1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
|
% \iffalse
%% File: l3prg.dtx Copyright (C) 2005-2009 LaTeX3 project
%%
%% It may be distributed and/or modified under the conditions of the
%% LaTeX Project Public License (LPPL), either version 1.3c of this
%% license or (at your option) any later version. The latest version
%% of this license is in the file
%%
%% http://www.latex-project.org/lppl.txt
%%
%% This file is part of the ``expl3 bundle'' (The Work in LPPL)
%% and all files in that bundle must be distributed together.
%%
%% The released version of this bundle is available from CTAN.
%%
%% -----------------------------------------------------------------------
%%
%% The development version of the bundle can be found at
%%
%% http://www.latex-project.org/svnroot/experimental/trunk/
%%
%% for those people who are interested.
%%
%%%%%%%%%%%
%% NOTE: %%
%%%%%%%%%%%
%%
%% Snapshots taken from the repository represent work in progress and may
%% not work or may contain conflicting material! We therefore ask
%% people _not_ to put them into distributions, archives, etc. without
%% prior consultation with the LaTeX Project Team.
%%
%% -----------------------------------------------------------------------
%
%<*driver|package>
\RequirePackage{l3names}
%</driver|package>
%\fi
\GetIdInfo$Id: l3prg.dtx 1451 2009-08-08 06:33:34Z joseph $
{L3 Experimental control structures}
%\iffalse
%<*driver>
%\fi
\ProvidesFile{\filename.\filenameext}
[\filedate\space v\fileversion\space\filedescription]
%\iffalse
\documentclass[full]{l3doc}
\begin{document}
\DocInput{l3prg.dtx}
\end{document}
%</driver>
% \fi
%
%
% \title{The \textsf{l3prg} package\thanks{This file
% has version number \fileversion, last
% revised \filedate.}\\
% Program control structures}
% \author{\Team}
% \date{\filedate}
% \maketitle
%
% \begin{documentation}
%
% \section{Conditionals and logical operations}
%
% Conditional processing in \LaTeX3 is defined as something that
% performs a series of tests, possibly involving assignments and
% calling other functions that do not read further ahead in the input
% stream. After processing the input, a \emph{state} is returned. The
% typical states returned are \meta{true} and \meta{false} but other
% states are possible, say an \meta{error} state for erroneous
% input, e.g., text as input in a function comparing integers.
%
%
%
% \LaTeX3 has two primary forms of conditional flow processing based
% on these states. One type is predicate functions that turn the
% returned state into a boolean \meta{true} or \meta{false}. For
% example, the function "\cs_if_free_p:N" checks whether the control
% sequence given as its argument is free and then returns the boolean
% \meta{true} or \meta{false} values to be used in testing with
% "\if_predicate:w" or in functions to be described below. The other type
% is the kind of functions choosing a particular argument from the
% input stream based on the result of the testing as in
% "\cs_if_free:NTF" which also takes one argument (the "N") and then
% executes either \meta{true} or \meta{false} depending on the
% result. Important to note here is that the arguments are executed
% after exiting the underlying "\if...\fi:" structure
%
%
%
%
%
%
%
% \section{Defining a set of conditional functions}
%
% \begin{function}{ \prg_return_true: |
% \prg_return_false: }
% These functions exit conditional processing when used in
% conjunction with the generating functions listed below.
% \end{function}
%
% \begin{function}{%
% \prg_set_conditional:Nnn |
% \prg_set_conditional:Npnn |
% \prg_new_conditional:Nnn |
% \prg_new_conditional:Npnn |
% \prg_set_protected_conditional:Nnn |
% \prg_set_protected_conditional:Npnn |
% \prg_new_protected_conditional:Nnn |
% \prg_new_protected_conditional:Npnn |
% \prg_set_eq_conditional:NNn |
% \prg_new_eq_conditional:NNn
% }
% \begin{syntax}
% "\prg_set_conditional:Nnn" <test> <conds> <code>
% "\prg_set_conditional:Npnn" <test> <param> <conds> <code>
% \end{syntax}
% This defines a conditional \meta{base function} which upon
% evaluation using |\prg_return_true:| and |\prg_return_false:| to
% finish branches,
% returns a state. Currently the states are either \meta{true} or
% \meta{false} although this can change as more states may be
% introduced, say an \meta{error} state. \meta{conds} is a comma
% separated list possibly consisting of |p| for denoting a predicate function
% returning the boolean \meta{true} or \meta{false} values and |TF|,
% |T| and |F| for the functions that act on the tokens following in
% the input stream. The |:Nnn| form implicitly determines the number
% of arguments from the function being defined whereas the |:Npnn|
% form expects a primitive parameter text.
%
% An example can easily clarify matters here:
% \begin{verbatim}
% \prg_set_conditional:Nnn \foo_if_bar:NN {p,TF,T} {
% \if_meaning:w \l_tmpa_tl #1
% \prg_return_true:
% \else:
% \if_meaning:w \l_tmpa_tl #2
% \prg_return_true:
% \else:
% \prg_return_false:
% \fi:
% \fi:
% }
% \end{verbatim}
% This defines the function |\foo_if_bar_p:NN|, |\foo_if_bar:NNTF|,
% |\foo_if_bar:NNT| but not |\foo_if_bar:NNF| (because "F" is missing from
% the \meta{conds} list). The return statements
% take care of resolving the remaining |\else:| and |\fi:| before
% returning the state. There must be a return statement for each
% branch, failing to do so will result in an error if that branch is
% executed.
% \end{function}
%
%
%
%
%
% \section{The boolean data type}
%
% This section describes a boolean data type which is closely
% connected to conditional processing as sometimes you want to
% execute some code depending on the value of a switch
% (e.g.,~draft/final) and other times you perhaps want to use it as a
% predicate function in an "\if_predicate:w" test. The problem of the
% primitive "\if_false:" and "\if_true:" tokens is that it is not
% always safe to pass them around as they may interfere with scanning
% for termination of primitive conditional processing. Therefore, we
% employ two canonical booleans: "\c_true_bool" or
% "\c_false_bool". Besides preventing problems as described above, it
% also allows us to implement a simple boolean parser supporting the
% logical operations And, Or, Not, etc.\ which can then be used on
% both the boolean type and predicate functions.
%
% All conditonal "\bool_" functions are expandable and expect the
% input to also be fully expandable (which will generally mean being
% constructed from predicate functions, possibly nested).
%
% \begin{function}{%
% \bool_new:N |
% \bool_new:c |
% }
% \begin{syntax}
% "\bool_new:N" <bool>
% \end{syntax}
% Define a new boolean variable. The initial value is <false>. A
% boolean is actually just either "\c_true_bool" or "\c_false_bool".
% \end{function}
%
% \begin{function}{%
% \bool_set_true:N |
% \bool_set_true:c |
% \bool_set_false:N |
% \bool_set_false:c |
% \bool_gset_true:N |
% \bool_gset_true:c |
% \bool_gset_false:N |
% \bool_gset_false:c |
% }
% \begin{syntax}
% "\bool_gset_false:N" <bool>
% \end{syntax}
% Set <bool> either <true> or <false>. We can also do this globally.
% \end{function}
%
%
% \begin{function}{%
% \bool_set_eq:NN |
% \bool_set_eq:Nc |
% \bool_set_eq:cN |
% \bool_set_eq:cc |
% \bool_gset_eq:NN |
% \bool_gset_eq:Nc |
% \bool_gset_eq:cN |
% \bool_gset_eq:cc |
%
% }
% \begin{syntax}
% "\bool_set_eq:NN" <bool1> <bool2>
% \end{syntax}
% Set <bool1> equal to the value of <bool2>.
% \end{function}
%
% \begin{function}{%
% \bool_if_p:N / (EXP) |
% \bool_if:N / (TF)(EXP) |
% \bool_if_p:c / (EXP) |
% \bool_if:c / (TF)(EXP) |
%
% }
% \begin{syntax}
% "\bool_if:NTF" <bool> \Arg{true} \Arg{false} \\
% "\bool_if_p:N" <bool>
% \end{syntax}
% Test the truth value of <bool> and execute the \m{true} or
% \m{false} code. "\bool_if_p:N" is a predicate function for use in
% "\if_predicate:w" tests or "\bool_if:nTF"-type functions described below.
% \end{function}
%
% \begin{function}{%
% \bool_while_do:Nn |
% \bool_while_do:cn |
% \bool_until_do:Nn |
% \bool_until_do:cn |
% \bool_do_while:Nn |
% \bool_do_while:cn |
% \bool_do_until:Nn |
% \bool_do_until:cn |
%
% }
% \begin{syntax}
% "\bool_while_do:Nn" <bool> \Arg{code} \\
% "\bool_until_do:Nn" <bool> \Arg{code} \\
% \end{syntax}
% The `while' versions execute <code> as long as the boolean is
% true and the `until' versions execute <code> as long as the
% boolean is false. The "while_do" functions execute the body after
% testing the boolean and the "do_while" functions executes the body
% first and then tests the boolean.
