% \end{macrocode}
% Keep the boolean, throw away anything up to the |(| as it is
% irrelevant, remove a |()| pair but remember to reinsert |#3| as it may
% contain |(| tokens!
% \begin{macrocode}
\cs_new:Npn \@@_eval_skip_to_end_auxiii:Nw #1#2 ( #3 )
{ % (
\@@_eval_skip_to_end_auxi:Nw #1#3 )
}
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\bool_not_p:n}
% \UnitTested
% The Not variant just reverses the outcome of \cs{bool_if_p:n}. Can
% be optimized but this is nice and simple and according to the
% implementation plan. Not even particularly useful to have it when
% the infix notation is easier to use.
% \begin{macrocode}
\cs_new:Npn \bool_not_p:n #1 { \bool_if_p:n { ! ( #1 ) } }
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\bool_xor_p:nn}
% \UnitTested
% Exclusive or. If the boolean expressions have same truth value,
% return false, otherwise return true.
% \begin{macrocode}
\cs_new:Npn \bool_xor_p:nn #1#2
{
\int_compare:nNnTF { \bool_if_p:n {#1} } = { \bool_if_p:n {#2} }
\c_false_bool
\c_true_bool
}
% \end{macrocode}
% \end{macro}
%
% \subsection{Logical loops}
%
% \begin{macro}{\bool_while_do:Nn,\bool_while_do:cn}
% \UnitTested
% \begin{macro}{\bool_until_do:Nn,\bool_until_do:cn}
% \UnitTested
% A |while| loop where the boolean is tested before executing the
% statement. The \enquote{while} version executes the code as long as the
% boolean is true; the \enquote{until} version executes the code as
% long as the boolean is false.
% \begin{macrocode}
\cs_new:Npn \bool_while_do:Nn #1#2
{ \bool_if:NT #1 { #2 \bool_while_do:Nn #1 {#2} } }
\cs_new:Npn \bool_until_do:Nn #1#2
{ \bool_if:NF #1 { #2 \bool_until_do:Nn #1 {#2} } }
\cs_generate_variant:Nn \bool_while_do:Nn { c }
\cs_generate_variant:Nn \bool_until_do:Nn { c }
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\bool_do_while:Nn,\bool_do_while:cn}
% \UnitTested
% \begin{macro}{\bool_do_until:Nn,\bool_do_until:cn}
% \UnitTested
% A |do-while| loop where the body is performed at least once and the
% boolean is tested after executing the body. Otherwise identical to
% the above functions.
% \begin{macrocode}
\cs_new:Npn \bool_do_while:Nn #1#2
{ #2 \bool_if:NT #1 { \bool_do_while:Nn #1 {#2} } }
\cs_new:Npn \bool_do_until:Nn #1#2
{ #2 \bool_if:NF #1 { \bool_do_until:Nn #1 {#2} } }
\cs_generate_variant:Nn \bool_do_while:Nn { c }
\cs_generate_variant:Nn \bool_do_until:Nn { c }
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}
% {
% \bool_while_do:nn, \bool_do_while:nn ,
% \bool_until_do:nn, \bool_do_until:nn
% }
% \UnitTested
% Loop functions with the test either before or after the first body
% expansion.
