1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
|
% \iffalse meta-comment
%
%% File: l3candidates.dtx Copyright(C) 2012 The LaTeX3 Project
%%
%% It may be distributed and/or modified under the conditions of the
%% LaTeX Project Public License (LPPL), either version 1.3c of this
%% license or (at your option) any later version. The latest version
%% of this license is in the file
%%
%% http://www.latex-project.org/lppl.txt
%%
%% This file is part of the "l3kernel bundle" (The Work in LPPL)
%% and all files in that bundle must be distributed together.
%%
%% The released version of this bundle is available from CTAN.
%%
%% -----------------------------------------------------------------------
%%
%% The development version of the bundle can be found at
%%
%% http://www.latex-project.org/svnroot/experimental/trunk/
%%
%% for those people who are interested.
%%
%%%%%%%%%%%
%% NOTE: %%
%%%%%%%%%%%
%%
%% Snapshots taken from the repository represent work in progress and may
%% not work or may contain conflicting material! We therefore ask
%% people _not_ to put them into distributions, archives, etc. without
%% prior consultation with the LaTeX Project Team.
%%
%% -----------------------------------------------------------------------
%%
%
%<*driver|package>
\RequirePackage{l3bootstrap}
\GetIdInfo$Id: l3candidates.dtx 4466 2013-03-09 14:58:43Z joseph $
{L3 Experimental additions to l3kernel}
%</driver|package>
%<*driver>
\documentclass[full]{l3doc}
\begin{document}
\DocInput{\jobname.dtx}
\end{document}
%</driver>
% \fi
%
% \title{^^A
% The \textsf{l3candidates} package\\ Experimental additions to
% \pkg{l3kernel}^^A
% \thanks{This file describes v\ExplFileVersion,
% last revised \ExplFileDate.}^^A
% }
%
% \author{^^A
% The \LaTeX3 Project\thanks
% {^^A
% E-mail:
% \href{mailto:latex-team@latex-project.org}
% {latex-team@latex-project.org}^^A
% }^^A
% }
%
% \date{Released \ExplFileDate}
%
% \maketitle
%
% \begin{documentation}
%
% This module provides a space in which functions can be added to
% \pkg{l3kernel} (\pkg{expl3}) while still being experimental. As such, the
% functions here may not remain in their current form, or indeed at all,
% in \pkg{l3kernel} in the future. In contrast to the material in
% \pkg{l3experimental}, the functions here are all \emph{small} additions to
% the kernel. We encourage programmers to test them out and report back on
% the \texttt{LaTeX-L} mailing list.
%
% \section{Additions to \pkg{l3basics}}
%
% \begin{function}[EXP,TF]{\cs_if_exist_use:N, \cs_if_exist_use:c}
% \begin{syntax}
% \cs{cs_if_exist_use:NTF} \meta{control sequence} \Arg{true code} \Arg{false code}
% \end{syntax}
% If the \meta{control sequence} exists, leave it in the input stream,
% followed by the \meta{true code} (unbraced). Otherwise, leave the
% \meta{false} code in the input stream. For example,
% \begin{verbatim}
% \cs_set:Npn \mypkg_use_character:N #1
% { \cs_if_exist_use:cF { mypkg_#1:n } { \mypkg_default:N #1 } }
% \end{verbatim}
% calls the function |\mypkg_#1:n| if it exists, and falls back to
% a default action otherwise. This could also be done (more slowly)
% using \cs{str_case_x:nnn}.
% \begin{texnote}
% The \texttt{c} variants do not introduce the \meta{control sequence}
% in the hash table if it is not there.
% \end{texnote}
% \end{function}
%
% \section{Additions to \pkg{l3box}}
%
% \subsection{Affine transformations}
%
% Affine transformations are changes which (informally) preserve straight
% lines. Simple translations are affine transformations, but are better handled
% in \TeX{} by doing the translation first, then inserting an unmodified box.
% On the other hand, rotation and resizing of boxed material can best be
% handled by modifying boxes. These transformations are described here.
%
% \begin{function}{\box_resize:Nnn, \box_resize:cnn}
% \begin{syntax}
% \cs{box_resize:Nnn} \meta{box} \Arg{x-size} \Arg{y-size}
% \end{syntax}
% Resize the \meta{box} to \meta{x-size} horizontally and \meta{y-size}
% vertically (both of the sizes are dimension expressions).
% The \meta{y-size} is the vertical size (height plus depth) of
% the box. The updated \meta{box} will be an hbox, irrespective of the nature
% of the \meta{box} before the resizing is applied. Negative sizes will
% cause the material in the \meta{box} to be reversed in direction, but the
% reference point of the \meta{box} will be unchanged. The resizing applies
% within the current \TeX{} group level.
% \end{function}
%
% \begin{function}
% {\box_resize_to_ht_plus_dp:Nn, \box_resize_to_ht_plus_dp:cn}
% \begin{syntax}
% \cs{box_resize_to_ht_plus_dp:Nn} \meta{box} \Arg{y-size}
% \end{syntax}
% Resize the \meta{box} to \meta{y-size} vertically, scaling the horizontal
% size by the same amount (\meta{y-size} is a dimension expression).
% The \meta{y-size} is the vertical size (height plus depth) of
% the box.
% The updated \meta{box} will be an hbox, irrespective of the nature
% of the \meta{box} before the resizing is applied. A negative size will
% cause the material in the \meta{box} to be reversed in direction, but the
% reference point of the \meta{box} will be unchanged. The resizing applies
% within the current \TeX{} group level.
% \end{function}
%
% \begin{function}{\box_resize_to_wd:Nn, \box_resize_to_wd:cn}
% \begin{syntax}
% \cs{box_resize_to_wd:Nn} \meta{box} \Arg{x-size}
% \end{syntax}
% Resize the \meta{box} to \meta{x-size} horizontally, scaling the vertical
% size by the same amount (\meta{x-size} is a dimension expression).
% The updated \meta{box} will be an hbox, irrespective of the nature
% of the \meta{box} before the resizing is applied. A negative size will
% cause the material in the \meta{box} to be reversed in direction, but the
% reference point of the \meta{box} will be unchanged. The resizing applies
% within the current \TeX{} group level.
% \end{function}
%
% \begin{function}{\box_rotate:Nn, \box_rotate:cn}
% \begin{syntax}
% \cs{box_rotate:Nn} \meta{box} \Arg{angle}
% \end{syntax}
% Rotates the \meta{box} by \meta{angle} (in degrees) anti-clockwise about
% its reference point. The reference point of the updated box will be moved
% horizontally such that it is at the left side of the smallest rectangle
% enclosing the rotated material.
% The updated \meta{box} will be an hbox, irrespective of the nature
% of the \meta{box} before the rotation is applied. The rotation applies
% within the current \TeX{} group level.
% \end{function}
%
% \begin{function}{\box_scale:Nnn, \box_scale:cnn}
% \begin{syntax}
% \cs{box_scale:Nnn} \meta{box} \Arg{x-scale} \Arg{y-scale}
% \end{syntax}
% Scales the \meta{box} by factors \meta{x-scale} and \meta{y-scale} in
% the horizontal and vertical directions, respectively (both scales are
% integer expressions). The updated \meta{box} will be an hbox, irrespective
% of the nature of the \meta{box} before the scaling is applied. Negative
% scalings will cause the material in the \meta{box} to be reversed in
% direction, but the reference point of the \meta{box} will be unchanged.
% The scaling applies within the current \TeX{} group level.
% \end{function}
%
% \subsection{Viewing part of a box}
%
% \begin{function}{\box_clip:N, \box_clip:c}
% \begin{syntax}
% \cs{box_clip:N} \meta{box}
% \end{syntax}
% Clips the \meta{box} in the output so that only material inside the
% bounding box is displayed in the output. The updated \meta{box} will be an
% hbox, irrespective of the nature of the \meta{box} before the clipping is
% applied. The clipping applies within the current \TeX{} group level.
%
% \textbf{These functions require the \LaTeX3 native drivers: they will
% not work with the \LaTeXe{} \pkg{graphics} drivers!}
%
% \begin{texnote}
% Clipping is implemented by the driver, and as such the full content of
% the box is places in the output file. Thus clipping does not remove
% any information from the raw output, and hidden material can therefore
% be viewed by direct examination of the file.
% \end{texnote}
% \end{function}
%
% \begin{function}{\box_trim:Nnnnn, \box_trim:cnnnn}
% \begin{syntax}
% \cs{box_trim:Nnnnn} \meta{box} \Arg{left} \Arg{bottom} \Arg{right} \Arg{top}
% \end{syntax}
% Adjusts the bounding box of the \meta{box} \meta{left} is removed from
% the left-hand edge of the bounding box, \meta{right} from the right-hand
% edge and so fourth. All adjustments are \meta{dimension expressions}.
% Material output of the bounding box will still be displayed in the output
% unless \cs{box_clip:N} is subsequently applied.
% The updated \meta{box} will be an
% hbox, irrespective of the nature of the \meta{box} before the trim
% operation is applied. The adjustment applies within the current \TeX{}
% group level. The behavior of the operation where the trims requested is
% greater than the size of the box is undefined.
% \end{function}
%
% \begin{function}{\box_viewport:Nnnnn, \box_viewport:cnnnn}
% \begin{syntax}
% \cs{box_viewport:Nnnnn} \meta{box} \Arg{llx} \Arg{lly} \Arg{urx} \Arg{ury}
% \end{syntax}
% Adjusts the bounding box of the \meta{box} such that it has lower-left
% co-ordinates (\meta{llx}, \meta{lly}) and upper-right co-ordinates
% (\meta{urx}, \meta{ury}). All four co-ordinate positions are
% \meta{dimension expressions}. Material output of the bounding box will
% still be displayed in the output unless \cs{box_clip:N} is
% subsequently applied.
% The updated \meta{box} will be an
% hbox, irrespective of the nature of the \meta{box} before the viewport
% operation is applied. The adjustment applies within the current \TeX{}
% group level.
% \end{function}
%
% \subsection{Internal variables}
%
% \begin{variable}{\l__box_angle_fp}
% The angle through which a box is rotated by \cs{box_rotate:Nn}, given in
% degrees counter-clockwise. This value is required by the underlying
% driver code in \pkg{l3driver} to carry out the driver-dependent part
% of box rotation.
% \end{variable}
%
% \begin{variable}{\l__box_cos_fp, \l__box_sin_fp}
% The sine and cosine of the angle through which a box is rotated by
% \cs{box_rotate:Nn}: the values refer to the angle counter-clockwise. These
% values are required by the underlying driver code in \pkg{l3driver} to
% carry out the driver-dependent part of box rotation.
% \end{variable}
%
% \begin{variable}{\l__box_scale_x_fp, \l__box_scale_y_fp}
% The scaling factors by which a box is scaled by \cs{box_scale:Nnn}
% or \cs{box_resize:Nnn}. These values are required by the underlying
% driver code in \pkg{l3driver} to carry out the driver-dependent part
% of box rotation.
% \end{variable}
%
% \begin{variable}{\l__box_internal_box}
% Box used for affine transformations, which is used to contain rotated
% material when applying \cs{box_rotate:Nn}. This box must be correctly
% constructed for the driver-dependent code in \pkg{l3driver} to function
% correctly.
% \end{variable}
%
% \section{Additions to \pkg{l3clist}}
%
% \begin{function}{\clist_item:Nn, \clist_item:cn, \clist_item:nn}
% \begin{syntax}
% \cs{clist_item:Nn} \meta{comma list} \Arg{integer expression}
% \end{syntax}
% Indexing items in the \meta{comma list} from~$1$ at the top (left), this
% function will evaluate the \meta{integer expression} and leave the
% appropriate item from the comma list in the input stream. If the
% \meta{integer expression} is negative, indexing occurs from the
% bottom (right) of the comma list. When the \meta{integer expression}
% is larger than the number of items in the \meta{comma list} (as
% calculated by \cs{clist_count:N}) then the function will expand to
% nothing.
% \begin{texnote}
% The result is returned within the \tn{unexpanded}
% primitive (\cs{exp_not:n}), which means that the \meta{item}
% will not expand further when appearing in an \texttt{x}-type
% argument expansion.
% \end{texnote}
% \end{function}
%
% \begin{function}
% {
% \clist_set_from_seq:NN, \clist_set_from_seq:cN,
% \clist_set_from_seq:Nc, \clist_set_from_seq:cc,
% \clist_gset_from_seq:NN, \clist_gset_from_seq:cN,
% \clist_gset_from_seq:Nc, \clist_gset_from_seq:cc
% }
% \begin{syntax}
% \cs{clist_set_from_seq:NN} \meta{comma list} \meta{sequence}
% \end{syntax}
% Sets the \meta{comma list} to be equal to the content of the
% \meta{sequence}.
% Items which contain either spaces or commas are surrounded by braces.
% \end{function}
%
% \begin{function}
% {
% \clist_const:Nn, \clist_const:Nx,
% \clist_const:cn, \clist_const:cx
% }
% \begin{syntax}
% \cs{clist_const:Nn} \meta{clist~var} \Arg{comma list}
% \end{syntax}
% Creates a new constant \meta{clist~var} or raises an error
% if the name is already taken. The value of the
% \meta{clist~var} will be set globally to the
% \meta{comma list}.
% \end{function}
%
% \begin{function}[EXP, pTF]{\clist_if_empty:n}
% \begin{syntax}
% \cs{clist_if_empty_p:n} \Arg{comma list}
% \cs{clist_if_empty:nTF} \Arg{comma list} \Arg{true code} \Arg{false code}
% \end{syntax}
% Tests if the \meta{comma list} is empty (containing no items).
% The rules for space trimming are as for other \texttt{n}-type
% comma-list functions, hence the comma list |{~,~,,~}| (without
% outer braces) is empty, while |{~,{},}| (without outer braces)
% contains one element, which happens to be empty: the comma-list
% is not empty.
% \end{function}
%
% \begin{function}[EXP, added = 2012-06-26]{\clist_use:Nnnn}
% \begin{syntax}
% \cs{clist_use:Nnnn} \meta{clist~var} \Arg{separator~between~two} \Arg{separator~between~more~than~two} \Arg{separator~between~final~two}
% \end{syntax}
% Places the contents of the \meta{clist~var} in the input stream,
% with the appropriate \meta{separator} between the items. Namely, if
% the comma list has more than $2$ items, the \meta{separator between
% more than two} is placed between each pair of items except the
% last, for which the \meta{separator between final two} is used. If
% the comma list has $2$ items, then they are placed in the input
% stream separated by the \meta{separator between two}. If the comma
% list has $1$ item, it is placed in the input stream, and a comma
% list with no items produces no output. An error will be raised if
% the variable does not exist or if it is invalid.
%
% For example,
% \begin{verbatim}
% \clist_set:Nn \l_tmpa_clist { a , b , , c , {de} , f }
% \clist_use:Nnnn \l_tmpa_clist { ~and~ } { ,~ } { ,~and~ }
% \end{verbatim}
% will insert \enquote{\texttt{a, b, c, de, and f}} in the input
% stream. The first separator argument is not used in this case
% because the comma list has more than $2$ items.
