summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/source/latex/graphpaper/graphpaper.dtx
blob: 071f40b1de22131767431250e2f629973fb486e2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
%\iffalse
% !TEX encoding = UTF-8 Unicode
% !TEX TS-program = pdflatex
%<*internal>
\begingroup
%^^A Load the docstrip package (DO NOT USE \input{...})
\input docstrip.tex
\keepsilent
%^^A\usedir{tex/latex/graphpaper}
%^^A insert this text at the beginning of the generated file
\preamble
 ________________________________________
 The graphpaper class for generating several types of graph paper
 Copyright (C) 2020 C. Beccari & F. Biccari
 All rights reserved
 
 License information appended
 
\endpreamble
%^^A insert this text at the end of the generated file
\postamble
Copyright (C) 2020 Claudio Beccari & Francesco Biccari

Distributable under the LaTeX Project Public License,
version 1.3c or higher (your choice). The latest version of
this license is at: http://www.latex-project.org/lppl.txt

This work is "author-maintained".

This work consists of this file graphpaper.dtx,
and the derived files graphpaper.cls and graphpaper.pdf.

\endpostamble
%^^A
%^^A DocStrip can silently overwrite an already existing cls file 
\askforoverwritefalse
%^^A
%^^A Generates the cls file from the dtx file, stripping out all
%^^A the documentation. The option "class" tells to DocStrip to 
%^^A extract only the code marked with the "class" tag.
\generate{\file{graphpaper.cls}{\from{graphpaper.dtx}{class}}}
%
\def\tmpa{plain}
\ifx\tmpa\fmtname\endgroup\expandafter\bye\fi
\endgroup
%</internal>
%\fi
%^^A %
%^^A ---------------------------------------------------------------------- 
%^^A Here starts the second part
%^^A ProvidesFile must be (more or less) the first command for a class dtx.
%^^A It populates the variables \filename, \filedate, and \fileversion
%^^A
% \iffalse
%<*driver>
\ProvidesFile{graphpaper.dtx}
%</driver>
%<class>\NeedsTeXFormat{LaTeX2e}[2018-01-01]
%<class>\ProvidesClass{graphpaper}%
%<*class>
   [2020-10-10 1.0 A LaTeX class to generate several types of graph papers]
%</class> 
%<*driver>
\documentclass[11pt,a4paper]{ltxdoc}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage{lmodern,textcomp}
\usepackage[a4paper,lines=50]{geometry}
\usepackage{multicol}
\hfuzz 10pt
\let\originalmeta\meta
\renewcommand\meta[1]{{\normalfont\originalmeta{#1}}}
\renewcommand\marg[1]{\texttt{\{\meta{#1}\}}}
\newcommand\Marg[1]{\texttt{\{#1\}}}
\newcommand\opz[1]{\texttt{[\meta{#1}]}}
\newcommand\Opz[1]{\texttt{[#1]}}
\newcommand\amb[1]{\texttt{\slshape#1}}\let\env\amb
\renewcommand\cs[1]{{\normalfont\ttfamily\char92#1}}
\newcommand\Benv[1]{\texttt{\char92begin\{#1\}}}
\newcommand\Eenv[1]{\texttt{\char92end\{#1\}}}
\newcommand\eTeX{$\varepsilon$-\TeX}
\providecommand\prog{}
\renewcommand\prog[1]{\textsf{#1}}
\newcommand\pack[1]{\texttt{\itshape#1}}
\newcommand\class[1]{\texttt{#1}}
%
\newenvironment{ttsintassi}{\begin{lrbox}{0}
\minipage{\dimexpr\linewidth-2\fboxrule-2\fboxsep}\ttfamily\obeylines}%
{\endminipage\end{lrbox}\center\fbox{\box0}\endcenter}
\let\ttsyntax\ttsintassi \let\endttsyntax\endttsintassi
%
\usepackage{color}
\definecolor{sfondoblu}{rgb}{0.94,0.97,1}
\usepackage{listings}
\lstset{language=[LaTeX]TeX,
	basicstyle=\footnotesize\ttfamily,
	keywordstyle=\color{blue}\bfseries,
	commentstyle=\color{gray},
	backgroundcolor=\color{sfondoblu},
	frameround=tttt,
	frame=tlrb,
	escapechar=|,
	morekeywords={bilinear, semilogx, semilogy, loglog, polar, logpolar, smith, setgridcolor, setmajorlinethickness, setmediumlinethickness, setminorlinethickness, setminimumdistance, setxside, setyside, customcode},
	columns=flexible
}
\begin{document}
\GetFileInfo{graphpaper.dtx}
\title{Documentation of the \class{graphpaper} \LaTeX\ class}
\author{Claudio Beccari \and Francesco Biccari\thanks{Corresponding author: biccari@gmail.com}}
\date{Version number \fileversion; last revised on \filedate.}
\maketitle
\setcounter{tocdepth}{2}
\renewcommand{\columnseprule}{0.4pt}
\setlength{\columnsep}{1.5cm}

\addtocontents{toc}{\protect\begin{multicols}{2}}
{\small
\tableofcontents}

\DocInput{graphpaper.dtx}
\addtocontents{toc}{\protect\end{multicols}}
\end{document}
%</driver>
% \fi
%^^A \CheckSum{100}
%\begin{abstract}
% This document describes how to use the \LaTeX\ document class \class{graphpaper}.
% It allows to print several types of graph papers: bilinear,
% semilogarithmic, bilogarithmic, polar, Smith charts.
%\end{abstract}
%
%\section{Legal terms}
% This file is part of the |graphpaper| bundle.
% 
% This work may be distributed and/or modified under the
% conditions of the \LaTeX\ Project Public License, either version 1.3c
% of this license or (at your option) any later version.
% The latest version of this license is at:
%   http://www.latex-project.org/lppl.txt
%
% This work has the LPPL maintenance status ``maintained''.
% 
% This work consists of this file graphpaper.dtx,
% and the derived files graphpaper.cls and graphpaper.pdf.
%
% The list of derived (unpacked) files belonging to the distribution 
% and covered by the LPPL is contained in the README file.
% 
%\section{Installation}
% The simplest way to install \class{graphpaper} is by the package manager of your \TeX\
% distribution (\TeX\ Live or MiK\TeX). For manual installation see the README file.
%
%
% \newpage
% \section{How to use graphpaper}
% \label{sec:howto}
%
% \class{Graphpaper} is a \LaTeX\ class and it is loaded as usual:
%
% \iffalse
%<*example>
% \fi
\begin{lstlisting}
\documentclass|\opz{options}|{graphpaper}
\end{lstlisting}
% \iffalse
%</example>
% \fi
%
% It has three class options to specify the paper format:
% \texttt{a4paper}, \texttt{a3paper}, \texttt{letterpaper}.
% The paper orientation cannot be changed and it is always set
% to landscape.
% 
% \class{Graphpaper} provides the following commands (to be used 
% inside the body of the document) in order to compose graph papers. 
% At the end of the execution of these commands, a new page
% is always started.
% 
% \iffalse
%<*example>
% \fi
\begin{lstlisting}
\bilinear