% \end{function}
%
%
%
% \section{Boolean expressions}
%
% As we have a boolean datatype and predicate functions returning
% boolean \meta{true} or \meta{false} values, it seems only fitting
% that we also provide a parser for \meta{boolean expressions}.
%
% A boolean expression is an expression which given input in the form
% of predicate functions and boolean variables, return boolean
% \meta{true} or \meta{false}. It supports the logical operations And,
% Or and Not as the well-known infix operators "&&", "||" and "!". In
% addition to this, parentheses can be used to isolate
% sub-expressions. For example,
% \begin{verbatim}
% \intexpr_compare_p:n {1=1} &&
% (
% \intexpr_compare_p:n {2=3} ||
% \intexpr_compare_p:n {4=4} ||
% \intexpr_compare_p:n {1=\error} % is skipped
% ) &&
% !(\intexpr_compare_p:n {2=4})
% \end{verbatim}
% is a valid boolean expression. Note that minimal evaluation is
% carried out whenever possible so that whenever a truth value cannot
% be changed anymore, the remainding tests within the current group
% are skipped.
%
% \begin{function}{%
% \bool_if_p:n / (EXP) |
% \bool_if:n / (TF)(EXP) |
% }
% \begin{syntax}
% "\bool_if:nTF" \Arg{boolean expression} \Arg{true}
% \Arg{false}
% \end{syntax}
% The functions evaluate the truth value of \m{boolean expression}
% where each predicate is separated by \verb+&&+ or \verb+||+
% denoting logical `And' and `Or' functions. "(" and ")" denote
% grouping of sub-expressions while "!" is used to as a prefix to
% either negate a single expression or a group. Hence
% \begin{verbatim}
% \bool_if_p:n{
% \intexpr_compare_p:n {1=1} &&
% (
% \intexpr_compare_p:n {2=3} ||
% \intexpr_compare_p:n {4=4} ||
% \intexpr_compare_p:n {1=\error} % is skipped
% ) &&
% !(\intexpr_compare_p:n {2=4})
% }
% \end{verbatim}
% from above returns \meta{true}.
%
% Logical operators take higher precedence the later in the predicate they
% appear. ``<x> "||" <y> "&&" <z>'' is interpreted as the equivalent of
% ``<x> \textsc{or} [~<y> \textsc{and} <z>~]'' (but now we have grouping
% you shouldn't write this sort of thing, anyway).
% \end{function}
%
%
%
% \begin{function}{ \bool_not_p:n / (EXP) }
% \begin{syntax}
% "\bool_not_p:n" \Arg{boolean expression}
% \end{syntax}
% Longhand for writing "!("\meta{boolean expression}")" within a boolean
% expression. Might not stick around.
% \end{function}
%
% \begin{function}{ \bool_xor_p:nn / (EXP) }
% \begin{syntax}
% "\bool_xor_p:nn" \Arg{boolean expression} \Arg{boolean expression}
% \end{syntax}
% Implements an `exclusive or' operation between two boolean
% expressions. There is no infix operation for this.
% \end{function}
%
% \begin{function}{\bool_set:Nn |\bool_set:cn |\bool_gset:Nn |\bool_gset:cn}
% \begin{syntax}
% "\bool_set:Nn" <bool> \Arg{boolean expression}
% \end{syntax}
% Sets <bool> to the logical outcome of evaluating <boolean expression>.
% \end{function}
%
%
% \section{Case switches}
%
%
% \begin{function}{ \prg_case_int:nnn / (EXP) }
% \begin{syntax}
% "\prg_case_int:nnn" \Arg{integer expr} "{"
% ~~\Arg{integer expr 1} \Arg{code 1}\\
% ~~\Arg{integer expr 2} \Arg{code 2}\\
% ~~\dots\\
% ~~\Arg{integer expr\,$\sb n$} \Arg{code\,$\sb n$}\\
% "}" \Arg{else case}
% \end{syntax}
% This function evaluates the first \meta{integer expr} and then compares it
% to the values found in the list. Thus the expression
% \begin{verbatim}
% \prg_case_int:nnn{2*5}{
% {5}{Small} {4+6}{Medium} {-2*10}{Negative}
% }{Other}
% \end{verbatim}
% evaluates first the term to look for and then tries to find this
% value in the list of values. If the value is found, the code on its
% right is executed after removing the remainder of the list. If the
% value is not found, the \meta{else case} is executed. The example
% above will return ``Medium''.
%
% The function is expandable and is written in such a way that
% \texttt{f} style expansion can take place cleanly, i.e., no tokens
% from within the function are left over.
% \end{function}
%
% \begin{function}{ \prg_case_dim:nnn / (EXP) }
% \begin{syntax}
% "\prg_case_int:nnn" \Arg{dim expr} "{"\\
% ~~\Arg{dim expr 1} \Arg{code 1}\\
% ~~\Arg{dim expr 2} \Arg{code 2}\\
% ~~"..."\\
% ~~\Arg{dim expr\,$\sb n$} \Arg{code\,$\sb n$}\\
% "}" \Arg{else case}
% \end{syntax}
% This function works just like |\prg_case_int:nnn| except it works
% for \meta{dim} registers.
% \end{function}
%
% \begin{function}{ \prg_case_str:nnn / (EXP) }
% \begin{syntax}
% "\prg_case_str:nnn" \Arg{string} "{" \\
% ~~\Arg{string 1} \Arg{code 1}\\
% ~~\Arg{string 2} \Arg{code 2}\\
% ~~"..."\\
% ~~\Arg{string\,$\sb n$} \Arg{code,$\sb n$}\\
% "}" \Arg{else case}
% \end{syntax}
% This function works just like |\prg_case_int:nnn| except it
% compares strings. Each string is evaluated fully using \texttt{x}
% style expansion.
%
% The function is expandable\footnote{Provided you use pdfTeX v1.30 or
% later} and is written in such a way that
% \texttt{f} style expansion can take place cleanly, i.e., no tokens
% from within the function are left over.
% \end{function}
%
% \begin{function}{ \prg_case_tl:Nnn / (EXP) }
% \begin{syntax}
% "\prg_case_tl:Nnn" <tl var.> "{"
% ~~<tl var.\ 1> \Arg{code 1} <tl var.\ 2> \Arg{code 2} "..." <tl var.\,$\sb n$> \Arg{code\,$\sb n$}\\
% "}" \Arg{else case}
% \end{syntax}
% This function works just like |\prg_case_int:nnn| except it
% compares token list variables.
%
% The function is expandable\footnote{Provided you use pdfTeX v1.30 or
% later} and is written in such a way that
% \texttt{f} style expansion can take place cleanly, i.e., no tokens
% from within the function are left over.
% \end{function}
%
% \section{Generic loops}
%
%
% \begin{function}{ \bool_while_do:nn |
% \bool_until_do:nn |
% \bool_do_while:nn |
% \bool_do_until:nn }
% \begin{syntax}
% "\bool_while_do:nn" \Arg{boolean expression} \Arg{code} \\
% "\bool_until_do:nn" \Arg{boolean expression} \Arg{code}
% \end{syntax}
% The `while' versions execute the code as long as <boolean
% expression> is true and the `until' versions execute <code> as long
% as <boolean expression> is false. The "while_do" functions execute
% the body after testing the boolean and the "do_while" functions
% executes the body first and then tests the boolean.
% \end{function}
%
% \section{Choosing modes}
%
% \begin{function}{ \mode_if_vertical_p: / (EXP)|
% \mode_if_vertical: / (TF)(EXP) }
% \begin{syntax}
% "\mode_if_vertical:TF" \Arg{true code} \Arg{false code}
% \end{syntax}
% Determines if \TeX{} is in vertical mode or not and executes either
% <true code> or <false code> accordingly.
% \end{function}
%
% \begin{function}{ \mode_if_horizontal_p: / (EXP)|
% \mode_if_horizontal: / (TF)(EXP) }
% \begin{syntax}
% "\mode_if_horizontal:TF" \Arg{true code} \Arg{false code}
% \end{syntax}
% Determines if \TeX{} is in horizontal mode or not and executes either
% <true code> or <false code> accordingly.
% \end{function}
%
%
% \begin{function}{
% \mode_if_inner_p: / (EXP)|
% \mode_if_inner: / (TF)(EXP) }
% \begin{syntax}
% "\mode_if_inner:TF" \Arg{true code} \Arg{false code}
% \end{syntax}
% Determines if \TeX{} is in inner mode or not and executes either
% <true code> or <false code> accordingly.
