1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
|
% \iffalse meta-comment
%
%% File: l3draw-transforms.dtx
%
% Copyright (C) 2018,2019 The LaTeX3 Project
%
% It may be distributed and/or modified under the conditions of the
% LaTeX Project Public License (LPPL), either version 1.3c of this
% license or (at your option) any later version. The latest version
% of this license is in the file
%
% http://www.latex-project.org/lppl.txt
%
% This file is part of the "l3experimental bundle" (The Work in LPPL)
% and all files in that bundle must be distributed together.
%
% -----------------------------------------------------------------------
%
% The development version of the bundle can be found at
%
% https://github.com/latex3/latex3
%
% for those people who are interested.
%
%<*driver>
\RequirePackage{expl3}
\documentclass[full]{l3doc}
\begin{document}
\DocInput{\jobname.dtx}
\end{document}
%</driver>
% \fi
%
% \title{^^A
% The \pkg{l3draw-transforms} package\\ Transformations^^A
% }
%
% \author{^^A
% The \LaTeX3 Project\thanks
% {^^A
% E-mail:
% \href{mailto:latex-team@latex-project.org}
% {latex-team@latex-project.org}^^A
% }^^A
% }
%
% \date{Released 2019-05-03}
%
% \maketitle
%
% \begin{implementation}
%
% \section{\pkg{l3draw-transforms} implementation}
%
% \begin{macrocode}
%<*initex|package>
% \end{macrocode}
%
% \begin{macrocode}
%<@@=draw>
% \end{macrocode}
%
% This sub-module covers more-or-less the same ideas as
% \texttt{pgfcoretransformations.code.tex}. At present, equivalents of the
% following are currently absent:
% \begin{itemize}
% \item \cs{pgfgettransform}, \cs{pgfgettransformentries}: Awaiting use cases.
% \item \cs{pgftransformlineattime}, \cs{pgftransformarcaxesattime},
% \cs{pgftransformcurveattime}: Need to look at the use cases for
% these to fully understand them.
% \item \cs{pgftransformarrow}: Likely to be done when other arrow functions
% are added.
% \item \cs{pgflowlevelsynccm}, \cs{pgflowlevel}: Likely to be added when
% use cases are encountered in other parts of the code.
% \end{itemize}
%
% \begin{variable}{\l_@@_matrix_active_bool}
% An internal flag to avoid redundant calculations.
% \begin{macrocode}
\bool_new:N \l_@@_matrix_active_bool
% \end{macrocode}
% \end{variable}
%
% \begin{variable}
% {
% \l_@@_matrix_a_fp,
% \l_@@_matrix_b_fp,
% \l_@@_matrix_c_fp,
% \l_@@_matrix_a_fp,
% \l_@@_xshift_dim,
% \l_@@_yshift_dim
% }
% The active matrix and shifts.
% \begin{macrocode}
\fp_new:N \l_@@_matrix_a_fp
\fp_new:N \l_@@_matrix_b_fp
\fp_new:N \l_@@_matrix_c_fp
\fp_new:N \l_@@_matrix_d_fp
\dim_new:N \l_@@_xshift_dim
\dim_new:N \l_@@_yshift_dim
% \end{macrocode}
% \end{variable}
%
% \begin{macro}{\draw_transform_matrix_reset:, \draw_transform_shift_reset:}
% Fast resetting.
% \begin{macrocode}
\cs_new_protected:Npn \draw_transform_matrix_reset:
{
\fp_set:Nn \l_@@_matrix_a_fp { 1 }
\fp_zero:N \l_@@_matrix_b_fp
\fp_zero:N \l_@@_matrix_c_fp
\fp_set:Nn \l_@@_matrix_d_fp { 1 }
}
\cs_new_protected:Npn \draw_transform_shift_reset:
{
\dim_zero:N \l_@@_xshift_dim
\dim_zero:N \l_@@_yshift_dim
}
\draw_transform_matrix_reset:
\draw_transform_shift_reset:
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\draw_transform_matrix_absolute:nnnn}
% \begin{macro}{\draw_transform_shift_absolute:n}
% \begin{macro}{\@@_transform_shift_absolute:nn}
% Setting the transform matrix is straight-forward, with just a bit
% of expansion to sort out. With the mechanism active, the identity
% matrix is set.