\semilogx|\marg{decades along x}|

\semilogy|\marg{decades along y}|

\loglog|\opz{0/1}||\marg{decades along x}||\marg{decades along y}|

\polar

\logpolar|\marg{decades along radius}|

\smith
\end{lstlisting}
% \iffalse
%</example>
% \fi
% The commands \cs{bilinear}, \cs{semilogx}, and \cs{semilogy} are self
% explanatory. 
% The optional parameter in the \cs{loglog} command chooses wether the
% decade length along the abscissa and ordinate axes must have the same
% dimension. It can assume the value 0 (free dimensions) or 1 (same
% dimensions), 0 being the default.
% The commadns \cs{polar}, \cs{logpolar}, \cs{smith} are used to plot
% polar, logpolar, and Smith chart graph papers. The mandatory argument
% of \cs{logpolar} specifies the number of decades.
%
% There are several commands to change the appearance of the graph papers.
% They must be inserted before the graph paper command which we want they
% affect.
% 
% The following ones are specific to bilinear, semilog and loglog papers
% only:
% \iffalse
%<*example>
% \fi
\begin{lstlisting}
\setxside|\marg{length}|

\setyside|\marg{length}|

\setminimumdistance|\marg{length}|
\end{lstlisting}
% \iffalse
%</example>
% \fi
% \cs{setxside} and \cs{setyside} allow to specify the dimensions of the
% rectangle of the grid. The default values are (260\,mm, 180\,mm) for
% A4 paper, (250\,mm, 190\,mm) for letter paper, and (380\,mm, 280\,mm)
% for A3 paper.
% 
% \cs{setminimumdistance} specifies the minimal optical distance 
% between two lines. Default is 1\,mm. In this way, the number of
% subdivision is automatically composed.
%
% The following commands are instead general settings for all graph
% papers:
% \iffalse
%<*example>
% \fi
\begin{lstlisting}
\setgridcolor|\marg{color}|

\setmajorlinethickness|\marg{length}|

\setmediumlinethickness|\marg{length}|

\setminorlinethickness|\marg{length}|

\customcode|\opz{0/1}\marg{picture environment commands}|
\end{lstlisting}
% \iffalse
%</example>
% \fi
%
% \cs{setgridcolor} sets the color of the grid. The argument must be a
% color defined or predefined by the color or |xcolor| package. The
% default color is the typical red-orange color used in many graph papers,
% Pantone 2011 U corresponding  to RGB (250,153,89).
% 
% \cs{setmajorlinethickness}, \cs{setmediumlinethickness},
% \cs{setminorlinethickness} can be used to change the thickness of the
% lines. The default values  are 1\,pt, 0.6\,pt, 0.25\,pt, respectively.
%
% \cs{customcode} accepts all the commands accepted by the picture
% environment.  This snippet of code is inserted inside the picture
% environment used to draw the subsequent graph paper.
% The origin of the coordinate system in the case of rectangular graph
% papers is the lower left vertex. The \cs{unitlength} is set to 1\,mm. 
% For circular plots (both polar and Smith) the origin is in the center
% of the circle and the \cs{unitlength} is set to 1/140 of the paper height
% currently in use.
%
% The \cs{customcode} command can be used, for example, to add a logo
% or to draw on the graph paper.
% Its optional argument is by default set to 0. If it is set to 1, the
% content of the \cs{customcode} is erased after its usage in a
% graphpaper.
% 
%  
%\StopEventually{}
%
%\iffalse
%<*class>
%\fi
%\clearpage
%\section{The implementation}
% This class file has been already identified by the commands extracted
% by the |DocStrip| package, during  the |.dtx| file compilation.
% Therefore the commands \cs{NeedsTeXFormat} and \cs{ProvidesClass} are
% already present in the |.cls| file.
%
% \subsection{Loaded packages, class options, and initial settings}
% The |xkeyvalue| package is used in order to define the class options:
%    \begin{macrocode}
\RequirePackage{xkeyval}
%    \end{macrocode}
% Three class options are implemented and they allows only to change the 
% paper format (A4, A3, letter). The orientation of the paper is fixed
% to landscape.
%
%    \begin{macrocode}
\def\GP@paper{1}
\define@key[GRP]{}{a4paper}[]{\PassOptionsToPackage{a4paper}{geometry}}
\define@key[GRP]{}{letterpaper}[]{\PassOptionsToPackage{letterpaper}{geometry}%
  \def\GP@paper{2}}
\define@key[GRP]{}{a3paper}[]{\PassOptionsToPackage{a3paper}{geometry}%
  \def\GP@paper{3}}
\DeclareOptionX*{\ClassError{graphpaper}{Option '\CurrentOption'%
  \MessageBreak is not valid}{Remove '\CurrentOption' %
  from class options}}
\ProcessOptionsX[GRP]<>
%    \end{macrocode}
%
% The class is based on the \class{article} class. The default paper
% is A4.
%    \begin{macrocode}
\LoadClass[a4paper,11pt]{article}
%    \end{macrocode}
%
% Some packages are loaded. \pack{euclideangeometry} loads \pack{curve2e} 
% which in turns loads \pack{pict2e}; all of them are \env{picture}
% environment extensions.
%    \begin{macrocode}
\RequirePackage[landscape]{geometry}
\RequirePackage{euclideangeometry,graphicx,xcolor}
%    \end{macrocode}
%
% Default line color (Pantone 2011~U).
%    \begin{macrocode}
\definecolor{gridcolor}{RGB}{250,153,89}
%    \end{macrocode}
%
% Default thickness of the lines used for main divisions and subdivisions.
% The ISO-UNI standards prescribe a geometric progression with $\sqrt{2}$
% ratio, but it is not respected here.
% It must be keep in mind also that a safe minimum thickness for an offset
% monochromatic printer is about 0.25\,pt, whereas a safe minimum
% thickness for a laser printer is about 0.5\,pt.
%    \begin{macrocode}
\newlength\lwa
\setlength{\lwa}{1pt}
\newlength\lwb
\setlength{\lwb}{0.6pt}
\newlength\lwc
\setlength{\lwc}{0.25pt}
%    \end{macrocode}
%
% Minimum distance between two subdivision lines. A necessary parameter
% for automatic choice of number of subdivisions. Default 1\,mm.
%    \begin{macrocode}
\newlength\mindistanceunit
\setlength{\mindistanceunit}{1mm}
%    \end{macrocode}
%
% Definition of the width and height of the main rectangle within which
% the bilinear, semilog and loglog grid is composed.
%    \begin{macrocode}
\newlength\xsideunit
\newlength\ysideunit
\if\GP@paper1 
  \setlength{\xsideunit}{260mm}
  \setlength{\ysideunit}{180mm}
\fi
\if\GP@paper2 
  \setlength{\xsideunit}{250mm}
  \setlength{\ysideunit}{190mm}
\fi
\if\GP@paper3 
  \setlength{\xsideunit}{380mm}
  \setlength{\ysideunit}{280mm}
\fi
%    \end{macrocode}
%
%\subsection{Rectangular graph papers}
%
% As we will see below, the commands to compose the bilinear, semilog
% and loglog graph papers are just proper calls of the low-level command
% \cs{carta}. 
%
%\subsubsection{Service macros for rectangular graph papers}
% 
% First of all, four macros are defined. They are used by the
% \cs{carta} service command only. 
%
% Two of them are simply two identical classical |whiledo| commands:
% the first cycles on the counter \cs{J} while the second one on the
% counter \cs{K}.
% They are two because in this way two nested |whiledo| commands can be
% implemented.
% These \cs{WhileDo} commands have four parameters: 
% 1. the incremental step of the counter between cycles (default 1); 
% 2. the initial value of the counter; 
% 3. the final value of the counter; 
% 4. the code to execute at each cycle.
%    \begin{macrocode}
\newcount\J
\newcount\K

