1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
|
% \iffalse
%% File: l3int.dtx Copyright (C) 1990-1998 LaTeX3 project
%
%<*dtx>
\ProvidesFile{l3int.dtx}
%</dtx>
%<package>\NeedsTeXFormat{LaTeX2e}
%<package>\ProvidesPackage{l3int}
%<driver> \ProvidesFile{l3int.drv}
% \fi
% \ProvidesFile{l3int.dtx}
[1998/04/20 v1.0c L3 Experimental Integer module]
%
% \iffalse
%<*driver>
\documentclass{l3doc}
\begin{document}
\DocInput{l3int.dtx}
\end{document}
%</driver>
% \fi
%
%
% \GetFileInfo{l3int.dtx}
% \title{The \textsf{l3int} package\thanks{This file
% has version number \fileversion, last
% revised \filedate.}\\
% Counters}
% \author{\Team}
% \date{\filedate}
% \maketitle
%
% \section{Counters}
%
% \LaTeX3 maintains two type of integer registers for internal use.
% One (associated with the name "int") uses the builtin counter
% registers of \TeX{} and is therefore relatively fast and one
% (associated with the name "fint" for fake counter) that implements the
% operations within the \TeX{} macro language and is therefore much
% slower in processing. This type of counter is also far more restricted
% in its range.
%
% The fake counter should be used for variables that are not accessed
% very often since this saves the important fast internal registers
% (\TeX{} has only 255 of those). For example, all allocation routines
% in \LaTeX3 make use of fake counters to remember the values of recent
% allocated register numbers etc.
%
% Since all functions for both types are very similar (they usually
% differ only in the initial "f") we describe them together. But
% remember that you need to use "fint" variables when using "fint"
% functions.
%
% \subsection{Functions}
%
% \begin{function}{%
% \int_new:N |
% \int_new:c |
% \fint_new:N |
% }
% \begin{syntax}
% "\int_new:N" <int>
% "\fint_new:N" <fint>
% \end{syntax}
% Defines <int> to be a new variable of type "int". There is no way to
% define constant counters with these functions.
% \begin{texnote}
% "\int_new:N" is the equivalent to plain \TeX{}'s \tn{newcount}.
% However, the internal register allocation is done differently.
% \end{texnote}
% \end{function}
%
% \begin{function}{%
% \int_incr:N |
% \int_gincr:N |
% \int_gincr:c |
% \fint_incr:N |
% \fint_gincr:N |
% }
% \begin{syntax}
% "\int_incr:N" <int>
% "\fint_incr:N" <fint>
% \end{syntax}
% Increments <int> by one. For global variables the global versions
% should be used.
% \end{function}
%
% \begin{function}{%
% \int_decr:N |
% \int_gdecr:N |
% \int_gdecr:c |
% \fint_decr:N |
% \fint_gdecr:N |
% }
% \begin{syntax}
% "\int_decr:N" <int>
% "\fint_decr:N" <fint>
% \end{syntax}
% Decrements <int> by one. For global variables the global versions
% should be used.
% \end{function}
%
% \begin{function}{%
% \int_set:Nn |
% \int_set:cn |
% \int_gset:Nn |
% \int_gset:cn |
% \fint_set:Nn |
% \fint_gset:Nn |
% }
% \begin{syntax}
% "\int_set:Nn" <int> "{" <integer> "}"
% "\fint_set:Nn" <fint> "{" <integer> "}"
% \end{syntax}
% These functions will set the <int> register to the <integer> value.
% \end{function}
%
% \begin{function}{%
% \fint_set_eq:NN |
% \fint_gset_eq:NN |
% }
% \begin{syntax}
% "\fint_set_eq:NN" <fint1> <fint2>
% \end{syntax}
% Fast form for
% \begin{syntax}
% "\fint_set:No" <fint1> "{\fint_use:N" <fint2> "}"
% \end{syntax}
% when <fint2> is known to be a variable of fake counter. Note that a
% corresponding function for real counters is not implemented since the
% "\int_set:Nn" function does this operation sufficiently when then second
% argument is a <int> instead of "{"<integer>"}" value.