% \end{function}
%
% \begin{function}{
% \mode_if_math_p: /(EXP) |
% \mode_if_math: / (TF)(EXP) }
% \begin{syntax}
% "\mode_if_math:TF" \Arg{true code} \Arg{false code}
% \end{syntax}
% Determines if \TeX{} is in math mode or not and executes either
% <true code> or <false code> accordingly.
% \begin{texnote}
% This version will choose the right branch even at the beginning of
% an alignment cell.
% \end{texnote}
% \end{function}
%
%
% \section{Alignment safe grouping and scanning}
%
% \begin{function}{\scan_align_safe_stop:}
% \begin{syntax}
% "\scan_align_safe_stop:"
% \end{syntax}
% This function gets \TeX{} on the right track inside an alignment
% cell but without destroying any kerning.
% \end{function}
%
%
% \begin{function}{\group_align_safe_begin:|
% \group_align_safe_end:}
% \begin{syntax}
% "\group_align_safe_begin:" <...> "\group_align_safe_end:"
% \end{syntax}
% Encloses <...> inside a group but is safe inside an alignment cell.
% See the implementation of |\peek_token_generic:NNTF| for an
% application.
% \end{function}
%
%
% \section{Producing $n$ copies}
%
% There are often several different requirements for producing
% multiple copies of something. Sometimes one might want to produce a
% number of identical copies of a sequence of tokens whereas at other
% times the goal is to simulate a for loop as known from most real
% programming languages.
%
% \begin{function}{\prg_replicate:nn / (EXP) }
% \begin{syntax}
% "\prg_replicate:nn" \Arg{number} \Arg{arg}
% \end{syntax}
% Creates <number> copies of <arg>. Note that it is expandable.
% \end{function}
%
%
% \begin{function}{\prg_stepwise_function:nnnN / (EXP) }
% \begin{syntax}
% "\prg_stepwise_function:nnnN" \Arg{start} \Arg{step}
% \Arg{end} <function>
% \end{syntax}
% This function performs <action> once for each step starting at
% <start> and ending once <end> is passed. <function> is placed
% directly in front of a brace group holding the current number so it
% should usually be a function taking one argument.
% \end{function}
%
% \begin{function}{\prg_stepwise_inline:nnnn}
% \begin{syntax}
% "\prg_stepwise_inline:nnnn" \Arg{start} \Arg{step} \Arg{end}
% \Arg{action}
% \end{syntax}
% Same as |\prg_stepwise_function:nnnN| except here <action> is
% performed each time with |##1| as a placeholder for the number
% currently being tested. This function is not expandable and it is
% nestable.
% \end{function}
%
% \begin{function}{\prg_stepwise_variable:nnnNn}
% \begin{syntax}
% "\prg_stepwise_variable:nnnn" \Arg{start} \Arg{step} \Arg{end}
% <temp-var> \Arg{action}
% \end{syntax}
% Same as |\prg_stepwise_inline:nnnn| except here the current value is
% stored in <temp-var> and the programmer can use it in <action>. This
% function is not expandable.
% \end{function}
%
% \section{Sorting}
%
%
% \begin{function}{
% \prg_quicksort:n |
% }
% \begin{syntax}
% "\prg_quicksort:n" "{" \Arg{item~1} \Arg{item~2} \dots \Arg{item~n} "}"
% \end{syntax}
% Performs a Quicksort on the token list. The comparisons are
% performed by the function |\prg_quicksort_compare:nnTF| which is up
% to the programmer to define. When the sorting process is over, all
% items are given as argument to the function
% |\prg_quicksort_function:n| which the programmer also controls.
% \end{function}
%
% \begin{function}{
% \prg_quicksort_function:n |
% \prg_quicksort_compare:nnTF
% }
% \begin{syntax}
% "\prg_quicksort_function:n" \Arg{element} \\
% "\prg_quicksort_compare:nnTF" \Arg{element 1} \Arg{element 2}\\
% \end{syntax}
% The two functions the programmer must define before calling
% |\prg_quicksort:n|. As an example we could define
% \begin{quote}
% |\cs_set_nopar:Nn\prg_quicksort_function:n {{#1}}|\\
% |\cs_set_nopar:Nn\prg_quicksort_compare:nnTF {\intexpr_compare:nNnTF{#1}>{#2}}|
% \end{quote}
% Then the function call
% \begin{quote}
% |\prg_quicksort:n {876234520}|
% \end{quote}
% would return |{0}{2}{2}{3}{4}{5}{6}{7}{8}|. An alternative example
% where one sorts a list of words, |\prg_quicksort_compare:nnTF| could
% be defined as
% \begin{quote}
% |\cs_set_nopar:Nn\prg_quicksort_compare:nnTF {|\\
% | \intexpr_compare:nNnTF{\tl_compare:nn{#1}{#2}}>\c_zero }|
% \end{quote}
%
% \end{function}
%
% \end{documentation}
%
% \begin{implementation}
%
% \section{\pkg{l3prg} implementation}
%
% \subsection{Variables}
%
% \begin{function}{ \l_tmpa_bool | \g_tmpa_bool }
% Reserved booleans.
% \end{function}
%
% \begin{variable}{\g_prg_inline_level_int}
% Global variable to track the nesting of the stepwise inline loop.
% \end{variable}
%
% \subsection{Module code}
%
% We start by ensuring that the required packages are loaded.
% \begin{macrocode}
%<*package>
\ProvidesExplPackage
{\filename}{\filedate}{\fileversion}{\filedescription}
\package_check_loaded_expl:
%</package>
%<*initex|package>
% \end{macrocode}
%
% \begin{macro}{\prg_return_true:}
% \begin{macro}{\prg_return_false:}
% \begin{macro}{
% \prg_set_conditional:Npnn,
% \prg_new_conditional:Npnn,
% \prg_set_protected_conditional:Npnn,
% \prg_new_protected_conditional:Npnn
%}
% \begin{macro}{
% \prg_set_conditional:Nnn,
% \prg_new_conditional:Nnn,
% \prg_set_protected_conditional:Nnn,
% \prg_new_protected_conditional:Nnn
%}
% \begin{macro}{
% \prg_set_eq_conditional:NNn,
% \prg_new_eq_conditional:NNn
%}
% These are all defined in \pkg{l3basics}, as they are needed ``early''.
% This is just a reminder that that is the case!
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \subsection{Choosing modes}
%
% \begin{macro}{\mode_if_vertical_p:}
% \begin{macro}[TF]{\mode_if_vertical:}
% For testing vertical mode. Strikes me here on the bus with David,
% that as long as we are just talking about returning true and
% false states, we can just use the primitive conditionals for this
% and gobbling the |\c_zero| in the input stream. However this
% requires knowledge of the implementation so we keep things nice
% and clean and use the return statements.
% \begin{macrocode}
\prg_set_conditional:Npnn \mode_if_vertical: {p,TF,T,F}{
\if_mode_vertical:
\prg_return_true: \else: \prg_return_false: \fi:
}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\mode_if_horizontal_p:}
% \begin{macro}[TF]{\mode_if_horizontal:}
% For testing horizontal mode.
% \begin{macrocode}
\prg_set_conditional:Npnn \mode_if_horizontal: {p,TF,T,F}{
\if_mode_horizontal:
\prg_return_true: \else: \prg_return_false: \fi:
}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\mode_if_inner_p:}
% \begin{macro}[TF]{\mode_if_inner:}
% For testing inner mode.
% \begin{macrocode}
\prg_set_conditional:Npnn \mode_if_inner: {p,TF,T,F}{
\if_mode_inner:
\prg_return_true: \else: \prg_return_false: \fi:
}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\mode_if_math_p:}
% \begin{macro}[TF]{\mode_if_math:}
% For testing math mode. Uses the kern-save |\scan_align_safe_stop:|.