\newcommand\WhileDoOne[4][1]{%
	\J=#2 \fpdowhile{\J=<#3 }{#4\advance\J by #1\relax}}

\newcommand\WhileDoTwo[4][1]{%
	\K=#2 \fpdowhile{\K=<#3 }{#4\advance\K by #1\relax}}
%    \end{macrocode}
%
%
% The other two commands are used to draw a periodic set of equidistant
% lines in log scale.
% These two commands are practically identical, the only difference is
% that they act on different axes. 
% These commands have six parameters: 
% 1. number of lines to draw (distance between these lines is the fifth
% parameter);
% 2. value at which the first line must be drawn (x-value for vertical
% lines, y-value for horizontal lines);
% 3. thickness;
% 4. tick length;
% 5. distance between two lines (typically the length of a decade:
% y-decade for horizontal lines, x-decade for vertical lines);
% 6. line length (typically the length of the graph paper sides:
% x-side for horizontal lines and y-side for vertical lines).
%
%    \begin{macrocode}
\newcommand\hlines[6]{%
\multiput(-#4,\fpeval{ln(#2) * #5 / ln(10)})(0,#5){#1}%
{\linethickness{#3}\line(1,0){\fpeval{#6 + 2*#4}}}%
}

\newcommand\vlines[6]{%
\multiput(\fpeval{ln(#2) * #5 / ln(10)},-#4)(#5,0){#1}%
{\linethickness{#3}\line(0,1){\fpeval{#6 + 2*#4}}}%
}
%    \end{macrocode}
%
%\subsubsection{Command for rectangular graph papers}
% 
% Here starts the definition of the \cs{carta} command. Its syntax is
%\begin{ttsyntax}
%\cs{carta}\opz{0 or1}\marg{no. x decades}\marg{no. of y decades}
%\end{ttsyntax}
% If an axis has zero decades, the scale is linear.
% For example, \cs{carta}\Marg{0}\Marg{0} composes a bilinear graph
% paper, \cs{carta}\Marg{2}\Marg{0} composes a semilog graph paper with
% linear y-axis and two decades along x-axis, and so on.
% Its optional argument can be 0 or 1. If it is set to 0, and both the
% numbers of decades are greater than zero (which means the resulting
% graph paper is loglog), then the length of x-axis and y-axis decades
% are set to be equal.
%
% Declaration of the command and its arguments.
%    \begin{macrocode}
\NewDocumentCommand{\carta}{O{0} m m}{%
%    \end{macrocode}
%
% Typographical settings and definition of the main features of the 
% graphpaper. \cs{xlength} and \cs{ylength} represent the lengths,
% expressed in mm, of the rectangle dimensions. \cs{minimumdistance}
% is the minimum distance at which two subdivision lines can be drawn.
%    \begin{macrocode}
\newpage
\parindent=0pt
\pagestyle{empty}%
\color{gridcolor}%
\setlength{\unitlength}{1mm}%
\def\ticklength{2}
\def\minorticklength{1.2}
\def\minimumdistance{\fpeval{(\mindistanceunit/1mm)}}
\def\xlength{\fpeval{round(round(\xsideunit/1cm) * 10)}} 
\def\ylength{\fpeval{round(round(\ysideunit/1cm) * 10)}}
%    \end{macrocode}
%
% \cs{xlinsq} and \cs{ylinsq} represent the number of big divisions 
% (cm) on horizontal and vertical axes for linear scales, respectively. 
%    \begin{macrocode}
\def\xlinsq{\inteval{\xlength/10}}
\def\ylinsq{\inteval{\ylength/10}}
%    \end{macrocode}
%
% Implementation of the same decade length between x-axis and y-axis
% for loglog graph paper. This is obtained properly changing the 
% values of \cs{xlength} and \cs{ylength}, making them equal.
%    \begin{macrocode}
\edef\decx{#2}% decades along x
\edef\decy{#3}% decades along y
\unless\ifnum#2=0 \unless\ifnum#3=0 \ifnum#1=1%
\fptest{\decx/\decy < \xlength/\ylength}%
{\def\xlength{\fpeval{\ylength*\decx/\decy}}}
{\def\ylength{\fpeval{\xlength*\decy/\decx}}}
\fi\fi\fi
%    \end{macrocode}
%
% Using the values of the paper width and height together with the
% length of the graph paper rectangle sides, the margins are calculated
% and passed to the geometry package in order to center the grid with
% respect to the page.
%    \begin{macrocode}
\ifcsname ml\endcsname\relax\else\newlength\ml\fi
\ifcsname mr\endcsname\relax\else\newlength\mr\fi
\ifcsname mt\endcsname\relax\else\newlength\mt\fi
\ifcsname mb\endcsname\relax\else\newlength\mb\fi
\unless\ifcsname mr\endcsname\newlength\mr\fi
\unless\ifcsname mt\endcsname\newlength\mt\fi
\unless\ifcsname mb\endcsname\newlength\mb\fi
\setlength{\ml}{\fpeval{(\paperwidth/1mm - \xlength)/2}mm}
\setlength{\mr}{\fpeval{(\paperwidth/1mm - \xlength)/2}mm}
\setlength{\mt}{\fpeval{(\paperheight/1mm - \ylength)/2}mm}
\setlength{\mb}{\fpeval{(\paperheight/1mm - \ylength)/2}mm}
