1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
|
% \iffalse
%% File: l3int.dtx Copyright (C) 1990-2008 LaTeX3 project
%%
%% It may be distributed and/or modified under the conditions of the
%% LaTeX Project Public License (LPPL), either version 1.3c of this
%% license or (at your option) any later version. The latest version
%% of this license is in the file
%%
%% http://www.latex-project.org/lppl.txt
%%
%% This file is part of the ``expl3 bundle'' (The Work in LPPL)
%% and all files in that bundle must be distributed together.
%%
%% The released version of this bundle is available from CTAN.
%%
%% -----------------------------------------------------------------------
%%
%% The development version of the bundle can be found at
%%
%% http://www.latex-project.org/cgi-bin/cvsweb.cgi/
%%
%% for those people who are interested.
%%
%%%%%%%%%%%
%% NOTE: %%
%%%%%%%%%%%
%%
%% Snapshots taken from the repository represent work in progress and may
%% not work or may contain conflicting material! We therefore ask
%% people _not_ to put them into distributions, archives, etc. without
%% prior consultation with the LaTeX Project Team.
%%
%% -----------------------------------------------------------------------
%
%<*driver|package>
\RequirePackage{l3names}
%</driver|package>
%\fi
\GetIdInfo$Id: l3int.dtx 738 2008-08-01 13:21:42Z morten $
{L3 Experimental Integer module}
%\iffalse
%<*driver>
%\fi
\ProvidesFile{\filename.\filenameext}
[\filedate\space v\fileversion\space\filedescription]
%\iffalse
\documentclass{l3doc}
\begin{document}
\DocInput{\filename.\filenameext}
\end{document}
%</driver>
% \fi
%
%
% \title{The \textsf{l3int} package\thanks{This file
% has version number \fileversion, last
% revised \filedate.}\\
% Counters}
% \author{\Team}
% \date{\filedate}
% \maketitle
%
% \section{Integers}
%
% \LaTeX3 maintains two type of integer registers for internal use.
% One (associated with the name "num") for low level uses in the
% allocation mechanism using macros only and "int": the one described
% here.
%
% The "int" type uses the built-in counter registers of \TeX{} and is
% therefore relatively fast compared to the "num" type and should be
% preferred in all cases as there is little chance we should ever run
% out of registers when being based on at least \eTeX.
%
% \subsection{Functions}
%
% \begin{function}{%
% \int_new:N |
% \int_new:c |
% \int_new_l:N |
% }
% \begin{syntax}
% "\int_new:N" <int>
% \end{syntax}
% Globally defines <int> to be a new variable of type "int" although
% you can still choose if it should be a an "\l_" or "\g_" type.
% There is no way to define constant counters with these functions.
% The function "\int_new_l:N" defines <int> locally only.
% \begin{texnote}
% "\int_new:N" is the equivalent to plain \TeX{}'s \tn{newcount}.
% However, the internal register allocation is done differently.
% \end{texnote}
% \end{function}
%
% \begin{function}{%
% \int_incr:N |
% \int_incr:c |
% \int_gincr:N |
% \int_gincr:c |
% }
% \begin{syntax}
% "\int_incr:N" <int>
% \end{syntax}
% Increments <int> by one. For global variables the global versions
% should be used.
% \end{function}
%
% \begin{function}{%
% \int_decr:N |
% \int_decr:c |
% \int_gdecr:N |
% \int_gdecr:c |
% }
% \begin{syntax}
% "\int_decr:N" <int>
% \end{syntax}
% Decrements <int> by one. For global variables the global versions
% should be used.
% \end{function}
%
% \begin{function}{%
% \int_set:Nn |
% \int_set:cn |
% \int_gset:Nn |
% \int_gset:cn |
% }
% \begin{syntax}
% "\int_set:Nn" <int> "{" <integer expr> "}"
% \end{syntax}
% These functions will set the <int> register to the <integer expr>
% value. This value can contain simple calc-like expressions as
% provided by \eTeX.
% \end{function}
%
%
% \begin{function}{%
% \int_zero:N |
% \int_zero:c |
% \int_gzero:N |
% \int_gzero:c |
% }
% \begin{syntax}
% "\int_zero:N" <int>
% \end{syntax}
% These functions sets the <int> register to zero either locally
% or globally.
% \end{function}
%
%
% \begin{function}{%
% \int_add:Nn |
% \int_add:cn |
% \int_gadd:Nn |
% \int_gadd:cn |
% }
% \begin{syntax}
% "\int_add:Nn" <int> "{" <integer expr> "}"
% \end{syntax}
% These functions will add to the <int> register the value <integer
% expr>. If the second argument is a <int> register too, the
% surrounding braces can be left out.
% \end{function}
%
% \begin{function}{%
% \int_sub:Nn |
% \int_sub:cn |
% \int_gsub:Nn |
% \int_gsub:cn |
% }
% \begin{syntax}
% "\int_gsub:Nn" <int> "{" <integer expr> "}"
% \end{syntax}
% These functions will subtract from the <int> register the value
% <integer expr>. If the second argument is a <int> register too, the
% surrounding braces can be left out.
% \end{function}
%
% \begin{function}{%
% \int_use:N |
% \int_use:c |
% }
% \begin{syntax}
% "\int_use:N" <int>
% \end{syntax}
% This function returns the integer value kept in <int> in a way
% suitable for further processing.
% \begin{texnote}
% The function "\int_use:N" could be implemented directly as the \TeX{}
% primitive "\tex_the:D" which is also responsible to produce the values for
% other internal quantities. We have chosen to use individual functions
% for counters, dimensions etc.\ to allow checks and to make the code
% more self-explaining.