% \end{function}
%
% \begin{function}{%
% \int_add:Nn |
% \int_add:cn |
% \int_gadd:Nn |
% \fint_add:Nn |
% \fint_gadd:Nn |
% }
% \begin{syntax}
% "\int_add:Nn" <int> "{" <integer> "}"
% "\fint_add:Nn" <fint> "{" <integer> "}"
% \end{syntax}
% These functions will add to the <int> register the value <integer>. If
% the second argument is a <int> register too, the surrounding braces
% can be left out.
%
% It not allowed to use a <fint> instead of the <integer>. If a fake
% counter should be used as the second argument one needs to turn the
% <fint> first into an <integer> by applying "\fint_use:N".
% \end{function}
%
% \begin{function}{%
% \int_sub:Nn |
% \int_gsub:Nn |
% \fint_sub:Nn |
% \fint_gsub:Nn |
% }
% \begin{syntax}
% "\int_gsub:Nn" <int> "{" <integer> "}"
% "\fint_gsub:Nn" <fint> "{" <integer> "}"
% \end{syntax}
% These functions will subtract from the <int> register the value
% <integer>. If the second argument is a <int> register too, the
% surrounding braces can be left out.
%
% It is not allowed to use a <fint> instead of the <integer>. If a fake
% counter should be used as the second argument one needs to turn the
% <fint> first into an <integer> by applying "\fint_use:N".
% \end{function}
%
% \begin{function}{%
% \int_use:N |
% \int_use:c |
% \fint_use:N |
% }
% \begin{syntax}
% "\int_use:N" <int>
% "\fint_use:N" <fint>
% \end{syntax}
% This function returns the integer value kept in <int> in a way
% suitable for further processing. Be sure to use "\fint_use:N" if you
% are accessing the value of a fake counter because otherwise your
% result will be to some surprise to you (there is no check).
% \begin{texnote}
% The function "\int_use:N" could be implemented directly as the \TeX{}
% primitive "\tex_the:D" which is also responsible to produce the values for
% other internal quantities. We have chosen to use individual functions
% for counters, dimenions etc.\ to allow checks and to make the code
% more selfexplaining.
% \end{texnote}
% \end{function}
%
% \subsection{Formatting a counter value}
%
% \begin{function}{\int_to_arabic:n |
% \int_to_alph:n |
% \int_to_Alph:n |
% \int_to_roman:n |
% \int_to_Roman:n |
% \int_to_symbol:n |
% }
% \begin{syntax}
% "\int_to_alph:n" "{" <integer> "}"
% "\int_to_alph:n" <int>
% "\int_to_alph:n" "{" "\fint_use:N" <fint> "}"
% \end{syntax}
% If some <integer> or the the current value of a <int> should be
% displayed or typeset in a special ways (e.g., as uppercase roman
% numerals) these function can be used. We need braces if the argument
% is a simple <integer>, they can be omitted in case of a <int>.
%
% To format <fint>s with these functions it is necessary to turn the
% value of the <fint> first into an <integer> by applying "\fint_use:N"
% within the argument braces.
%
% All functions are fully expandable and will therefore produce the
% correct output when used inside of deferred writes, etc.
% \begin{texnote}
% These are more or less the internal \LaTeX2 functions \tn{@arabic},
% \tn{@alph}, \tn{Alph}, \tn{@roman}, \tn{@Roman}, and \tn{@fnsymbol}
% except that "\int_to_symbol:n" is also allowed outside math mode.
% \end{texnote}
% \end{function}
%
% \subsection{Variable and constants}
%
% \begin{variable}{%
% \c_int_max |
% \c_fint_max |
% }
% Constant that denote the maximum value which can be stored in a <int>
% or <fint> register.
% \end{variable}
%
% \begin{variable}{%
% \c_minus_one |
% \c_zero |
% \c_one |
% \c_two |
% \c_three |
% \c_sixteen |
% \c_twohundred_fifty_five |
% \c_twohundredfiftysix |
% \c_thousand |
% \c_ten_thousand |
% \c_twenty_thousand |
% }
% Set of constants denoting useful values.
% \begin{texnote}
% Most of these constants have been available under \LaTeX2 under names
% like \tn{tw@}, \tn{thr@@} etc.