\newgeometry{left=\ml,right=\mr,top=\mt,bottom=\mb}
%    \end{macrocode}
%
% Here starts the drawing of the graph paper by the |picture| environment.
%    \begin{macrocode}
\begin{picture}(\xlength,\ylength)
%    \end{macrocode}
%
% If the horizontal axis is linear, vertical lines are drawn by
% simple \cs{multiput} commands. Otherwise, if the scale is logarithmic,
% the vertical lines are drawn by the \cs{vlines} command defined above.
%    \begin{macrocode}
\ifnum#2=0\relax
% vertical lines on linear abscissa. Main lines every 10 mm.
% Second level lines every 5 mm, Third level lines every 1 mm,
% according to the \minimumdistance value
  \multiput(0,0)(10,0){\inteval{\xlinsq + 1}}{%
    \linethickness{\lwa}\squarecap\line(0,1){\ylength}}
  \ifnum\fpeval{\minimumdistance <= 5}=1
  \multiput(5,0)(10,0){\xlinsq}{%
    \linethickness{\lwb}\line(0,1){\ylength}}\fi
  \ifnum\fpeval{\minimumdistance <= 1}=1
  \multiput(0,0)(1,0){\xlength}{%
    \linethickness{\lwc}\line(0,1){\ylength}}\fi
\else
  % vertical lines on log abscissa
  \edef\decxx{\fpeval{\decx + 1}}%
  \edef\xstep{\fpeval{\xlength / \decx}}
  % main lines: one for each decade (10) plus one at the end
  \vlines{\decxx}{1}{\lwa}{\ticklength}{\xstep}{\ylength}
  % second-level lines: one every unit (1), for each decade
  \WhileDoOne{2}{9}{\vlines{\decx}{\J}{\lwb}{%
    \minorticklength}{\xstep}{\ylength}}
  % third-level lines: for each decade (10) and for each unit (1):
  % 20, 10, 5, 2 are progressively tested and adopted if the distance
  % between two subsequent nearest lines is less to \minimumdistance  
  \WhileDoTwo{1}{9}{%
    \edef\xmindivfloat{%
      \fpeval{(\K+1)*(1-10^-(\minimumdistance/\xstep))}}
    % xmindiv corresponds to 1/20 of unit
    \def\xmindiv{20}
    % xmindivfloat corresponds to the distance of two
    % subdivision with respect to the unit
    \ifnum\fpeval{\xmindivfloat <= 0.5}=1 \def\xmindiv{10}\fi
    \ifnum\fpeval{\xmindivfloat <= 0.2}=1 \def\xmindiv{4}\fi
    \ifnum\fpeval{\xmindivfloat <= 0.1}=1 \def\xmindiv{2}\fi
    \ifnum\fpeval{\xmindivfloat <= 0.05}=1 \def\xmindiv{1}\fi
    \ifnum\fpeval{\xmindiv == 20}=1\relax
    \else\WhileDoOne[\xmindiv]{\xmindiv}{19}{%
      \vlines{\decx}{(\K+\J/20)}{\lwc}{0}{\xstep}{\ylength}}\fi}
\fi
%    \end{macrocode}
%
% If the vertical axis is linear, horizontal lines are drawn by
% simple \cs{multiput} commands. Otherwise, if the scale is logarithmic,
% the horizontal lines are drawn by the \cs{hlines} command defined above.
%    \begin{macrocode}
\ifnum#3=0\relax
% horizontal lines on linear ordinates. Main lines every 10 mm.
% Second level lines every 5 mm, Third level lines every 1 mm,
% according to the \minimumdistance value
  \multiput(0,0)(0,10){\inteval{\ylinsq + 1}}{%
    \linethickness{\lwa}\squarecap\line(1,0){\xlength}}
  \ifnum\fpeval{\minimumdistance <= 5}=1
  \multiput(0,5)(0,10){\ylinsq}{%
   \linethickness{\lwb}\line(1,0){\xlength}}\fi
  \ifnum\fpeval{\minimumdistance <= 1}=1
  \multiput(0,0)(0,1){\ylength}{%
    \linethickness{\lwc}\line(1,0){\xlength}}\fi
\else
  % horizontal lines on log ordinates
  \edef\decyy{\fpeval{\decy + 1}}%
  \edef\ystep{\fpeval{\ylength / \decy}}
  % main lines: one for each decade (10) plus one at the end
  \hlines{\decyy}{1}{\lwa}{\ticklength}{\ystep}{\xlength}
  % second-level lines: one every unit (1), for each decade
  \WhileDoOne{2}{9}{\hlines{\decy}{\J}{\lwb}{%
    \minorticklength}{\ystep}{\xlength}}
  % third-level lines: for each decade (10) and for each unit (1):
  % 20, 10, 5, 2 are progressively tested and adopted if the distance
  % between two subsequent nearest lines is less to \minimumdistance   
  \WhileDoTwo{1}{9}{\edef\ymindivfloat{%
   \fpeval{(\K+1)*(1-10^-(\minimumdistance/\ystep))}}
	% ymindiv corresponds to 1/20 of unit
	\def\ymindiv{20}
	% ymindivfloat corresponds to the distance of two subdivisions
	% with respect to the unit
	\ifnum\fpeval{\ymindivfloat <= 0.5}=1 \def\ymindiv{10}\fi
	\ifnum\fpeval{\ymindivfloat <= 0.2}=1 \def\ymindiv{4}\fi
	\ifnum\fpeval{\ymindivfloat <= 0.1}=1 \def\ymindiv{2}\fi
	\ifnum\fpeval{\ymindivfloat <= 0.05}=1 \def\ymindiv{1}\fi
	\ifnum\fpeval{\ymindiv == 20}=1\relax
	\else\WhileDoOne[\ymindiv]{\ymindiv}{19}{%
	  \hlines{\decy}{(\K+\J/20)}{\lwc}{0}{\ystep}{\xlength}}\fi}
\fi
%    \end{macrocode}