% \begin{texnote}
% The result is returned within the \tn{unexpanded}
% primitive (\cs{exp_not:n}), which means that the \meta{items}
% will not expand further when appearing in an \texttt{x}-type
% argument expansion.
% \end{texnote}
% \end{function}
%
% \section{Additions to \pkg{l3coffins}}
%
% \begin{function}{\coffin_resize:Nnn, \coffin_resize:cnn}
% \begin{syntax}
% \cs{coffin_resize:Nnn} \meta{coffin} \Arg{width} \Arg{total-height}
% \end{syntax}
% Resized the \meta{coffin} to \meta{width} and \meta{total-height},
% both of which should be given as dimension expressions.
% \end{function}
%
% \begin{function}{\coffin_rotate:Nn, \coffin_rotate:cn}
% \begin{syntax}
% \cs{coffin_rotate:Nn} \meta{coffin} \Arg{angle}
% \end{syntax}
% Rotates the \meta{coffin} by the given \meta{angle} (given in
% degrees counter-clockwise). This process will rotate both the
% coffin content and poles. Multiple rotations will not result in
% the bounding box of the coffin growing unnecessarily.
% \end{function}
%
% \begin{function}{\coffin_scale:Nnn, \coffin_scale:cnn}
% \begin{syntax}
% \cs{coffin_scale:Nnn} \meta{coffin} \Arg{x-scale} \Arg{y-scale}
% \end{syntax}
% Scales the \meta{coffin} by a factors \meta{x-scale} and
% \meta{y-scale} in the horizontal and vertical directions,
% respectively. The two scale factors should be given as real numbers.
% \end{function}
%
% \section{Additions to \pkg{l3file}}
%
% \begin{function}[added = 2012-02-11]{\ior_map_inline:Nn}
% \begin{syntax}
% \cs{ior_map_inline:Nn} \meta{stream} \Arg{inline function}
% \end{syntax}
% Applies the \meta{inline function} to \meta{lines} obtained by
% reading one or more lines (until an equal number of left and right
% braces are found) from the \meta{stream}. The \meta{inline function}
% should consist of code which will receive the \meta{line} as |#1|.
% Note that \TeX{} removes trailing space and tab characters
% (character codes 32 and 9) from every line upon input. \TeX{} also
% ignores any trailing new-line marker from the file it reads.
% \end{function}
%
% \begin{function}[added = 2012-02-11]{\ior_str_map_inline:Nn}
% \begin{syntax}
% \cs{ior_str_map_inline:Nn} \Arg{stream} \Arg{inline function}
% \end{syntax}
% Applies the \meta{inline function} to every \meta{line}
% in the \meta{stream}. The material is read from the \meta{stream}
% as a series of tokens with category code $12$ (other), with the
% exception of space characters which are given category code $10$
% (space). The \meta{inline function} should consist of code which
% will receive the \meta{line} as |#1|.
% Note that \TeX{} removes trailing space and tab characters
% (character codes 32 and 9) from every line upon input. \TeX{} also
% ignores any trailing new-line marker from the file it reads.
% \end{function}
%
% \begin{function}[added = 2012-06-29]{\ior_map_break:}
% \begin{syntax}
% \cs{ior_map_break:}
% \end{syntax}
% Used to terminate a \cs{ior_map_\ldots} function before all
% lines from the \meta{stream} have been processed. This will
% normally take place within a conditional statement, for example
% \begin{verbatim}
% \ior_map_inline:Nn \l_my_ior
% {
% \str_if_eq:nnTF { #1 } { bingo }
% { \ior_map_break: }
% {
% % Do something useful
% }
% }
% \end{verbatim}
% Use outside of a \cs{ior_map_\ldots} scenario will lead to low
% level \TeX{} errors.
% \begin{texnote}
% When the mapping is broken, additional tokens may be inserted by the
% internal macro \cs{__prg_break_point:Nn} before further items are taken
% from the input stream. This will depend on the design of the mapping
% function.
% \end{texnote}
% \end{function}
%
% \begin{function}[added = 2012-06-29]{\ior_map_break:n}
% \begin{syntax}
% \cs{ior_map_break:n} \Arg{tokens}
% \end{syntax}
% Used to terminate a \cs{ior_map_\ldots} function before all
% lines in the \meta{stream} have been processed, inserting
% the \meta{tokens} after the mapping has ended. This will
% normally take place within a conditional statement, for example
% \begin{verbatim}
% \ior_map_inline:Nn \l_my_ior
% {
% \str_if_eq:nnTF { #1 } { bingo }
% { \ior_map_break:n { <tokens> } }
% {
% % Do something useful
% }
% }
% \end{verbatim}
% Use outside of a \cs{ior_map_\ldots} scenario will lead to low
% level \TeX{} errors.
% \begin{texnote}
% When the mapping is broken, additional tokens may be inserted by the
% internal macro \cs{__prg_break_point:Nn} before the \meta{tokens} are
% inserted into the input stream.
% This will depend on the design of the mapping function.
% \end{texnote}
% \end{function}
%
% \section{Additions to \pkg{l3fp}}
%
% \begin{function}
% {
% \fp_set_from_dim:Nn, \fp_set_from_dim:cn,
% \fp_gset_from_dim:Nn, \fp_gset_from_dim:cn
% }
% \begin{syntax}
% \cs{fp_set_from_dim:Nn} \meta{floating point variable} \Arg{dimexpr}
% \end{syntax}
% Sets the \meta{floating point variable} to the distance represented
% by the \meta{dimension expression} in the units points. This means
% that distances given in other units are first converted to points
% before being assigned to the \meta{floating point variable}.
% \end{function}
%
% \section{Additions to \pkg{l3prop}}
%
% \begin{function}[rEXP]
% {\prop_map_tokens:Nn, \prop_map_tokens:cn}
% \begin{syntax}
% \cs{prop_map_tokens:Nn} \meta{property list} \Arg{code}
% \end{syntax}
% Analogue of \cs{prop_map_function:NN} which maps several tokens
% instead of a single function. The \meta{code} receives each
% key--value pair in the \meta{property list} as two trailing brace
% groups. For instance,
% \begin{verbatim}
% \prop_map_tokens:Nn \l_my_prop { \str_if_eq:nnT { mykey } }
% \end{verbatim}
% will expand to the value corresponding to \texttt{mykey}: for each
% pair in \cs{l_my_prop} the function \cs{str_if_eq:nnT} receives
% \texttt{mykey}, the \meta{key} and the \meta{value} as its three
% arguments. For that specific task, \cs{prop_get:Nn} is faster.
% \end{function}
%
% \begin{function}[EXP]{\prop_get:Nn, \prop_get:cn}
% \begin{syntax}
% \cs{prop_get:Nn} \meta{property list} \Arg{key}
% \end{syntax}
% Expands to the \meta{value} corresponding to the \meta{key} in
% the \meta{property list}. If the \meta{key} is missing, this has
% an empty expansion.
% \begin{texnote}
% This function is slower than the non-expandable analogue
% \cs{prop_get:NnN}.
% The result is returned within the \tn{unexpanded}
% primitive (\cs{exp_not:n}), which means that the \meta{value}
% will not expand further when appearing in an \texttt{x}-type
% argument expansion.
% \end{texnote}
% \end{function}
%
% \section{Additions to \pkg{l3seq}}
%
% \begin{function}[EXP]{\seq_item:Nn, \seq_item:cn}
% \begin{syntax}
% \cs{seq_item:Nn} \meta{sequence} \Arg{integer expression}
% \end{syntax}
% Indexing items in the \meta{sequence} from~$1$ at the top (left), this
% function will evaluate the \meta{integer expression} and leave the
% appropriate item from the sequence in the input stream. If the
% \meta{integer expression} is negative, indexing occurs from the
% bottom (right) of the sequence. When the \meta{integer expression}
% is larger than the number of items in the \meta{sequence} (as
% calculated by \cs{seq_count:N}) then the function will expand to
% nothing.
% \begin{texnote}
% The result is returned within the \tn{unexpanded}
% primitive (\cs{exp_not:n}), which means that the \meta{item}
% will not expand further when appearing in an \texttt{x}-type
% argument expansion.
% \end{texnote}
% \end{function}
%
% \begin{function}[rEXP]
% {
% \seq_mapthread_function:NNN, \seq_mapthread_function:NcN,
% \seq_mapthread_function:cNN, \seq_mapthread_function:ccN
% }
% \begin{syntax}
% \cs{seq_mapthread_function:NNN} \meta{seq_1} \meta{seq_2} \meta{function}
% \end{syntax}
% Applies \meta{function} to every pair of items
% \meta{seq_1-item}--\meta{seq_2-item} from the two sequences, returning
% items from both sequences from left to right. The \meta{function} will
% receive two \texttt{n}-type arguments for each iteration. The mapping
% will terminate when
% the end of either sequence is reached (\emph{i.e.}~whichever sequence has
% fewer items determines how many iterations
% occur).
% \end{function}
%
% \begin{function}
% {
% \seq_set_from_clist:NN, \seq_set_from_clist:cN,
% \seq_set_from_clist:Nc, \seq_set_from_clist:cc,
% \seq_set_from_clist:Nn, \seq_set_from_clist:cn,
% \seq_gset_from_clist:NN, \seq_gset_from_clist:cN,
% \seq_gset_from_clist:Nc, \seq_gset_from_clist:cc,
% \seq_gset_from_clist:Nn, \seq_gset_from_clist:cn
% }
% \begin{syntax}
% \cs{seq_set_from_clist:NN} \meta{sequence} \meta{comma-list}
% \end{syntax}
% Sets the \meta{sequence} within the current \TeX{} group to be equal
% to the content of the \meta{comma-list}.
% \end{function}
%
% \begin{function}{\seq_reverse:N, \seq_greverse:N}
% \begin{syntax}
% \cs{seq_reverse:N} \meta{sequence}
% \end{syntax}
% Reverses the order of items in the \meta{sequence}, and
% assigns the result to \meta{sequence}, locally or globally
% according to the variant chosen.
% \end{function}
%
% \begin{function}{\seq_set_filter:NNn, \seq_gset_filter:NNn}
% \begin{syntax}
% \cs{seq_set_filter:NNn} \meta{sequence_1} \meta{sequence_2} \Arg{inline boolexpr}
% \end{syntax}
% Evaluates the \meta{inline boolexpr} for every \meta{item} stored
% within the \meta{sequence_2}. The \meta{inline boolexpr} will
% receive the \meta{item} as |#1|. The sequence of all \meta{items}
% for which the \meta{inline boolexpr} evaluated to \texttt{true}
% is assigned to \meta{sequence_1}.
% \begin{texnote}
% Contrarily to other mapping functions, \cs{seq_map_break:} cannot
% be used in this function, and will lead to low-level \TeX{} errors.
% \end{texnote}
% \end{function}
%
% \begin{function}[added = 2011-12-22]
% {\seq_set_map:NNn, \seq_gset_map:NNn}
% \begin{syntax}
% \cs{seq_set_map:NNn} \meta{sequence_1} \meta{sequence_2} \Arg{inline function}
% \end{syntax}
% Applies \meta{inline function} to every \meta{item} stored
% within the \meta{sequence_2}. The \meta{inline function} should
% consist of code which will receive the \meta{item} as |#1|.
% The sequence resulting from \texttt{x}-expanding
% \meta{inline function} applied to each \meta{item}
% is assigned to \meta{sequence_1}. As such, the code
% in \meta{inline function} should be expandable.
% \begin{texnote}
% Contrarily to other mapping functions, \cs{seq_map_break:} cannot
% be used in this function, and will lead to low-level \TeX{} errors.
% \end{texnote}
% \end{function}
%
% \begin{function}[EXP, added = 2012-06-26]{\seq_use:Nnnn}
% \begin{syntax}
% \cs{seq_use:Nnnn} \meta{seq~var} \Arg{separator~between~two} \Arg{separator~between~more~than~two} \Arg{separator~between~final~two}
% \end{syntax}
% Places the contents of the \meta{seq~var} in the input stream, with
% the appropriate \meta{separator} between the items. Namely, if the
% sequence has more than $2$ items, the \meta{separator between more
% than two} is placed between each pair of items except the last,
% for which the \meta{separator between final two} is used. If the
% sequence has $2$ items, then they are placed in the input stream
% separated by the \meta{separator between two}. If the sequence has
% $1$ item, it is placed in the input stream, and an empty sequence
% produces no output. An error will be raised if the variable does
% not exist or if it is invalid.
%
% For example,
% \begin{verbatim}
% \seq_set_split:Nnn \l_tmpa_seq { | } { a | b | c | {de} | f }
% \seq_use:Nnnn \l_tmpa_seq { ~and~ } { ,~ } { ,~and~ }
% \end{verbatim}
% will insert \enquote{\texttt{a, b, c, de, and f}} in the input
% stream. The first separator argument is not used in this case
% because the sequence has more than $2$ items.
% \begin{texnote}
% The result is returned within the \tn{unexpanded}
% primitive (\cs{exp_not:n}), which means that the \meta{items}
% will not expand further when appearing in an \texttt{x}-type
% argument expansion.
% \end{texnote}
% \end{function}
%
% \section{Additions to \pkg{l3skip}}
%
% \begin{function}{\skip_split_finite_else_action:nnNN}
% \begin{syntax}
% \cs{skip_split_finite_else_action:nnNN} \Arg{skipexpr} \Arg{action}
% ~~\meta{dimen_1} \meta{dimen_2}
% \end{syntax}
% Checks if the \meta{skipexpr} contains finite glue. If it does then it
% assigns
% \meta{dimen_1} the stretch component and \meta{dimen_2} the shrink
% component. If
% it contains infinite glue set \meta{dimen_1} and \meta{dimen_2} to $0$\,pt
% and place |#2| into the input stream: this is usually an error or
% warning message of some sort.
% \end{function}
%
% \section{Additions to \pkg{l3tl}}
%
% \begin{function}[EXP,pTF]{\tl_if_single_token:n}
% \begin{syntax}
% \cs{tl_if_single_token_p:n} \Arg{token list}
% \cs{tl_if_single_token:nTF} \Arg{token list} \Arg{true code} \Arg{false code}
% \end{syntax}
% Tests if the token list consists of exactly one token, \emph{i.e.}~is
% either a single space character or a single \enquote{normal} token.
% Token groups (|{|\ldots|}|) are not single tokens.
% \end{function}
%
% \begin{function}[EXP]{\tl_reverse_tokens:n}
% \begin{syntax}
% \cs{tl_reverse_tokens:n} \Arg{tokens}
% \end{syntax}
% This function, which works directly on \TeX{} tokens, reverses
% the order of the \meta{tokens}: the first will be the last and
% the last will become first. Spaces are preserved. The reversal
% also operates within brace groups, but the braces themselves
% are not exchanged, as this would lead to an unbalanced token
% list. For instance, \cs{tl_reverse_tokens:n} |{a~{b()}}|
% leaves |{)(b}~a| in the input stream. This function requires
% two steps of expansion.