% \begin{macrocode}
\cs_new:Npn \bool_while_do:nn #1#2
{
\bool_if:nT {#1}
{
#2
\bool_while_do:nn {#1} {#2}
}
}
\cs_new:Npn \bool_do_while:nn #1#2
{
#2
\bool_if:nT {#1} { \bool_do_while:nn {#1} {#2} }
}
\cs_new:Npn \bool_until_do:nn #1#2
{
\bool_if:nF {#1}
{
#2
\bool_until_do:nn {#1} {#2}
}
}
\cs_new:Npn \bool_do_until:nn #1#2
{
#2
\bool_if:nF {#1} { \bool_do_until:nn {#1} {#2} }
}
% \end{macrocode}
% \end{macro}
%
% \subsection{Producing $n$ copies}
%
% \begin{macrocode}
%<@@=prg>
% \end{macrocode}
%
% \begin{macro}{\prg_replicate:nn}
% \UnitTested
% \begin{macro}[aux]{\@@_replicate:N, \@@_replicate_first:N}
% \begin{macro}[aux]{\@@_replicate_}
% \begin{macro}[aux]
% {
% \@@_replicate_0:n,
% \@@_replicate_1:n,
% \@@_replicate_2:n,
% \@@_replicate_3:n,
% \@@_replicate_4:n,
% \@@_replicate_5:n,
% \@@_replicate_6:n,
% \@@_replicate_7:n,
% \@@_replicate_8:n,
% \@@_replicate_9:n
% }
% \begin{macro}[aux]
% {
% \@@_replicate_first_-:n,
% \@@_replicate_first_0:n,
% \@@_replicate_first_1:n,
% \@@_replicate_first_2:n,
% \@@_replicate_first_3:n,
% \@@_replicate_first_4:n,
% \@@_replicate_first_5:n,
% \@@_replicate_first_6:n,
% \@@_replicate_first_7:n,
% \@@_replicate_first_8:n,
% \@@_replicate_first_9:n
% }
% This function uses a cascading csname technique by David Kastrup
% (who else :-)
%
% The idea is to make the input |25| result in first adding five, and
% then 20 copies of the code to be replicated. The technique uses
% cascading csnames which means that we start building several csnames
% so we end up with a list of functions to be called in reverse
% order. This is important here (and other places) because it means
% that we can for instance make the function that inserts five copies
% of something to also hand down ten to the next function in
% line. This is exactly what happens here: in the example with |25|
% then the next function is the one that inserts two copies but it
% sees the ten copies handed down by the previous function. In order
% to avoid the last function to insert say, $100$ copies of the original
% argument just to gobble them again we define separate functions to
% be inserted first. These functions also close the expansion of
% \cs{__int_to_roman:w}, which ensures that \cs{prg_replicate:nn} only
% requires two steps of expansion.
%
% This function has one flaw though: Since it constantly passes down
% ten copies of its previous argument it will severely affect the main
% memory once you start demanding hundreds of thousands of copies. Now
% I don't think this is a real limitation for any ordinary use, and if
% necessary, it is possible to write
% |\prg_replicate:nn{1000}{\prg_replicate:nn{1000}{|\meta{code}|}}|. An
% alternative approach is to create a string of |m|'s with
% \cs{__int_to_roman:w} which can be done with just four macros but that
% method has its own problems since it can exhaust the string
% pool. Also, it is considerably slower than what we use here so the
% few extra csnames are well spent I would say.
% \begin{macrocode}
\cs_new:Npn \prg_replicate:nn #1
{
\__int_to_roman:w
\exp_after:wN \@@_replicate_first:N
\__int_value:w \__int_eval:w #1 \__int_eval_end:
\cs_end:
}
\cs_new:Npn \@@_replicate:N #1
{ \cs:w @@_replicate_#1 :n \@@_replicate:N }
\cs_new:Npn \@@_replicate_first:N #1
{ \cs:w @@_replicate_first_ #1 :n \@@_replicate:N }
% \end{macrocode}
% Then comes all the functions that do the hard work of inserting all
% the copies. The first function takes |:n| as a parameter.