% \end{texnote}
% \end{function}
%
% \subsection{Formatting a counter value}
%
% \begin{function}{
% \int_to_arabic:n |
% \int_to_alph:n |
% \int_to_Alph:n |
% \int_to_roman:n |
% \int_to_Roman:n |
% \int_to_symbol:n |
% }
% \begin{syntax}
% "\int_to_alph:n" "{" <integer> "}"
% "\int_to_alph:n" <int>
% \end{syntax}
% If some <integer> or the the current value of a <int> should be
% displayed or typeset in a special ways (e.g., as uppercase roman
% numerals) these function can be used. We need braces if the
% argument is a simple <integer>, they can be omitted in case of a
% <int>. By default the letters produced by "\int_to_roman:n" and
% "\int_to_Roman:n" have catcode~11.
%
% All functions are fully expandable and will therefore produce the
% correct output when used inside of deferred writes, etc. In case the
% number in an |alph| or |Alph| function is greater than the default
% base number (26) it follows a simple conversion rule so that 27 is
% turned into |aa|, 50 into |ax| and so on and so forth. These two
% functions can be modified quite easily to take a different base
% number and conversion rule so that other languages can be supported.
% \begin{texnote}
% These are more or less the internal \LaTeX2 functions \tn{@arabic},
% \tn{@alph}, \tn{Alph}, \tn{@roman}, \tn{@Roman}, and \tn{@fnsymbol}
% except that "\int_to_symbol:n" is also allowed outside math mode.
% \end{texnote}
% \end{function}
%
% \subsubsection{Internal functions}
%
% \begin{function}{\int_to_roman:w}
% \begin{syntax}
% "\int_to_roman:w" <integer> <space> \textit{or} <non-expandable token>
% \end{syntax}
% Converts <integer> to it lowercase roman representation. Note that
% it produces a string of letters with catcode 12.
% \begin{texnote}
% This is the \TeX{} primitive \tn{romannumeral} renamed.
% \end{texnote}
% \end{function}
% \begin{function}{
% \int_roman_lcuc_mapping:Nnn |
% \int_to_roman_lcuc:NN |
% }
% \begin{syntax}
% "\int_roman_lcuc_mapping:Nnn" <roman_char> "{"<licr>"}" "{"<LICR>"}"
% "\int_to_roman_lcuc:NN" <roman_char> <char>
% \end{syntax}
% "\int_roman_lcuc_mapping:Nnn" specifies how the roman
% numeral <roman\_ char> (i, v, x, l, c, d, or m) should be
% interpreted when converting the number. <licr> is the lower case and
% <LICR> is the uppercase mapping. "\int_to_roman_lcuc:NN" is a
% recursive function converting the roman numerals.
% \end{function}
%
%
% \begin{function}{
% \int_convert_number_with_rule:nnN |
% \int_alph_default_conversion_rule:n |
% \int_Alph_default_conversion_rule:n |
% \int_symbol_math_conversion_rule:n |
% \int_symbol_text_conversion_rule:n |
% }
% \begin{syntax}
% "\int_convert_number_with_rule:nnN" "{"<int1>"}" "{"<int2>"}" <function>
% "\int_alph_default_conversion_rule:n" "{"<int>"}"
% \end{syntax}
% "\int_convert_number_with_rule:nnN" converts <int1> into letters,
% symbols, whatever as defined by <function>. <int2> denotes the base
% number for the conversion.
% \end{function}
%
%
%
%
%
%
% \subsection{Variable and constants}
%
% \begin{variable}{%
% \c_max_int |
% }
% Constant that denote the maximum value which can be stored in an
% <int> register.
% \end{variable}
%
%
% \begin{variable}{%
% \l_tmpa_int |
% \l_tmpb_int |
% \l_tmpc_int |
% \g_tmpa_int |
% \g_tmpb_int |
% }
% Scratch register for immediate use. They are not used by conditionals
% or predicate functions.
% \end{variable}
%
%
% \subsection{Testing and evaluating integer expressions}
%
% \begin{function}{%
% \int_eval:n |
% \int_div_truncate:nn |
% \int_div_round:nn |
% \int_mod:nn |
% }
% \begin{syntax}
% "\int_eval:n" "{"<int~expr>"}" \\
% "\int_div_truncate:n" "{"<int~expr>"}" "{"<int~expr>"}" \\
% "\int_mod:nn" "{"<int~expr>"}" "{"<int~expr>"}"
% \end{syntax}
% Evaluates the value of a integer expression so that
% "\int_eval:n {3*5/4}" puts "4" back into the input stream. Note that
% the results of divisions are rounded by the primitive operations. If
% you want the result of a division to be truncated use
% "\int_div_truncate:nn". "\int_div_round:nn" is added for
% completeness. "\int_mod:nn" returns the remainder of a division. All
% of these functions are expandable.
% \begin{texnote}
% "\int_eval:n" is the \eTeX primitive \tn{numexpr} turned into a function
% taking an argument.
% \end{texnote}
% \end{function}
%
% \begin{function}{%
% \int_compare:nNnTF |
% \int_compare:nNnT |
% \int_compare:nNnF |
% }
% \begin{syntax}
% "\int_compare:nNnTF" "{"<int~expr>"}" <rel> "{"<int~expr>"}"
% "{"<true>"}" "{"<false>"}"
% \end{syntax}
% These functions test two integer expressions against each other. They
% are both evaluated by "\int_eval:n". Note that if both expressions
% are normal integer variables as in
% \begin{quote}
% "\int_compare:nNnTF \l_temp_int < \c_zero {negative}{non-negative}"
% \end{quote}
% you can safely omit the braces.
% \begin{texnote}
% This is the \TeX{} primitive \tn{ifnum} turned into a function.