% \begin{texnote}
% The result is returned within the \tn{unexpanded}
% primitive (\cs{exp_not:n}), which means that the token
% list will not expand further when appearing in an \texttt{x}-type
% argument expansion.
% \end{texnote}
% \end{function}
%
% \begin{function}[EXP]{\tl_count_tokens:n}
% \begin{syntax}
% \cs{tl_count_tokens:n} \Arg{tokens}
% \end{syntax}
% Counts the number of \TeX{} tokens in the \meta{tokens} and leaves
% this information in the input stream. Every token, including spaces and
% braces, contributes one to the total; thus for instance, the token count of
% |a~{bc}| is $6$.
% This function requires three expansions,
% giving an \meta{integer denotation}.
% \end{function}
%
% \begin{function}[EXP]{\tl_expandable_uppercase:n,\tl_expandable_lowercase:n}
% \begin{syntax}
% \cs{tl_expandable_uppercase:n} \Arg{tokens}
% \cs{tl_expandable_lowercase:n} \Arg{tokens}
% \end{syntax}
% The \cs{tl_expandable_uppercase:n} function works through all of
% the \meta{tokens}, replacing characters in the range |a|--|z|
% (with arbitrary category code) by the corresponding letter
% in the range |A|--|Z|, with category code $11$ (letter). Similarly,
% \cs{tl_expandable_lowercase:n} replaces characters in the range
% |A|--|Z| by letters in the range |a|--|z|, and leaves other tokens
% unchanged. This function requires two steps of expansion.
% \begin{texnote}
% Begin-group and end-group characters are normalized and become
% |{| and |}|, respectively.
% The result is returned within the \tn{unexpanded}
% primitive (\cs{exp_not:n}), which means that the token
% list will not expand further when appearing in an \texttt{x}-type
% argument expansion.
% \end{texnote}
% \end{function}
%
% \begin{function}[EXP]{\tl_item:nn, \tl_item:Nn, \tl_item:cn}
% \begin{syntax}
% \cs{tl_item:nn} \Arg{token list} \Arg{integer expression}
% \end{syntax}
% Indexing items in the \meta{token list} from~$1$ on the left, this
% function will evaluate the \meta{integer expression} and leave the
% appropriate item from the \meta{token list} in the input stream.
% If the \meta{integer expression} is negative, indexing occurs from
% the right of the token list, starting at $-1$ for the right-most item.
% If the index is out of bounds, then thr function expands to nothing.
% \begin{texnote}
% The result is returned within the \tn{unexpanded}
% primitive (\cs{exp_not:n}), which means that the \meta{item}
% will not expand further when appearing in an \texttt{x}-type
% argument expansion.
% \end{texnote}
% \end{function}
%
% \section{Additions to \pkg{l3tokens}}
%
% \begin{function}{\char_set_active:Npn, \char_set_active:Npx}
% \begin{syntax}
% \cs{char_set_active:Npn} \meta{char} \meta{parameters} \Arg{code}
% \end{syntax}
% Makes \meta{char} an active character to expand to \meta{code} as
% replacement text.
% Within the \meta{code}, the \meta{parameters} (|#1|, |#2|,
% \emph{etc.}) will be replaced by those absorbed. The \meta{char} is
% made active within the current \TeX{} group level, and the definition
% is also local.
% \end{function}
%
% \begin{function}{\char_gset_active:Npn, \char_gset_active:Npx}
% \begin{syntax}
% \cs{char_gset_active:Npn} \meta{char} \meta{parameters} \Arg{code}
% \end{syntax}
% Makes \meta{char} an active character to expand to \meta{code} as
% replacement text.
% Within the \meta{code}, the \meta{parameters} (|#1|, |#2|,
% \emph{etc.}) will be replaced by those absorbed. The \meta{char} is
% made active within the current \TeX{} group level, but the definition
% is global. This function is therefore suited to cases where an active
% character definition should be applied only in some context (where the
% \meta{char} is again made active).
% \end{function}
%
% \begin{function}{\char_set_active_eq:NN}
% \begin{syntax}
% \cs{char_set_active_eq:NN} \meta{char} \meta{function}
% \end{syntax}
% Makes \meta{char} an active character equivalent in meaning to the
% \meta{function} (which may itself be an active character). The \meta{char}
% is made active within the current \TeX{} group level, and the definition
% is also local.
% \end{function}
%
% \begin{function}{\char_gset_active_eq:NN}
% \begin{syntax}
% \cs{char_gset_active_eq:NN} \meta{char} \meta{function}
% \end{syntax}
% Makes \meta{char} an active character equivalent in meaning to the
% \meta{function} (which may itself be an active character). The \meta{char}
% is made active within the current \TeX{} group level, but the definition
% is global. This function is therefore suited to cases where an active
% character definition should be applied only in some context (where the
% \meta{char} is again made active).
% \end{function}
%
% \begin{function}[TF, updated = 2012-12-20]{\peek_N_type:}
% \begin{syntax}
% \cs{peek_N_type:TF} \Arg{true code} \Arg{false code}
% \end{syntax}
% Tests if the next \meta{token} in the input stream can be safely
% grabbed as an \texttt{N}-type argument. The test will be \meta{false}
% if the next \meta{token} is either an explicit or implicit
% begin-group or end-group token (with any character code), or
% an explicit or implicit space character (with character code $32$
% and category code $10$), or an outer token (never used in \LaTeX3)
% and \meta{true} in all other cases.
% Note that a \meta{true} result ensures that the next \meta{token} is
% a valid \texttt{N}-type argument. However, if the next \meta{token}
% is for instance \cs{c_space_token}, the test will take the
% \meta{false} branch, even though the next \meta{token} is in fact
% a valid \texttt{N}-type argument. The \meta{token} will be left
% in the input stream after the \meta{true code} or \meta{false code}
% (as appropriate to the result of the test).
% \end{function}
%
% \end{documentation}
%
% \begin{implementation}
%
% \section{\pkg{l3candidates} Implementation}
%
% \begin{macrocode}
%<*initex|package>
% \end{macrocode}
%
% \begin{macrocode}
%<*package>
\ProvidesExplPackage
{\ExplFileName}{\ExplFileDate}{\ExplFileVersion}{\ExplFileDescription}
\__expl_package_check:
%</package>
% \end{macrocode}
%
% \subsection{Additions to \pkg{l3box}}
%
% \begin{macrocode}
%<@@=box>
% \end{macrocode}
%
% \subsection{Affine transformations}
%
% \begin{variable}{\l_@@_angle_fp}
% When rotating boxes, the angle itself may be needed by the
% engine-dependent code. This is done using the \pkg{fp} module so
% that the value is tidied up properly.
% \begin{macrocode}
\fp_new:N \l_@@_angle_fp
% \end{macrocode}
% \end{variable}
%
% \begin{variable}{\l_@@_cos_fp, \l_@@_sin_fp}
% These are used to hold the calculated sine and cosine values while
% carrying out a rotation.
% \begin{macrocode}
\fp_new:N \l_@@_cos_fp
\fp_new:N \l_@@_sin_fp
% \end{macrocode}
% \end{variable}
%
% \begin{variable}
% {\l_@@_top_dim, \l_@@_bottom_dim, \l_@@_left_dim, \l_@@_right_dim}
% These are the positions of the four edges of a box before
% manipulation.
% \begin{macrocode}
\dim_new:N \l_@@_top_dim
\dim_new:N \l_@@_bottom_dim
\dim_new:N \l_@@_left_dim
\dim_new:N \l_@@_right_dim
% \end{macrocode}
% \end{variable}
%
% \begin{variable}
% {
% \l_@@_top_new_dim, \l_@@_bottom_new_dim ,
% \l_@@_left_new_dim, \l_@@_right_new_dim
% }
% These are the positions of the four edges of a box after
% manipulation.
% \begin{macrocode}
\dim_new:N \l_@@_top_new_dim
\dim_new:N \l_@@_bottom_new_dim
\dim_new:N \l_@@_left_new_dim
\dim_new:N \l_@@_right_new_dim
% \end{macrocode}
% \end{variable}
%
% \begin{variable}{\l_@@_internal_box}
% Scratch space, but also needed by some parts of the driver.
% \begin{macrocode}
\box_new:N \l_@@_internal_box
% \end{macrocode}
% \end{variable}
%
% \begin{macro}{\box_rotate:Nn}
% \begin{macro}[aux]{\@@_rotate:N}
% \begin{macro}[aux]{\@@_rotate_x:nnN, \@@_rotate_y:nnN}
% \begin{macro}[aux]
% {
% \@@_rotate_quadrant_one:, \@@_rotate_quadrant_two:,
% \@@_rotate_quadrant_three:, \@@_rotate_quadrant_four:
% }
% Rotation of a box starts with working out the relevant sine and
% cosine. The actual rotation is in an auxiliary to keep the flow slightly
% clearer
% \begin{macrocode}
\cs_new_protected:Npn \box_rotate:Nn #1#2
{
\hbox_set:Nn #1
{
\group_begin:
\fp_set:Nn \l_@@_angle_fp {#2}
\fp_set:Nn \l_@@_sin_fp { sin ( \l_@@_angle_fp * deg ) }
\fp_set:Nn \l_@@_cos_fp { cos ( \l_@@_angle_fp * deg ) }
\@@_rotate:N #1
\group_end:
}
}
% \end{macrocode}
% The edges of the box are then recorded: the left edge will
% always be at zero. Rotation of the four edges then takes place: this is
% most efficiently done on a quadrant by quadrant basis.
% \begin{macrocode}
\cs_new_protected:Npn \@@_rotate:N #1
{
\dim_set:Nn \l_@@_top_dim { \box_ht:N #1 }
\dim_set:Nn \l_@@_bottom_dim { -\box_dp:N #1 }
\dim_set:Nn \l_@@_right_dim { \box_wd:N #1 }
\dim_zero:N \l_@@_left_dim
% \end{macrocode}
% The next step is to work out the $x$ and $y$ coordinates of vertices of
% the rotated box in relation to its original coordinates. The box can be
% visualized with vertices $B$, $C$, $D$ and $E$ is illustrated
% (Figure~\ref{fig:rotation}). The vertex $O$ is the reference point on the
% baseline, and in this implementation is also the centre of rotation.
% \begin{figure}
% \centering
% \setlength{\unitlength}{3pt}^^A
% \begin{picture}(34,36)(12,44)
% \thicklines
% \put(20,52){\dashbox{1}(20,21){}}
% \put(20,80){\line(0,-1){36}}
% \put(12,58){\line(1, 0){34}}
% \put(41,59){A}
% \put(40,74){B}
% \put(21,74){C}
% \put(21,49){D}
% \put(40,49){E}
% \put(21,59){O}
% \end{picture}
% \caption{Co-ordinates of a box prior to rotation.}
% \label{fig:rotation}
% \end{figure}
% The formulae are, for a point $P$ and angle $\alpha$:
% \[
% \begin{array}{l}
% P'_x = P_x - O_x \\
% P'_y = P_y - O_y \\
% P''_x = ( P'_x \cos(\alpha)) - ( P'_y \sin(\alpha) ) \\
% P''_y = ( P'_x \sin(\alpha)) + ( P'_y \cos(\alpha) ) \\
% P'''_x = P''_x + O_x + L_x \\
% P'''_y = P''_y + O_y
% \end{array}
% \]
% The \enquote{extra} horizontal translation $L_x$ at the end is calculated
% so that the leftmost point of the resulting box has $x$-coordinate $0$.
% This is desirable as \TeX{} boxes must have the reference point at
% the left edge of the box. (As $O$ is always $(0,0)$, this part of the
% calculation is omitted here.)
% \begin{macrocode}
\fp_compare:nNnTF \l_@@_sin_fp > \c_zero_fp
{
\fp_compare:nNnTF \l_@@_cos_fp > \c_zero_fp
{ \@@_rotate_quadrant_one: }
{ \@@_rotate_quadrant_two: }
}
{
\fp_compare:nNnTF \l_@@_cos_fp < \c_zero_fp
{ \@@_rotate_quadrant_three: }
{ \@@_rotate_quadrant_four: }
}
% \end{macrocode}
% The position of the box edges are now known, but the box at this
% stage be misplaced relative to the current \TeX{} reference point. So the
% content of the box is moved such that the reference point of the
% rotated box will be in the same place as the original.
% \begin{macrocode}
\hbox_set:Nn \l_@@_internal_box { \box_use:N #1 }
\hbox_set:Nn \l_@@_internal_box
{
\tex_kern:D -\l_@@_left_new_dim
\hbox:n
{
\__driver_box_rotate_begin:
\box_use:N \l_@@_internal_box
\__driver_box_rotate_end:
}
}
% \end{macrocode}
% Tidy up the size of the box so that the material is actually inside
% the bounding box. The result can then be used to reset the original
% box.
% \begin{macrocode}
\box_set_ht:Nn \l_@@_internal_box { \l_@@_top_new_dim }
\box_set_dp:Nn \l_@@_internal_box { -\l_@@_bottom_new_dim }
\box_set_wd:Nn \l_@@_internal_box
{ \l_@@_right_new_dim - \l_@@_left_new_dim }
\box_use:N \l_@@_internal_box
}
% \end{macrocode}
% \end{macro}
% \end{macro}
% These functions take a general point $(|#1|, |#2|)$ and rotate its
% location about the origin, using the previously-set sine and cosine
% values. Each function gives only one component of the location of the
% updated point. This is because for rotation of a box each step needs
% only one value, and so performance is gained by avoiding working
% out both $x'$ and $y'$ at the same time. Contrast this with
% the equivalent function in the \pkg{l3coffins} module, where both parts
% are needed.
% \begin{macrocode}
\cs_new_protected:Npn \@@_rotate_x:nnN #1#2#3
{
\dim_set:Nn #3
{
\fp_to_dim:n
{
\l_@@_cos_fp * \dim_to_fp:n {#1}
- ( \l_@@_sin_fp * \dim_to_fp:n {#2} )
}
}
}
\cs_new_protected:Npn \@@_rotate_y:nnN #1#2#3
{
\dim_set:Nn #3
{
\fp_to_dim:n
{
\l_@@_sin_fp * \dim_to_fp:n {#1}
+ \l_@@_cos_fp * \dim_to_fp:n {#2}
}
}
}
% \end{macrocode}
% Rotation of the edges is done using a different formula for each
% quadrant. In every case, the top and bottom edges only need the
% resulting $y$-values, whereas the left and right edges need the
% $x$-values. Each case is a question of picking out which corner
% ends up at with the maximum top, bottom, left and right value. Doing
% this by hand means a lot less calculating and avoids lots of
% comparisons.