% \begin{macrocode}
\prg_set_conditional:Npnn \mode_if_math: {p,TF,T,F}{
\scan_align_safe_stop: \if_mode_math:
\prg_return_true: \else: \prg_return_false: \fi:
}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \paragraph{Alignment safe grouping and scanning}
%
%
% \begin{macro}{\group_align_safe_begin:}
% \begin{macro}{\group_align_safe_end:}
% \TeX's alignment structures present many problems. As Knuth says
% himself in \emph{\TeX : The Program}: ``It's sort of a miracle
% whenever |\halign| or |\valign| work, [\ldots]'' One problem relates
% to commands that internally issues a |\cr| but also peek ahead for
% the next character for use in, say, an optional argument. If the
% next token happens to be a |&| with category code~4 we will get some
% sort of weird error message because the underlying
% |\tex_futurelet:D| will store the token at the end of the alignment
% template. This could be a |&|$\sb4$ giving a message like
% |! Misplaced \cr.| or even worse: it could be the |\endtemplate|
% token causing even more trouble! To solve this we have to open a
% special group so that \TeX{} still thinks it's on safe ground but at
% the same time we don't want to introduce any brace group that may
% find its way to the output. The following functions help with this
% by using code documented only in Appendix~D of
% \emph{The \TeX book}\dots
% \begin{macrocode}
\cs_new_nopar:Npn \group_align_safe_begin: {
\if_false:{\fi:\if_num:w`}=\c_zero\fi:}
\cs_new_nopar:Npn \group_align_safe_end: {\if_num:w`{=\c_zero}\fi:}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
%
% \begin{macro}{\scan_align_safe_stop:}
% When \TeX{} is in the beginning of an align cell (right after the
% |\cr|) it is in a somewhat strange mode as it is looking ahead to
% find an |\tex_omit:D| or |\tex_noalign:D| and hasn't looked at the
% preamble yet. Thus an |\tex_ifmmode:D| test will always fail unless
% we insert |\scan_stop:| to stop \TeX's scanning ahead. On the other
% hand we don't want to insert a |\scan_stop:| every time as that will
% destroy kerning between letters\footnote{Unless we enforce an extra
% pass with an appropriate value of \texttt{\string\pretolerance}.}
% Unfortunately there is no way to detect if we're in the beginning of
% an alignment cell as they have different characteristics depending
% on column number etc. However we \emph{can} detect if we're in an
% alignment cell by checking the current group type and we can also
% check if the previous node was a character or ligature. What is done
% here is that |\scan_stop:| is only inserted iff a)~we're in the
% outer part of an alignment cell and b)~the last node \emph{wasn't} a
% char node or a ligature node.
% \begin{macrocode}
\cs_new_nopar:Npn \scan_align_safe_stop: {
\intexpr_compare:nNnT \etex_currentgrouptype:D = \c_six
{
\intexpr_compare:nNnF \etex_lastnodetype:D = \c_zero
{
\intexpr_compare:nNnF \etex_lastnodetype:D = \c_seven
\scan_stop:
}
}
}
% \end{macrocode}
% \end{macro}
%
% \subsection{Producing $n$ copies}
%
% \begin{macro}{\prg_replicate:nn}
% \begin{macro}[aux]{\prg_replicate_aux:N,\prg_replicate_first_aux:N}
% This function uses a cascading csname technique by David Kastrup
% (who else :-)
%
% The idea is to make the input "25" result in first adding five, and
% then 20 copies of the code to be replicated. The technique uses
% cascading csnames which means that we start building several csnames
% so we end up with a list of functions to be called in reverse
% order. This is important here (and other places) because it means
% that we can for instance make the function that inserts five copies
% of something to also hand down ten to the next function in
% line. This is exactly what happens here: in the example with "25"
% then the next function is the one that inserts two copies but it
% sees the ten copies handed down by the previous function. In order
% to avoid the last function to insert say, 100 copies of the original
% argument just to gobble them again we define separate functions to
% be inserted first. Finally we must ensure that the cascade comes to
% a peaceful end so we make it so that the original csname \TeX{} is
% creating is simply "\prg_do_nothing:" expanding to nothing.
%
% This function has one flaw though: Since it constantly passes down
% ten copies of its previous argument it will severely affect the main
% memory once you start demanding hundreds of thousands of copies. Now
% I don't think this is a real limitation for any ordinary use. An
% alternative approach is to create a string of "m"'s with
% "\int_to_roman:w" which can be done with just four macros but that
% method has its own problems since it can exhaust the string
% pool. Also, it is considerably slower than what we use here so the
% few extra csnames are well spent I would say.
% \begin{macrocode}
\cs_new_nopar:Npn \prg_replicate:nn #1{
\cs:w prg_do_nothing:
\exp_after:wN\prg_replicate_first_aux:N
\tex_romannumeral:D -`\q \intexpr_eval:n{#1} \cs_end:
\cs_end:
}
\cs_new_nopar:Npn \prg_replicate_aux:N#1{
\cs:w prg_replicate_#1:n\prg_replicate_aux:N
}
\cs_new_nopar:Npn \prg_replicate_first_aux:N#1{
\cs:w prg_replicate_first_#1:n\prg_replicate_aux:N
}
% \end{macrocode}
% \end{macro}
% \end{macro}
% Then comes all the functions that do the hard work of inserting all
% the copies.
% \begin{macrocode}
\cs_new_nopar:Npn \prg_replicate_ :n #1{}% no, this is not a typo!
\cs_new:cpn {prg_replicate_0:n}#1{\cs_end:{#1#1#1#1#1#1#1#1#1#1}}
\cs_new:cpn {prg_replicate_1:n}#1{\cs_end:{#1#1#1#1#1#1#1#1#1#1}#1}
\cs_new:cpn {prg_replicate_2:n}#1{\cs_end:{#1#1#1#1#1#1#1#1#1#1}#1#1}
\cs_new:cpn {prg_replicate_3:n}#1{
\cs_end:{#1#1#1#1#1#1#1#1#1#1}#1#1#1}
\cs_new:cpn {prg_replicate_4:n}#1{
\cs_end:{#1#1#1#1#1#1#1#1#1#1}#1#1#1#1}
\cs_new:cpn {prg_replicate_5:n}#1{
\cs_end:{#1#1#1#1#1#1#1#1#1#1}#1#1#1#1#1}
\cs_new:cpn {prg_replicate_6:n}#1{
\cs_end:{#1#1#1#1#1#1#1#1#1#1}#1#1#1#1#1#1}
\cs_new:cpn {prg_replicate_7:n}#1{
\cs_end:{#1#1#1#1#1#1#1#1#1#1}#1#1#1#1#1#1#1}
\cs_new:cpn {prg_replicate_8:n}#1{
\cs_end:{#1#1#1#1#1#1#1#1#1#1}#1#1#1#1#1#1#1#1}
\cs_new:cpn {prg_replicate_9:n}#1{
\cs_end:{#1#1#1#1#1#1#1#1#1#1}#1#1#1#1#1#1#1#1#1}
% \end{macrocode}
% Users shouldn't ask for something to be replicated once or even
% not at all but\dots
% \begin{macrocode}
\cs_new:cpn {prg_replicate_first_0:n}#1{\cs_end: }
\cs_new:cpn {prg_replicate_first_1:n}#1{\cs_end: #1}
\cs_new:cpn {prg_replicate_first_2:n}#1{\cs_end: #1#1}
\cs_new:cpn {prg_replicate_first_3:n}#1{\cs_end: #1#1#1}
\cs_new:cpn {prg_replicate_first_4:n}#1{\cs_end: #1#1#1#1}
\cs_new:cpn {prg_replicate_first_5:n}#1{\cs_end: #1#1#1#1#1}
\cs_new:cpn {prg_replicate_first_6:n}#1{\cs_end: #1#1#1#1#1#1}
\cs_new:cpn {prg_replicate_first_7:n}#1{\cs_end: #1#1#1#1#1#1#1}
\cs_new:cpn {prg_replicate_first_8:n}#1{\cs_end: #1#1#1#1#1#1#1#1}
\cs_new:cpn {prg_replicate_first_9:n}#1{\cs_end: #1#1#1#1#1#1#1#1#1}
% \end{macrocode}
%
%
%
%
% \begin{macro}{\prg_stepwise_function:nnnN}
% \begin{macro}[aux]{\prg_stepwise_function_incr:nnnN,
% \prg_stepwise_function_decr:nnnN}
% A stepwise function. Firstly we check the direction of the steps
% |#2| since that will depend on which test we should use. If the
% step is positive we use a greater than test, otherwise a less than
% test. If the test comes out true exit, otherwise perform |#4|,
% add the step to |#1| and try again with this new value of |#1|.