% \begin{macrocode}
\cs_new:Npn \@@_replicate_ :n #1 { \cs_end: }
\cs_new:cpn { @@_replicate_0:n } #1 { \cs_end: {#1#1#1#1#1#1#1#1#1#1} }
\cs_new:cpn { @@_replicate_1:n } #1 { \cs_end: {#1#1#1#1#1#1#1#1#1#1} #1 }
\cs_new:cpn { @@_replicate_2:n } #1 { \cs_end: {#1#1#1#1#1#1#1#1#1#1} #1#1 }
\cs_new:cpn { @@_replicate_3:n } #1
{ \cs_end: {#1#1#1#1#1#1#1#1#1#1} #1#1#1 }
\cs_new:cpn { @@_replicate_4:n } #1
{ \cs_end: {#1#1#1#1#1#1#1#1#1#1} #1#1#1#1 }
\cs_new:cpn { @@_replicate_5:n } #1
{ \cs_end: {#1#1#1#1#1#1#1#1#1#1} #1#1#1#1#1 }
\cs_new:cpn { @@_replicate_6:n } #1
{ \cs_end: {#1#1#1#1#1#1#1#1#1#1} #1#1#1#1#1#1 }
\cs_new:cpn { @@_replicate_7:n } #1
{ \cs_end: {#1#1#1#1#1#1#1#1#1#1} #1#1#1#1#1#1#1 }
\cs_new:cpn { @@_replicate_8:n } #1
{ \cs_end: {#1#1#1#1#1#1#1#1#1#1} #1#1#1#1#1#1#1#1 }
\cs_new:cpn { @@_replicate_9:n } #1
{ \cs_end: {#1#1#1#1#1#1#1#1#1#1} #1#1#1#1#1#1#1#1#1 }
% \end{macrocode}
% Users shouldn't ask for something to be replicated once or even
% not at all but\dots
% \begin{macrocode}
\cs_new:cpn { @@_replicate_first_-:n } #1
{
\c_zero
\__msg_kernel_expandable_error:nn { kernel } { negative-replication }
}
\cs_new:cpn { @@_replicate_first_0:n } #1 { \c_zero }
\cs_new:cpn { @@_replicate_first_1:n } #1 { \c_zero #1 }
\cs_new:cpn { @@_replicate_first_2:n } #1 { \c_zero #1#1 }
\cs_new:cpn { @@_replicate_first_3:n } #1 { \c_zero #1#1#1 }
\cs_new:cpn { @@_replicate_first_4:n } #1 { \c_zero #1#1#1#1 }
\cs_new:cpn { @@_replicate_first_5:n } #1 { \c_zero #1#1#1#1#1 }
\cs_new:cpn { @@_replicate_first_6:n } #1 { \c_zero #1#1#1#1#1#1 }
\cs_new:cpn { @@_replicate_first_7:n } #1 { \c_zero #1#1#1#1#1#1#1 }
\cs_new:cpn { @@_replicate_first_8:n } #1 { \c_zero #1#1#1#1#1#1#1#1 }
\cs_new:cpn { @@_replicate_first_9:n } #1 { \c_zero #1#1#1#1#1#1#1#1#1 }
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \subsection{Detecting \TeX{}'s mode}
%
% \begin{macro}[pTF]{\mode_if_vertical:}
% \UnitTested
% For testing vertical mode. Strikes me here on the bus with David,
% that as long as we are just talking about returning true and
% false states, we can just use the primitive conditionals for this
% and gobbling the \cs{c_zero} in the input stream. However this
% requires knowledge of the implementation so we keep things nice
% and clean and use the return statements.
% \begin{macrocode}
\prg_new_conditional:Npnn \mode_if_vertical: { p , T , F , TF }
{ \if_mode_vertical: \prg_return_true: \else: \prg_return_false: \fi: }
% \end{macrocode}
% \end{macro}
%
% \begin{macro}[pTF]{\mode_if_horizontal:}
% \UnitTested
% For testing horizontal mode.
% \begin{macrocode}
\prg_new_conditional:Npnn \mode_if_horizontal: { p , T , F , TF }
{ \if_mode_horizontal: \prg_return_true: \else: \prg_return_false: \fi: }
% \end{macrocode}
% \end{macro}
%
% \begin{macro}[pTF]{\mode_if_inner:}
% \UnitTested
% For testing inner mode.
% \begin{macrocode}
\prg_new_conditional:Npnn \mode_if_inner: { p , T , F , TF }
{ \if_mode_inner: \prg_return_true: \else: \prg_return_false: \fi: }
% \end{macrocode}
% \end{macro}
%
% \begin{macro}[pTF]{\mode_if_math:}
% \UnitTested
% For testing math mode. At the beginning of an alignment cell,
% the programmer should insert \cs{scan_align_safe_stop:} before
% the test.