% \begin{macrocode}
\cs_new_protected:Npn \@@_rotate_quadrant_one:
{
\@@_rotate_y:nnN \l_@@_right_dim \l_@@_top_dim
\l_@@_top_new_dim
\@@_rotate_y:nnN \l_@@_left_dim \l_@@_bottom_dim
\l_@@_bottom_new_dim
\@@_rotate_x:nnN \l_@@_left_dim \l_@@_top_dim
\l_@@_left_new_dim
\@@_rotate_x:nnN \l_@@_right_dim \l_@@_bottom_dim
\l_@@_right_new_dim
}
\cs_new_protected:Npn \@@_rotate_quadrant_two:
{
\@@_rotate_y:nnN \l_@@_right_dim \l_@@_bottom_dim
\l_@@_top_new_dim
\@@_rotate_y:nnN \l_@@_left_dim \l_@@_top_dim
\l_@@_bottom_new_dim
\@@_rotate_x:nnN \l_@@_right_dim \l_@@_top_dim
\l_@@_left_new_dim
\@@_rotate_x:nnN \l_@@_left_dim \l_@@_bottom_dim
\l_@@_right_new_dim
}
\cs_new_protected:Npn \@@_rotate_quadrant_three:
{
\@@_rotate_y:nnN \l_@@_left_dim \l_@@_bottom_dim
\l_@@_top_new_dim
\@@_rotate_y:nnN \l_@@_right_dim \l_@@_top_dim
\l_@@_bottom_new_dim
\@@_rotate_x:nnN \l_@@_right_dim \l_@@_bottom_dim
\l_@@_left_new_dim
\@@_rotate_x:nnN \l_@@_left_dim \l_@@_top_dim
\l_@@_right_new_dim
}
\cs_new_protected:Npn \@@_rotate_quadrant_four:
{
\@@_rotate_y:nnN \l_@@_left_dim \l_@@_top_dim
\l_@@_top_new_dim
\@@_rotate_y:nnN \l_@@_right_dim \l_@@_bottom_dim
\l_@@_bottom_new_dim
\@@_rotate_x:nnN \l_@@_left_dim \l_@@_bottom_dim
\l_@@_left_new_dim
\@@_rotate_x:nnN \l_@@_right_dim \l_@@_top_dim
\l_@@_right_new_dim
}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{variable}{\l_@@_scale_x_fp, \l_@@_scale_y_fp}
% Scaling is potentially-different in the two axes.
% \begin{macrocode}
\fp_new:N \l_@@_scale_x_fp
\fp_new:N \l_@@_scale_y_fp
% \end{macrocode}
% \end{variable}
%
% \begin{macro}{\box_resize:Nnn, \box_resize:cnn}
% \begin{macro}[aux]{\@@_resize:Nnn}
% Resizing a box starts by working out the various dimensions of the
% existing box.
% \begin{macrocode}
\cs_new_protected:Npn \box_resize:Nnn #1#2#3
{
\hbox_set:Nn #1
{
\group_begin:
\dim_set:Nn \l_@@_top_dim { \box_ht:N #1 }
\dim_set:Nn \l_@@_bottom_dim { -\box_dp:N #1 }
\dim_set:Nn \l_@@_right_dim { \box_wd:N #1 }
\dim_zero:N \l_@@_left_dim
% \end{macrocode}
% The $x$-scaling and resulting box size is easy enough to work
% out: the dimension is that given as |#2|, and the scale is simply the
% new width divided by the old one.
% \begin{macrocode}
\fp_set:Nn \l_@@_scale_x_fp
{ \dim_to_fp:n {#2} / ( \dim_to_fp:n \l_@@_right_dim ) }
% \end{macrocode}
% The $y$-scaling needs both the height and the depth of the current box.
% \begin{macrocode}
\fp_set:Nn \l_@@_scale_y_fp
{
\dim_to_fp:n {#3} /
( \dim_to_fp:n { \l_@@_top_dim - \l_@@_bottom_dim } )
}
% \end{macrocode}
% Hand off to the auxiliary which does the work.
% \begin{macrocode}
\@@_resize:Nnn #1 {#2} {#3}
\group_end:
}
}
\cs_generate_variant:Nn \box_resize:Nnn { c }
% \end{macrocode}
% With at least one real scaling to do, the next phase is to find the new
% edge co-ordinates. In the $x$~direction this is relatively easy: just
% scale the right edge. This is done using the absolute value of the
% scale so that the new edge is in the correct place. In the $y$~direction,
% both dimensions have to be scaled, and this again needs the absolute
% scale value. Once that is all done, the common resize/rescale code can
% be employed.
% \begin{macrocode}
\cs_new_protected:Npn \@@_resize:Nnn #1#2#3
{
\dim_set:Nn \l_@@_right_new_dim { \dim_abs:n {#2} }
\dim_set:Nn \l_@@_bottom_new_dim
{ \fp_abs:n { \l_@@_scale_y_fp } \l_@@_bottom_dim }
\dim_set:Nn \l_@@_top_new_dim
{ \fp_abs:n { \l_@@_scale_y_fp } \l_@@_top_dim }
\@@_resize_common:N #1
}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\box_resize_to_ht_plus_dp:Nn, \box_resize_to_ht_plus_dp:cn}
% \begin{macro}{\box_resize_to_wd:Nn, \box_resize_to_wd:cn}
% Scaling to a total height or to a width is a simplified version of the main
% resizing operation, with the scale simply copied between the two parts. The
% internal auxiliary is called using the scaling value twice, as the sign for
% both parts is needed (as this allows the same internal code to be used as
% for the general case).
% \begin{macrocode}
\cs_new_protected:Npn \box_resize_to_ht_plus_dp:Nn #1#2
{
\hbox_set:Nn #1
{
\group_begin:
\dim_set:Nn \l_@@_top_dim { \box_ht:N #1 }
\dim_set:Nn \l_@@_bottom_dim { -\box_dp:N #1 }
\dim_set:Nn \l_@@_right_dim { \box_wd:N #1 }
\dim_zero:N \l_@@_left_dim
\fp_set:Nn \l_@@_scale_y_fp
{
\dim_to_fp:n {#2} /
( \dim_to_fp:n { \l_@@_top_dim - \l_@@_bottom_dim } )
}
\fp_set_eq:NN \l_@@_scale_x_fp \l_@@_scale_y_fp
\@@_resize:Nnn #1 {#2} {#2}
\group_end:
}
}
\cs_generate_variant:Nn \box_resize_to_ht_plus_dp:Nn { c }
\cs_new_protected:Npn \box_resize_to_wd:Nn #1#2
{
\hbox_set:Nn #1
{
\group_begin:
\dim_set:Nn \l_@@_top_dim { \box_ht:N #1 }
\dim_set:Nn \l_@@_bottom_dim { -\box_dp:N #1 }
\dim_set:Nn \l_@@_right_dim { \box_wd:N #1 }
\dim_zero:N \l_@@_left_dim
\fp_set:Nn \l_@@_scale_x_fp
{ \dim_to_fp:n {#2} / ( \dim_to_fp:n \l_@@_right_dim ) }
\fp_set_eq:NN \l_@@_scale_y_fp \l_@@_scale_x_fp
\@@_resize:Nnn #1 {#2} {#2}
\group_end:
}
}
\cs_generate_variant:Nn \box_resize_to_wd:Nn { c }
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\box_scale:Nnn, \box_scale:cnn}
% When scaling a box, setting the scaling itself is easy enough. The
% new dimensions are also relatively easy to find, allowing only for
% the need to keep them positive in all cases. Once that is done then
% after a check for the trivial scaling a hand-off can be made to the
% common code. The dimension scaling operations are carried out using
% the \TeX{} mechanism as it avoids needing to use too many \texttt{fp}
% operations.
% \begin{macrocode}
\cs_new_protected:Npn \box_scale:Nnn #1#2#3
{
\hbox_set:Nn #1
{
\group_begin:
\fp_set:Nn \l_@@_scale_x_fp {#2}
\fp_set:Nn \l_@@_scale_y_fp {#3}
\dim_set:Nn \l_@@_top_dim { \box_ht:N #1 }
\dim_set:Nn \l_@@_bottom_dim { -\box_dp:N #1 }
\dim_set:Nn \l_@@_right_dim { \box_wd:N #1 }
\dim_zero:N \l_@@_left_dim
\dim_set:Nn \l_@@_top_new_dim
{ \fp_abs:n { \l_@@_scale_y_fp } \l_@@_top_dim }
\dim_set:Nn \l_@@_bottom_new_dim
{ \fp_abs:n { \l_@@_scale_y_fp } \l_@@_bottom_dim }
\dim_set:Nn \l_@@_right_new_dim
{ \fp_abs:n { \l_@@_scale_x_fp } \l_@@_right_dim }
\@@_resize_common:N #1
\group_end:
}
}
\cs_generate_variant:Nn \box_scale:Nnn { c }
% \end{macrocode}
% \end{macro}
%
% \begin{macro}[aux]{\@@_resize_common:N}
% The main resize function places in input into a box which will start
% of with zero width, and includes the handles for engine rescaling.
% \begin{macrocode}
\cs_new_protected:Npn \@@_resize_common:N #1
{
\hbox_set:Nn \l_@@_internal_box
{
\__driver_box_scale_begin:
\hbox_overlap_right:n { \box_use:N #1 }
\__driver_box_scale_end:
}
% \end{macrocode}
% The new height and depth can be applied directly.
% \begin{macrocode}
\box_set_ht:Nn \l_@@_internal_box { \l_@@_top_new_dim }
\box_set_dp:Nn \l_@@_internal_box { \l_@@_bottom_new_dim }
% \end{macrocode}
% Things are not quite as obvious for the width, as the reference point
% needs to remain unchanged. For positive scaling factors resizing the
% box is all that is needed. However, for case of a negative scaling
% the material must be shifted such that the reference point ends up in
% the right place.
% \begin{macrocode}
\fp_compare:nNnTF \l_@@_scale_x_fp < \c_zero_fp
{
\hbox_to_wd:nn { \l_@@_right_new_dim }
{
\tex_kern:D \l_@@_right_new_dim
\box_use:N \l_@@_internal_box
\tex_hss:D
}
}
{
\box_set_wd:Nn \l_@@_internal_box { \l_@@_right_new_dim }
\hbox:n
{
\tex_kern:D \c_zero_dim
\box_use:N \l_@@_internal_box
\tex_hss:D
}
}
}
% \end{macrocode}
% \end{macro}
%
% \subsection{Viewing part of a box}
%
% \begin{macro}{\box_clip:N, \box_clip:c}
% A wrapper around the driver-dependent code.
% \begin{macrocode}
\cs_new_protected:Npn \box_clip:N #1
{ \hbox_set:Nn #1 { \__driver_box_use_clip:N #1 } }
\cs_generate_variant:Nn \box_clip:N { c }
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\box_trim:Nnnnn, \box_trim:cnnnn}
% Trimming from the left- and right-hand edges of the box is easy: kern the
% appropriate parts off each side.
% \begin{macrocode}
\cs_new_protected:Npn \box_trim:Nnnnn #1#2#3#4#5
{
\hbox_set:Nn \l_@@_internal_box
{
\tex_kern:D -\__dim_eval:w #2 \__dim_eval_end:
\box_use:N #1
\tex_kern:D -\__dim_eval:w #4 \__dim_eval_end:
}
% \end{macrocode}
% For the height and depth, there is a need to watch the baseline is
% respected. Material always has to stay on the correct side, so trimming
% has to check that there is enough material to trim. First, the bottom
% edge. If there is enough depth, simply set the depth, or if not move
% down so the result is zero depth. \cs{box_move_down:nn} is used in both
% cases so the resulting box always contains a \tn{lower} primitive.
% The internal box is used here as it allows safe use of \cs{box_set_dp:Nn}.
% \begin{macrocode}
\dim_compare:nNnTF { \box_dp:N #1 } > {#3}
{
\hbox_set:Nn \l_@@_internal_box
{
\box_move_down:nn \c_zero_dim
{ \box_use:N \l_@@_internal_box }
}
\box_set_dp:Nn \l_@@_internal_box { \box_dp:N #1 - (#3) }
}
{
\hbox_set:Nn \l_@@_internal_box
{
\box_move_down:nn { #3 - \box_dp:N #1 }
{ \box_use:N \l_@@_internal_box }
}
\box_set_dp:Nn \l_@@_internal_box \c_zero_dim
}
% \end{macrocode}
% Same thing, this time from the top of the box.
% \begin{macrocode}
\dim_compare:nNnTF { \box_ht:N \l_@@_internal_box } > {#5}
{
\hbox_set:Nn \l_@@_internal_box
{ \box_move_up:nn \c_zero_dim { \box_use:N \l_@@_internal_box } }
\box_set_ht:Nn \l_@@_internal_box
{ \box_ht:N \l_@@_internal_box - (#5) }
}
{
\hbox_set:Nn \l_@@_internal_box
{
\box_move_up:nn { #5 - \box_ht:N \l_@@_internal_box }
{ \box_use:N \l_@@_internal_box }
}
\box_set_ht:Nn \l_@@_internal_box \c_zero_dim
}
\box_set_eq:NN #1 \l_@@_internal_box
}
\cs_generate_variant:Nn \box_trim:Nnnnn { c }
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\box_viewport:Nnnnn, \box_viewport:cnnnn}
% The same general logic as for the trim operation, but with absolute
% dimensions. As a result, there are some things to watch out for in the
% vertical direction.
% \begin{macrocode}
\cs_new_protected:Npn \box_viewport:Nnnnn #1#2#3#4#5
{
\hbox_set:Nn \l_@@_internal_box
{
\tex_kern:D -\__dim_eval:w #2 \__dim_eval_end:
\box_use:N #1
\tex_kern:D \__dim_eval:w #4 - \box_wd:N #1 \__dim_eval_end:
}
\dim_compare:nNnTF {#3} < \c_zero_dim
{
\hbox_set:Nn \l_@@_internal_box
{
\box_move_down:nn \c_zero_dim
{ \box_use:N \l_@@_internal_box }
}
\box_set_dp:Nn \l_@@_internal_box { -\dim_eval:n {#3} }
}
{
\hbox_set:Nn \l_@@_internal_box
{ \box_move_down:nn {#3} { \box_use:N \l_@@_internal_box } }
\box_set_dp:Nn \l_@@_internal_box \c_zero_dim
}
\dim_compare:nNnTF {#5} > \c_zero_dim
{
\hbox_set:Nn \l_@@_internal_box
{ \box_move_up:nn \c_zero_dim { \box_use:N \l_@@_internal_box } }
\box_set_ht:Nn \l_@@_internal_box
{
#5
\dim_compare:nNnT {#3} > \c_zero_dim
{ - (#3) }
}
}
{
\hbox_set:Nn \l_@@_internal_box
{
\box_move_up:nn { -\dim_eval:n {#5} }
{ \box_use:N \l_@@_internal_box }
}
\box_set_ht:Nn \l_@@_internal_box \c_zero_dim
}
\box_set_eq:NN #1 \l_@@_internal_box
}
\cs_generate_variant:Nn \box_viewport:Nnnnn { c }
% \end{macrocode}
% \end{macro}
%
% \subsection{Additions to \pkg{l3clist}}
%
% \begin{macrocode}
%<@@=clist>
% \end{macrocode}
%
% \begin{macro}{\clist_item:Nn, \clist_item:cn}
% \begin{macro}[aux]{\@@_item:nnNn}
% \begin{macro}[aux]{\@@_item_N_loop:nw}
% To avoid needing to test the end of the list at each step,
% we first compute the \meta{length} of the list. If the item number
% is~$0$, less than $-\meta{length}$, or more than $\meta{length}$,
% the result is empty. If it is negative, but not less than $-\meta{length}$,
% add $\meta{length}+1$ to the item number before performing the loop.