%
% Custom code provided by the user. After executing the code to compose
% the rectangular graph paper and the user custom code, the latter is
% reset if the \cs{GP@customcodereset} is true.
%    \begin{macrocode}
\GP@custom
\end{picture}
\ifGP@customcodereset\def\GP@custom{}\fi}
%    \end{macrocode}
%
%
%
%\subsection{Circular graph papers}
%
% The \class{Graphpaper} class provides commands to draw three different
% circular graph papers: linear polar chart, log polar chart, Smith chart. 
%
%\subsubsection{Service macros for Smith charts}
% 
% Here follows a list of service macros used by circular graph papers.
%
% Definition of the counter \cs{I}, used both in polar paper and Smith chart.
%    \begin{macrocode}
\newcount\I
%    \end{macrocode}
%
% |Rbox| composes a tick and a label in a rotated box. It is used to
% compose the ticks and labels along the external circle of circular
% graph papers. It accepts three arguments: The first one is
% optional and represents
% the angle of rotation (default 0); the second one is optional too,
% it is inserted by round parentheses, and it represents the position of the
% box which can be given in cartesian $(x,y)$ or polar coordinates $(\theta:\rho)$
% (default 0:0); the third one is mandatory and
% contains the label.
%    \begin{macrocode}
\NewDocumentCommand\Rbox{O{0} D(){0:0} m}{%
    \fptest{#1>=0}{\edef\RotLab{\fpeval{#1-90}}}{\edef\RotLab{\fpeval{#1+90}}}%
    \put(#2){\color{black}\segment(0,0)(#1:1)\put(#1:1){%
            \rotatebox{\RotLab}{\makebox(0,0)[c]{%
                    \fptest{#1>=0}{\Pbox[b]}{\Pbox[t]}{\scriptstyle#3}[0]}}%
        }%
    }\ignorespaces}
%    \end{macrocode}
%
% |\Xcircle| macro (used only for Smith charts) assumes that the scale
% factor |\Scala| ($s$) has already been defined and it takes only one
% mandatory parameter ($x$). It draws a circle with
% center $(sx/(x+1),0)$ and radius $s/(x+1)$. ($x$ represents the real
% part (resistance) of the normalised impedance.)
%    \begin{macrocode}	
\NewDocumentCommand\Xcircle{m}{%
	\edef\Czero{0,0}\edef\Rzero{\Scala}%
	\edef\Rdue{\fpeval{1/(#1+1)*\Scala}}%
	\edef\Cdue{\fpeval{\Rzero-\Rdue},0}%
	\Circlewithcenter\Cdue radius\Rdue\ignorespaces}
%    \end{macrocode}
%
% |\Ycircle| macro (used only for Smith charts) assumes that the scale 
% factor |\Scala| ($s$) has already been defined.
% It assumes that the circle diameter is 100|\unitlength|s long and it
% takes only one
% mandatory parameter ($y$). It draws an arc of a circle with
% center $(s,s/y)$, starting point at $(s,0)$ (and therefore radius 
% $s/y$) and with an angle calculated in order to have the end point on
% the external circle. ($y$ represents the imaginary part (reactance) 
% of the normalised impedance.) 
%    \begin{macrocode}
\NewDocumentCommand\Ycircle{m s}{%
	\edef\Czero{0,0}\edef\Rzero{\Scala}% external circle center and radius 
	\edef\Rdue{\fpeval{\Scala/abs(#1)}}% Small circle radius
	\edef\Cdue{\Rzero,\fpeval{\Scala/#1}}% Small circle center
	\edef\Cuno{\Rzero,0}% First intersection point
	\ModAndAngleOfVect\Cdue to\Mod and\Alfa % Small circle center polar coordinates  
	\IntersectionOfLines(\Czero)(\Cdue)and(\Cuno)(\fpeval{\Alfa+90}:1)to\Inter
	\SymmetricalPointOf\Cuno respect\Inter to\Idue
	\ModAndAngleOfVect\Idue to\Mdue and\Adue
	\SubVect\Cdue from\Idue to\IIdue
	\ModAndAngleOfVect\IIdue to\Mod and\Alfa
	\fptest{#1>0}{\edef\Alfa{\fpeval{270-\Alfa}}\Arc(\Cdue)(\Idue){\Alfa}}%
	{\edef\Alfa{\fpeval{270+\Alfa}}\Arc(\Cdue)(\Cuno){\Alfa}}%
	\IfBooleanT{#2}{\Rbox[\Adue](\Idue){\color{black}#1}}\relax
	\ignorespaces}
%    \end{macrocode}
%
% The following two macros are used to compose the resistance axis 
% below the Smith chart.
%
% |CalcRxx| macro (used only for Smith charts) assumes that the scale 
% factor |Scala| ($s$) has already been defined. 
% First, it calculates the reflection coefficient 
% $\Gamma = s \frac{x-1}{x+1}$ from resistance $x$.
% A tick and a label are inserted for this value of $x$. 
%    \begin{macrocode}
\newcommand\CalcRxx[1]{%
	\edef\Rxx{\fpeval{\Scala*(#1 - 1)/(#1 + 1)}}%
	\segment(\Rxx,\LowResZero)(\Rxx,\LowResUno)\relax
	\Pbox(\Rxx,\LowResUno)[t]{$\color{black}\scriptsize#1$}[0]\ignorespaces}
%    \end{macrocode}
%
% |GradResist| macro (used only for Smith charts) 