% \end{texnote}
% \end{function}
%
% \begin{function}{%
% \int_compare_p:nNn |
% }
% \begin{syntax}
% "\int_compare_p:nNn" "{"<int~expr>"}" <rel> "{"<int~expr>"}"
% \end{syntax}
% A predicate version of the above mentioned functions.
% \end{function}
%
% \begin{function}{%
% \int_max_of:nn |
% \int_min_of:nn |
% }
% \begin{syntax}
% "\int_max_of:nn" "{"<int~expr>"}" "{"<int~expr>"}"
% \end{syntax}
% Return the largest or smallest of two integer expressions.
% \end{function}
%
% \begin{function}{%
% \int_abs:n |
% }
% \begin{syntax}
% "\int_abs:n" "{"<int~expr>"}"
% \end{syntax}
% Return the numerical value of an integer expression.
% \end{function}
%
% \begin{function}{%
% \int_if_odd:nTF |
% \int_if_odd_p:n |
% }
% \begin{syntax}
% "\int_if_odd:nTF" "{"<int~expr>"}" "{"<true>"}" "{"<false>"}"
% \end{syntax}
% These functions test if an integer expression is even or odd. We
% also define a predicate version of it.
% \begin{texnote}
% This is the \TeX{} primitive \tn{ifodd} turned into a function.
% \end{texnote}
% \end{function}
%
% \begin{function}{%
% \int_whiledo:nNnT |
% \int_whiledo:nNnF |
% \int_dowhile:nNnT |
% \int_dowhile:nNnF |
% }
% \begin{syntax}
% "\int_whiledo:nNnT" <int expr> <rel> <int~expr> "{"<true>"}"
% \end{syntax}
% "\int_whiledo:nNnT" tests the integer expressions and if true performs
% the body "T" until the test fails. "\int_dowhile:nNnT" is similar
% but executes the body first and then performs the check, thus
% ensuring that the body is executed at least once. The "F" versions
% are similar but continue the loop as long as the test is false. They
% could be omitted as it is just a matter of switching the arguments
% in the test.
% \end{function}
%
% \subsection{Conversion}
%
% \begin{function}{%
% \int_convert_from_base_ten:nn |
% }
% \begin{syntax}
% "\int_convert_from_base_ten:nn" "{"<number>"}""{"<base>"}"
% \end{syntax}
% Converts the base~10 number <number> into its equivalent
% representation written in base~<base>. Expandable.
% \end{function}
%
%
% \begin{function}{%
% \int_convert_to_base_ten:nn |
% }
% \begin{syntax}
% "\int_convert_to_base_ten:nn" "{"<number>"}""{"<base>"}"
% \end{syntax}
% Converts the base~<base> number <number> into its equivalent
% representation written in base~10. <number> can consist of digits
% and ascii letters. Expandable.
% \end{function}
%
%
% \StopEventually{}
% \subsection{The Implementation}
%
%
% We start by ensuring that the required packages are loaded.
% \begin{macrocode}
%<package>\ProvidesExplPackage
%<package> {\filename}{\filedate}{\fileversion}{\filedescription}
%<package&!check>\RequirePackage{l3num}
%<package&check>\RequirePackage{l3chk}
%<*initex|package>
% \end{macrocode}
%
% \begin{macro}{\int_to_roman:w}
% \begin{macro}{\int_to_number:w}
% \begin{macro}{\int_advance:w}
% A new name for the primitives.
% \begin{macrocode}
\let_new:NN \int_to_roman:w \tex_romannumeral:D
\let_new:NN \int_to_number:w \tex_number:D
\let_new:NN \int_advance:w \tex_advance:D
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
% Functions that support \LaTeX's user accessible counters should be
% added here, too. But first the internal counters.
%
% \begin{macro}{\int_incr:N}
% \begin{macro}{\int_decr:N}
% \begin{macro}{\int_gincr:N}
% \begin{macro}{\int_gdecr:N}
% \begin{macro}{\int_incr:c}
% \begin{macro}{\int_decr:c}
% \begin{macro}{\int_gincr:c}
% \begin{macro}{\int_gdecr:c}
% Incrementing and decrementing of integer registers is done with
% the following functions.
% \begin{macrocode}
\def_new:Npn \int_incr:N #1{\int_advance:w#1\c_one
%<*check>
\chk_local_or_pref_global:N #1
%</check>
}
\def_new:Npn \int_decr:N #1{\int_advance:w#1\c_minus_one
%<*check>
\chk_local_or_pref_global:N #1
%</check>
}
\def_new:Npn \int_gincr:N {
% \end{macrocode}
% We make sure that a local variable is not updated globally by
% changing the internal test (i.e.\ |\chk_local_or_pref_global:N|) before
% making the assignment. This is done by |\pref_global_chk:| which also
% issues the necessary |\pref_global:D|. This is not very efficient, but
% this code will be only included for debugging purposes. Using
% |\pref_global:D| in front of the local function is better in the
% production versions.
% \begin{macrocode}
%<*check>
\pref_global_chk:
%</check>
%<-check> \pref_global:D
\int_incr:N}
\def_new:Npn \int_gdecr:N {
%<*check>
\pref_global_chk:
%</check>
%<-check> \pref_global:D
\int_decr:N}
% \end{macrocode}
% With the |\int_add:Nn| functions we can shorten the above code.
% If this makes it too slow \ldots
% \begin{macrocode}
\def:Npn \int_incr:N #1{\int_add:Nn#1\c_one}
\def:Npn \int_decr:N #1{\int_add:Nn#1\c_minus_one}
\def:Npn \int_gincr:N #1{\int_gadd:Nn#1\c_one}
\def:Npn \int_gdecr:N #1{\int_gadd:Nn#1\c_minus_one}
\def:Npn \int_incr:c {\exp_args:Nc\int_incr:N}
\def:Npn \int_decr:c {\exp_args:Nc\int_decr:N}
\def:Npn \int_gincr:c {\exp_args:Nc\int_gincr:N}
\def:Npn \int_gdecr:c {\exp_args:Nc\int_gdecr:N}
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
%
%
% \begin{macro}{\int_new:N}
% \begin{macro}{\int_new_l:N}
% \begin{macro}{\int_new:c}
% Allocation of a new internal counter is already done above. Here we define
% the next likely variant.