% The loop itself is very simple, return the item if the counter
% reached~$1$, otherwise, decrease the counter and repeat.
% \begin{macrocode}
\cs_new:Npn \clist_item:Nn #1#2
{
\exp_args:Nfo \@@_item:nnNn
{ \clist_count:N #1 }
#1
\@@_item_N_loop:nw
{#2}
}
\cs_new:Npn \@@_item:nnNn #1#2#3#4
{
\int_compare:nNnTF {#4} < \c_zero
{
\int_compare:nNnTF {#4} < { - #1 }
{ \use_none_delimit_by_q_stop:w }
{ \exp_args:Nf #3 { \int_eval:n { #4 + \c_one + #1 } } }
}
{
\int_compare:nNnTF {#4} > {#1}
{ \use_none_delimit_by_q_stop:w }
{ #3 {#4} }
}
{ } , #2 , \q_stop
}
\cs_new:Npn \@@_item_N_loop:nw #1 #2,
{
\int_compare:nNnTF {#1} = \c_zero
{ \use_i_delimit_by_q_stop:nw { \exp_not:n {#2} } }
{ \exp_args:Nf \@@_item_N_loop:nw { \int_eval:n { #1 - 1 } } }
}
\cs_generate_variant:Nn \clist_item:Nn { c }
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\clist_item:nn}
% \begin{macro}[aux]{
% \@@_item_n:nw,
% \@@_item_n_loop:nw,
% \@@_item_n_end:n,
% \@@_item_n_strip:w}
% This starts in the same way as \cs{clist_item:Nn} by counting the items
% of the comma list. The final item should be space-trimmed before being
% brace-stripped, hence we insert a couple of odd-looking
% \cs{prg_do_nothing:} to avoid losing braces. Blank items are ignored.
% \begin{macrocode}
\cs_new:Npn \clist_item:nn #1#2
{
\exp_args:Nf \@@_item:nnNn
{ \clist_count:n {#1} }
{#1}
\@@_item_n:nw
{#2}
}
\cs_new:Npn \@@_item_n:nw #1
{ \@@_item_n_loop:nw {#1} \prg_do_nothing: }
\cs_new:Npn \@@_item_n_loop:nw #1 #2,
{
\exp_args:No \tl_if_blank:nTF {#2}
{ \@@_item_n_loop:nw {#1} \prg_do_nothing: }
{
\int_compare:nNnTF {#1} = \c_zero
{ \exp_args:No \@@_item_n_end:n {#2} }
{
\exp_args:Nf \@@_item_n_loop:nw
{ \int_eval:n { #1 - 1 } }
\prg_do_nothing:
}
}
}
\cs_new:Npn \@@_item_n_end:n #1 #2 \q_stop
{
\__tl_trim_spaces:nn { \q_mark #1 }
{ \exp_last_unbraced:No \@@_item_n_strip:w } ,
}
\cs_new:Npn \@@_item_n_strip:w #1 , { \exp_not:n {#1} }
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}
% {
% \clist_set_from_seq:NN, \clist_set_from_seq:cN,
% \clist_set_from_seq:Nc, \clist_set_from_seq:cc
% }
% \UnitTested
% \begin{macro}
% {
% \clist_gset_from_seq:NN, \clist_gset_from_seq:cN,
% \clist_gset_from_seq:Nc, \clist_gset_from_seq:cc
% }
% \UnitTested
% \begin{macro}[aux]{\@@_set_from_seq:NNNN}
% \begin{macro}[aux]{\@@_wrap_item:n}
% \begin{macro}[aux]{\@@_set_from_seq:w}
% Setting a comma list from a comma-separated list is done using a simple
% mapping. We wrap most items with \cs{exp_not:n}, and a comma. Items which
% contain a comma or a space are surrounded by an extra set of braces. The
% first comma must be removed, except in the case of an empty comma-list.
% \begin{macrocode}
\cs_new_protected:Npn \clist_set_from_seq:NN
{ \@@_set_from_seq:NNNN \clist_clear:N \tl_set:Nx }
\cs_new_protected:Npn \clist_gset_from_seq:NN
{ \@@_set_from_seq:NNNN \clist_gclear:N \tl_gset:Nx }
\cs_new_protected:Npn \@@_set_from_seq:NNNN #1#2#3#4
{
\seq_if_empty:NTF #4
{ #1 #3 }
{
#2 #3
{
\exp_last_unbraced:Nf \use_none:n
{ \seq_map_function:NN #4 \@@_wrap_item:n }
}
}
}
\cs_new:Npn \@@_wrap_item:n #1
{
,
\tl_if_empty:oTF { \@@_set_from_seq:w #1 ~ , #1 ~ }
{ \exp_not:n {#1} }
{ \exp_not:n { {#1} } }
}
\cs_new:Npn \@@_set_from_seq:w #1 , #2 ~ { }
\cs_generate_variant:Nn \clist_set_from_seq:NN { Nc }
\cs_generate_variant:Nn \clist_set_from_seq:NN { c , cc }
\cs_generate_variant:Nn \clist_gset_from_seq:NN { Nc }
\cs_generate_variant:Nn \clist_gset_from_seq:NN { c , cc }
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \begin{macro}
% {
% \clist_const:Nn, \clist_const:cn,
% \clist_const:Nx, \clist_const:cx
% }
% Creating and initializing a constant comma list is done in a way
% similar to \cs{clist_set:Nn} and \cs{clist_gset:Nn}, being careful
% to strip spaces.
% \begin{macrocode}
\cs_new_protected:Npn \clist_const:Nn #1#2
{ \tl_const:Nx #1 { \@@_trim_spaces:n {#2} } }
\cs_generate_variant:Nn \clist_const:Nn { c , Nx , cx }
% \end{macrocode}
% \end{macro}
%
% \begin{macro}[EXP, pTF]{\clist_if_empty:n}
% \begin{macro}[aux, EXP]{\@@_if_empty_n:w}
% \begin{macro}[aux, EXP]{\@@_if_empty_n:wNw}
% As usual, we insert a token (here |?|) before grabbing
% any argument: this avoids losing braces. The argument
% of \cs{tl_if_empty:oTF} is empty if |#1| is |?| followed
% by blank spaces (besides, this particular variant of
% the emptyness test is optimized). If the item of the
% comma list is blank, grab the next one. As soon as one
% item is non-blank, exit: the second auxiliary will grab
% \cs{prg_return_false:} as |#2|, unless every item in
% the comma list was blank and the loop actually got broken
% by the trailing |\q_mark \prg_return_false:| item.
% \begin{macrocode}
\prg_new_conditional:Npnn \clist_if_empty:n #1 { p , T , F , TF }
{
\@@_if_empty_n:w ? #1
, \q_mark \prg_return_false:
, \q_mark \prg_return_true:
\q_stop
}
\cs_new:Npn \@@_if_empty_n:w #1 ,
{
\tl_if_empty:oTF { \use_none:nn #1 ? }
{ \@@_if_empty_n:w ? }
{ \@@_if_empty_n:wNw }
}
\cs_new:Npn \@@_if_empty_n:wNw #1 \q_mark #2#3 \q_stop {#2}
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \begin{macro}[EXP]{\clist_use:Nnnn}
% \begin{macro}[EXP, aux]
% {\@@_use:wwn, \@@_use:nwwwwnwn, \@@_use:nwwn}
% First check that the variable exists. Then count the items in the
% comma list. If it has none, output nothing. If it has one item,
% output that item, brace stripped (note that space-trimming has
% already been done when the comma list was assigned). If it has two,
% place the \meta{separator~between~two} in the middle.
%
% Otherwise, \cs{@@_use:nwwwwnwn} takes the following arguments; 1:
% a \meta{separator}, 2, 3, 4: three items from the comma list (or
% quarks), 5: the rest of the comma list, 6: a \meta{continuation}
% function (\texttt{use_ii} or \texttt{use_iii} with its
% \meta{separator} argument), 7: junk, and 8: the temporary result,
% which is built in a brace group following \cs{q_stop}. The
% \meta{separator} and the first of the three items are placed in the
% result, then we use the \meta{continuation}, placing the remaining
% two items after it. When we begin this loop, the three items really
% belong to the comma list, the first \cs{q_mark} is taken as a
% delimiter to the \texttt{use_ii} function, and the continuation is
% \texttt{use_ii} itself. When we reach the last two items of the
% original token list, \cs{q_mark} is taken as a third item, and now
% the seconf \cs{q_mark} serves as a delimiter to \texttt{use_ii},
% switching to the other \meta{continuation}, \texttt{use_iii}, which
% uses the \meta{separator between final two}.
% \begin{macrocode}
\cs_new:Npn \clist_use:Nnnn #1#2#3#4
{
\clist_if_exist:NTF #1
{
\int_case:nnn { \clist_count:N #1 }
{
{ 0 } { }
{ 1 } { \exp_after:wN \@@_use:wwn #1 , , { } }
{ 2 } { \exp_after:wN \@@_use:wwn #1 , {#2} }
}
{
\exp_after:wN \@@_use:nwwwwnwn
\exp_after:wN { \exp_after:wN } #1 ,
\q_mark , { \@@_use:nwwwwnwn {#3} }
\q_mark , { \@@_use:nwwn {#4} }
\q_stop { }
}
}
{ \__msg_kernel_expandable_error:nnn { kernel } { bad-variable } {#1} }
}
\cs_new:Npn \@@_use:wwn #1 , #2 , #3 { \exp_not:n { #1 #3 #2 } }
\cs_new:Npn \@@_use:nwwwwnwn
#1#2 , #3 , #4 , #5 \q_mark , #6#7 \q_stop #8
{ #6 {#3} , {#4} , #5 \q_mark , {#6} #7 \q_stop { #8 #1 #2 } }
\cs_new:Npn \@@_use:nwwn #1#2 , #3 \q_stop #4
{ \exp_not:n { #4 #1 #2 } }
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \subsection{Additions to \pkg{l3coffins}}
%
% \begin{macrocode}
%<@@=coffin>
% \end{macrocode}
%
% \subsection{Rotating coffins}
%
% \begin{variable}{\l_@@_sin_fp}
% \begin{variable}{\l_@@_cos_fp}
% Used for rotations to get the sine and cosine values.
% \begin{macrocode}
\fp_new:N \l_@@_sin_fp
\fp_new:N \l_@@_cos_fp
% \end{macrocode}
% \end{variable}
% \end{variable}
%
% \begin{variable}{\l_@@_bounding_prop}
% A property list for the bounding box of a coffin. This is only needed
% during the rotation, so there is just the one.
% \begin{macrocode}
\prop_new:N \l_@@_bounding_prop
% \end{macrocode}
% \end{variable}
%
% \begin{variable}{\l_@@_bounding_shift_dim}
% The shift of the bounding box of a coffin from the real content.
% \begin{macrocode}
\dim_new:N \l_@@_bounding_shift_dim
% \end{macrocode}
% \end{variable}
%
% \begin{variable}{\l_@@_left_corner_dim}
% \begin{variable}{\l_@@_right_corner_dim}
% \begin{variable}{\l_@@_bottom_corner_dim}
% \begin{variable}{\l_@@_top_corner_dim}
% These are used to hold maxima for the various corner values: these
% thus define the minimum size of the bounding box after rotation.
% \begin{macrocode}
\dim_new:N \l_@@_left_corner_dim
\dim_new:N \l_@@_right_corner_dim
\dim_new:N \l_@@_bottom_corner_dim
\dim_new:N \l_@@_top_corner_dim
% \end{macrocode}
% \end{variable}
% \end{variable}
% \end{variable}
% \end{variable}
%
% \begin{macro}{\coffin_rotate:Nn, \coffin_rotate:cn}
% Rotating a coffin requires several steps which can be conveniently
% run together. The first step is to convert the angle given in degrees
% to one in radians. This is then used to set \cs{l_@@_sin_fp} and
% \cs{l_@@_cos_fp}, which are carried through unchanged for the rest
% of the procedure.
% \begin{macrocode}
\cs_new_protected:Npn \coffin_rotate:Nn #1#2
{
\fp_set:Nn \l_@@_sin_fp { sin ( ( #2 ) * deg ) }
\fp_set:Nn \l_@@_cos_fp { cos ( ( #2 ) * deg ) }
% \end{macrocode}
% The corners and poles of the coffin can now be rotated around the
% origin. This is best achieved using mapping functions.
% \begin{macrocode}
\prop_map_inline:cn { l_@@_corners_ \__int_value:w #1 _prop }
{ \@@_rotate_corner:Nnnn #1 {##1} ##2 }
\prop_map_inline:cn { l_@@_poles_ \__int_value:w #1 _prop }
{ \@@_rotate_pole:Nnnnnn #1 {##1} ##2 }
% \end{macrocode}
% The bounding box of the coffin needs to be rotated, and to do this
% the corners have to be found first. They are then rotated in the same
% way as the corners of the coffin material itself.
% \begin{macrocode}
\@@_set_bounding:N #1
\prop_map_inline:Nn \l_@@_bounding_prop
{ \@@_rotate_bounding:nnn {##1} ##2 }
% \end{macrocode}
% At this stage, there needs to be a calculation to find where the
% corners of the content and the box itself will end up.
% \begin{macrocode}
\@@_find_corner_maxima:N #1
\@@_find_bounding_shift:
\box_rotate:Nn #1 {#2}
% \end{macrocode}
% The correction of the box position itself takes place here. The idea
% is that the bounding box for a coffin is tight up to the content, and
% has the reference point at the bottom-left. The $x$-direction is
% handled by moving the content by the difference in the positions of
% the bounding box and the content left edge. The $y$-direction is
% dealt with by moving the box down by any depth it has acquired. The
% internal box is used here to allow for the next step.
% \begin{macrocode}
\hbox_set:Nn \l_@@_internal_box
{
\tex_kern:D
\__dim_eval:w
\l_@@_bounding_shift_dim - \l_@@_left_corner_dim
\__dim_eval_end:
\box_move_down:nn { \l_@@_bottom_corner_dim }
{ \box_use:N #1 }
}
% \end{macrocode}
% If there have been any previous rotations then the size of the
% bounding box will be bigger than the contents. This can be corrected
% easily by setting the size of the box to the height and width of the
% content. As this operation requires setting box dimensions and these
% transcend grouping, the safe way to do this is to use the internal box
% and to reset the result into the target box.