% draws the graduated axis for resistance and executes the |CalcRxx|
% for several values of resistance in order to compose the ticks and
% the labels.
%    \begin{macrocode}
\newcommand\GradResist[1]{%
    \color{black}
	\edef\LowResZero{-#1}\edef\LowResUno{\fpeval{\LowResZero-1}}%
	\I=0\edef\Auxx{0}\relax
	\fpdowhile{\I<=10}{\CalcRxx{\Auxx}%
		\advance\I by1\edef\Auxx{\fpeval{\Auxx+0.1}}\ignorespaces}
	\CalcRxx{1.5}\I=2\edef\Auxx{2}\relax
	\fpdowhile{\I<=9}{\CalcRxx{\Auxx}%
		\advance\I by1\edef\Auxx{\fpeval{\Auxx+1}}\ignorespaces}
	\CalcRxx{15}\CalcRxx{30}%
	\edef\Rxx{\Scala}%
	{\segment(-\Rxx,\LowResZero)(\Rxx,\LowResZero)%
		\segment(\Rxx,\LowResZero)(\Rxx,\LowResUno)%
		\Pbox(\Rxx,\LowResUno)[t]{\infty}[0]}}
%    \end{macrocode}
%
% |GradPolar| macro (used only for polar charts) 
% draws the graduated axis for log polar charts.
%    \begin{macrocode}
\newcommand{\GradPolar}[1]{%
    \color{black}
    \edef\yline{\fpeval{-1.2 * \Scala}}
    \linethickness{\lwa}
    \segment(-\Scala,\yline)(\Scala,\yline)
    \edef\ytickstart{\yline}
    \edef\ytickstop{\fpeval{\yline-2}}
    \edef\yytickstop{\fpeval{\yline-1}}
    \segment(\Scala,\ytickstart)(\Scala,\ytickstop)
    \segment(-\Scala,\ytickstart)(-\Scala,\ytickstop)
    \fptest{#1=0}{%
        \segment(0,\ytickstart)(0,\ytickstop)
        \edef\plstep{\fpeval{\Scala/10}}
        \linethickness{\lwb}
        \multiput(\plstep,\yline)(\plstep,0){9}{\line(0,-1){1}}
        \multiput(-\plstep,\yline)(-\plstep,0){9}{\line(0,-1){1}}%
    }{%
    \I=0
    \fpwhiledo{\I<#1}{%
        \linethickness{\lwa}
        \edef\xtick{\fpeval{\I*\Scala/#1}}
        \segment(\xtick,\ytickstart)(\xtick,\ytickstop)
        \segment(-\xtick,\ytickstart)(-\xtick,\ytickstop)
        \J=2
        \fpwhiledo{\J<=9}{%
            \linethickness{\lwb}
            \edef\xtick{\fpeval{\Scala/#1 * (\I + ln(\J)/ln(10))}}
            \segment(\xtick,\ytickstart)(\xtick,\yytickstop)
            \segment(-\xtick,\ytickstart)(-\xtick,\yytickstop)
            \advance\J by1\relax}
        \advance\I by1\relax}}
}
%    \end{macrocode}
%
%
%\subsubsection{Polar graph papers}
%
% The polar graph papers are composed by the command \cs{PolarChart}.
% The syntax is
%\begin{ttsyntax}
% \cs{PolarChart}\opz{diameter}\marg{decades}
%\end{ttsyntax}
% where \meta{diameter} is the dimension (plus some extra space for
% labels and margins) of the polar chart. Its default value 
% corresponds to the \cs{paperheight} (the minimum dimension of the
% paper).
% The mandatory parameter \meta{decades} must be an integer number.
% Its value corresponds to the number of decades of the radial
% coordinate for the log polar graph paper.
% If its value is zero, the chart is linear.
% The maximum number of allowed decades is set by the macro \cs{NDecMax}:
% its default value is~2.
%
% Declaration of the command and its arguments.
%    \begin{macrocode}
\NewDocumentCommand\PolarChart{O{\paperheight} m}{%
%    \end{macrocode}
%
% Typographical settings and definition of the main features of the graphpaper.
% \cs{xlength} and \cs{ylength} represent the lengths of the rectangle 
% dimensions in which the polar graph is plot. 
% The origin of the coordinate system is in the center of the page.
%    \begin{macrocode}
	\newpage
	\parindent=0pt
	\pagestyle{empty}%
	\ifcsname pmargin\endcsname\relax\else\newlength\pmargin\fi
	\setlength{\pmargin}{20pt}
	\newgeometry{left=\pmargin,right=\pmargin,top=\pmargin,bottom=\pmargin}
	\def\factor{140}
	\unitlength=\fpeval{#1/\factor}pt
	\def\xlength{\fpeval{(\textwidth-0.01pt)/\unitlength}} 
	\def\ylength{\fpeval{(\textheight-0.01pt)/\unitlength}}
	\begin{picture}(\xlength,\ylength)%
	    (\fpeval{-\xlength/2},\fpeval{-\ylength/2})%
	\color{gridcolor}%
	\edef\Scala{50}% The scale factor
%    \end{macrocode}
%
%
% Circle stroking. In linear scale 10 radial units are present,
% therefore, 10 circles are drawn with tick lines, 
% medium lines circles every 0.5 unit and thin lines circles every
% 0.1 unit.
%    \begin{macrocode}
	\fptest{#2=0}{% start circle linear radius sequence.
		\I=1
		\fpdowhile{\I=<100}{\edef\R{\fpeval{0.01*\Scala*\I}}%
			{\fptest{\fpeval{\I-10(round(\I/10,0))}=0}{\linethickness{\lwa}%
				}%
				{\fptest{\fpeval{\I-5(round(\I/5,0))}=0}{\linethickness{\lwb}}%
					{\linethickness{\lwc}}%
				}\Circlewithcenter0,0radius\R