% \begin{macrocode}
\prg_new_conditional:Npnn \mode_if_math: { p , T , F , TF }
{ \if_mode_math: \prg_return_true: \else: \prg_return_false: \fi: }
% \end{macrocode}
% \end{macro}
%
% \subsection{Internal programming functions}
%
% \begin{macro}[int]{\group_align_safe_begin:, \group_align_safe_end:}
% \TeX{}'s alignment structures present many problems. As Knuth says
% himself in \emph{\TeX : The Program}: \enquote{It's sort of a miracle
% whenever \tn{halign} or \tn{valign} work, [\ldots]} One problem relates
% to commands that internally issues a \tn{cr} but also peek ahead for
% the next character for use in, say, an optional argument. If the
% next token happens to be a |&| with category code~4 we will get some
% sort of weird error message because the underlying
% \tn{futurelet} will store the token at the end of the alignment
% template. This could be a |&|$_4$ giving a message like
% |! Misplaced \cr.| or even worse: it could be the \tn{endtemplate}
% token causing even more trouble! To solve this we have to open a
% special group so that \TeX{} still thinks it's on safe ground but at
% the same time we don't want to introduce any brace group that may
% find its way to the output. The following functions help with this
% by using code documented only in Appendix~D of
% \emph{The \TeX{}book}\dots
% We place the \cs{if_false:} |{| \cs{fi:} part at that place so
% that the successive expansions of \cs{group_align_safe_begin/end:}
% are always brace balanced.
% \begin{macrocode}
\cs_new_nopar:Npn \group_align_safe_begin:
{ \if_int_compare:w \if_false: { \fi: `} = \c_zero \fi: }
\cs_new_nopar:Npn \group_align_safe_end:
{ \if_int_compare:w `{ = \c_zero } \fi: }
% \end{macrocode}
% \end{macro}
%
% \begin{macro}[int]{\scan_align_safe_stop:}
% When \TeX{} is in the beginning of an align cell (right after the
% \tn{cr} or |&|) it is in a somewhat strange mode as it is looking
% ahead to find an \tn{omit} or \tn{noalign} and hasn't looked at the
% preamble yet. Thus an \tn{ifmmode} test at the start of an array
% cell (where math mode is introduced by the preamble, not in the cell
% itself) will always fail unless we stop \TeX{} from scanning ahead.
% With \eTeX{}'s first version, this required inserting
% \cs{scan_stop:}, but not in all cases (see below). This is no
% longer needed with a newer \eTeX{}, since protected macros are not
% expanded anymore at the beginning of an alignment cell. We can thus
% use an empty protected macro to stop \TeX{}.
% \begin{macrocode}
\cs_new_protected_nopar:Npn \scan_align_safe_stop: { }
% \end{macrocode}
% Let us now explain the earlier version. We don't want to insert
% a \cs{scan_stop:} every time as that will
% destroy kerning between letters\footnote{Unless we enforce an extra
% pass with an appropriate value of \tn{pretolerance}.}
% Unfortunately there is no way to detect if we're in the beginning of
% an alignment cell as they have different characteristics depending
% on column number, \emph{etc.} However we \emph{can} detect if we're in an
% alignment cell by checking the current group type and we can also
% check if the previous node was a character or ligature. What is done
% here is that \cs{scan_stop:} is only inserted if an only
% if a)~we're in the outer part of an alignment cell and b)~the last node
% \emph{wasn't} a char node or a ligature node. Thus an older definition
% here was
% \begin{verbatim}
% \cs_new_nopar:Npn \scan_align_safe_stop:
% {
% \int_compare:nNnT \etex_currentgrouptype:D = \c_six
% {
% \int_compare:nNnF \etex_lastnodetype:D = \c_zero
% {
% \int_compare:nNnF \etex_lastnodetype:D = \c_seven
% { \scan_stop: }
% }
% }
% }
% \end{verbatim}
% However, this is not truly expandable, as there are places where the
% \cs{scan_stop:} ends up in the result.
% \end{macro}
%
% \begin{macrocode}
%<@@=prg>
% \end{macrocode}
%
% \begin{macro}[int]{\@@_variable_get_scope:N}
% \begin{macro}[aux]{\@@_variable_get_scope:w}
% \begin{macro}[int]{\@@_variable_get_type:N}
% \begin{macro}[aux]{\@@_variable_get_type:w}
% Expandable functions to find the type of a variable, and to
% return \texttt{g} if the variable is global. The trick for
% \cs{@@_variable_get_scope:N} is the same as that in
% \cs{__cs_split_function:NN}, but it can be simplified as the
% requirements here are less complex.