% \begin{macrocode}
\box_set_ht:Nn \l_@@_internal_box
{ \l_@@_top_corner_dim - \l_@@_bottom_corner_dim }
\box_set_dp:Nn \l_@@_internal_box { 0 pt }
\box_set_wd:Nn \l_@@_internal_box
{ \l_@@_right_corner_dim - \l_@@_left_corner_dim }
\hbox_set:Nn #1 { \box_use:N \l_@@_internal_box }
% \end{macrocode}
% The final task is to move the poles and corners such that they are
% back in alignment with the box reference point.
% \begin{macrocode}
\prop_map_inline:cn { l_@@_corners_ \__int_value:w #1 _prop }
{ \@@_shift_corner:Nnnn #1 {##1} ##2 }
\prop_map_inline:cn { l_@@_poles_ \__int_value:w #1 _prop }
{ \@@_shift_pole:Nnnnnn #1 {##1} ##2 }
}
\cs_generate_variant:Nn \coffin_rotate:Nn { c }
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\@@_set_bounding:N}
% The bounding box corners for a coffin are easy enough to find: this
% is the same code as for the corners of the material itself, but
% using a dedicated property list.
% \begin{macrocode}
\cs_new_protected:Npn \@@_set_bounding:N #1
{
\prop_put:Nnx \l_@@_bounding_prop { tl }
{ { 0 pt } { \dim_use:N \box_ht:N #1 } }
\prop_put:Nnx \l_@@_bounding_prop { tr }
{ { \dim_use:N \box_wd:N #1 } { \dim_use:N \box_ht:N #1 } }
\dim_set:Nn \l_@@_internal_dim { - \box_dp:N #1 }
\prop_put:Nnx \l_@@_bounding_prop { bl }
{ { 0 pt } { \dim_use:N \l_@@_internal_dim } }
\prop_put:Nnx \l_@@_bounding_prop { br }
{ { \dim_use:N \box_wd:N #1 } { \dim_use:N \l_@@_internal_dim } }
}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\@@_rotate_bounding:nnn}
% \begin{macro}{\@@_rotate_corner:Nnnn}
% Rotating the position of the corner of the coffin is just a case
% of treating this as a vector from the reference point. The same
% treatment is used for the corners of the material itself and the
% bounding box.
% \begin{macrocode}
\cs_new_protected:Npn \@@_rotate_bounding:nnn #1#2#3
{
\@@_rotate_vector:nnNN {#2} {#3} \l_@@_x_dim \l_@@_y_dim
\prop_put:Nnx \l_@@_bounding_prop {#1}
{ { \dim_use:N \l_@@_x_dim } { \dim_use:N \l_@@_y_dim } }
}
\cs_new_protected:Npn \@@_rotate_corner:Nnnn #1#2#3#4
{
\@@_rotate_vector:nnNN {#3} {#4} \l_@@_x_dim \l_@@_y_dim
\prop_put:cnx { l_@@_corners_ \__int_value:w #1 _prop } {#2}
{ { \dim_use:N \l_@@_x_dim } { \dim_use:N \l_@@_y_dim } }
}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\@@_rotate_pole:Nnnnnn}
% Rotating a single pole simply means shifting the co-ordinate of
% the pole and its direction. The rotation here is about the bottom-left
% corner of the coffin.
% \begin{macrocode}
\cs_new_protected:Npn \@@_rotate_pole:Nnnnnn #1#2#3#4#5#6
{
\@@_rotate_vector:nnNN {#3} {#4} \l_@@_x_dim \l_@@_y_dim
\@@_rotate_vector:nnNN {#5} {#6}
\l_@@_x_prime_dim \l_@@_y_prime_dim
\@@_set_pole:Nnx #1 {#2}
{
{ \dim_use:N \l_@@_x_dim } { \dim_use:N \l_@@_y_dim }
{ \dim_use:N \l_@@_x_prime_dim }
{ \dim_use:N \l_@@_y_prime_dim }
}
}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\@@_rotate_vector:nnNN}
% A rotation function, which needs only an input vector (as dimensions)
% and an output space. The values \cs{l_@@_cos_fp} and
% \cs{l_@@_sin_fp} should previously have been set up correctly.
% Working this way means that the floating point work is kept to a
% minimum: for any given rotation the sin and cosine values do no
% change, after all.
% \begin{macrocode}
\cs_new_protected:Npn \@@_rotate_vector:nnNN #1#2#3#4
{
\dim_set:Nn #3
{
\fp_to_dim:n
{
\dim_to_fp:n {#1} * \l_@@_cos_fp
- ( \dim_to_fp:n {#2} * \l_@@_sin_fp )
}
}
\dim_set:Nn #4
{
\fp_to_dim:n
{
\dim_to_fp:n {#1} * \l_@@_sin_fp
+ ( \dim_to_fp:n {#2} * \l_@@_cos_fp )
}
}
}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\@@_find_corner_maxima:N}
% \begin{macro}[aux]{\@@_find_corner_maxima_aux:nn}
% The idea here is to find the extremities of the content of the
% coffin. This is done by looking for the smallest values for the bottom
% and left corners, and the largest values for the top and right
% corners. The values start at the maximum dimensions so that the
% case where all are positive or all are negative works out correctly.
% \begin{macrocode}
\cs_new_protected:Npn \@@_find_corner_maxima:N #1
{
\dim_set:Nn \l_@@_top_corner_dim { -\c_max_dim }
\dim_set:Nn \l_@@_right_corner_dim { -\c_max_dim }
\dim_set:Nn \l_@@_bottom_corner_dim { \c_max_dim }
\dim_set:Nn \l_@@_left_corner_dim { \c_max_dim }
\prop_map_inline:cn { l_@@_corners_ \__int_value:w #1 _prop }
{ \@@_find_corner_maxima_aux:nn ##2 }
}
\cs_new_protected:Npn \@@_find_corner_maxima_aux:nn #1#2
{
\dim_set:Nn \l_@@_left_corner_dim
{ \dim_min:nn { \l_@@_left_corner_dim } {#1} }
\dim_set:Nn \l_@@_right_corner_dim
{ \dim_max:nn { \l_@@_right_corner_dim } {#1} }
\dim_set:Nn \l_@@_bottom_corner_dim
{ \dim_min:nn { \l_@@_bottom_corner_dim } {#2} }
\dim_set:Nn \l_@@_top_corner_dim
{ \dim_max:nn { \l_@@_top_corner_dim } {#2} }
}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\@@_find_bounding_shift:}
% \begin{macro}[aux]{\@@_find_bounding_shift_aux:nn}
% The approach to finding the shift for the bounding box is similar to
% that for the corners. However, there is only one value needed here and
% a fixed input property list, so things are a bit clearer.
% \begin{macrocode}
\cs_new_protected_nopar:Npn \@@_find_bounding_shift:
{
\dim_set:Nn \l_@@_bounding_shift_dim { \c_max_dim }
\prop_map_inline:Nn \l_@@_bounding_prop
{ \@@_find_bounding_shift_aux:nn ##2 }
}
\cs_new_protected:Npn \@@_find_bounding_shift_aux:nn #1#2
{
\dim_set:Nn \l_@@_bounding_shift_dim
{ \dim_min:nn { \l_@@_bounding_shift_dim } {#1} }
}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\@@_shift_corner:Nnnn}
% \begin{macro}{\@@_shift_pole:Nnnnnn}
% Shifting the corners and poles of a coffin means subtracting the
% appropriate values from the $x$- and $y$-components. For
% the poles, this means that the direction vector is unchanged.
% \begin{macrocode}
\cs_new_protected:Npn \@@_shift_corner:Nnnn #1#2#3#4
{
\prop_put:cnx { l_@@_corners_ \__int_value:w #1 _ prop } {#2}
{
{ \dim_eval:n { #3 - \l_@@_left_corner_dim } }
{ \dim_eval:n { #4 - \l_@@_bottom_corner_dim } }
}
}
\cs_new_protected:Npn \@@_shift_pole:Nnnnnn #1#2#3#4#5#6
{
\prop_put:cnx { l_@@_poles_ \__int_value:w #1 _ prop } {#2}
{
{ \dim_eval:n { #3 - \l_@@_left_corner_dim } }
{ \dim_eval:n { #4 - \l_@@_bottom_corner_dim } }
{#5} {#6}
}
}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \subsection{Resizing coffins}
%
% \begin{variable}{\l_@@_scale_x_fp}
% \begin{variable}{\l_@@_scale_y_fp}
% Storage for the scaling factors in $x$ and $y$, respectively.
% \begin{macrocode}
\fp_new:N \l_@@_scale_x_fp
\fp_new:N \l_@@_scale_y_fp
% \end{macrocode}
% \end{variable}
% \end{variable}
%
% \begin{variable}{\l_@@_scaled_total_height_dim}
% \begin{variable}{\l_@@_scaled_width_dim}
% When scaling, the values given have to be turned into absolute values.
% \begin{macrocode}
\dim_new:N \l_@@_scaled_total_height_dim
\dim_new:N \l_@@_scaled_width_dim
% \end{macrocode}
% \end{variable}
% \end{variable}
%
% \begin{macro}{\coffin_resize:Nnn, \coffin_resize:cnn}
% Resizing a coffin begins by setting up the user-friendly names for
% the dimensions of the coffin box. The new sizes are then turned into
% scale factor. This is the same operation as takes place for the
% underlying box, but that operation is grouped and so the same
% calculation is done here.
% \begin{macrocode}
\cs_new_protected:Npn \coffin_resize:Nnn #1#2#3
{
\fp_set:Nn \l_@@_scale_x_fp
{ \dim_to_fp:n {#2} / \dim_to_fp:n { \coffin_wd:N #1 } }
\fp_set:Nn \l_@@_scale_y_fp
{
\dim_to_fp:n {#3} / \dim_to_fp:n { \coffin_ht:N #1 + \coffin_dp:N #1 }
}
\box_resize:Nnn #1 {#2} {#3}
\@@_resize_common:Nnn #1 {#2} {#3}
}
\cs_generate_variant:Nn \coffin_resize:Nnn { c }
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\@@_resize_common:Nnn}
% The poles and corners of the coffin are scaled to the appropriate
% places before actually resizing the underlying box.
% \begin{macrocode}
\cs_new_protected:Npn \@@_resize_common:Nnn #1#2#3
{
\prop_map_inline:cn { l_@@_corners_ \__int_value:w #1 _prop }
{ \@@_scale_corner:Nnnn #1 {##1} ##2 }
\prop_map_inline:cn { l_@@_poles_ \__int_value:w #1 _prop }
{ \@@_scale_pole:Nnnnnn #1 {##1} ##2 }
% \end{macrocode}
% Negative $x$-scaling values will place the poles in the wrong
% location: this is corrected here.
% \begin{macrocode}
\fp_compare:nNnT \l_@@_scale_x_fp < \c_zero_fp
{
\prop_map_inline:cn { l_@@_corners_ \__int_value:w #1 _prop }
{ \@@_x_shift_corner:Nnnn #1 {##1} ##2 }
\prop_map_inline:cn { l_@@_poles_ \__int_value:w #1 _prop }
{ \@@_x_shift_pole:Nnnnnn #1 {##1} ##2 }
}
}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\coffin_scale:Nnn, \coffin_scale:cnn}
% For scaling, the opposite calculation is done to find the new
% dimensions for the coffin. Only the total height is needed, as this
% is the shift required for corners and poles. The scaling is done
% the \TeX{} way as this works properly with floating point values
% without needing to use the \texttt{fp} module.
% \begin{macrocode}
\cs_new_protected:Npn \coffin_scale:Nnn #1#2#3
{
\fp_set:Nn \l_@@_scale_x_fp {#2}
\fp_set:Nn \l_@@_scale_y_fp {#3}
\box_scale:Nnn #1 { \l_@@_scale_x_fp } { \l_@@_scale_y_fp }
\dim_set:Nn \l_@@_internal_dim
{ \coffin_ht:N #1 + \coffin_dp:N #1 }
\dim_set:Nn \l_@@_scaled_total_height_dim
{ \fp_abs:n { \l_@@_scale_y_fp } \l_@@_internal_dim }
\dim_set:Nn \l_@@_scaled_width_dim
{ -\fp_abs:n { \l_@@_scale_x_fp } \coffin_wd:N #1 }
\@@_resize_common:Nnn #1
{ \l_@@_scaled_width_dim } { \l_@@_scaled_total_height_dim }
}
\cs_generate_variant:Nn \coffin_scale:Nnn { c }
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\@@_scale_vector:nnNN}
% This functions scales a vector from the origin using the pre-set scale
% factors in $x$ and $y$. This is a much less complex operation
% than rotation, and as a result the code is a lot clearer.
% \begin{macrocode}
\cs_new_protected:Npn \@@_scale_vector:nnNN #1#2#3#4
{
\dim_set:Nn #3
{ \fp_to_dim:n { \dim_to_fp:n {#1} * \l_@@_scale_x_fp } }
\dim_set:Nn #4
{ \fp_to_dim:n { \dim_to_fp:n {#2} * \l_@@_scale_y_fp } }
}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\@@_scale_corner:Nnnn}
% \begin{macro}{\@@_scale_pole:Nnnnnn}
% Scaling both corners and poles is a simple calculation using the
% preceding vector scaling.
% \begin{macrocode}
\cs_new_protected:Npn \@@_scale_corner:Nnnn #1#2#3#4
{
\@@_scale_vector:nnNN {#3} {#4} \l_@@_x_dim \l_@@_y_dim
\prop_put:cnx { l_@@_corners_ \__int_value:w #1 _prop } {#2}
{ { \dim_use:N \l_@@_x_dim } { \dim_use:N \l_@@_y_dim } }
}
\cs_new_protected:Npn \@@_scale_pole:Nnnnnn #1#2#3#4#5#6
{
\@@_scale_vector:nnNN {#3} {#4} \l_@@_x_dim \l_@@_y_dim
\@@_set_pole:Nnx #1 {#2}
{
{ \dim_use:N \l_@@_x_dim } { \dim_use:N \l_@@_y_dim }
{#5} {#6}
}
}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\@@_x_shift_corner:Nnnn}
% \begin{macro}{\@@_x_shift_pole:Nnnnnn}
% These functions correct for the $x$ displacement that takes
% place with a negative horizontal scaling.
% \begin{macrocode}
\cs_new_protected:Npn \@@_x_shift_corner:Nnnn #1#2#3#4
{
\prop_put:cnx { l_@@_corners_ \__int_value:w #1 _prop } {#2}
{
{ \dim_eval:n { #3 + \box_wd:N #1 } } {#4}
}
}
\cs_new_protected:Npn \@@_x_shift_pole:Nnnnnn #1#2#3#4#5#6
{
\prop_put:cnx { l_@@_poles_ \__int_value:w #1 _prop } {#2}
{
{ \dim_eval:n #3 + \box_wd:N #1 } {#4}
{#5} {#6}
}
}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \subsection{Additions to \pkg{l3file}}
%
% \begin{macrocode}
%<@@=ior>
% \end{macrocode}
%
% \begin{macro}[EXP]{\ior_map_break:, \ior_map_break:n}
% Usual map breaking functions. Those are not yet in \pkg{l3kernel}
% proper since the mapping below is the first of its kind.