			}\advance\I by1\relax}%
	}% end circle linear radius sequence
	{%
	\edef\LnDieci{\fpeval{ln(10)}}%
    \edef\ScalaDecade{\fpeval{\Scala/#2}}%
	\fptest{#2<3}{%
        \newcount\Dec \Dec=1\relax
		\fpdowhile{\Dec=<#2}{%
            \linethickness{\lwa}%
            \edef\R{\fpeval{\Dec*\ScalaDecade}}%
            \Circlewithcenter0,0radius\R% Thick circles
			% First band from 1 to 4 (excluded)
			\edef\LPLA{1}%
			\fpdowhile{\LPLA<4}{
				\edef\Logaritmo{\fpeval{\Dec-1+(ln(\LPLA))/\LnDieci}}%
				\edef\R{\fpeval{\ScalaDecade*\Logaritmo}}%
				\fptest{\R>0}{\fptest{\LPLA=round(\LPLA,0)}%
					{\linethickness{\lwb}}{\linethickness{\lwc}}%
					\Circlewithcenter0,0radius\R}{}%
				\edef\LPLA{\fpeval{\LPLA+0.2}}}%
			% Second band from 4 to 10 included
			\edef\LPLA{4}%
			\fpdowhile{\LPLA=<10}{%
				\edef\Logaritmo{\fpeval{\Dec-1+(ln(\LPLA))/\LnDieci}}%
				\edef\R{\fpeval{\ScalaDecade*\Logaritmo}}%
				\fptest{\R>0}{\fptest{\LPLA=round(\LPLA,0)}%
					{\linethickness{\lwb}}{\linethickness{\lwc}}%
					\Circlewithcenter0,0radius\R}{}%
				\edef\LPLA{\fpeval{\LPLA+0.5}}}%
			\advance\Dec by1\relax}%
		}{%
			\ClassWarning{GraphPaper}{Logarithmic polar graph paper:\MessageBreak
				too many decades: \number#2\space\MessageBreak
				Reduce their number}%
		}}% End logarithmic circle radius sequence
	\ignorespaces
	%
%    \end{macrocode}
%
% Radial lines. \cs{I} represents the angle in degrees and it runs
% from 0 to 359. Tick lines every 10$^\circ$; medium lines every 5$^\circ$
% for units 2, 7, 8, 9, 10; thin lines every 2$^\circ$ for units 3, 4, 5, 6;
% thin lines every 1$^\circ$ for units 7, 8, 9, 10.
%    \begin{macrocode}
	\I=0\edef\R{\Scala}%
	\fpdowhile{\I<360}{\edef\A{\fpeval{\I}}%
		\fptest{\fpeval{\I-10(round(\I/10,0))}=0}%
		{\linethickness{\lwa}\segment(0,0)(\A:\R)
			\Rbox[\A](\A:\R){\color{black}\A}}% multiple of 10
		{\fptest{\fpeval{\I-5(round(\I/5,0))}=0}%
			{\linethickness{\lwb}%
				\segment(\A:5)(\A:10)
				\segment(\A:30)(\A:\R)}% multiple of 5
			{\linethickness{\lwc}%
				\fptest{\fpeval{\I-2(round(\I/2,0))}=0}%
				{\segment(\A:10)(\A:\R)}% multiple of 2
				{\segment(\A:30)(\A:\R)}% multiple of 1
			}%
		}%
		\advance\I by 1\relax
	}\ignorespaces
%    \end{macrocode}
%
% Graduated axis.
%    \begin{macrocode}
    \GradPolar{#2}
%    \end{macrocode}
%
% Custom code provided by the user. After executing the code to compose
% the rectangular graph paper and the user custom code, the latter is
% reset if the \cs{GP@customcodereset} is true.
%    \begin{macrocode}
	\GP@custom
	\end{picture}
\ifGP@customcodereset\def\GP@custom{}\fi}
%    \end{macrocode}
%
%
%\subsubsection{Smith chart graph paper}
%
% The Smith chart graph paper is composed by the command \cs{SmithChart}:
%\begin{ttsyntax}
% \cs{SmithChart}\oarg{diameter}
%\end{ttsyntax}
% where
% \meta{diameter} is the dimension (plus some extra space for labels and
% margins)  of the Smith chart. Its default value corresponds to the
% \cs{paperheight} (the minimum dimension of the paper).
%
%    \begin{macrocode}
\NewDocumentCommand\SmithChart{O{\paperheight}}{%
    \newpage
    \parindent=0pt
    \pagestyle{empty}%
    \ifcsname pmargin\endcsname\relax\else\newlength\pmargin\fi
    \setlength{\pmargin}{20pt}
    \newgeometry{left=\pmargin,right=\pmargin,top=\pmargin,bottom=\pmargin}
    \def\factor{140}
    \unitlength=\fpeval{#1/\factor}pt\relax
    \def\xlength{\fpeval{(\textwidth-0.01pt)/\unitlength}} 
    \def\ylength{\fpeval{(\textheight-0.01pt)/\unitlength}}
    \begin{picture}(\xlength,\ylength)%
                   (\fpeval{-\xlength/2},\fpeval{-\ylength/2})%
	\color{gridcolor}%
	\edef\Scala{50}% scale factor based on the main circle but valid
	               % for everything inside the graph paper.
	{\color{black}\Pbox(0,0){}[4]}% Black dot in the origin
	% images of the vertical cartesian lines
	\I=0\relax
	\fpdowhile{\I=<6}{\edef\Aux{\fpeval{\I/20}}{%
			\fptest{\I=0}{\color{black}}{\color{gridcolor}}\thicklines\Xcircle{\Aux}}%
		\advance\I by1\edef\Aux{\fpeval{\I/20}}\Xcircle{\Aux}%
		\advance\I by1\ignorespaces}%fino a 0.4
	\fpdowhile{\I=<16}{\edef\Aux{\fpeval{\I/20}}\relax
		{\thicklines\Xcircle{\Aux}}\advance\I by2\edef\Aux{\fpeval{\I/20}}\relax
		\Xcircle{\Aux}\advance\I by2\ignorespaces}% fino a 1