% \begin{macrocode}
%<*initex>
\alloc_setup_type:nnn {int} \c_eleven \c_max_register_num
\def_new:Npn \int_new:N #1 {\alloc_reg:NnNN g {int} \tex_countdef:D#1}
\def_new:Npn \int_new_l:N #1 {\alloc_reg:NnNN l {int} \tex_countdef:D#1}
%</initex>
%<package>\let:NN \int_new:N \newcount% allocation better nick the LaTeX one...
\def_new:Npn \int_new:c {\exp_args:Nc \int_new:N}
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
%
%
% \begin{macro}{\int_set:Nn}
% \begin{macro}{\int_set:cn}
% \begin{macro}{\int_gset:Nn}
% \begin{macro}{\int_gset:cn}
% Setting counters is again something that I would like to make
% uniform at the moment to get a better overview.
% \begin{macrocode}
\def_new:Npn \int_set:Nn #1#2{#1 \int_eval:w #2\int_eval_end:
%<*check>
\chk_local_or_pref_global:N #1
%</check>
}
\def_new:Npn \int_gset:Nn {
%<*check>
\pref_global_chk:
%</check>
%<-check> \pref_global:D
\int_set:Nn }
\def_new:Npn \int_set:cn {\exp_args:Nc \int_set:Nn }
\def_new:Npn \int_gset:cn {\exp_args:Nc \int_gset:Nn }
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\int_zero:N}
% \begin{macro}{\int_zero:c}
% \begin{macro}{\int_gzero:N}
% \begin{macro}{\int_gzero:c}
% Functions that reset an \m{int} register to zero.
% \begin{macrocode}
\def_new:Npn \int_zero:N #1 {#1=\c_zero}
\def_new:Npn \int_zero:c #1 {\exp_args:Nc \int_zero:N}
\def_new:Npn \int_gzero:N #1 {\pref_global:D #1=\c_zero}
\def_new:Npn \int_gzero:c {\exp_args:Nc \int_gzero:N}
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\int_add:Nn}
% \begin{macro}{\int_add:cn}
% \begin{macro}{\int_gadd:Nn}
% \begin{macro}{\int_gadd:cn}
% \begin{macro}{\int_sub:Nn}
% \begin{macro}{\int_sub:cn}
% \begin{macro}{\int_gsub:Nn}
% \begin{macro}{\int_gsub:cn}
% Adding and substracting to and from a counter \ldots
% We should think of using these functions
% \begin{macrocode}
\def_new:Npn \int_add:Nn #1#2{
% \end{macrocode}
% We need to say |by| in case the first argument is a register
% accessed by its number, e.g., |\count23|. Not that it should
% ever happen but\dots
% \begin{macrocode}
\int_advance:w #1 by \int_eval:w #2\int_eval_end:
%<*check>
\chk_local_or_pref_global:N #1
%</check>
}
\def_new:Npn\int_add:cn{\exp_args:Nc\int_add:Nn}
\def_new:Npn \int_sub:Nn #1#2{
\int_advance:w #1-\int_eval:w #2\int_eval_end:
%<*check>
\chk_local_or_pref_global:N #1
%</check>
}
\def_new:Npn \int_gadd:Nn {
%<*check>
\pref_global_chk:
%</check>
%<-check> \pref_global:D
\int_add:Nn }
\def_new:Npn \int_gsub:Nn {
%<*check>
\pref_global_chk:
%</check>
%<-check> \pref_global:D
\int_sub:Nn }
\def_new:Npn \int_gadd:cn{\exp_args:Nc\int_gadd:Nn}
\def_new:Npn \int_sub:cn{\exp_args:Nc\int_sub:Nn}
\def_new:Npn \int_gsub:cn{\exp_args:Nc\int_gsub:Nn}
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
%
%
% \begin{macro}{\int_use:N}
% \begin{macro}{\int_use:c}
% Here is how counters are accessed:
% \begin{macrocode}
\let_new:NN \int_use:N \tex_the:D
\def_new:Npn \int_use:c #1{\int_use:N \cs:w#1\cs_end:}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
%
%
%
% \begin{macro}{\int_to_arabic:n}
% Nothing exciting here.
% \begin{macrocode}
\def_new:Npn \int_to_arabic:n #1{\int_to_number:w \int_eval:n{#1}}
% \end{macrocode}
% \end{macro}
%
%
%
% \begin{macro}{\int_roman_lcuc_mapping:Nnn}
% Using \TeX's built-in feature for producing roman numerals has some
% surprising features. One is the the characters resulting from
% |\int_to_roman:w| have category code~12 so they may fail in
% certain comparison tests. Therefore we use a mapping from the
% character \TeX{} produces to the character we actually want which
% will give us letters with category code~11.%
% \begin{macrocode}
\def_new:Npn \int_roman_lcuc_mapping:Nnn #1#2#3{
\def:cpn {int_to_lc_roman_#1:}{#2}
\def:cpn {int_to_uc_roman_#1:}{#3}
}
% \end{macrocode}
% \end{macro}
% Here are the default mappings. I haven't found any examples of say
% Turkish doing the mapping |i \i I| but at least there is a
% possibility for it if needed. Note: I have now asked a Turkish
% person and he tells me they do the |i I| mapping.