% \begin{macrocode}
\cs_new_nopar:Npn \ior_map_break:
{ \__prg_map_break:Nn \ior_map_break: { } }
\cs_new_nopar:Npn \ior_map_break:n
{ \__prg_map_break:Nn \ior_map_break: }
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\ior_map_inline:Nn, \ior_str_map_inline:Nn}
% \begin{macro}[aux]{\@@_map_inline:NNn}
% \begin{macro}[aux]{\@@_map_inline:NNNn}
% \begin{macro}[aux]{\@@_map_inline_loop:NNN}
% \begin{variable}{\l_@@_internal_tl}
% Mapping to an input stream can be done on either a token or a string
% basis, hence the set up. Within that, there is a check to avoid reading
% past the end of a file, hence the two applications of \cs{ior_if_eof:N}.
% This mapping cannot be nested as the stream has only one \enquote{current
% line}.
% \begin{macrocode}
\cs_new_protected_nopar:Npn \ior_map_inline:Nn
{ \@@_map_inline:NNn \ior_get:NN }
\cs_new_protected_nopar:Npn \ior_str_map_inline:Nn
{ \@@_map_inline:NNn \ior_get_str:NN }
\cs_new_protected_nopar:Npn \@@_map_inline:NNn
{
\int_gincr:N \g__prg_map_int
\exp_args:Nc \@@_map_inline:NNNn
{ __prg_map_ \int_use:N \g__prg_map_int :n }
}
\cs_new_protected:Npn \@@_map_inline:NNNn #1#2#3#4
{
\cs_set:Npn #1 ##1 {#4}
\ior_if_eof:NF #3 { \@@_map_inline_loop:NNN #1#2#3 }
\__prg_break_point:Nn \ior_map_break:
{ \int_gdecr:N \g__prg_map_int }
}
\cs_new_protected:Npn \@@_map_inline_loop:NNN #1#2#3
{
#2 #3 \l_@@_internal_tl
\ior_if_eof:NF #3
{
\exp_args:No #1 \l_@@_internal_tl
\@@_map_inline_loop:NNN #1#2#3
}
}
\tl_new:N \l_@@_internal_tl
% \end{macrocode}
% \end{variable}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \subsection{Additions to \pkg{l3fp}}
%
% \begin{macrocode}
%<@@=fp>
% \end{macrocode}
%
% \begin{macro}
% {
% \fp_set_from_dim:Nn, \fp_set_from_dim:cn,
% \fp_gset_from_dim:Nn, \fp_gset_from_dim:cn
% }
% Use the appropriate function from \pkg{l3fp-convert}.
% \begin{macrocode}
\cs_new_protected:Npn \fp_set_from_dim:Nn #1#2
{ \tl_set:Nx #1 { \dim_to_fp:n {#2} } }
\cs_new_protected:Npn \fp_gset_from_dim:Nn #1#2
{ \tl_gset:Nx #1 { \dim_to_fp:n {#2} } }
\cs_generate_variant:Nn \fp_set_from_dim:Nn { c }
\cs_generate_variant:Nn \fp_gset_from_dim:Nn { c }
% \end{macrocode}
% \end{macro}
%
% \subsection{Additions to \pkg{l3prop}}
%
% \begin{macrocode}
%<@@=prop>
% \end{macrocode}
%
% \begin{macro}[rEXP]{\prop_map_tokens:Nn, \prop_map_tokens:cn}
% \begin{macro}[aux]{\@@_map_tokens:nwn}
% The mapping grabs one key--value pair at a time, and stops when
% reaching the marker key \cs{q_recursion_tail}, which
% cannot appear in normal keys since those are strings. The odd
% construction |\use:n {#1}| allows |#1| to contain any token.
% \begin{macrocode}
\cs_new:Npn \prop_map_tokens:Nn #1#2
{
\exp_last_unbraced:Nno \@@_map_tokens:nwn {#2} #1
\s_@@ \q_recursion_tail \s_@@ { }
\__prg_break_point:Nn \prop_map_break: { }
}
\cs_new:Npn \@@_map_tokens:nwn #1 \s_@@ #2 \s_@@ #3
{
\if_meaning:w \q_recursion_tail #2
\exp_after:wN \prop_map_break:
\fi:
\use:n {#1} {#2} {#3}
\@@_map_tokens:nwn {#1}
}
\cs_generate_variant:Nn \prop_map_tokens:Nn { c }
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}[EXP]{\prop_get:Nn, \prop_get:cn}
% \begin{macro}[aux]{\@@_get_Nn:nwn}
% Getting the value corresponding to a key in a property list in an
% expandable fashion is a simple instance of mapping some tokens.
% Map the function \cs{prop_get:nnn} which takes as its three
% arguments the \meta{key} that we are looking for, the current
% \meta{key} and the current \meta{value}. If the \meta{keys} match,
% the \meta{value} is returned. If none of the keys match, this expands
% to nothing.
% \begin{macrocode}
\cs_new:Npn \prop_get:Nn #1#2
{
\exp_last_unbraced:Noo \@@_get_Nn:nwn
{ \tl_to_str:n {#2} } #1
\tl_to_str:n {#2} \q_@@ { }
\__prg_break_point:
}
\cs_new:Npn \@@_get_Nn:nwn #1 \q_@@ #2 \q_@@ #3
{
\str_if_eq_x:nnTF {#1} {#2}
{ \__prg_break:n { \exp_not:n {#3} } }
{ \@@_get_Nn:nwn {#1} }
}
\cs_generate_variant:Nn \prop_get:Nn { c }
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \subsection{Additions to \pkg{l3seq}}
%
% \begin{macrocode}
%<@@=seq>
% \end{macrocode}
%
% \begin{macro}{\seq_item:Nn, \seq_item:cn}
% \begin{macro}[aux]{\@@_item:nnn}
% The idea here is to find the offset of the item from the left, then use
% a loop to grab the correct item. If the resulting offset is too large,
% then the stop code |{ ? \__prg_break: } { }| will be used by the auxiliary,
% terminating the loop and returning nothing at all.
% \begin{macrocode}
\cs_new:Npn \seq_item:Nn #1#2
{
\exp_last_unbraced:Nfo \@@_item:nnn
{
\int_eval:n
{
\int_compare:nNnT {#2} < \c_zero
{ \seq_count:N #1 + \c_one + }
#2
}
}
#1
{ ? \__prg_break: }
{ }
\__prg_break_point:
}
\cs_new:Npn \@@_item:nnn #1#2#3
{
\use_none:n #2
\int_compare:nNnTF {#1} = \c_one
{ \__prg_break:n { \exp_not:n {#3} } }
{ \exp_args:Nf \@@_item:nnn { \int_eval:n { #1 - 1 } } }
}
\cs_generate_variant:Nn \seq_item:Nn { c }
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}
% {
% \seq_mapthread_function:NNN, \seq_mapthread_function:NcN,
% \seq_mapthread_function:cNN, \seq_mapthread_function:ccN
% }
% \begin{macro}[aux]{\@@_mapthread_function:NN}
% \begin{macro}[aux]{\@@_mapthread_function:Nnnwnn}
% The idea here is to first expand both of the sequences, adding the usual
% |{ ? \__prg_break: } { }| to the end of each one. This is most conveniently
% done in two steps using an auxiliary function. The mapping then throws
% away the first token of |#2| and |#5|, which for items in the sequences
% will both be \cs{@@_item:n}. The function to be mapped will then be
% applied to the two entries. When the code hits the end of one of the
% sequences, the break material will stop the entire loop and tidy up. This
% avoids needing to find the count of the two sequences, or worrying about
% which is longer.
% \begin{macrocode}
\cs_new:Npn \seq_mapthread_function:NNN #1#2#3
{
\exp_after:wN \@@_mapthread_function:NN
\exp_after:wN #3
\exp_after:wN #1
#2
{ ? \__prg_break: } { }
\__prg_break_point:
}
\cs_new:Npn \@@_mapthread_function:NN #1#2
{
\exp_after:wN \@@_mapthread_function:Nnnwnn
\exp_after:wN #1
#2
{ ? \__prg_break: } { }
\q_stop
}
\cs_new:Npn \@@_mapthread_function:Nnnwnn #1#2#3#4 \q_stop #5#6
{
\use_none:n #2
\use_none:n #5
#1 {#3} {#6}
\@@_mapthread_function:Nnnwnn #1 #4 \q_stop
}
\cs_generate_variant:Nn \seq_mapthread_function:NNN { Nc }
\cs_generate_variant:Nn \seq_mapthread_function:NNN { c , cc }
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \begin{macro}
% {
% \seq_set_from_clist:NN, \seq_set_from_clist:cN,
% \seq_set_from_clist:Nc, \seq_set_from_clist:cc,
% \seq_set_from_clist:Nn, \seq_set_from_clist:cn
% }
% \begin{macro}
% {
% \seq_gset_from_clist:NN, \seq_gset_from_clist:cN,
% \seq_gset_from_clist:Nc, \seq_gset_from_clist:cc,
% \seq_gset_from_clist:Nn, \seq_gset_from_clist:cn
% }
% Setting a sequence from a comma-separated list is done using a simple
% mapping.
% \begin{macrocode}
\cs_new_protected:Npn \seq_set_from_clist:NN #1#2
{
\tl_set:Nx #1
{ \clist_map_function:NN #2 \@@_wrap_item:n }
}
\cs_new_protected:Npn \seq_set_from_clist:Nn #1#2
{
\tl_set:Nx #1
{ \clist_map_function:nN {#2} \@@_wrap_item:n }
}
\cs_new_protected:Npn \seq_gset_from_clist:NN #1#2
{
\tl_gset:Nx #1
{ \clist_map_function:NN #2 \@@_wrap_item:n }
}
\cs_new_protected:Npn \seq_gset_from_clist:Nn #1#2
{
\tl_gset:Nx #1
{ \clist_map_function:nN {#2} \@@_wrap_item:n }
}
\cs_generate_variant:Nn \seq_set_from_clist:NN { Nc }
\cs_generate_variant:Nn \seq_set_from_clist:NN { c , cc }
\cs_generate_variant:Nn \seq_set_from_clist:Nn { c }
\cs_generate_variant:Nn \seq_gset_from_clist:NN { Nc }
\cs_generate_variant:Nn \seq_gset_from_clist:NN { c , cc }
\cs_generate_variant:Nn \seq_gset_from_clist:Nn { c }
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}
% {\seq_reverse:N, \seq_reverse:c, \seq_greverse:N, \seq_greverse:c}
% \begin{macro}[aux]{\@@_tmp:w}
% \begin{macro}[aux]{\@@_reverse:NN}
% \begin{macro}[aux]{\@@_reverse_item:nwn}
% Previously, \cs{seq_reverse:N} was coded by collecting the items
% in reverse order after an \cs{exp_stop_f:} marker.
% \begin{verbatim}
% \cs_new_protected:Npn \seq_reverse:N #1
% {
% \cs_set_eq:NN \@@_item:n \@@_reverse_item:nw
% \tl_set:Nf #2 { #2 \exp_stop_f: }
% }
% \cs_new:Npn \@@_reverse_item:nw #1 #2 \exp_stop_f:
% {
% #2 \exp_stop_f:
% \@@_item:n {#1}
% }
% \end{verbatim}
% At first, this seems optimal, since we can forget about each item
% as soon as it is placed after \cs{exp_stop_f:}. Unfortunately,
% \TeX{}'s usual tail recursion does not take place in this case:
% since the following \cs{@@_reverse_item:nw} only reads
% tokens until \cs{exp_stop_f:}, and never reads the
% |\@@_item:n {#1}| left by the previous call, \TeX{} cannot
% remove that previous call from the stack, and in particular
% must retain the various macro parameters in memory, until the
% end of the replacement text is reached. The stack is thus
% only flushed after all the \cs{@@_reverse_item:nw} are
% expanded. Keeping track of the arguments of all those calls
% uses up a memory quadratic in the length of the sequence.
% \TeX{} can then not cope with more than a few thousand items.
%
% Instead, we collect the items in the argument
% of \cs{exp_not:n}. The previous calls are cleanly removed
% from the stack, and the memory consumption becomes linear.
% \begin{macrocode}
\cs_new_protected_nopar:Npn \@@_tmp:w { }
\cs_new_protected_nopar:Npn \seq_reverse:N
{ \@@_reverse:NN \tl_set:Nx }
\cs_new_protected_nopar:Npn \seq_greverse:N
{ \@@_reverse:NN \tl_gset:Nx }
\cs_new_protected:Npn \@@_reverse:NN #1 #2
{
\cs_set_eq:NN \@@_tmp:w \@@_item:n
\cs_set_eq:NN \@@_item:n \@@_reverse_item:nwn
#1 #2 { #2 \exp_not:n { } }
\cs_set_eq:NN \@@_item:n \@@_tmp:w
}
\cs_new:Npn \@@_reverse_item:nwn #1 #2 \exp_not:n #3
{
#2
\exp_not:n { \@@_item:n {#1} #3 }
}
\cs_generate_variant:Nn \seq_reverse:N { c }
\cs_generate_variant:Nn \seq_greverse:N { c }
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\seq_set_filter:NNn, \seq_gset_filter:NNn}
% \begin{macro}[aux]{\@@_set_filter:NNNn}
% Similar to \cs{seq_map_inline:Nn}, without a
% \cs{__prg_break_point:} because the user's code
% is performed within the evaluation of a boolean expression,
% and skipping out of that would break horribly.
% The \cs{@@_wrap_item:n} function inserts the relevant
% \cs{@@_item:n} without expansion in the input stream,
% hence in the \texttt{x}-expanding assignment.
% \begin{macrocode}
\cs_new_protected_nopar:Npn \seq_set_filter:NNn
{ \@@_set_filter:NNNn \tl_set:Nx }
\cs_new_protected_nopar:Npn \seq_gset_filter:NNn
{ \@@_set_filter:NNNn \tl_gset:Nx }
\cs_new_protected:Npn \@@_set_filter:NNNn #1#2#3#4
{
\@@_push_item_def:n { \bool_if:nT {#4} { \@@_wrap_item:n {##1} } }
#1 #2 { #3 }
\@@_pop_item_def:
}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\seq_set_map:NNn,\seq_gset_map:NNn}
% \begin{macro}[aux]{\@@_set_map:NNNn}
% Very similar to \cs{seq_set_filter:NNn}. We could actually
% merge the two within a single function, but it would have weird
% semantics.
% \begin{macrocode}
\cs_new_protected_nopar:Npn \seq_set_map:NNn
{ \@@_set_map:NNNn \tl_set:Nx }
\cs_new_protected_nopar:Npn \seq_gset_map:NNn
{ \@@_set_map:NNNn \tl_gset:Nx }
\cs_new_protected:Npn \@@_set_map:NNNn #1#2#3#4
{
\@@_push_item_def:n { \exp_not:N \@@_item:n {#4} }
#1 #2 { #3 }
\@@_pop_item_def:
}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}[EXP]{\seq_use:Nnnn}
% \begin{macro}[EXP, aux]
% {\@@_use:NnNnn, \@@_use:nwwwwnwn, \@@_use:nwwn}
% See \cs{clist_use:Nnnn} for a general explanation. The main
% difference is that we use \cs{@@_item:n} as a delimiter rather than
% commas. We also need to add \cs{@@_item:n} at various places.