% \end{texnote}
% \end{variable}
%
% \begin{variable}{%
% \l_tmpa_int |
% \l_tmpb_int |
% \l_tmpc_int |
% \g_tmpa_int |
% \g_tmpb_int |
% }
% Scratch register for immediate use. They are not used by conditionals
% or predicate functions.
% \end{variable}
%
%
% \section{Integer registers}
%
%
% We start by ensuring that the required packages are loaded.
% \begin{macrocode}
%<package&!check>\RequirePackage{l3basics}\par
%<package&check>\RequirePackage{l3chk}\par
%<*package>
% \end{macrocode}
%
% Functions that support \LaTeX's user accessible counters should be
% added here, too. But first the internal counters.
%
% \begin{macro}{\int_incr:N}
% \begin{macro}{\int_decr:N}
% \begin{macro}{\int_gincr:N}
% \begin{macro}{\int_gdecr:N}
% Incrementing and decrementing of integer registers is done with
% the following functions.
% \begin{macrocode}
\def_new:Npn \int_incr:N #1{\tex_advance:D#1\c_one
%<*check>
\chk_local_or_pref_global:N #1
%</check>
}
\def_new:Npn \int_decr:N #1{\tex_advance:D#1\c_minus_one
%<*check>
\chk_local_or_pref_global:N #1
%</check>
}
\def_new:Npn \int_gincr:N {
% \end{macrocode}
% We make sure that a local variable is not updated globally by
% changing the internal test (i.e.\ |\chk_local_or_pref_global:N|) before
% making the assignment. This is done by |\pref_global_chk:| which also
% issues the necessary |\pref_global:D|. This is not very efficient, but
% this code will be only included for debugging purposes. Using
% |\pref_global:D| in front of the local function is better in the
% production versions.
% \begin{macrocode}
%<*check>
\pref_global_chk:
%</check>
%<-check> \pref_global:D
\int_incr:N}
\def_new:Npn \int_gdecr:N {
%<*check>
\pref_global_chk:
%</check>
%<-check> \pref_global:D
\int_decr:N}
% \end{macrocode}
% With the |\int_add:Nn| functions we can shorten the above code.
% If this makes it too slow \ldots
% \begin{macrocode}
\def:Npn \int_incr:N #1{\int_add:Nn#1\c_one}
\def:Npn \int_decr:N #1{\int_add:Nn#1\c_minus_one}
\def:Npn \int_gincr:N #1{\int_gadd:Nn#1\c_one}
\def:Npn \int_gdecr:N #1{\int_gadd:Nn#1\c_minus_one}
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
%
%
% \begin{macro}{\int_new:N}
% \begin{macro}{\int_new:c}
% Allocation of a new internal counter is already done above. Here we define
% the next likely variant.
% \begin{macrocode}
\def_new:Npn \int_new:N {} % but since we don't distribute
\let:NN \int_new:N \newcount % allocation better nick the LaTeX one ...
\def_new:Npn \int_new:c {\exp_args:Nc \int_new:N}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
%
% \begin{macro}{\int_set:Nn}
% \begin{macro}{\int_set:cn}
% \begin{macro}{\int_gset:Nn}
% \begin{macro}{\int_gset:cn}
% Setting counters is again something that I would like to make
% uniform at the moment to get a better overview.
