1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
|
%%\input epsf
%%\def\newpage{\vfill\eject}
%%\advance\vsize1in
%%\let\ora\overrightarrow
%%\def\title#1{\hrule\vskip1mm#1\par\vskip1mm\hrule\vskip5mm}
%%\def\figure#1{\par\centerline{\epsfbox{#1}}}
%%\title{{\bf 3DGEOM.MP: 3D GEOMETRY IN METAPOST}}
%% version 1.34, 17 August 2003
%% {\bf Denis Roegel} ({\tt roegel@loria.fr})
% This package provides useful definitions for geometrical drawings.
% It contains functions dealing with lines, planes, etc.
if known three_d_geom_version:
expandafter endinput % avoids loading this package twice
fi;
% First, we load the 3D package
input 3d
% and some utilities
input 3dutil
message "*** 3dgeom, v1.34 (c) D. Roegel 17 August 2003 ***";
numeric three_d_geom_version; three_d_geom_version:=1.34;
% WARNING:
% Known bugs: unnecessary overflows can occur, especially when
% computing the intersection of two planes.
% Among other things, this file defines so-called ``structures.''
% These structures are different from the ``objects'' manipulated
% by the main 3d package. For some explanations, see the article
%
% Denis Roegel: La géométrie dans l'espace avec METAPOST,
% Cahiers GUTenberg number 39-40, 2001, pages 107-138.
% (in French, conference proceedings of GUT2001)
%
%
%
% Future versions of this module will consider the following structures,
% not all of which are currently implemented:
%
% structure name standard abreviation
% point p
% line l
% plane pl
% circle c
% triangle tr
% sphere s
% cone co
% cylinder cy
% tetrahedron te
%
% These names are considered reserved and should not be used for classes.
%
% The left column names are used when defining a structure with |def|,
% |set| or freeing it with |free|.
%
% When a function using parameters of these types is defined,
% the abreviations of the types are part of the function name.
% For instance, the function giving the intersection between a
% line and a plane is named |def_inter_l_pl|.
%
% Functions computing intersections should be named |def_inter|
% and should be followed by the resulting type. For instance,
% the intersection of two lines is |def_inter_p_l_l|,
% the intersection of two planes is |def_inter_l_pl_pl|
%
% Functions computing inscriptions (like a circle inscribed
% in a triangle) should be named |def_ins|.
% For instance, |def_ins_c_tr|.
%
% Functions computing circumscriptions (like a circle circumscribing
% a triangle) should be named |def_circums|.
% For instance, |def_circums_c_tr|.
%
% Functions computing exinscriptions (like a circle exinscribed
% in a triangle) should be named |def_exins|.
% For instance, |def_exins_c_tr|.
%
% Functions computing tangencies (like a tangent to a circle)
% should be named |def_tang|.
% For instance, |def_tang_l_c|.
%
% Functions computing orthogonal planes, lines, etc. should
% be named |def_orth|.
%
% All these functions can have more parameters than what the name
% implies.
%
% These rules are guidelines, not a standard. If you have some idea
% on naming conventions, please let me know at roegel@loria.fr.
%
% Possibly, more thought should be given in
% order to distinguish pseudo-objects like ``circle''
% from the other objects of 3d.mp (like the polyhedra, etc.).
% Structures can be allocated, set and freed.
% Our first structure is the line. A line is defined by two points.
% This is not an object in the usual sense of the 3d package.
% It is just made of two points.
% |l| is the line name: it must be different from already known variables
% |i| and |j| are point numbers
% (absolute version)
def new_line_(text l)(expr i,j)=
new_points(l)(2);
set_line_(l)(i,j);
enddef;
% The following version takes local point numbers instead of absolute ones.
def new_line(text l)(expr i,j)=new_line_(l)(pnt(i),pnt(j)) enddef;
% This is used to set a line:
% (absolute version)
def set_line_(text l)(expr i,j)=
vec_def_vec_(l1,i);
vec_def_vec_(l2,j); % l[2]=l[1]+1 (this is assumed elsewhere,
% so should never change)
enddef;
% (local version)
def set_line(text l)(expr i,j)=set_line_(l)(pnt(i),pnt(j)) enddef;
def free_line(text l)=
free_points(l)(2);
enddef;
% A circle |c| of center |i|, radius |r| and in plane |p|.
% We store the center as a point, and (r,p[1]) in another point.
def new_circle(text c)(expr i,r)(text p)=
new_points(c)(2);
vec_def_vec(c1,i);
vec_def(c2,r,p1,0);
enddef;
% should |set_circle| be defined?
def free_circle(text c)=
free_points(c)(2);
enddef;
% Planes are similar to lines. A plane is just a triple of points.