% \begin{macrocode}
\group_begin:
\tex_lccode:D `* = `g \scan_stop:
\tex_catcode:D `* = \c_twelve
\tl_to_lowercase:n
{
\group_end:
\cs_new:Npn \@@_variable_get_scope:N #1
{
\exp_after:wN \exp_after:wN
\exp_after:wN \@@_variable_get_scope:w
\cs_to_str:N #1 \exp_stop_f: \q_stop
}
\cs_new:Npn \@@_variable_get_scope:w #1#2 \q_stop
{ \token_if_eq_meaning:NNT * #1 { g } }
}
\group_begin:
\tex_lccode:D `* = `_ \scan_stop:
\tex_catcode:D `* = \c_twelve
\tl_to_lowercase:n
{
\group_end:
\cs_new:Npn \@@_variable_get_type:N #1
{
\exp_after:wN \@@_variable_get_type:w
\token_to_str:N #1 * a \q_stop
}
\cs_new:Npn \@@_variable_get_type:w #1 * #2#3 \q_stop
{
\token_if_eq_meaning:NNTF a #2
{#1}
{ \@@_variable_get_type:w #2#3 \q_stop }
}
}
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \begin{variable}{\g_@@_map_int}
% A nesting counter for mapping.
% \begin{macrocode}
\int_new:N \g_@@_map_int
% \end{macrocode}
% \end{variable}
%
% \begin{macro}{\@@_break_point:Nn}
% \begin{macro}{\@@_map_break:Nn}
% These are defined in \pkg{l3basics}, as they are needed
% \enquote{early}. This is just a reminder that that is the case!
% \end{macro}
% \end{macro}
%
% \begin{macro}{\@@_break_point:}
% \begin{macro}{\@@_break:, \@@_break:n}
% Also done in \pkg{l3basics} as in format mode these are needed within
% \pkg{l3alloc}.
% \end{macro}
% \end{macro}
%
% \subsection{Deprecated functions}
%
% These were deprecated on 2012-02-08, and will be removed entirely by
% 2012-05-31.
%
% \begin{macro}[aux]{\prg_define_quicksort:nnn}
% |#1| is the name, |#2| and |#3| are the tokens enclosing the
% argument. For the somewhat strange \meta{clist} type which doesn't
% enclose the items but uses a separator we define it by hand
% afterwards. When doing the first pass, the algorithm wraps all
% elements in braces and then uses a generic quicksort which works
% on token lists.
%
% As an example
% \begin{quote}
% |\prg_define_quicksort:nnn{seq}{\seq_elt:w}{\seq_elt_end:w}|
% \end{quote}
% defines the user function |\seq_quicksort:n| and furthermore
% expects to use the two functions |\seq_quicksort_compare:nnTF|
% which compares the items and |\seq_quicksort_function:n| which is
% placed before each sorted item. It is up to the programmer to
% define these functions when needed. For the |seq| type a sequence
% is a token list variable, so one additionally has to define
% \begin{quote}
% |\cs_set_nopar:Npn \seq_quicksort:N{\exp_args:No\seq_quicksort:n}|
% \end{quote}
%
%
% For details on the implementation see \enquote{Sorting in \TeX{}'s Mouth}
% by Bernd Raichle. Firstly we define the function for parsing the
% initial list and then the braced list afterwards.
% \begin{macrocode}
%<*deprecated>
\cs_new_protected:Npn \prg_define_quicksort:nnn #1#2#3 {
\cs_set:cpx{#1_quicksort:n}##1{
\exp_not:c{#1_quicksort_start_partition:w} ##1
\exp_not:n{#2\q_nil#3\q_stop}
}
\cs_set:cpx{#1_quicksort_braced:n}##1{
\exp_not:c{#1_quicksort_start_partition_braced:n} ##1
\exp_not:N\q_nil\exp_not:N\q_stop
}
\cs_set:cpx {#1_quicksort_start_partition:w} #2 ##1 #3{
\exp_not:N \quark_if_nil:nT {##1}\exp_not:N \use_none_delimit_by_q_stop:w
\exp_not:c{#1_quicksort_do_partition_i:nnnw} {##1}{}{}
}
\cs_set:cpx {#1_quicksort_start_partition_braced:n} ##1 {
\exp_not:N \quark_if_nil:nT {##1}\exp_not:N \use_none_delimit_by_q_stop:w
\exp_not:c{#1_quicksort_do_partition_i_braced:nnnn} {##1}{}{}
}
%</deprecated>
% \end{macrocode}
% Now for doing the partitions.