% \begin{macrocode}
\cs_new:Npn \prg_stepwise_function:nnnN #1#2{
\intexpr_compare:nNnTF{#2}<\c_zero
{\exp_args:Nf\prg_stepwise_function_decr:nnnN }
{\exp_args:Nf\prg_stepwise_function_incr:nnnN }
{\intexpr_eval:n{#1}}{#2}
}
\cs_new:Npn \prg_stepwise_function_incr:nnnN #1#2#3#4{
\intexpr_compare:nNnF {#1}>{#3}
{
#4{#1}
\exp_args:Nf \prg_stepwise_function_incr:nnnN
{\intexpr_eval:n{#1 + #2}}
{#2}{#3}{#4}
}
}
\cs_new:Npn \prg_stepwise_function_decr:nnnN #1#2#3#4{
\intexpr_compare:nNnF {#1}<{#3}
{
#4{#1}
\exp_args:Nf \prg_stepwise_function_decr:nnnN
{\intexpr_eval:n{#1 + #2}}
{#2}{#3}{#4}
}
}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\g_prg_inline_level_int}
% \begin{macro}{\prg_stepwise_inline:nnnn}
% \begin{macro}[aux]{\prg_stepwise_inline_decr:nnnn,
% \prg_stepwise_inline_incr:nnnn}
% This function uses the same approach as for instance
% |\clist_map_inline:Nn| to allow arbitrary nesting. First construct
% the special function and then call an auxiliary one which just
% carries the newly constructed csname. Must make assignments global
% when we maintain our own stack.
% \begin{macrocode}
\int_new:N\g_prg_inline_level_int
\cs_new:Npn\prg_stepwise_inline:nnnn #1#2#3#4{
\int_gincr:N \g_prg_inline_level_int
\cs_gset_nopar:cpn{prg_stepwise_inline_\int_use:N\g_prg_inline_level_int :n}##1{#4}
\intexpr_compare:nNnTF {#2}<\c_zero
{\exp_args:Ncf \prg_stepwise_inline_decr:Nnnn }
{\exp_args:Ncf \prg_stepwise_inline_incr:Nnnn }
{prg_stepwise_inline_\int_use:N\g_prg_inline_level_int :n}
{\intexpr_eval:n{#1}} {#2} {#3}
\int_gdecr:N \g_prg_inline_level_int
}
\cs_new:Npn \prg_stepwise_inline_incr:Nnnn #1#2#3#4{
\intexpr_compare:nNnF {#2}>{#4}
{
#1{#2}
\exp_args:NNf \prg_stepwise_inline_incr:Nnnn #1
{\intexpr_eval:n{#2 + #3}} {#3}{#4}
}
}
\cs_new:Npn \prg_stepwise_inline_decr:Nnnn #1#2#3#4{
\intexpr_compare:nNnF {#2}<{#4}
{
#1{#2}
\exp_args:NNf \prg_stepwise_inline_decr:Nnnn #1
{\intexpr_eval:n{#2 + #3}} {#3}{#4}
}
}
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\prg_stepwise_variable:nnnNn}
% \begin{macro}[aux]{\prg_stepwise_variable_decr:nnnNn,
% \prg_stepwise_variable_incr:nnnNn}
% Almost the same as above. Just store the value in |#4| and execute
% |#5|.
% \begin{macrocode}
\cs_new:Npn \prg_stepwise_variable:nnnNn #1#2 {
\intexpr_compare:nNnTF {#2}<\c_zero
{\exp_args:Nf\prg_stepwise_variable_decr:nnnNn}
{\exp_args:Nf\prg_stepwise_variable_incr:nnnNn}
{\intexpr_eval:n{#1}}{#2}
}
\cs_new:Npn \prg_stepwise_variable_incr:nnnNn #1#2#3#4#5 {
\intexpr_compare:nNnF {#1}>{#3}
{
\cs_set_nopar:Npn #4{#1} #5
\exp_args:Nf \prg_stepwise_variable_incr:nnnNn
{\intexpr_eval:n{#1 + #2}}{#2}{#3}#4{#5}
}
}
\cs_new:Npn \prg_stepwise_variable_decr:nnnNn #1#2#3#4#5 {
\intexpr_compare:nNnF {#1}<{#3}
{
\cs_set_nopar:Npn #4{#1} #5
\exp_args:Nf \prg_stepwise_variable_decr:nnnNn
{\intexpr_eval:n{#1 + #2}}{#2}{#3}#4{#5}
}
}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
%
% \subsection{Booleans}
% For normal booleans we set them to either "\c_true_bool" or "\c_false_bool"
% and then use "\if_bool:N" to choose the right branch. The functions
% return either the TF, T, or F case \emph{after} ending the |\if_bool:N|.
% We only define the |N| versions here as the |c| versions can easily
% be constructed with the expansion module.
%
% \begin{macro}{\bool_new:N}
% \begin{macro}{\bool_new:c}
% \begin{macro}{\bool_set_true:N}
% \begin{macro}{\bool_set_true:c}
% \begin{macro}{\bool_set_false:N}
% \begin{macro}{\bool_set_false:c}
% \begin{macro}{\bool_gset_true:N}
% \begin{macro}{\bool_gset_true:c}
% \begin{macro}{\bool_gset_false:N}
% \begin{macro}{\bool_gset_false:c}
% Defining and setting a boolean is easy.
% \begin{macrocode}
\cs_new_nopar:Npn \bool_new:N #1 { \cs_new_eq:NN #1 \c_false_bool }
\cs_new_nopar:Npn \bool_new:c #1 { \cs_new_eq:cN {#1} \c_false_bool }
\cs_new_nopar:Npn \bool_set_true:N #1 { \cs_set_eq:NN #1 \c_true_bool }
\cs_new_nopar:Npn \bool_set_true:c #1 { \cs_set_eq:cN {#1} \c_true_bool }
\cs_new_nopar:Npn \bool_set_false:N #1 { \cs_set_eq:NN #1 \c_false_bool }
\cs_new_nopar:Npn \bool_set_false:c #1 { \cs_set_eq:cN {#1} \c_false_bool }
\cs_new_nopar:Npn \bool_gset_true:N #1 { \cs_gset_eq:NN #1 \c_true_bool }
\cs_new_nopar:Npn \bool_gset_true:c #1 { \cs_gset_eq:cN {#1} \c_true_bool }
\cs_new_nopar:Npn \bool_gset_false:N #1 { \cs_gset_eq:NN #1 \c_false_bool }
\cs_new_nopar:Npn \bool_gset_false:c #1 { \cs_gset_eq:cN {#1} \c_false_bool }
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\bool_set_eq:NN}
% \begin{macro}{\bool_set_eq:Nc}
% \begin{macro}{\bool_set_eq:cN}
% \begin{macro}{\bool_set_eq:cc}
% \begin{macro}{\bool_gset_eq:NN}
% \begin{macro}{\bool_gset_eq:Nc}
% \begin{macro}{\bool_gset_eq:cN}
% \begin{macro}{\bool_gset_eq:cc}
% Setting a boolean to another is also pretty easy.
% \begin{macrocode}
\cs_new_eq:NN \bool_set_eq:NN \cs_set_eq:NN
\cs_new_eq:NN \bool_set_eq:Nc \cs_set_eq:Nc
\cs_new_eq:NN \bool_set_eq:cN \cs_set_eq:cN
\cs_new_eq:NN \bool_set_eq:cc \cs_set_eq:cc
\cs_new_eq:NN \bool_gset_eq:NN \cs_gset_eq:NN
\cs_new_eq:NN \bool_gset_eq:Nc \cs_gset_eq:Nc
\cs_new_eq:NN \bool_gset_eq:cN \cs_gset_eq:cN
\cs_new_eq:NN \bool_gset_eq:cc \cs_gset_eq:cc
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\l_tmpa_bool}
% \begin{macro}{\g_tmpa_bool}
% A few booleans just if you need them.
% \begin{macrocode}
\bool_new:N \l_tmpa_bool
\bool_new:N \g_tmpa_bool
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\bool_if_p:N,\bool_if_p:c}
% \begin{macro}[TF]{\bool_if:N,\bool_if:c}
% Straight forward here. We could optimize here if we wanted to as
% the boolean can just be input directly.
% \begin{macrocode}
\prg_set_conditional:Npnn \bool_if:N #1 {p,TF,T,F}{
\if_bool:N #1 \prg_return_true: \else: \prg_return_false: \fi:
}
\cs_generate_variant:Nn \bool_if_p:N {c}
\cs_generate_variant:Nn \bool_if:NTF {c}
\cs_generate_variant:Nn \bool_if:NT {c}
\cs_generate_variant:Nn \bool_if:NF {c}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
%
%
% \begin{macro}{\bool_while_do:Nn}
% \begin{macro}{\bool_while_do:cn}
% \begin{macro}{\bool_until_do:Nn}
% \begin{macro}{\bool_until_do:cn}
% A "while" loop where the boolean is tested before executing the
% statement. The `while' version executes the code as long as the
% boolean is true; the `until' version executes the code as
% long as the boolean is false.