% \begin{macrocode}
\def_new:Npn \int_set:Nn #1#2{#1#2\scan_stop:
%<*check>
\chk_local_or_pref_global:N #1
%</check>
}
\def_new:Npn \int_gset:Nn {
%<*check>
\pref_global_chk:
%</check>
%<-check> \pref_global:D
\int_set:Nn }
\def_new:Npn \int_set:cn {\exp_args:Nc \int_set:Nn }
\def_new:Npn \int_gset:cn {\exp_args:Nc \int_gset:Nn }
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
%
%
% \begin{macro}{\int_add:Nn}
% \begin{macro}{\int_add:cn}
% \begin{macro}{\int_gadd:Nn}
% \begin{macro}{\int_sub:Nn}
% \begin{macro}{\int_gsub:Nn}
% Adding and substracting to and from a counter \ldots
% We should think of using these functions
% \begin{macrocode}
\def_new:Npn \int_add:Nn #1#2{
\tex_advance:D#1#2\scan_stop:
%<*check>
\chk_local_or_pref_global:N #1
%</check>
}
\def_new:Npn\int_add:cn{\exp_args:Nc\int_add:Nn}
\def_new:Npn \int_sub:Nn #1#2{
\tex_advance:D#1-#2\scan_stop:
%<*check>
\chk_local_or_pref_global:N #1
%</check>
}
\def_new:Npn \int_gadd:Nn {
%<*check>
\pref_global_chk:
%</check>
%<-check> \pref_global:D
\int_add:Nn }
\def_new:Npn \int_gsub:Nn {
%<*check>
\pref_global_chk:
%</check>
%<-check> \pref_global:D
\int_sub:Nn }
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
%
%
% \begin{macro}{\int_use:N}
% \begin{macro}{\int_use:c}
% Here is how counters are accessed:
% \begin{macrocode}
\let_new:NN \int_use:N \tex_the:D
\def_new:Npn \int_use:c #1{\int_use:N \cs:w#1\cs_end:}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\int_gincr:c}
% \begin{macro}{\int_gdecr:c}
% We also need \ldots
% \begin{macrocode}
\def_new:Npn \int_gincr:c {\exp_args:Nc \int_gincr:N}
\def_new:Npn \int_gdecr:c {\exp_args:Nc \int_gdecr:N}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
%
% \begin{macro}{\l_tmpa_int}
% \begin{macro}{\l_tmpb_int}
% \begin{macro}{\l_tmpc_int}
% \begin{macro}{\g_tmpa_int}
% \begin{macro}{\g_tmpb_int}
% We provide two local and two global scratch counters, maybe we
% need more or less. Instead of using the allocation routines we
% partly allocate them by hand.
% \begin{macrocode}
\chk_new_cs:N \l_tmpa_int
% \end{macrocode}
% If it turns out that we don't need local counters then this
% register should be used for global counter. We might also think of
% using the |\l_last_alloc_fint| as a scratch register.
% \begin{macrocode}
\tex_countdef:D\l_tmpa_int 255
\int_new:N \l_tmpb_int
\int_new:N \l_tmpc_int
\int_new:N \g_tmpa_int
\int_new:N \g_tmpb_int
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\c_minus_one}
% \begin{macro}{\c_zero}
% \begin{macro}{\c_one}
% \begin{macro}{\c_two}
% \begin{macro}{\c_three}
% \begin{macro}{\c_four}
% \begin{macro}{\c_sixteen}
% \begin{macro}{\c_thirty_two}
% \begin{macro}{\c_twohundred_fifty_five}
% \begin{macro}{\c_twohundred_fifty_six}
% \begin{macro}{\c_thousand}
% \begin{macro}{\c_ten_thousand}
% \begin{macro}{\c_ten_thousand_one}
% \begin{macro}{\c_ten_thousand_two}
% \begin{macro}{\c_ten_thousand_three}
% \begin{macro}{\c_ten_thousand_four}
% \begin{macro}{\c_twenty_thousand}
% \begin{macro}{\c_int_max}
% And the usual constants, others are still missing. Please, make
% every constant a real constant at least for the moment. We can
% easily convert things in the end when we have found what
% constants are used in critical places and what not.
% \begin{macrocode}
\tex_chardef:D \c_zero = 0 \scan_stop:
\tex_chardef:D \c_one = 1 \scan_stop:
\tex_chardef:D \c_two = 2 \scan_stop:
\tex_chardef:D \c_three = 3 \scan_stop:
\tex_chardef:D \c_four = 4 \scan_stop:
\tex_chardef:D \c_sixteen = 16 \scan_stop:
\tex_chardef:D \c_thirty_two = 32 \scan_stop:
\tex_chardef:D \c_twohundred_fifty_five = 255 \scan_stop:
\tex_mathchardef:D \c_twohundred_fifty_six = 256 \scan_stop:
\tex_mathchardef:D \c_thousand = 1000 \scan_stop:
\tex_mathchardef:D \c_ten_thousand = 10000 \scan_stop:
\tex_mathchardef:D \c_ten_thousand_one = 10001 \scan_stop:
\tex_mathchardef:D \c_ten_thousand_two = 10002 \scan_stop:
\tex_mathchardef:D \c_ten_thousand_three = 10003 \scan_stop:
\tex_mathchardef:D \c_ten_thousand_four = 10004 \scan_stop:
\tex_mathchardef:D \c_twenty_thousand = 20000 \scan_stop:
% already defined ...