% \begin{macrocode}
\int_roman_lcuc_mapping:Nnn i i I
\int_roman_lcuc_mapping:Nnn v v V
\int_roman_lcuc_mapping:Nnn x x X
\int_roman_lcuc_mapping:Nnn l l L
\int_roman_lcuc_mapping:Nnn c c C
\int_roman_lcuc_mapping:Nnn d d D
\int_roman_lcuc_mapping:Nnn m m M
% \end{macrocode}
% For the delimiter we cheat and let it gobble its arguments instead.
% \begin{macrocode}
\int_roman_lcuc_mapping:Nnn Q \use_none:nn \use_none:nn
% \end{macrocode}
%
% \begin{macro}{\int_to_roman:n}
% \begin{macro}{\int_to_Roman:n}
% \begin{macro}{\int_to_roman_lcuc:NN}
% The commands for producing the lower and upper case roman numerals
% run a loop on one character at a time and also carries some
% information for upper or lower case with it. We put it through
% |\int_eval:n| first which is safer and more flexible.
% \begin{macrocode}
\def_new:Npn \int_to_roman:n #1 {
\exp_after:NN \int_to_roman_lcuc:NN \exp_after:NN l
\int_to_roman:w \int_eval:n {#1} Q
}
\def_new:Npn \int_to_Roman:n #1 {
\exp_after:NN \int_to_roman_lcuc:NN \exp_after:NN u
\int_to_roman:w \int_eval:n {#1} Q
}
\def_new:Npn \int_to_roman_lcuc:NN #1#2{
\cs_use:c {int_to_#1c_roman_#2:}
\int_to_roman_lcuc:NN #1
}
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
%
%
%
% \begin{macro}{\int_convert_number_with_rule:nnN}
% This is our major workhorse for conversions. |#1| is the number we
% want converted, |#2| is the base number, and |#3| is the function
% converting the number. This function expects to receive a
% non-negative integer and as such is ideal for something using
% |\if_case:w| internally.
%
% The basic example is this: We want to convert the number 50 (|#1|)
% into an alphabetic equivalent |ax|. For the English language our
% list contains 26 elements so this is our argument |#2| while the
% function |#3| just turns |1| into |a|, |2| into |b|, etc. Hence our
% goal is to turn 50 into the sequence |#3{1}#1{24}| so what we do is
% to first divide 50 by 26 and truncating the result returning 1.
% Then before we execute this we call the function again but this time
% on the result of the remainder of the division. This goes on until
% the remainder is less than or equal to the base number where we just
% call the function |#3| directly on the number.
%
% We do a little pre-expansion of the arguments below as they
% otherwise have a tendency to grow quite large.
% \begin{macrocode}
\def:Npn \int_convert_number_with_rule:nnN #1#2#3{
\int_compare:nNnTF {#1}>{#2}
{
\exp_args:No \int_convert_number_with_rule:nnN
{ \int_use:N\int_div_truncate:nn {#1-1}{#2} }{#2}
#3
% \end{macrocode}
% Note that we have to nudge our modulus function so it won't
% return~$0$ as that wouldn't work with |\if_case:w| when that
% expects a positive number to produce a letter.
% \begin{macrocode}
\exp_args:No #3 { \int_use:N\int_eval:n{1+\int_mod:nn {#1-1}{#2}} }
}
{ \exp_args:No #3{ \int_use:N\int_eval:n{#1} } }
}
% \end{macrocode}
% As can be seen it is even simpler to convert to number systems
% that contain 0, since then we don't have to add or subtract 1
% here and there.
% \end{macro}
%
% \begin{macro}{\int_alph_default_conversion_rule:n}
% \begin{macro}{\int_Alph_default_conversion_rule:n}
% Now we just set up a default conversion rule. Ideally every language
% should have one such rule, as say in Danish there are 29 letters in
% the alphabet.
% \begin{macrocode}
\def_new:Npn \int_alph_default_conversion_rule:n #1{
\if_case:w #1
\or: a\or: b\or: c\or: d\or: e\or: f
\or: g\or: h\or: i\or: j\or: k\or: l
\or: m\or: n\or: o\or: p\or: q\or: r
\or: s\or: t\or: u\or: v\or: w\or: x
\or: y\or: z
\fi:
}
\def_new:Npn \int_Alph_default_conversion_rule:n #1{
\if_case:w #1
\or: A\or: B\or: C\or: D\or: E\or: F
\or: G\or: H\or: I\or: J\or: K\or: L
\or: M\or: N\or: O\or: P\or: Q\or: R
\or: S\or: T\or: U\or: V\or: W\or: X
\or: Y\or: Z
\fi:
}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
%
% \begin{macro}{\int_to_alph:n}
% \begin{macro}{\int_to_Alph:n}
% The actual functions are just instances of the generic function. The
% second argument of |\int_convert_number_with_rule:nnN| should of
% course match the number of |\or:|s in the conversion rule.
% \begin{macrocode}
\def_new:Npn \int_to_alph:n #1{
\int_convert_number_with_rule:nnN {#1}{26}
\int_alph_default_conversion_rule:n
}
\def_new:Npn \int_to_Alph:n #1{
\int_convert_number_with_rule:nnN {#1}{26}
\int_Alph_default_conversion_rule:n
}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\int_to_symbol:n}
% Turning a number into a symbol is also easy enough.
% \begin{macrocode}
\def_new:Npn \int_to_symbol:n #1{
\mode_if_math:TF
{
\int_convert_number_with_rule:nnN {#1}{9}
\int_symbol_math_conversion_rule:n
}
{
\int_convert_number_with_rule:nnN {#1}{9}
\int_symbol_text_conversion_rule:n
}
}
% \end{macrocode}
% \end{macro}
% \begin{macro}{\int_symbol_math_conversion_rule:n}
% \begin{macro}{\int_symbol_text_conversion_rule:n}
% Nothing spectacular here.