% \begin{macrocode}
\cs_new:Npn \bool_while_do:Nn #1 #2 {
\bool_if:NT #1 {#2 \bool_while_do:Nn #1 {#2}}
}
\cs_generate_variant:Nn \bool_while_do:Nn {c}
% \end{macrocode}
%
% \begin{macrocode}
\cs_new:Npn \bool_until_do:Nn #1 #2 {
\bool_if:NF #1 {#2 \bool_until_do:Nn #1 {#2}}
}
\cs_generate_variant:Nn \bool_until_do:Nn {c}
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\bool_do_while:Nn}
% \begin{macro}{\bool_do_while:cn}
% \begin{macro}{\bool_do_until:Nn}
% \begin{macro}{\bool_do_until:cn}
% A "do-while" loop where the body is performed at least once and the
% boolean is tested after executing the body. Otherwise identical to
% the above functions.
% \begin{macrocode}
\cs_new:Npn \bool_do_while:Nn #1 #2 {
#2 \bool_if:NT #1 {\bool_do_while:Nn #1 {#2}}
}
\cs_generate_variant:Nn \bool_do_while:Nn {c}
% \end{macrocode}
%
% \begin{macrocode}
\cs_new:Npn \bool_do_until:Nn #1 #2 {
#2 \bool_if:NF #1 {\bool_do_until:Nn #1 {#2}}
}
\cs_generate_variant:Nn \bool_do_until:Nn {c}
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
%
%
%
% \subsection{Parsing boolean expressions}
%
% \begin{macro}{\bool_if_p:n}
% \begin{macro}[TF]{\bool_if:n}
% \begin{macro}[aux]{\bool_get_next:N, \bool_cleanup:N, \bool_choose:NN}
% \begin{macro}[aux]{\bool_!:w}
% \begin{macro}[aux]{\bool_(:w}
% \begin{macro}[aux]{\bool_p:w}
% \begin{macro}[aux]{\bool_8_1:w}
% \begin{macro}[aux]{\bool_I_1:w}
% \begin{macro}[aux]{\bool_8_0:w}
% \begin{macro}[aux]{\bool_I_0:w}
% \begin{macro}[aux]{\bool_)_0:w}
% \begin{macro}[aux]{\bool_)_1:w}
% \begin{macro}[aux]{\bool_S_0:w}
% \begin{macro}[aux]{\bool_S_1:w}
%
% Evaluating the truth value of a list of predicates is done using
% an input syntax somewhat similar to the one found in other
% programming languages with "(" and ")" for grouping, "!" for
% logical `Not', "&&" for logical `And' and "||" for logical
% "Or". We shall use the terms Not, And, Or, Open and Close for
% these operations.
%
% Any expression is terminated by a Close operation. Evaluation
% happens from left to right in the following manner using a GetNext
% function:
% \begin{itemize}
% \item If an Open is seen, start evaluating a new expression using
% the Eval function and
% call GetNext again.
% \item If a Not is seen, insert a negating function (if-even in
% this case) and call GetNext.
% \item If none of the above, start evaluating a new expression by
% reinserting the token found (this is supposed to be a predicate
% function) in front of Eval.
% \end{itemize}
% The Eval function then contains a post-processing operation which
% grabs the instruction following the predicate. This is either And,
% Or or Close. In each case the truth value is used to determine
% where to go next. The following situations can arise:
% \begin{description}
% \item[\meta{true}And] Current truth value is true, logical And
% seen, continue with GetNext to examine truth value of next
% boolean (sub-)expression.
% \item[\meta{false}And] Current truth value is false, logical And
% seen, stop evaluating the predicates within this sub-expression
% and break to the nearest Close. Then return \meta{false}.
% \item[\meta{true}Or] Current truth value is true, logical Or
% seen, stop evaluating the predicates within this sub-expression
% and break to the nearest Close. Then return \meta{true}.
% \item[\meta{false}Or] Current truth value is false, logical Or
% seen, continue with GetNext to examine truth value of next
% boolean (sub-)expression.
% \item[\meta{true}Close] Current truth value is true, Close
% seen, return \meta{true}.
% \item[\meta{false}Close] Current truth value is false, Close
% seen, return \meta{false}.
% \end{description}
% We introduce an additional Stop operation with the following
% semantics:
% \begin{description}
% \item[\meta{true}Stop] Current truth value is true, return
% \meta{true}.
% \item[\meta{false}Stop] Current truth value is false, return
% \meta{false}.
% \end{description}
% The reasons for this follow below.
%
% Now for how these works in practice. The canonical true and false
% values have numerical values 1 and 0 respectively. We evaluate
% this using the primitive "\tex_number:D" operation. First we
% issue a "\group_align_safe_begin:" as we are using "&&" as syntax
% shorthand for the And operation and we need to hide it for \TeX.
% We also need to finish this special group before finally
% returning a "\c_true_bool" or "\c_false_bool" as there might
% otherwise be something left in front in the input stream. For
% this we call the Stop operation, denoted simply by a "S"
% following the last Close operation.
% \begin{macrocode}
\cs_set:Npn \bool_if_p:n #1{
\group_align_safe_begin:
\bool_get_next:N ( #1 )S
}
% \end{macrocode}
% The GetNext operation. We make it a switch: If not a "!" or "(", we
% assume it is a predicate.
% \begin{macrocode}
\cs_set:Npn \bool_get_next:N #1{
\use:c {
bool_
\if_meaning:w !#1 ! \else: \if_meaning:w (#1 ( \else: p \fi: \fi:
:w
} #1
}
% \end{macrocode}
% The Not operation. Discard the token read and reverse the truth
% value of the next expression using "\intexpr_if_even_p:n".
% \begin{macrocode}
\cs_set:cpn {bool_!:w}#1{
\exp_after:wN \intexpr_if_even_p:n \tex_number:D \bool_get_next:N
}
% \end{macrocode}
% The Open operation. Discard the token read and start a
% sub-expression.
% \begin{macrocode}
\cs_set:cpn {bool_(:w}#1{
\exp_after:wN \bool_cleanup:N \tex_number:D \bool_get_next:N
}
% \end{macrocode}
% Otherwise just evaluate the predicate and look for And, Or or Close
% afterward.
% \begin{macrocode}
\cs_set:cpn {bool_p:w}{\exp_after:wN \bool_cleanup:N \tex_number:D }
% \end{macrocode}
% This cleanup function can be omitted once predicates return their
% true/false booleans outside the conditionals.
% \begin{macrocode}
\cs_new_nopar:Npn \bool_cleanup:N #1{
\exp_after:wN \bool_choose:NN \exp_after:wN #1
\int_to_roman:w-`\q
}
% \end{macrocode}
% Branching the six way switch.
% \begin{macrocode}
\cs_new_nopar:Npn \bool_choose:NN #1#2{ \use:c{bool_#2_#1:w} }
% \end{macrocode}
% Continues scanning. Must remove the second "&" or "|".
% \begin{macrocode}
\cs_new_nopar:cpn{bool_&_1:w}&{\bool_get_next:N}
\cs_new_nopar:cpn{bool_|_0:w}|{\bool_get_next:N}
% \end{macrocode}
% Closing a group is just about returning the result. The Stop
% operation is similar except it closes the special alignment group
% before returning the boolean.
% \begin{macrocode}
\cs_new_nopar:cpn{bool_)_0:w}{ \c_false_bool }
\cs_new_nopar:cpn{bool_)_1:w}{ \c_true_bool }
\cs_new_nopar:cpn{bool_S_0:w}{\group_align_safe_end: \c_false_bool }
\cs_new_nopar:cpn{bool_S_1:w}{\group_align_safe_end: \c_true_bool }
% \end{macrocode}
% When the truth value has already been decided, we have to throw away
% the remainder of the current group as we are doing minimal
% evaluation. This is slightly tricky as there are no braces so we
% have to play match the "()" manually.
% \begin{macrocode}
\cs_set:cpn{bool_&_0:w}&{\bool_eval_skip_to_end:Nw \c_false_bool}
\cs_set:cpn{bool_|_1:w}|{\bool_eval_skip_to_end:Nw \c_true_bool}
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \begin{macro}[aux]{\bool_eval_skip_to_end:Nw,
% \bool_eval_skip_to_end_aux:Nw,\bool_eval_skip_to_end_auxii:Nw}
% There is always at least one ")" waiting, namely the outer
% one. However, we are facing the problem that there may be more than
% one that need to be finished off and we have to detect the correct
% number of them. Here is a complicated example showing how this is
% done. After evaluating the following, we realize we must skip
% everything after the first And. Note the extra Close at the end.
