1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
|
%%
%% This is file `splines.mp',
%% generated with the docstrip utility.
%%
%% The original source files were:
%%
%% splines.dtx (with options: `package')
%%
%% -------------------------------------------------------------------
%%
%% Copyright 2002--2005, Daniel H. Luecking
%%
%% Splines.mp may be distributed and/or modified under the conditions of the
%% LaTeX Project Public License, either version 1.3 of this license or (at
%% your option) any later version. The latest version of this license is in
%% <http://www.latex-project.org/lppl.txt>
%% and version 1.3 or later is part of all distributions of LaTeX version
%% 2003/12/01 or later.
%%
%% Splines has maintenance status "author-maintained". The Current Maintainer
%% is Daniel H. Luecking. The Base Interpreter is MetaPost (or Metafont).
%%
if known splines_fileversion: endinput fi;
string splines_fileversion;
splines_fileversion := "2006/09/25, v0.2a";
message "Loading splines.mp " & splines_fileversion;
def list_to_array (suffix arr) (text list) =
arr := 0;
for _itm = list :
arr[incr arr] := _itm;
endfor
enddef;
def compute_spline (expr closed) (suffix points, pr, po) =
% interior equations:
for j= 2 upto points - 1 :
% equate first derivatives:
po[j] + pr[j] = 2 points[j];
% and second derivatives:
pr[j+1] + 2 pr[j] = 2 po[j] + po[j-1];
endfor
% for a closed curve, the first and last are also interior:
if closed:
po 1 + pr 1 = 2 points 1;
po[points] + pr[points] = 2 points[points];
pr 2 + 2 pr 1 = 2 po 1 + po[points];
pr 1 + 2 pr[points] = 2 po[points] + po[points-1];
fi
enddef;
vardef mksplinepath (expr closed) (suffix points, pr, po) =
points1..controls po1 and
for j = 2 upto points if not closed: -1 fi:
pr[j]..points[j]..controls po[j] and
endfor
if closed: pr 1..cycle else: pr[points]..points[points] fi
enddef;
vardef mkrelaxedspline (suffix pnts) =
save rs_pr, rs_po;
pair rs_po[], rs_pr[];
% Equate second derivative to zero at both end points
rs_pr 2 + pnts 1 = 2 rs_po 1 ;
pnts[pnts] + rs_po[pnts-1] = 2 rs_pr[pnts];
compute_spline (false) (pnts, rs_pr, rs_po);
mksplinepath (false) (pnts, rs_pr, rs_po)
enddef;
vardef mkclosedspline (suffix pnts) =
save cs_pr, cs_po;
pair cs_pr[], cs_po[];
compute_spline (true) (pnts, cs_pr, cs_po);
mksplinepath (true) (pnts, cs_pr, cs_po)
enddef;
vardef dospline (expr closed) (text the_list) =
save _sp; pair _sp[];
list_to_array (_sp) (the_list);
if closed :
mkclosedspline (_sp)
else:
mkrelaxedspline (_sp)
fi
enddef;
def compute_fcnspline (suffix points, dx, sl) =
% Get delta_x:
for j = 1 upto points - 1: dx[j] := xpart (points[j+1]-points[j]);
endfor
for j=2 upto points - 1:
sl[j + 1] * dx[j] + 2sl[j]*(dx[j] + dx[j-1]) + sl[j-1]*dx[j-1]
= 3*ypart(points[j+1] - points[j-1]);
endfor
enddef;
vardef mkfcnsplinepath (suffix points, dx, sl) =
points1..controls (points1 + (1, sl1)*dx1/3) and
for j = 2 upto points - 1:
(points[j] - (1, sl[j])*dx[j-1]/3) ..points[j]..
controls (points[j] + (1,sl[j])*dx[j]/3) and
endfor
(points[points] - (1,sl[points])*dx[points-1]/3)..points[points]
enddef;
vardef mkperiodicfcnspline (suffix pnts) =
save _sl, _dx; numeric _dx[], _sl[];
compute_fcnspline (pnts, _dx, _sl);
% periodicity equations:
_sl 1 = _sl[pnts];
_sl 2 * _dx 1 + 2 _sl 1 * _dx 1 + 2 _sl[pnts] * _dx[pnts-1]
+ _sl[pnts-1] * _dx[pnts-1]
= 3 * ypart(pnts[2] - pnts[pnts-1]);
mkfcnsplinepath (pnts, _dx, _sl)
enddef;
vardef mkrelaxedfcnspline (suffix pnts) =
save _sl, _dx; numeric _dx[], _sl[];
compute_fcnspline (pnts, _dx, _sl);
% relaxation equations.
_sl 2 * _dx 1 + 2 _sl1 * _dx 1 = 3 * ypart(pnts2 - pnts1);
_sl[pnts-1] * _dx[pnts-1] + 2 _sl[pnts] * _dx[pnts-1]
= 3 * ypart(pnts[pnts] - pnts[pnts-1]);
mkfcnsplinepath (pnts, _dx, _sl)
enddef;
vardef fcnspline (expr periodic) (text the_list) =
save _fs; pair _fs[];
list_to_array (_fs) (the_list);
if periodic:
mkperiodicfcnspline (_fs)
else:
mkrelaxedfcnspline (_fs)
fi
enddef;
endinput.
%%
%% End of file `splines.mp'.
|