% \begin{macrocode}
\def_new:Npn \int_symbol_math_conversion_rule:n #1 {
\if_case:w #1
\or: *
\or: \dagger
\or: \ddagger
\or: \mathsection
\or: \mathparagraph
\or: \|
\or: **
\or: \dagger\dagger
\or: \ddagger\ddagger
\fi:
}
\def_new:Npn \int_symbol_text_conversion_rule:n #1 {
\if_case:w #1
\or: \textasteriskcentered
\or: \textdagger
\or: \textdaggerdbl
\or: \textsection
\or: \textparagraph
\or: \textbardbl
\or: \textasteriskcentered\textasteriskcentered
\or: \textdagger\textdagger
\or: \textdaggerdbl\textdaggerdbl
\fi:
}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\l_tmpa_int}
% \begin{macro}{\l_tmpb_int}
% \begin{macro}{\l_tmpc_int}
% \begin{macro}{\g_tmpa_int}
% \begin{macro}{\g_tmpb_int}
% \begin{macro}{\l_loop_int}
% We provide four local and two global scratch counters, maybe we
% need more or less.
% \begin{macrocode}
\int_new:N \l_tmpa_int
\int_new:N \l_tmpb_int
\int_new:N \l_tmpc_int
\int_new:N \g_tmpa_int
\int_new:N \g_tmpb_int
\int_new:N \l_loop_int % a variable for use in loops (whilenum etc)
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
%
%
% \begin{macro}{\int_eval:n}
% \begin{macro}{\int_eval:w}
% \begin{macro}{\int_eval_end:}
% Evaluating a calc expression using normal operators. Many of these
% are exactly the same as the ones in the \textsf{num} module so we
% just use them.
% \begin{macrocode}
\let_new:NN \int_eval:n \num_eval:n
\let_new:NN \int_eval:w \num_eval:w
\let_new:NN \int_eval_end: \num_eval_end:
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\c_max_int}
% The largest number allowed is $2^{31}-1$
% \begin{macrocode}
\const_new:Nn \c_max_int {2147483647}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\int_pre_eval_one_arg:Nn}
% \begin{macro}{\int_pre_eval_two_args:Nnn}
% These might be handy when handing down values to other
% functions. All they do is evaluate the number in advance.
% \begin{macrocode}
\def:Npn \int_pre_eval_one_arg:Nnn #1#2{\exp_args:No#1{\int_eval:w#2}}
\def:Npn \int_pre_eval_two_args:Nnn #1#2#3{
\exp_args:Noo#1{\int_use:N\int_eval:w#2}{\int_use:N\int_eval:w#3}
}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\int_div_truncate:nn}
% \begin{macro}{\int_div_round:nn}
% \begin{macro}{\int_mod:nn}
% \begin{macro}{\int_div_truncate_raw:nn}
% \begin{macro}{\int_div_round_raw:nn}
% \begin{macro}{\int_mod_raw:nn}
% As "\num_eval:w" rounds the result of a division we also
% provide a version that truncates the result.
% \begin{macrocode}
\def_new:Npn \int_div_truncate:nn {
\int_pre_eval_two_args:Nnn\int_div_truncate_raw:nn
}
% \end{macrocode}
% Initial version didn't work correctly with e\TeX's implementation.
% \begin{macrocode}
%\def_new:Npn \int_div_truncate_raw:nn #1#2 {
% \int_eval:n{ (2*#1 - #2) / (2* #2) }
%}
% \end{macrocode}
% New version by Heiko:
% \begin{macrocode}
\def_new:Npn \int_div_truncate_raw:nn #1#2 {
\int_eval:w
\if_num:w \int_eval:w#1 = \c_zero
0
\else:
(#1
\if_num:w \int_eval:w #1 < \c_zero
\if_num:w \int_eval:w#2 < \c_zero
-( #2 +
\else:
+( #2 -
\fi:
\else:
\if_num:w \int_eval:w #2 < \c_zero
+( #2 +
\else:
-( #2 -
\fi:
\fi:
1)/2)
\fi:
/(#2)
\int_eval_end:
}
% \end{macrocode}
% For the sake of completeness:
% \begin{macrocode}
\def_new:Npn \int_div_round:nn {
\int_pre_eval_two_args:Nnn\int_div_round_raw:nn
}
\def_new:Npn \int_div_round_raw:nn #1#2 {\int_eval:n{#1/#2}}
% \end{macrocode}
% Finally there's the modulus operation.
% \begin{macrocode}
\def_new:Npn \int_mod:nn {\int_pre_eval_two_args:Nnn\int_mod_raw:nn}
\def_new:Npn \int_mod_raw:nn #1#2 {
\int_eval:n{ #1 - \int_div_truncate_raw:nn {#1}{#2} * #2 }
}
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
%
%
% \begin{macro}{\int_compare:nNnTF}
% \begin{macro}{\int_compare:nNnT}
% \begin{macro}{\int_compare:nNnF}
% Simple comparison tests.
% \begin{macrocode}
\let_new:NN \int_compare:nNnTF \num_compare:nNnTF
\let_new:NN \int_compare:nNnT \num_compare:nNnT
\let_new:NN \int_compare:nNnF \num_compare:nNnF
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\int_max_of:nn}
% \begin{macro}{\int_min_of:nn}
% \begin{macro}{\int_abs:n}
% Simple comparison tests.
% \begin{macrocode}
\let_new:NN \int_max_of:nn \num_max_of:nn
\let_new:NN \int_min_of:nn \num_min_of:nn
\let_new:NN \int_abs:nn \num_abs:nn
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
%
%
% \begin{macro}{\int_compare_p:nNn}
% A predicate function.