% \begin{quote}
% |\c_false_bool && ((abc) && xyz) && ((xyz) && (def)))|
% \end{quote}
% First read up to the first Close. This gives us the list we first
% read up until the first right parenthesis so we are looking at the
% token list
% \begin{quote}
% |((abc|
% \end{quote}
% This contains two Open markers so we must remove two groups. Since
% no evaluation of the contents is to be carried out, it doesn't
% matter how we remove the groups as long as we wind up with the
% correct result. We therefore first remove a "()" pair and what
% preceded the Open -- but leave the contents as it may contain Open
% tokens itself -- leaving
% \begin{quote}
% |(abc && xyz) && ((xyz) && (def)))|
% \end{quote}
% Another round of this gives us
% \begin{quote}
% |(abc && xyz|
% \end{quote}
% which still contains an Open so we remove another "()" pair, giving us
% \begin{quote}
% |abc && xyz && ((xyz) && (def)))|
% \end{quote}
% Again we read up to a Close and again find Open tokens:
% \begin{quote}
% |abc && xyz && ((xyz|
% \end{quote}
% Further reduction gives us
% \begin{quote}
% |(xyz && (def)))|
% \end{quote}
% and then
% \begin{quote}
% |(xyz && (def|
% \end{quote}
% with reduction to
% \begin{quote}
% |xyz && (def))|
% \end{quote}
% and ultimately we arrive at no Open tokens being skipped and we can
% finally close the group nicely.
%
% This whole operation could be made a lot simpler if we were allowed
% to do simple pattern matching. With a new enough pdf\TeX\ one can do
% that sort of thing to test for existence of particular tokens.
% \begin{macrocode}
\cs_set:Npn \bool_eval_skip_to_end:Nw #1#2){
\bool_eval_skip_to_end_aux:Nw #1 #2(\q_no_value\q_nil{#2}
}
% \end{macrocode}
% If no right parenthesis, then |#3| is no_value and we are done, return
% the boolean |#1|. If there is, we need to grab a () pair and then
% recurse
% \begin{macrocode}
\cs_set:Npn \bool_eval_skip_to_end_aux:Nw #1#2(#3#4\q_nil#5{
\quark_if_no_value:NTF #3
{ #1 }
{ \bool_eval_skip_to_end_auxii:Nw #1 #5 }
}
% \end{macrocode}
% keep the boolean, throw away anything up to the ( as it is
% irrelevant, remove a () pair but remember to reinsert |#3| as it may
% contain ( tokens!
% \begin{macrocode}
\cs_set:Npn \bool_eval_skip_to_end_auxii:Nw #1#2(#3){
\bool_eval_skip_to_end:Nw #1#3 )
}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\bool_set:Nn,\bool_set:cn,\bool_gset:Nn,\bool_gset:cn}
% This function evaluates a boolean expression and assigns the first
% argument the meaning "\c_true_bool" or "\c_false_bool".
% \begin{macrocode}
\cs_new:Npn \bool_set:Nn #1#2 {\tex_chardef:D #1 = \bool_if_p:n {#2}}
\cs_new:Npn \bool_gset:Nn #1#2 {
\tex_global:D \tex_chardef:D #1 = \bool_if_p:n {#2}
}
\cs_generate_variant:Nn \bool_set:Nn {c}
\cs_generate_variant:Nn \bool_gset:Nn {c}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\bool_not_p:n}
% The "not" variant just reverses the outcome of |\bool_if_p:n|. Can
% be optimized but this is nice and simple and according to the
% implementation plan. Not even particularly useful to have it when
% the infix notation is easier to use.
% \begin{macrocode}
\cs_new:Npn \bool_not_p:n #1{ \bool_if_p:n{!(#1)} }
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\bool_xor_p:nn}
% Exclusive or. If the boolean expressions have same truth value,
% return false, otherwise return true.
% \begin{macrocode}
\cs_new:Npn \bool_xor_p:nn #1#2 {
\intexpr_compare:nNnTF {\bool_if_p:n { #1 }} = {\bool_if_p:n { #2 }}
{\c_false_bool}{\c_true_bool}
}
% \end{macrocode}
% \end{macro}
%
% \begin{macrocode}
\prg_set_conditional:Npnn \bool_if:n #1 {TF,T,F}{
\if_predicate:w \bool_if_p:n{#1}
\prg_return_true: \else: \prg_return_false: \fi:
}
% \end{macrocode}
%
% \begin{macro}{\bool_while_do:nn,\bool_until_do:nn}
% \begin{macro}{\bool_do_while:nn,\bool_do_until:nn}
% \begin{arguments}
% \item Predicate test
% \item Code to execute
% \end{arguments}
% \begin{macrocode}
\cs_new:Npn \bool_while_do:nn #1#2 {
\bool_if:nT {#1} { #2 \bool_while_do:nn {#1}{#2} }
}
\cs_new:Npn \bool_until_do:nn #1#2 {
\bool_if:nF {#1} { #2 \bool_until_do:nn {#1}{#2} }
}
\cs_new:Npn \bool_do_while:nn #1#2 {
#2 \bool_if:nT {#1} { \bool_do_while:nn {#1}{#2} }
}
\cs_new:Npn \bool_do_until:nn #1#2 {
#2 \bool_if:nF {#1} { \bool_do_until:nn {#1}{#2} }
}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \subsection{Case switch}
%
% \begin{macro}{\prg_case_int:nnn}
% \begin{macro}[aux]{\prg_case_int_aux:nnn}
% This case switch is in reality quite simple. It takes three arguments:
% \begin{enumerate}
% \item An integer expression you wish to find.
% \item A list of pairs of \Arg{integer expr} \Arg{code}.
% The list can be as long as is desired
% and \meta{integer expr} can be negative.
% \item The code to be executed if the value wasn't found.
% \end{enumerate}
% We don't need the else case here yet, so leave it dangling in the
% input stream.
% \begin{macrocode}
\cs_new:Npn \prg_case_int:nnn #1 #2 {
% \end{macrocode}
% We will be parsing on |#1| for each step so we might as well
% evaluate it first in case it is complicated.
% \begin{macrocode}
\exp_args:Nf \prg_case_int_aux:nnn { \intexpr_eval:n{#1}} #2
% \end{macrocode}
% The \texttt{?} below is just so there are enough arguments when we
% reach the end. And it made you look.~\texttt{;-)}
% \begin{macrocode}
\q_recursion_tail ? \q_recursion_stop
}
\cs_new:Npn \prg_case_int_aux:nnn #1#2#3{
% \end{macrocode}
% If we reach the end, return the else case. We just remove braces.
% \begin{macrocode}
\quark_if_recursion_tail_stop_do:nn{#2}{\use:n}
% \end{macrocode}
% Otherwise we compare (which evaluates |#2| for us)
% \begin{macrocode}
\intexpr_compare:nNnTF{#1}={#2}
% \end{macrocode}
% If true, we want to remove the remainder of the list, the else case
% and then execute the code specified. |\prg_end_case:nw {#3}| does
% just that in one go. This means |f| style expansion works the way
% one wants it to work.
% \begin{macrocode}
{ \prg_end_case:nw {#3} }
{ \prg_case_int_aux:nnn {#1}}
}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\prg_case_dim:nnn}
% \begin{macro}[aux]{\prg_case_dim_aux:nnn}
% Same as |\prg_case_dim:nnn| except it is for \meta{dim} registers.
% \begin{macrocode}
\cs_new:Npn \prg_case_dim:nnn #1 #2 {
\exp_args:No \prg_case_dim_aux:nnn {\dim_use:N \dim_eval:n{#1}} #2
\q_recursion_tail ? \q_recursion_stop
}
\cs_new:Npn \prg_case_dim_aux:nnn #1#2#3{
\quark_if_recursion_tail_stop_do:nn{#2}{\use:n}
\dim_compare:nNnTF{#1}={#2}
{ \prg_end_case:nw {#3} }
{ \prg_case_dim_aux:nnn {#1}}
}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\prg_case_str:nnn}
% \begin{macro}[aux]{\prg_case_str_aux:nnn}
% Same as |\prg_case_dim:nnn| except it is for strings.
% \begin{macrocode}
\cs_new:Npn \prg_case_str:nnn #1 #2 {
\prg_case_str_aux:nnn {#1} #2
\q_recursion_tail ? \q_recursion_stop
}
\cs_new:Npn \prg_case_str_aux:nnn #1#2#3{
\quark_if_recursion_tail_stop_do:nn{#2}{\use:n}
\tl_if_eq:xxTF{#1}{#2}
{ \prg_end_case:nw {#3} }
{ \prg_case_str_aux:nnn {#1}}
}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\prg_case_tl:Nnn}
% \begin{macro}[aux]{\prg_case_tl_aux:NNn}
% Same as |\prg_case_dim:nnn| except it is for token list variables.