% \begin{macrocode}
\cs_new_protected:Npn \draw_transform_matrix_absolute:nnnn #1#2#3#4
{
\fp_set:Nn \l_@@_matrix_a_fp {#1}
\fp_set:Nn \l_@@_matrix_b_fp {#2}
\fp_set:Nn \l_@@_matrix_c_fp {#3}
\fp_set:Nn \l_@@_matrix_d_fp {#4}
\bool_lazy_all:nTF
{
{ \fp_compare_p:nNn \l_@@_matrix_a_fp = \c_one_fp }
{ \fp_compare_p:nNn \l_@@_matrix_b_fp = \c_zero_fp }
{ \fp_compare_p:nNn \l_@@_matrix_c_fp = \c_zero_fp }
{ \fp_compare_p:nNn \l_@@_matrix_d_fp = \c_one_fp }
}
{ \bool_set_false:N \l_@@_matrix_active_bool }
{ \bool_set_true:N \l_@@_matrix_active_bool }
}
\cs_new_protected:Npn \draw_transform_shift_absolute:n #1
{
\@@_point_process:nn
{ \@@_transform_shift_absolute:nn } {#1}
}
\cs_new_protected:Npn \@@_transform_shift_absolute:nn #1#2
{
\dim_set:Nn \l_@@_xshift_dim {#1}
\dim_set:Nn \l_@@_yshift_dim {#2}
}
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\draw_transform_matrix:nnnn}
% \begin{macro}{\@@_transform:nnnn}
% \begin{macro}{\draw_transform_shift:n}
% \begin{macro}{\@@_transform_shift:nn}
% Much the same story for adding to an existing matrix, with a bit of
% pre-expansion so that the calculation uses \enquote{frozen} values.
% \begin{macrocode}
\cs_new_protected:Npn \draw_transform_matrix:nnnn #1#2#3#4
{
\use:x
{
\@@_transform:nnnn
{ \fp_eval:n {#1} }
{ \fp_eval:n {#2} }
{ \fp_eval:n {#3} }
{ \fp_eval:n {#4} }
}
}
\cs_new_protected:Npn \@@_transform:nnnn #1#2#3#4
{
\use:x
{
\draw_transform_matrix_absolute:nnnn
{ #1 * \l_@@_matrix_a_fp + #2 * \l_@@_matrix_c_fp }
{ #1 * \l_@@_matrix_b_fp + #2 * \l_@@_matrix_d_fp }
{ #3 * \l_@@_matrix_a_fp + #4 * \l_@@_matrix_c_fp }
{ #3 * \l_@@_matrix_b_fp + #4 * \l_@@_matrix_d_fp }
}
}
\cs_new_protected:Npn \draw_transform_shift:n #1
{
\@@_point_process:nn
{ \@@_transform_shift:nn } {#1}
}
\cs_new_protected:Npn \@@_transform_shift:nn #1#2
{
\dim_set:Nn \l_@@_xshift_dim { \l_@@_xshift_dim + #1 }
\dim_set:Nn \l_@@_yshift_dim { \l_@@_yshift_dim + #2 }
}
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\draw_transform_matrix_invert:}
% \begin{macro}{\@@_transform_invert:n, \@@_transform_invert:f}
% \begin{macro}{\draw_transform_shift_invert:}
% Standard mathematics: calculate the inverse matrix and use that, then
% undo the shifts.