% \begin{macrocode}
%<*deprecated>
\cs_set:cpx {#1_quicksort_do_partition_i:nnnw} ##1##2##3 #2 ##4 #3 {
\exp_not:N \quark_if_nil:nTF {##4} \exp_not:c {#1_do_quicksort_braced:nnnnw}
{
\exp_not:c{#1_quicksort_compare:nnTF}{##1}{##4}
\exp_not:c{#1_quicksort_partition_greater_ii:nnnn}
\exp_not:c{#1_quicksort_partition_less_ii:nnnn}
}
{##1}{##2}{##3}{##4}
}
\cs_set:cpx {#1_quicksort_do_partition_i_braced:nnnn} ##1##2##3##4 {
\exp_not:N \quark_if_nil:nTF {##4} \exp_not:c {#1_do_quicksort_braced:nnnnw}
{
\exp_not:c{#1_quicksort_compare:nnTF}{##1}{##4}
\exp_not:c{#1_quicksort_partition_greater_ii_braced:nnnn}
\exp_not:c{#1_quicksort_partition_less_ii_braced:nnnn}
}
{##1}{##2}{##3}{##4}
}
\cs_set:cpx {#1_quicksort_do_partition_ii:nnnw} ##1##2##3 #2 ##4 #3 {
\exp_not:N \quark_if_nil:nTF {##4} \exp_not:c {#1_do_quicksort_braced:nnnnw}
{
\exp_not:c{#1_quicksort_compare:nnTF}{##4}{##1}
\exp_not:c{#1_quicksort_partition_less_i:nnnn}
\exp_not:c{#1_quicksort_partition_greater_i:nnnn}
}
{##1}{##2}{##3}{##4}
}
\cs_set:cpx {#1_quicksort_do_partition_ii_braced:nnnn} ##1##2##3##4 {
\exp_not:N \quark_if_nil:nTF {##4} \exp_not:c {#1_do_quicksort_braced:nnnnw}
{
\exp_not:c{#1_quicksort_compare:nnTF}{##4}{##1}
\exp_not:c{#1_quicksort_partition_less_i_braced:nnnn}
\exp_not:c{#1_quicksort_partition_greater_i_braced:nnnn}
}
{##1}{##2}{##3}{##4}
}
%</deprecated>
% \end{macrocode}
% This part of the code handles the two branches in each
% sorting. Again we will also have to do it braced.
% \begin{macrocode}
%<*deprecated>
\cs_set:cpx {#1_quicksort_partition_less_i:nnnn} ##1##2##3##4{
\exp_not:c{#1_quicksort_do_partition_i:nnnw}{##1}{##2}{{##4}##3}}
\cs_set:cpx {#1_quicksort_partition_less_ii:nnnn} ##1##2##3##4{
\exp_not:c{#1_quicksort_do_partition_ii:nnnw}{##1}{##2}{##3{##4}}}
\cs_set:cpx {#1_quicksort_partition_greater_i:nnnn} ##1##2##3##4{
\exp_not:c{#1_quicksort_do_partition_i:nnnw}{##1}{{##4}##2}{##3}}
\cs_set:cpx {#1_quicksort_partition_greater_ii:nnnn} ##1##2##3##4{
\exp_not:c{#1_quicksort_do_partition_ii:nnnw}{##1}{##2{##4}}{##3}}
\cs_set:cpx {#1_quicksort_partition_less_i_braced:nnnn} ##1##2##3##4{
\exp_not:c{#1_quicksort_do_partition_i_braced:nnnn}{##1}{##2}{{##4}##3}}
\cs_set:cpx {#1_quicksort_partition_less_ii_braced:nnnn} ##1##2##3##4{
\exp_not:c{#1_quicksort_do_partition_ii_braced:nnnn}{##1}{##2}{##3{##4}}}
\cs_set:cpx {#1_quicksort_partition_greater_i_braced:nnnn} ##1##2##3##4{
\exp_not:c{#1_quicksort_do_partition_i_braced:nnnn}{##1}{{##4}##2}{##3}}
\cs_set:cpx {#1_quicksort_partition_greater_ii_braced:nnnn} ##1##2##3##4{
\exp_not:c{#1_quicksort_do_partition_ii_braced:nnnn}{##1}{##2{##4}}{##3}}
%</deprecated>
% \end{macrocode}
% Finally, the big kahuna! This is where the sub-lists are sorted.