% \begin{macrocode}
\let_new:NN \int_compare_p:nNn \num_compare_p:nNn
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\int_if_odd_p:n}
% \begin{macro}{\int_if_odd:nTF}
% \begin{macro}{\int_if_odd:nT}
% \begin{macro}{\int_if_odd:nF}
% A predicate function.
% \begin{macrocode}
\def_new:Npn \int_if_odd_p:n #1 {
\if_num_odd:w \int_eval:n{#1}
\c_true
\else:
\c_false
\fi:
}
\def_test_function_new:npn {int_if_odd:n}#1{\if_num_odd:w \int_eval:n{#1}}
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\int_whiledo:nNnT}
% \begin{macro}{\int_whiledo:nNnF}
% \begin{macro}{\int_dowhile:nNnT}
% \begin{macro}{\int_dowhile:nNnF}
% These are quite easy given the above functions. The "while" versions
% test first and then execute the body. The "dowhile" does it the
% other way round. The have to be defined as ``long'' since the "T" argument
% might contain "\par" tokens.
% \begin{macrocode}
\def_long_new:Npn \int_whiledo:nNnT #1#2#3#4{
\int_compare:nNnT {#1}#2{#3}{#4 \int_whiledo:nNnT {#1}#2{#3}{#4}}
}
\def_long_new:Npn \int_whiledo:nNnF #1#2#3#4{
\int_compare:nNnF {#1}#2{#3}{#4 \int_whiledo:nNnF {#1}#2{#3}{#4}}
}
\def_long_new:Npn \int_dowhile:nNnT #1#2#3#4{
#4 \int_compare:nNnT {#1}#2{#3}{\int_dowhile:nNnT {#1}#2{#3}{#4}}
}
\def_long_new:Npn \int_dowhile:nNnF #1#2#3#4{
#4 \int_compare:nNnF {#1}#2{#3}{\int_dowhile:nNnF {#1}#2{#3}{#4}}
}
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
%
%
% \subsubsection{Scanning and conversion}
%
%
% Conversion between different numbering schemes requires meticulous
% work. A number can be preceeded by any number of |+| and/or |-|. We
% define a generic function which will return the sign and/or the
% remainder.
%
% \begin{macro}{\int_get_sign_and_digits:n}
% \begin{macro}{\int_get_sign:n}
% \begin{macro}{\int_get_digits:n}
% \begin{macro}{\int_get_sign_and_digits_aux:nNNN}
% \begin{macro}{\int_get_sign_and_digits_aux:oNNN}
% A number may be preceeded by any number of |+|s and |-|s. Start out
% by assuming we have a positive number.
% \begin{macrocode}
\def_new:Npn \int_get_sign_and_digits:n #1{
\int_get_sign_and_digits_aux:nNNN {#1} \c_true \c_true \c_true
}
\def_new:Npn \int_get_sign:n #1{
\int_get_sign_and_digits_aux:nNNN {#1} \c_true \c_true \c_false
}
\def_new:Npn \int_get_digits:n #1{
\int_get_sign_and_digits_aux:nNNN {#1} \c_true \c_false \c_true
}
% \end{macrocode}
% Now check the first character in the string. Only a |-| can change
% if a number is positive or negative, hence we reverse the boolean
% governing this. Then gobble the |-| and start over.
% \begin{macrocode}
\def_new:Npn \int_get_sign_and_digits_aux:nNNN #1#2#3#4{
\tlist_if_head_eq_charcode:fNTF {#1} -
{
\bool_if:NTF #2
{ \int_get_sign_and_digits_aux:oNNN {\use_none:n #1} \c_false #3#4 }
{ \int_get_sign_and_digits_aux:oNNN {\use_none:n #1} \c_true #3#4 }
}
% \end{macrocode}
% The other cases are much simpler since we either just have to gobble
% the |+| or exit immediately and insert the correct sign.
% \begin{macrocode}
{
\tlist_if_head_eq_charcode:fNTF {#1} +
{ \int_get_sign_and_digits_aux:oNNN {\use_none:n #1} #2#3#4}
{
% \end{macrocode}
% The boolean |#3| is for printing the sign while |#4| is for printing
% the digits.
% \begin{macrocode}
\bool_double_if:NNnnnn #3#4
{ \bool_if:NF #2 - #1 }
{ \bool_if:NF #2 - }
{ #1 } { }
}
}
}
\def_new:Npn \int_get_sign_and_digits_aux:oNNN{
\exp_args:No\int_get_sign_and_digits_aux:nNNN
}
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
%
%
% \begin{macro}{\int_convert_from_base_ten:nn}
% \begin{macro}{\int_convert_from_base_ten_aux:nnn}
% \begin{macro}{\int_convert_from_base_ten_aux:non}
% \begin{macro}{\int_convert_from_base_ten_aux:fon}
% |#1| is the base 10 number to be converted to base |#2|. We split
% off the sign first, print if if there and then convert only the
% number. Since this is supposedly a base~10 number we can let \TeX\
% do the reading of |+| and |-|.
% \begin{macrocode}
\def:Npn \int_convert_from_base_ten:nn#1#2{
\num_compare:nNnTF {#1}<\c_zero
{
- \int_convert_from_base_ten_aux:non {}
{ \int_use:N \int_eval:n {-#1} }
}
{
\int_convert_from_base_ten_aux:non {}
{ \int_use:N \int_eval:n {#1} }
}
{#2}
}
% \end{macrocode}
% The algorithm runs like this:
% \begin{enumerate}
% \item If the number \meta{num} is greater than \meta{base},
% calculate modulus of \meta{num} and \meta{base} and carry that
% over for next round. The remainder is calculated as a truncated
% division of \meta{num} and \meta{base}. Start over with these new
% values.
% \item If \meta{num} is less than or equal to \meta{base} convert it
% to the correct symbol, print the previously calculated digits and
% exit.