	\fpdowhile{\I=<36}{\edef\Aux{\fpeval{\I/20}}\relax
		{\thicklines\Xcircle{\Aux}}\advance\I by4\edef\Aux{\fpeval{\I/20}}\relax
		\Xcircle{\Aux}\advance\I by4\ignorespaces}% fino a 2
	\fpdowhile{\I=<96}{\edef\Aux{\fpeval{\I/20}}\relax
		{\thicklines\Xcircle{\Aux}}\advance\I by8\edef\Aux{\fpeval{\I/20}}\relax
		\Xcircle{\Aux}\advance\I by8\ignorespaces}%fino a 5
	\fpdowhile{\I=<296}{\edef\Aux{\fpeval{\I/20}}\relax
		{\thicklines\Xcircle{\Aux}}\advance\I by16\edef\Aux{\fpeval{\I/20}}\relax
		\Xcircle{\Aux}\advance\I by16\ignorespaces}% up to 15
% Images of the horizontal cartesian semi-lines
	\Ycircle{1}%
	{\thicklines\segment(-\Rzero,0)(\Rzero,0)}% diameter
	\Rbox[180](-\Rzero,0){0}\Rbox[0](\Rzero,0){\infty}
	\Ycircle{0.05}\Ycircle{-0.05}\I=2% \I=2 is to avoid a division by 0
	\fpdowhile{\I=<18}{\edef\Aux{\fpeval{\I/20}}\relax
		{\thicklines\Ycircle{\Aux}*\Ycircle{-\Aux}*}%
		\advance\I by1\edef\Aux{\fpeval{\I/20}}\relax
		\Ycircle{\Aux}\Ycircle{-\Aux}\advance\I by 1\ignorespaces}% restarts from 1
	\fpdowhile{\I<40}{\edef\Aux{\fpeval{\I/20}}\relax
		{\thicklines\Ycircle{\Aux}*\Ycircle{-\Aux}*}%
		\advance\I by 2\edef\Aux{\fpeval{\I/20}}\relax
		\Ycircle{\Aux}\Ycircle{-\Aux}\advance\I by 2\ignorespaces}% restarts from 2
	\fpdowhile{\I<80}{\edef\Aux{\fpeval{\I/20}}\relax
		{\thicklines\Ycircle{\Aux}*\Ycircle{-\Aux}*}%
		\advance\I by 4\edef\Aux{\fpeval{\I/20}}\relax
		\Ycircle{\Aux}\Ycircle{-\Aux}\advance\I by 4\ignorespaces}% restarts from 4
	\fpdowhile{\I=<140}{\edef\Aux{\fpeval{\I/20}}\relax
		{\thicklines\Ycircle{\Aux}*\Ycircle{-\Aux}*}%
		\advance\I by 10\edef\Aux{\fpeval{\I/20}}\relax
		\Ycircle{\Aux}\Ycircle{-\Aux}\advance\I by 10\ignorespaces}% stops at 7.5
	{\thicklines\Ycircle{8}*\Ycircle{-8}*}%
	% non linear graduation for the abscissas 
	\GradResist{62}%
	% Polar graduation in normalised wave length percentages 
	\edef\Rout{\fpeval{1.09*\Rzero}}%
	\edef\RoutCifre{\fpeval{\Rout+2}}%
	\edef\RoutTak{\fpeval{\Rout+1}}%
	{\color{black}%
		\Circlewithcenter 0,0radius\Rout
		\I=0\fpdowhile{\I<10}%
		{\edef\LAng{\fpeval{180-\I*36}}\edef\Cifre{\fpeval{\I*5}}%
			\put(\LAng:\RoutCifre){%
				\rotatebox{\fpeval{\LAng-90}}{\makebox(0,0)[b]{\scriptsize\Cifre}}}%
			\advance\I by 1\ignorespaces}
		\I=0\fpdowhile{\I<50}{%
			\edef\LAng{\fpeval{180-\I*7.2}}\segment(\LAng:\Rout)(\LAng:\RoutTak)%
			\advance\I by1\ignorespaces}
	%
	% Outside circle encloses everything except the abscissa graduation.
	% Everything lays inside a square 
		\Circlewithcenter0,0radius{\fpeval{\Scala+9}}}%
	% Now the user supplied code is executed
	\GP@custom
	\end{picture}
\ifGP@customcodereset\def\GP@custom{}\fi}%
%    \end{macrocode}
%
%
%\subsection{User interface}
%
% Here follows the user commands to draw the graph papers, as described in
% section~\ref{sec:howto}:
%    \begin{macrocode}
\NewDocumentCommand{\bilinear}{}{\carta{0}{0}}
\NewDocumentCommand{\semilogx}{m}{\carta{#1}{0}}
\NewDocumentCommand{\semilogy}{m}{\carta{0}{#1}}
\NewDocumentCommand{\loglog}{O{0}mm}{\carta[#1]{#2}{#3}}
\NewDocumentCommand{\polar}{}{\PolarChart{0}}
\NewDocumentCommand{\logpolar}{m}{\PolarChart{#1}}
\NewDocumentCommand{\smith}{}{\SmithChart}
%    \end{macrocode}
%
% The user commands to customise the appearance of the graph
% papers is defined. Their syntax was previously described in
% sectio~\ref{sec:howto}:
%    \begin{macrocode}
\NewDocumentCommand{\setgridcolor}{m}{\colorlet{gridcolor}{#1}}
\NewDocumentCommand{\setmajorlinethickness}{m}{\setlength{\lwa}{#1}}
\NewDocumentCommand{\setmediumlinethickness}{m}{\setlength{\lwa}{#1}}
\NewDocumentCommand{\setminorlinethickness}{m}{\setlength{\lwa}{#1}}
\NewDocumentCommand{\setminimumdistance}{m}{\setlength{\mindistanceunit}{#1}}
\NewDocumentCommand{\setxside}{m}{%
	\ifnum\fpeval{#1 > \paperwidth}=1 \ClassError{graphpaper}{X side too wide!} \fi
	\setlength{\xsideunit}{#1}}
\NewDocumentCommand{\setyside}{m}{%
	\ifnum\fpeval{#1 > \paperheight}=1 \ClassError{graphpaper}{Y side too wide!} \fi
	\setlength{\ysideunit}{#1}}
\def\GP@custom{}
\newif\ifGP@customcodereset \GP@customcoderesettrue
\NewDocumentCommand{\customcode}{O{1} m}{%
	\ifnum#1=\z@ \GP@customcoderesetfalse \fi%
	\def\GP@custom{#2}}
%    \end{macrocode}
%
%
%\subsection{Class code end}
%
%    \begin{macrocode}
%
\endinput
%    \end{macrocode}
%
%\iffalse
%</class>
%\fi
%
% \Finale
%^^A