% \begin{macrocode}
%<*deprecated>
\cs_set:cpx {#1_do_quicksort_braced:nnnnw} ##1##2##3##4\q_stop {
\exp_not:c{#1_quicksort_braced:n}{##2}
\exp_not:c{#1_quicksort_function:n}{##1}
\exp_not:c{#1_quicksort_braced:n}{##3}
}
}
%</deprecated>
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\prg_quicksort:n}
% A simple version. Sorts a list of tokens, uses the function
% |\prg_quicksort_compare:nnTF| to compare items, and places the
% function |\prg_quicksort_function:n| in front of each of them.
% \begin{macrocode}
%<*deprecated>
\prg_define_quicksort:nnn {prg}{}{}
%</deprecated>
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\prg_quicksort_function:n}
% \begin{macro}{\prg_quicksort_compare:nnTF}
% \begin{macrocode}
%<*deprecated>
\cs_set:Npn \prg_quicksort_function:n {\ERROR}
\cs_set:Npn \prg_quicksort_compare:nnTF {\ERROR}
%</deprecated>
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% These were deprecated on 2011-05-27 and will be removed entirely by
% 2011-08-31.
%
% \begin{macro}{\prg_new_map_functions:Nn}
% \begin{macro}{\prg_set_map_functions:Nn}
% As we have restructured the structured variables, these are no
% longer needed.
% \begin{macrocode}
%<*deprecated>
\cs_new_protected:Npn \prg_new_map_functions:Nn #1#2 { \deprecated }
\cs_new_protected:Npn \prg_set_map_functions:Nn #1#2 { \deprecated }
%</deprecated>
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% Deprecated 2012-06-03 for removal after 2012-12-31.
%
% \begin{macro}[EXP]
% {
% \prg_case_int:nnn, \prg_case_str:nnn, \prg_case_str:onn,
% \prg_case_str:xxn, \prg_case_tl:Nnn, \prg_case_tl:cnn
% }
% Moved to more sensible modules.
% \begin{macrocode}
%<*deprecated>
\cs_new_eq:NN \prg_case_int:nnn \int_case:nnn
\cs_new_eq:NN \prg_case_str:nnn \str_case:nnn
\cs_new_eq:NN \prg_case_str:onn \str_case:onn
\cs_new_eq:NN \prg_case_str:xxn \str_case_x:nnn
\cs_new_eq:NN \prg_case_tl:Nnn \tl_case:Nnn
\cs_new_eq:NN \prg_case_tl:cnn \tl_case:cnn
%</deprecated>
% \end{macrocode}
% \end{macro}
%
% Deprecated 2012-06-04 for removal after 2012-12-31.
%
% \begin{macro}
% {
% \prg_stepwise_function:nnnN, \prg_stepwise_inline:nnnn,
% \prg_stepwise_variable:nnnNn
% }
% \begin{macrocode}
%<*deprecated>
\cs_new_eq:NN \prg_stepwise_function:nnnN \int_step_function:nnnN
\cs_new_eq:NN \prg_stepwise_inline:nnnn \int_step_inline:nnnn
\cs_new_eq:NN \prg_stepwise_variable:nnnNn \int_step_variable:nnnNn
%</deprecated>
% \end{macrocode}
% \end{macro}
%
% \begin{macrocode}
%</initex|package>
% \end{macrocode}
%
% \end{implementation}
%
% \PrintIndex
|