% \end{enumerate}
% |#1| is the carried over result, |#2| the remainder and |#3| the
% base number.
% \begin{macrocode}
\def_new:Npn \int_convert_from_base_ten_aux:nnn#1#2#3{
\num_compare:nNnTF {#2}<{#3}
{ \int_convert_number_to_letter:n{#2} #1 }
{
\int_convert_from_base_ten_aux:fon
{
\int_convert_number_to_letter:n {\int_use:N\int_mod_raw:nn {#2}{#3}}
#1
}
{\int_use:N \int_div_truncate_raw:nn{#2}{#3}}
{#3}
}
}
\def:Npn \int_convert_from_base_ten_aux:non{
\exp_args:Nno\int_convert_from_base_ten_aux:nnn
}
\def:Npn \int_convert_from_base_ten_aux:fon{
\exp_args:Nfo\int_convert_from_base_ten_aux:nnn
}
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \begin{macro}{\int_convert_number_to_letter:n}
% Turning a number for a different base into a letter or digit.
% \begin{macrocode}
\def:Npn \int_convert_number_to_letter:n #1{ \if_case:w \int_eval:w
#1-10\scan_stop: \exp_after:NN A \or: \exp_after:NN B \or:
\exp_after:NN C \or: \exp_after:NN D \or: \exp_after:NN E \or:
\exp_after:NN F \or: \exp_after:NN G \or: \exp_after:NN H \or:
\exp_after:NN I \or: \exp_after:NN J \or: \exp_after:NN K \or:
\exp_after:NN L \or: \exp_after:NN M \or: \exp_after:NN N \or:
\exp_after:NN O \or: \exp_after:NN P \or: \exp_after:NN Q \or:
\exp_after:NN R \or: \exp_after:NN S \or: \exp_after:NN T \or:
\exp_after:NN U \or: \exp_after:NN V \or: \exp_after:NN W \or:
\exp_after:NN X \or: \exp_after:NN Y \or: \exp_after:NN Z \else:
\use_arg_i_after_fi:nw{ #1 }\fi: }
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\int_convert_to_base_ten:nn}
% |#1| is the number, |#2| is its base. First we get the sign, then
% use only the digits/letters from it and pass that onto a new
% function.
% \begin{macrocode}
\def:Npn \int_convert_to_base_ten:nn #1#2 {
\int_use:N\int_eval:n{
\int_get_sign:n{#1}
\exp_args:Nf\int_convert_to_base_ten_aux:nn {\int_get_digits:n{#1}}{#2}
}
}
% \end{macrocode}
% This is an intermediate function to get things started.
% \begin{macrocode}
\def_new:Npn \int_convert_to_base_ten_aux:nn #1#2{
\int_convert_to_base_ten_auxi:nnN {0}{#2} #1 \q_nil
}
% \end{macrocode}
% Here we check each letter/digit and calculate the next number. |#1|
% is the previously calculated result (to be multiplied by the base),
% |#2| is the base and |#3| is the next letter/digit to be added.
% \begin{macrocode}
\def_new:Npn \int_convert_to_base_ten_auxi:nnN#1#2#3{
\quark_if_nil:NTF #3
{#1}
{\exp_args:No\int_convert_to_base_ten_auxi:nnN
{\int_use:N \int_eval:n{ #1*#2+\int_convert_letter_to_number:N #3} }
{#2}
}
}
% \end{macrocode}
% This is for turning a letter or digit into a number. This function
% also takes care of handling lowercase and uppercase letters. Hence
% |a| is turned into |11| and so is |A|.
% \begin{macrocode}
\def:Npn \int_convert_letter_to_number:N #1{
\int_compare:nNnTF{`#1}<{58}{#1}
{
\int_eval:n{ `#1 -
\if:w\int_compare_p:nNn{`#1}<{91}
55
\else:
87
\fi:
}
}
}
% \end{macrocode}
% \end{macro}
%
%
%
%
%
%
%
% Show token usage:
% \begin{macrocode}
%</initex|package>
%<*showmemory>
\showMemUsage
%</showmemory>
% \end{macrocode}
%
%
% \endinput
%
% $Log$
% Revision 1.26 2006/06/03 17:17:08 morten
% Functions for converting between number bases
%
% Revision 1.25 2006/03/20 18:26:35 braams
% Updated the copyright notice (2006) and demoted all implementation
% sections to subsections and so on to clean up the toc for source3.tex
%
% Revision 1.24 2006/01/17 22:47:43 morten
% Changed \int_while:nNnT to \int_whiledo:nNnT to avoid confusion with
% the dowhile versions.
%
% Revision 1.23 2005/12/27 10:02:37 morten
% Minor changes plus changed RCS information retrieval
%
% Revision 1.22 2005/12/21 20:43:32 morten
% Fixed silly bugs!
%
% Revision 1.21 2005/12/06 17:31:23 morten
% fixed \int_convert_number_with_rule:nnN
%
% Revision 1.20 2005/12/06 14:49:36 morten
% Fixed primitive names plus a few minor touch-ups
%
% Revision 1.19 2005/04/25 15:02:47 morten
% Added ifodd functions
%
% Revision 1.18 2005/04/09 21:07:39 morten
% Added (extensible) implementations of \int_to_roman:n etc.
%
% Revision 1.17 2005/04/06 22:35:43 braams
% Now we have register allocation fitted
%
% Revision 1.16 2005/03/25 23:48:47 braams
% Added a missing \end{macro}
%
% Revision 1.15 2005/03/22 23:22:09 morten
% Moved definitions of constants to l3num
%
% Revision 1.14 2005/03/16 22:36:30 braams
% Added the tweaks necessary to be able to load with initex
%
% Revision 1.13 2005/03/11 21:38:31 braams
% Fixed the use of RCS information; added \StopEventually
%
|