% \begin{macrocode}
\cs_new:Npn \seq_use:Nnnn #1#2#3#4
{
\seq_if_exist:NTF #1
{
\int_case:nnn { \seq_count:N #1 }
{
{ 0 } { }
{ 1 } { \exp_after:wN \@@_use:NnNnn #1 \@@_item:n { } { } }
{ 2 } { \exp_after:wN \@@_use:NnNnn #1 {#2} }
}
{
\exp_after:wN \@@_use:nwwwwnwn
\exp_after:wN { \exp_after:wN } #1 \@@_item:n
\q_mark { \@@_use:nwwwwnwn {#3} }
\q_mark { \@@_use:nwwn {#4} }
\q_stop { }
}
}
{ \__msg_kernel_expandable_error:nnn { kernel } { bad-variable } {#1} }
}
\cs_new:Npn \@@_use:NnNnn \@@_item:n #1 \@@_item:n #2#3
{ \exp_not:n { #1 #3 #2 } }
\cs_new:Npn \@@_use:nwwwwnwn
#1 \@@_item:n #2 \@@_item:n #3 \@@_item:n #4#5
\q_mark #6#7 \q_stop #8
{
#6 \@@_item:n {#3} \@@_item:n {#4} #5
\q_mark {#6} #7 \q_stop { #8 #1 #2 }
}
\cs_new:Npn \@@_use:nwwn #1 \@@_item:n #2 #3 \q_stop #4
{ \exp_not:n { #4 #1 #2 } }
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \subsection{Additions to \pkg{l3skip}}
%
% \begin{macrocode}
%<@@=skip>
% \end{macrocode}
%
% \begin{macro}{\skip_split_finite_else_action:nnNN}
% This macro is useful when performing error checking in certain
% circumstances. If the \meta{skip} register holds finite glue it sets
% |#3| and |#4| to the stretch and shrink component, resp. If it holds
% infinite glue set |#3| and |#4| to zero and issue the special action
% |#2| which is probably an error message.
% Assignments are local.
% \begin{macrocode}
\cs_new:Npn \skip_split_finite_else_action:nnNN #1#2#3#4
{
\skip_if_finite:nTF {#1}
{
#3 = \etex_gluestretch:D #1 \scan_stop:
#4 = \etex_glueshrink:D #1 \scan_stop:
}
{
#3 = \c_zero_skip
#4 = \c_zero_skip
#2
}
}
% \end{macrocode}
% \end{macro}
%
% \subsection{Additions to \pkg{l3tl}}
%
% \begin{macrocode}
%<@@=tl>
% \end{macrocode}
%
% \begin{macro}[EXP,pTF]{\tl_if_single_token:n}
% There are four cases: empty token list, token list starting with
% a normal token, with a brace group, or with a space token.
% If the token list starts with a normal token, remove it
% and check for emptyness. Otherwise, compare with a single
% space, only case where we have a single token.
% \begin{macrocode}
\prg_new_conditional:Npnn \tl_if_single_token:n #1 { p , T , F , TF }
{
\tl_if_head_is_N_type:nTF {#1}
{ \__str_if_eq_x_return:nn { \exp_not:o { \use_none:n #1 } } { } }
{ \__str_if_eq_x_return:nn { \exp_not:n {#1} } { ~ } }
}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}[EXP]{\tl_reverse_tokens:n}
% \begin{macro}[EXP,aux]{\@@_reverse_group:nn}
% The same as \cs{tl_reverse:n} but with recursion within brace groups.
% \begin{macrocode}
\cs_new:Npn \tl_reverse_tokens:n #1
{
\etex_unexpanded:D \exp_after:wN
{
\tex_romannumeral:D
\@@_act:NNNnn
\@@_reverse_normal:nN
\@@_reverse_group:nn
\@@_reverse_space:n
{ }
{#1}
}
}
\cs_new:Npn \@@_reverse_group:nn #1
{
\@@_act_group_recurse:Nnn
\@@_act_reverse_output:n
{ \tl_reverse_tokens:n }
}
% \end{macrocode}
% \end{macro}
% \begin{macro}[EXP,aux]{\@@_act_group_recurse:Nnn}
% In many applications of \cs{@@_act:NNNnn}, we need to recursively
% apply some transformation within brace groups, then output. In this
% code, |#1| is the output function, |#2| is the transformation,
% which should expand in two steps, and |#3| is the group.
% \begin{macrocode}
\cs_new:Npn \@@_act_group_recurse:Nnn #1#2#3
{
\exp_args:Nf #1
{ \exp_after:wN \exp_after:wN \exp_after:wN { #2 {#3} } }
}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}[EXP]{\tl_count_tokens:n}
% \begin{macro}[EXP,aux]{\@@_act_count_normal:nN,
% \@@_act_count_group:nn,\@@_act_count_space:n}
% The token coung is computed through an \cs{int_eval:n} construction.
% Each \texttt{1+} is output to the \emph{left}, into the integer
% expression, and the sum is ended by the \cs{c_zero} inserted by
% \cs{@@_act_end:wn}. Somewhat a hack.
% \begin{macrocode}
\cs_new:Npn \tl_count_tokens:n #1
{
\int_eval:n
{
\@@_act:NNNnn
\@@_act_count_normal:nN
\@@_act_count_group:nn
\@@_act_count_space:n
{ }
{#1}
}
}
\cs_new:Npn \@@_act_count_normal:nN #1 #2 { 1 + }
\cs_new:Npn \@@_act_count_space:n #1 { 1 + }
\cs_new:Npn \@@_act_count_group:nn #1 #2
{ 2 + \tl_count_tokens:n {#2} + }
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{variable}{\c_@@_act_uppercase_tl, \c_@@_act_lowercase_tl}
% These constants contain the correspondance between lowercase
% and uppercase letters, in the form |aAbBcC...| and |AaBbCc...|
% respectively.
% \begin{macrocode}
\tl_const:Nn \c_@@_act_uppercase_tl
{
aA bB cC dD eE fF gG hH iI jJ kK lL mM
nN oO pP qQ rR sS tT uU vV wW xX yY zZ
}
\tl_const:Nn \c_@@_act_lowercase_tl
{
Aa Bb Cc Dd Ee Ff Gg Hh Ii Jj Kk Ll Mm
Nn Oo Pp Qq Rr Ss Tt Uu Vv Ww Xx Yy Zz
}
% \end{macrocode}
% \end{variable}
%
% \begin{macro}[EXP]{\tl_expandable_uppercase:n,\tl_expandable_lowercase:n}
% \begin{macro}[EXP,aux]{\@@_act_case_normal:nN,
% \@@_act_case_group:nn,\@@_act_case_space:n}
% The only difference between uppercasing and lowercasing is
% the table of correspondance that is used. As for other
% token list actions, we feed \cs{@@_act:NNNnn} three
% functions, and this time, we use the \meta{parameters}
% argument to carry which case-changing we are applying.
% A space is simply output. A normal token is compared
% to each letter in the alphabet using \cs{str_if_eq:nn}
% tests, and converted if necessary to upper/lowercase,
% before being output. For a group, we must perform the
% conversion within the group (the \cs{exp_after:wN} trigger
% \tn{romannumeral}, which expands fully to give the
% converted group), then output.
% \begin{macrocode}
\cs_new:Npn \tl_expandable_uppercase:n #1
{
\etex_unexpanded:D \exp_after:wN
{
\tex_romannumeral:D
\@@_act_case_aux:nn { \c_@@_act_uppercase_tl } {#1}
}
}
\cs_new:Npn \tl_expandable_lowercase:n #1
{
\etex_unexpanded:D \exp_after:wN
{
\tex_romannumeral:D
\@@_act_case_aux:nn { \c_@@_act_lowercase_tl } {#1}
}
}
\cs_new:Npn \@@_act_case_aux:nn
{
\@@_act:NNNnn
\@@_act_case_normal:nN
\@@_act_case_group:nn
\@@_act_case_space:n
}
\cs_new:Npn \@@_act_case_space:n #1 { \@@_act_output:n {~} }
\cs_new:Npn \@@_act_case_normal:nN #1 #2
{
\exp_args:Nf \@@_act_output:n
{
\exp_args:NNo \str_case:nnn #2 {#1}
{ \exp_stop_f: #2 }
}
}
\cs_new:Npn \@@_act_case_group:nn #1 #2
{
\exp_after:wN \@@_act_output:n \exp_after:wN
{ \exp_after:wN { \tex_romannumeral:D \@@_act_case_aux:nn {#1} {#2} } }
}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\tl_item:nn, \tl_item:Nn, \tl_item:cn}
% \begin{macro}[aux]{\@@_item:nn}
% The idea here is to find the offset of the item from the left, then use
% a loop to grab the correct item. If the resulting offset is too large,
% then \cs{quark_if_recursion_tail_stop:n} terminates the loop, and returns
% nothing at all.
% \begin{macrocode}
\cs_new:Npn \tl_item:nn #1#2
{
\exp_args:Nf \@@_item:nn
{
\int_eval:n
{
\int_compare:nNnT {#2} < \c_zero
{ \tl_count:n {#1} + \c_one + }
#2
}
}
#1
\q_recursion_tail
\__prg_break_point:
}
\cs_new:Npn \@@_item:nn #1#2
{
\__quark_if_recursion_tail_break:nN {#2} \__prg_break:
\int_compare:nNnTF {#1} = \c_one
{ \__prg_break:n { \exp_not:n {#2} } }
{ \exp_args:Nf \@@_item:nn { \int_eval:n { #1 - 1 } } }
}
\cs_new_nopar:Npn \tl_item:Nn { \exp_args:No \tl_item:nn }
\cs_generate_variant:Nn \tl_item:Nn { c }
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \subsection{Additions to \pkg{l3tokens}}
%
% \begin{macrocode}
%<@@=char>
% \end{macrocode}
%
% \begin{macro}{\char_set_active:Npn,\char_set_active:Npx}
% \begin{macro}{\char_gset_active:Npn,\char_gset_active:Npx}
% \begin{macro}{\char_set_active_eq:NN,\char_gset_active_eq:NN}
% \begin{macrocode}
\group_begin:
\char_set_catcode_active:N \^^@
\cs_set:Npn \char_tmp:NN #1#2
{
\cs_new:Npn #1 ##1
{
\char_set_catcode_active:n { `##1 }
\group_begin:
\char_set_lccode:nn { `\^^@ } { `##1 }
\tl_to_lowercase:n { \group_end: #2 ^^@ }
}
}
\char_tmp:NN \char_set_active:Npn \cs_set:Npn
\char_tmp:NN \char_set_active:Npx \cs_set:Npx
\char_tmp:NN \char_gset_active:Npn \cs_gset:Npn
\char_tmp:NN \char_gset_active:Npx \cs_gset:Npx
\char_tmp:NN \char_set_active_eq:NN \cs_set_eq:NN
\char_tmp:NN \char_gset_active_eq:NN \cs_gset_eq:NN
\group_end:
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \begin{macrocode}
%<@@=peek>
% \end{macrocode}
%
% \begin{macro}[TF]{\peek_N_type:}
% \begin{macro}[aux]
% {\@@_execute_branches_N_type:, \@@_N_type:w, \@@_N_type_aux:nnw}
% All tokens are \texttt{N}-type tokens, except in four cases:
% begin-group tokens, end-group tokens, space tokens with character
% code~$32$, and outer tokens. Since \cs{l_peek_token} might be
% outer, we cannot use the convenient \cs{bool_if:nTF} function, and
% must resort to the old trick of using \tn{ifodd} to expand a set of
% tests. The \texttt{false} branch of this test is taken if the token
% is one of the first three kinds of non-\texttt{N}-type tokens
% (explicit or implicit), thus we call \cs{@@_false:w}. In the
% \texttt{true} branch, we must detect outer tokens, without impacting
% performance too much for non-outer tokens. The first filter is to
% search for \texttt{outer} in the \tn{meaning} of \cs{l_peek_token}.
% If that is absent, \cs{use_none_delimit_by_q_stop:w} cleans up, and
% we call \cs{@@_true:w}. Otherwise, the token can be a non-outer
% macro or a primitive mark whose parameter or replacement text
% contains \texttt{outer}, it can be the primitive \tn{outer}, or it
% can be an outer token. Macros and marks would have \texttt{ma} in
% the part before the first occurrence of \texttt{outer}; the meaning
% of \tn{outer} has nothing after \texttt{outer}, contrarily to outer
% macros; and that covers all cases, calling \cs{@@_true:w} or
% \cs{@@_false:w} as appropriate. Here, there is no \meta{search
% token}, so we feed a dummy \cs{scan_stop:} to the
% \cs{@@_token_generic:NNTF} function.
% \begin{macrocode}
\group_begin:
\char_set_catcode_other:N \O
\char_set_catcode_other:N \U
\char_set_catcode_other:N \T
\char_set_catcode_other:N \E
\char_set_catcode_other:N \R
\tl_to_lowercase:n
{
\cs_new_protected_nopar:Npn \@@_execute_branches_N_type:
{
\if_int_odd:w
\if_catcode:w \exp_not:N \l_peek_token { \c_two \fi:
\if_catcode:w \exp_not:N \l_peek_token } \c_two \fi:
\if_meaning:w \l_peek_token \c_space_token \c_two \fi:
\c_one
\exp_after:wN \@@_N_type:w
\token_to_meaning:N \l_peek_token
\q_mark \@@_N_type_aux:nnw
OUTER \q_mark \use_none_delimit_by_q_stop:w
\q_stop
\exp_after:wN \@@_true:w
\else:
\exp_after:wN \@@_false:w
\fi:
}
\cs_new_protected:Npn \@@_N_type:w #1 OUTER #2 \q_mark #3
{ #3 {#1} {#2} }
}
\group_end:
\cs_new_protected:Npn \@@_N_type_aux:nnw #1 #2 #3 \fi:
{
\fi:
\tl_if_in:noTF {#1} { \tl_to_str:n {ma} }
{ \@@_true:w }
{ \tl_if_empty:nTF {#2} { \@@_true:w } { \@@_false:w } }
}
\cs_new_protected_nopar:Npn \peek_N_type:TF
{ \@@_token_generic:NNTF \@@_execute_branches_N_type: \scan_stop: }
\cs_new_protected_nopar:Npn \peek_N_type:T
{ \@@_token_generic:NNT \@@_execute_branches_N_type: \scan_stop: }
\cs_new_protected_nopar:Npn \peek_N_type:F
{ \@@_token_generic:NNF \@@_execute_branches_N_type: \scan_stop: }
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macrocode}
%</initex|package>
% \end{macrocode}
%
% \end{implementation}
%
% \PrintIndex
|