% \begin{macrocode}
\cs_new:Npn \prg_case_tl:Nnn #1 #2 {
\prg_case_tl_aux:NNn #1 #2
\q_recursion_tail ? \q_recursion_stop
}
\cs_new:Npn \prg_case_tl_aux:NNn #1#2#3{
\quark_if_recursion_tail_stop_do:Nn #2{\use:n}
\tl_if_eq:NNTF #1 #2
{ \prg_end_case:nw {#3} }
{ \prg_case_tl_aux:NNn #1}
}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
%
% \begin{macro}[aux]{\prg_end_case:nw}
% Ending a case switch is always performed the same way so we
% optimize for this. |#1| is the code to execute, |#2| the
% remainder, and |#3| the dangling else case.
% \begin{macrocode}
\cs_new:Npn \prg_end_case:nw #1#2\q_recursion_stop#3{#1}
% \end{macrocode}
% \end{macro}
%
% \subsection{Sorting}
%
%
% \begin{macro}[aux]{\prg_define_quicksort:nnn}
% |#1| is the name, |#2| and |#3| are the tokens enclosing the
% argument. For the somewhat strange \meta{clist} type which doesn't
% enclose the items but uses a separator we define it by hand
% afterwards. When doing the first pass, the algorithm wraps all
% elements in braces and then uses a generic quicksort which works
% on token lists.
%
% As an example
% \begin{quote}
% |\prg_define_quicksort:nnn{seq}{\seq_elt:w}{\seq_elt_end:w}|
% \end{quote}
% defines the user function |\seq_quicksort:n| and furthermore
% expects to use the two functions |\seq_quicksort_compare:nnTF|
% which compares the items and |\seq_quicksort_function:n| which is
% placed before each sorted item. It is up to the programmer to
% define these functions when needed. For the |seq| type a sequence
% is a token list variable, so one additionally has to define
% \begin{quote}
% |\cs_set_nopar:Npn \seq_quicksort:N{\exp_args:No\seq_quicksort:n}|
% \end{quote}
%
%
% For details on the implementation see ``Sorting in \TeX's Mouth''
% by Bernd Raichle. Firstly we define the function for parsing the
% initial list and then the braced list afterwards.
% \begin{macrocode}
\cs_new_nopar:Npn \prg_define_quicksort:nnn #1#2#3 {
\cs_set:cpx{#1_quicksort:n}##1{
\exp_not:c{#1_quicksort_start_partition:w} ##1
\exp_not:n{#2\q_nil#3\q_stop}
}
\cs_set:cpx{#1_quicksort_braced:n}##1{
\exp_not:c{#1_quicksort_start_partition_braced:n} ##1
\exp_not:N\q_nil\exp_not:N\q_stop
}
\cs_set:cpx {#1_quicksort_start_partition:w} #2 ##1 #3{
\exp_not:N \quark_if_nil:nT {##1}\exp_not:N \use_none_delimit_by_q_stop:w
\exp_not:c{#1_quicksort_do_partition_i:nnnw} {##1}{}{}
}
\cs_set:cpx {#1_quicksort_start_partition_braced:n} ##1 {
\exp_not:N \quark_if_nil:nT {##1}\exp_not:N \use_none_delimit_by_q_stop:w
\exp_not:c{#1_quicksort_do_partition_i_braced:nnnn} {##1}{}{}
}
% \end{macrocode}
% Now for doing the partitions.
% \begin{macrocode}
\cs_set:cpx {#1_quicksort_do_partition_i:nnnw} ##1##2##3 #2 ##4 #3 {
\exp_not:N \quark_if_nil:nTF {##4} \exp_not:c {#1_do_quicksort_braced:nnnnw}
{
\exp_not:c{#1_quicksort_compare:nnTF}{##1}{##4}
\exp_not:c{#1_quicksort_partition_greater_ii:nnnn}
\exp_not:c{#1_quicksort_partition_less_ii:nnnn}
}
{##1}{##2}{##3}{##4}
}
\cs_set:cpx {#1_quicksort_do_partition_i_braced:nnnn} ##1##2##3##4 {
\exp_not:N \quark_if_nil:nTF {##4} \exp_not:c {#1_do_quicksort_braced:nnnnw}
{
\exp_not:c{#1_quicksort_compare:nnTF}{##1}{##4}
\exp_not:c{#1_quicksort_partition_greater_ii_braced:nnnn}
\exp_not:c{#1_quicksort_partition_less_ii_braced:nnnn}
}
{##1}{##2}{##3}{##4}
}
\cs_set:cpx {#1_quicksort_do_partition_ii:nnnw} ##1##2##3 #2 ##4 #3 {
\exp_not:N \quark_if_nil:nTF {##4} \exp_not:c {#1_do_quicksort_braced:nnnnw}
{
\exp_not:c{#1_quicksort_compare:nnTF}{##4}{##1}
\exp_not:c{#1_quicksort_partition_less_i:nnnn}
\exp_not:c{#1_quicksort_partition_greater_i:nnnn}
}
{##1}{##2}{##3}{##4}
}
\cs_set:cpx {#1_quicksort_do_partition_ii_braced:nnnn} ##1##2##3##4 {
\exp_not:N \quark_if_nil:nTF {##4} \exp_not:c {#1_do_quicksort_braced:nnnnw}
{
\exp_not:c{#1_quicksort_compare:nnTF}{##4}{##1}
\exp_not:c{#1_quicksort_partition_less_i_braced:nnnn}
\exp_not:c{#1_quicksort_partition_greater_i_braced:nnnn}
}
{##1}{##2}{##3}{##4}
}
% \end{macrocode}
% This part of the code handles the two branches in each
% sorting. Again we will also have to do it braced.
% \begin{macrocode}
\cs_set:cpx {#1_quicksort_partition_less_i:nnnn} ##1##2##3##4{
\exp_not:c{#1_quicksort_do_partition_i:nnnw}{##1}{##2}{{##4}##3}}
\cs_set:cpx {#1_quicksort_partition_less_ii:nnnn} ##1##2##3##4{
\exp_not:c{#1_quicksort_do_partition_ii:nnnw}{##1}{##2}{##3{##4}}}
\cs_set:cpx {#1_quicksort_partition_greater_i:nnnn} ##1##2##3##4{
\exp_not:c{#1_quicksort_do_partition_i:nnnw}{##1}{{##4}##2}{##3}}
\cs_set:cpx {#1_quicksort_partition_greater_ii:nnnn} ##1##2##3##4{
\exp_not:c{#1_quicksort_do_partition_ii:nnnw}{##1}{##2{##4}}{##3}}
\cs_set:cpx {#1_quicksort_partition_less_i_braced:nnnn} ##1##2##3##4{
\exp_not:c{#1_quicksort_do_partition_i_braced:nnnn}{##1}{##2}{{##4}##3}}
\cs_set:cpx {#1_quicksort_partition_less_ii_braced:nnnn} ##1##2##3##4{
\exp_not:c{#1_quicksort_do_partition_ii_braced:nnnn}{##1}{##2}{##3{##4}}}
\cs_set:cpx {#1_quicksort_partition_greater_i_braced:nnnn} ##1##2##3##4{
\exp_not:c{#1_quicksort_do_partition_i_braced:nnnn}{##1}{{##4}##2}{##3}}
\cs_set:cpx {#1_quicksort_partition_greater_ii_braced:nnnn} ##1##2##3##4{
\exp_not:c{#1_quicksort_do_partition_ii_braced:nnnn}{##1}{##2{##4}}{##3}}
% \end{macrocode}
% Finally, the big kahuna! This is where the sub-lists are sorted.
% \begin{macrocode}
\cs_set:cpx {#1_do_quicksort_braced:nnnnw} ##1##2##3##4\q_stop {
\exp_not:c{#1_quicksort_braced:n}{##2}
\exp_not:c{#1_quicksort_function:n}{##1}
\exp_not:c{#1_quicksort_braced:n}{##3}
}
}
% \end{macrocode}
% \end{macro}
%
%
% \begin{macro}{\prg_quicksort:n}
% A simple version. Sorts a list of tokens, uses the function
% |\prg_quicksort_compare:nnTF| to compare items, and places the
% function |\prg_quicksort_function:n| in front of each of them.
% \begin{macrocode}
\prg_define_quicksort:nnn {prg}{}{}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\prg_quicksort_function:n}
% \begin{macro}{\prg_quicksort_compare:nnTF}
% \begin{macrocode}
\cs_set:Npn \prg_quicksort_function:n {\ERROR}
\cs_set:Npn \prg_quicksort_compare:nnTF {\ERROR}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% That's it (for now).
% \begin{macrocode}
%</initex|package>
% \end{macrocode}
%
% \begin{macrocode}
%<*showmemory>
\showMemUsage
%</showmemory>
% \end{macrocode}
%
% \end{implementation}
% \PrintIndex
%
% \endinput
|