% \begin{macrocode}
\cs_new_protected:Npn \draw_transform_matrix_invert:
{
\bool_if:NT \l_@@_matrix_active_bool
{
\@@_transform_invert:f
{
\fp_eval:n
{
1 /
(
\l_@@_matrix_a_fp * \l_@@_matrix_d_fp
- \l_@@_matrix_b_fp * \l_@@_matrix_c_fp
)
}
}
}
}
\cs_new_protected:Npn \@@_transform_invert:n #1
{
\fp_set:Nn \l_@@_matrix_a_fp
{ \l_@@_matrix_d_fp * #1 }
\fp_set:Nn \l_@@_matrix_b_fp
{ -\l_@@_matrix_b_fp * #1 }
\fp_set:Nn \l_@@_matrix_c_fp
{ -\l_@@_matrix_c_fp * #1 }
\fp_set:Nn \l_@@_matrix_d_fp
{ \l_@@_matrix_a_fp * #1 }
}
\cs_generate_variant:Nn \@@_transform_invert:n { f }
\cs_new_protected:Npn \draw_transform_shift_invert:
{
\dim_set:Nn \l_@@_xshift_dim { -\l_@@_xshift_dim }
\dim_set:Nn \l_@@_yshift_dim { -\l_@@_yshift_dim }
}
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\draw_transform_triangle:nnn}
% Simple maths to move the canvas origin to |#1| and the two axes to
% |#2| and |#3|.
% \begin{macrocode}
\cs_new_protected:Npn \draw_transform_triangle:nnn #1#2#3
{
\@@_point_process:nnn
{
\@@_point_process:nn
{ \@@_tranform_triangle:nnnnnn }
{#1}
}
{#2} {#3}
}
\cs_new_protected:Npn \@@_tranform_triangle:nnnnnn #1#2#3#4#5#6
{
\use:x
{
\draw_transform_matrix_absolute:nnnn
{ #3 - #1 }
{ #4 - #2 }
{ #5 - #1 }
{ #6 - #2 }
\draw_transform_shift_absolute:n { #1 , #2 }
}
}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}
% {\draw_transform_scale:n, \draw_transform_xscale:n, \draw_transform_yscale:n}
% \begin{macro}
% {\draw_transform_xshift:n, \draw_transform_yshift:n}
% \begin{macro}
% {\draw_transform_xslant:n, \draw_transform_yslant:n}
% Lots of shortcuts.
% \begin{macrocode}
\cs_new_protected:Npn \draw_transform_scale:n #1
{ \draw_transform_matrix:nnnn { #1 } { 0 } { 0 } { #1 } }
\cs_new_protected:Npn \draw_transform_xscale:n #1
{ \draw_transform_matrix:nnnn { #1 } { 0 } { 0 } { 1 } }
\cs_new_protected:Npn \draw_transform_yscale:n #1
{ \draw_transform_matrix:nnnn { 1 } { 0 } { 0 } { #1 } }
\cs_new_protected:Npn \draw_transform_xshift:n #1
{ \draw_transform_shift:n { #1 , 0pt } }
\cs_new_protected:Npn \draw_transform_yshift:n #1
{ \draw_transform_shift:n { 0pt , #1 } }
\cs_new_protected:Npn \draw_transform_xslant:n #1
{ \draw_transform_matrix:nnnn { 1 } { 0 } { #1 } { 1 } }
\cs_new_protected:Npn \draw_transform_yslant:n #1
{ \draw_transform_matrix:nnnn { 1 } { #1 } { 0 } { 1 } }
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\draw_transform_rotate:n}
% \begin{macro}
% {
% \@@_transform_rotate:n, \@@_transform_rotate:f,
% \@@_transform_rotate:nn, \@@_transform_rotate:ff
% }
% Slightly more involved: evaluate the angle only once, and the sine and
% cosine only once.
% \begin{macrocode}
\cs_new_protected:Npn \draw_transform_rotate:n #1
{ \@@_transform_rotate:f { \fp_eval:n {#1} } }
\cs_new_protected:Npn \@@_transform_rotate:n #1
{
\@@_transform_rotate:ff
{ \fp_eval:n { cosd(#1) } }
{ \fp_eval:n { sind(#1) } }
}
\cs_generate_variant:Nn \@@_transform_rotate:n { f }
\cs_new_protected:Npn \@@_transform_rotate:nn #1#2
{ \draw_transform_matrix:nnnn {#1} {#2} { -#2 } { #1 } }
\cs_generate_variant:Nn \@@_transform_rotate:nn { ff }
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macrocode}
%</initex|package>
% \end{macrocode}
%
% \end{implementation}
%
% \PrintIndex
|