%\int_new:N \c_minus_one
% \c_minus_one = -1
% \end{macrocode}
% The |\c_int_max| will be defined internally as the largest
% dimen.
% \begin{macrocode}
%\int_new:N \c_int_max
% \c_int_max = 2147483647
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
%
%
% Show token usage:
% \begin{macrocode}
%</package>
%<*showmemory>
\showMemUsage
%</showmemory>
% \end{macrocode}
%
%
% \section{Fake registers}
%
% Fake registers are registers which implement \m{counter}s,
% \m{dimen}s, etc.\ which aren't used often and therefore don't need
% to run efficiently. One possible way of using them is to prepare certain
% registers this way, but |\let:NN| the mutator functions to real
% \m{counter}s as long as we have a sufficient number available. Now
% if we are making real large formats (by adding Pic\TeX, for example)
% we can turn them easily into fake registers and everything will work
% as before (only a bit slower).
%
%
% I haven't implemented anything besides counters so far, but \m{dimen}
% and \m{skip} present no principal problem and should probably be
% added.
%
% \subsection{Fake counters}
%
% \begin{macro}{\fint_new:N}
% A fake counter is internally a \m{muskip} register. A count value
% \m{x} is saved as \m{x}|mu| (more exactly as \m{x}|.0mu|) in this
% register. This means that fake counter values are far more
% restricted then usual counters, the largest value is 16383,
% i.e.\ the |pt| part of \TeX{}'s largest \m{dimen}. This could be
% changed by using more complicated conversion routines, but it
% might be all right in usual applications.
%
% Of course, we should make sure that we don't reach the borders,
% otherwise the user will be faced by the surprising message that
% some dimension got to large. (Not done yet).
% \begin{macrocode}
%<*package>
\let_new:NN \fint_new:N \newmuskip % nicked from LaTeX
% \end{macrocode}
% \end{macro}
%
%
% \begin{macro}{\fint_use:N}
% \begin{macro}{\fint_use_aux:w}
% To use the value of a fake counter we have to get rid of |.0mu| in
% an expandable way, since we want to allow constructions like
% \begin{verbatim}
% \if_num:w\fint_use:N \l_test_fint > 55\scan_stop: ...
%\end{verbatim}
% The simplest way I came up with (not much thinking behind) was
% using parameter matching.
% \begin{macrocode}
\def_new:Npn \fint_use:N {\exp_after:NN\fint_use_aux:w\the_internal:D}
% \end{macrocode}
% In the |\fint_use_aux:w| function we remove the |.0mu| and pass the
% the result back into the input stream. The only thing we
% have to think of, is that both |mu| have category code 12 when
% they are returned by |\the_internal:D|.
% \begin{macrocode}
\tex_lccode:D`\!=`\m \tex_lccode:D`\?=`\u
\tex_lowercase:D{\def_new:Npn \fint_use_aux:w #1.0!?{#1}}
\tex_lccode:D`\!=0\scan_stop: \tex_lccode:D`\?=0\scan_stop:
% \end{macrocode}
% \end{macro}
% \end{macro}
%
%
% \begin{macro}{\fint_set:Nn}
% \begin{macro}{\fint_gset:Nn}
% The way both routines are set up, the second argument might be
% either a \m{normal integer}, or an internal register.
% \begin{macrocode}
\def_new:Npn \fint_set:Nn #1#2{#1#2~mu\scan_stop:
%<*check>
\chk_local_or_pref_global:N #1
%</check>
}
\def_new:Npn \fint_gset:Nn{
%<*check>
\pref_global_chk:
%</check>
%<-check> \pref_global:D
\fint_set:Nn}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
%
% \begin{macro}{\fint_set_eq:NN}
% \begin{macro}{\fint_gset_eq:NN}
% We can easily set two fake counters equal to each other, but if
% fake counters and real counters are used, we have to use the
% slower |set| functions.
% \begin{macrocode}
\def_new:Npn \fint_set_eq:NN #1#2{#1#2
%<*check>
\chk_local_or_pref_global:N #1\chk_var_or_const:N #2
%</check>
}
\def_new:Npn \fint_gset_eq:NN {
%<*check>
\pref_global_chk:
%</check>
%<-check> \pref_global:D
\fint_set_eq:NN}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\fint_add:Nn}
% \begin{macro}{\fint_gadd:Nn}
% \begin{macro}{\fint_sub:Nn}
% \begin{macro}{\fint_gsub:Nn}
% Adding and substracting; we make use of the fact that internally
% \TeX{} always use the same primitives to advance a register.
% \begin{macrocode}
\def_new:Npn \fint_add:Nn #1#2{\int_add:Nn#1{#2mu}}
\def_new:Npn \fint_gadd:Nn {
%<*check>
\pref_global_chk:
%</check>
%<-check> \pref_global:D
\fint_add:Nn}
\def_new:Npn \fint_sub:Nn #1#2{\int_sub:Nn#1{#2mu}}
\def_new:Npn \fint_gsub:Nn {
%<*check>
\pref_global_chk:
%</check>
%<-check> \pref_global:D
\fint_sub:Nn}
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\fint_incr:N}
% \begin{macro}{\fint_gincr:N}
% \begin{macro}{\fint_decr:N}
% \begin{macro}{\fint_gdecr:N}
% Incrementing and decrementing the fake counters:
% \begin{macrocode}
\def_new:Npn \fint_incr:N #1{\advance:D#1\c_one mu\scan_stop:
%<*check>
\chk_local_or_pref_global:N #1
%</check>
}
\def_new:Npn \fint_decr:N #1{\advance:D#1\c_minus_one mu\scan_stop:
%<*check>
\chk_local_or_pref_global:N #1
%</check>
}
\def_new:Npn \fint_gincr:N {
%<*check>
\pref_global_chk:
%</check>
%<-check> \pref_global:D
\fint_incr:N}
\def_new:Npn \fint_gdecr:N {
%<*check>
\pref_global_chk:
%</check>
%<-check> \pref_global:D
\fint_decr:N}
% \end{macrocode}
% This can be achieved with less tokens but extra expansions:
% \begin{macrocode}
\def:Npn \fint_incr:N #1{\fint_add:Nn#1\c_one}
\def:Npn \fint_decr:N #1{\fint_add:Nn#1\c_minus_one}
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\c_fint_max}
% A constant, denoting the largest possible value for fake counters.
% \begin{macrocode}
\tex_mathchardef:D\c_fint_max=16383 \scan_stop:
% \end{macrocode}
% \end{macro}
%
%
% \subsection{Fake skip registers}
%
% One has to convert simply from the \m{x}|pt| |plus| \m{y}|pt| |minus|
% \m{z}|pt| representation produced by |\the_internal:D|, to the
% corresponding |mu| representation. Complications arise from the
% possibility that |plus| and/or |minus| is not present,\footnote{This
% can be catched by adding a suitable constant and removing the
% corresponding constant in the other representation.} and by the
% possibility that the stretch or shrink component is a |fil| unit.
%
% \subsection{Fake dimen registers}
%
% I suppose this could be viewed as a subcase of the skip registers.
% See later section for a fake fake version for the moment.
%
%
% \subsection{Allocation routines}
%
% Counters are rare goods in \TeX{} and we are near the limit, if
% for example \LaTeX{} and Pic\TeX{} are merged. Therefore we should
% be careful not to throw away counter registers unnecessarily. One
% place for instance, where we can save some of them are the
% allocation routines. Instead of using counters we maintain the
% number of the last allocated register in a fake counter.
%
%
% \begin{macrocode}
%</package>
%<*showmemory>
\showMemUsage
%</showmemory>
% \end{macrocode}
|