% (absolute version)
def new_plane_(text p)(expr i,j,k)=
new_points(p)(3);
set_plane_(p)(i,j,k);
enddef;
% (local version)
def new_plane(text p)(expr i,j,k)=new_plane_(p)(pnt(i),pnt(j),pnt(k)) enddef;
% (absolute version)
def set_plane_(text p)(expr i,j,k)=
vec_def_vec_(p1,i);
vec_def_vec_(p2,j); % p[2]=p[1]+1 (this is assumed elsewhere,
% so should never change)
vec_def_vec_(p3,k); % p[3]=p[3]+1 (this is assumed elsewhere,
% so should never change)
enddef;
% (local version)
def set_plane(text p)(expr i,j,k)=set_plane_(p)(pnt(i),pnt(j),pnt(k)) enddef;
def free_plane(text p)=
free_points(p)(3);
enddef;
% Spheres are not yet used, but here is how they will be allocated and freed.
% A sphere is defined with a center |c| and a radius |r|.
% We store it using two points.
def new_sphere(text s)(expr c,r)=
new_points(s)(2);
vec_def_vec(s1,c);
vec_def(s2,r,0,0);
enddef;
% Should |set_sphere| be defined?
def free_sphere(text s)=
free_points(s)(2);
enddef;
% Lines and planes may be used locally or globally to define
% new points or new lines.
% In order to define a line which is given by a point and a vector,
% compute a second point before defining the line.
% In order to define a line which is given by two planes,
% define the planes and compute the intersection.
% If a plane is given by a parametric equation (1 point, 2 vectors),
% compute two additional points and define the plane.
% If a plane is given by an equation ax+by+cz+d=0, compute three
% points and define the plane.
% Currently, plane equations are not handled separately.
% Projection of a vector |j| on a plane |p|, along a line |l|.
% The projection, if it exists, is vector |i|.
% Returns |true| is there is a projection, and |false| if there is none.
vardef proj_v_v_l_pl_(expr i,j)(text l)(text p)=
save pa,pb,int; boolean int;
hide(
new_point(pa);new_point(pb);
% we project two points: the origin, and origin+v(j):
if def_proj_pl_(pa)(p)(point_null)(l):
if def_proj_pl_(pb)(p)(j)(l):
vec_diff_(i,pb,pa);
int=true;
else:
message "Second point can not be projected";
int=false;
fi;
else: int=false;
message "Origin can not be projected";
fi;
free_point(pb);free_point(pa);
)
int
enddef;
% The next function checks if a point is part of a plane.
% Returns |true| is point |i| is in the plane |p|.
vardef point_in_plane_p_pl_(expr i)(text p)=
save v_a;boolean res;
hide(
new_vec(v_a);new_vec(v_b);
def_normal_p_(v_a)(p);
vec_diff_(v_b,p1,i);
if vec_dprod_(v_a,v_b)=0: res=true;else: res=false;fi;
free_vec(v_b);free_vec(v_a);
)
res
enddef;
% The next function finds the angle of a vector with respect to a plane.
% Returns the angle of a vector |v| with respect to a plane |p|.
vardef vangle_v_pl_(expr v)(text p)=
save v_a,an_;
hide(
new_vec(v_a);
% we compute a vector normal to the plane:
def_normal_p_(v_a)(p);
an_=90-vangle_v_v_(v,v_a);
free_vec(v_a);
)
an_
enddef;
% Compute the angle between two vectors
% The angle is always between 0 and 180,
% since this is the best one can do with two vectors.
% If we had a third vector, we could be more accurate.
vardef vangle_v_v_(expr va,vb)=
save cosa_,sina_;
hide(
cosa_=vec_dprod_(va,vb)/vec_mod_(va)/vec_mod_(vb);
if cosa_>1: % sometimes, this happens with rounding errors
sina_=0;
else:
sina_= 1 +-+ cosa_; % sqrt(1-cosa_**2)
fi;
)
angle((cosa_,sina_))
enddef;
% Define a plane with two lines:
def def_plane_pl_l_l(text p)(text l)(text m)=
set_plane_(p)(l1,l2,1); % the last value is irrelevant
vec_diff_(p3,m2,m1);vec_sum_(p3,p3,l1);
enddef;
% Define the plane orthogonal to a line and going through a point
% (not necessarily belonging to the plane):
% the plane must already have been defined
% |p|=plane, |l|=line, |i|=point
%...
% (absolute version)
vardef def_orth_pl_l_p_(text p)(text l)(expr i)=
new_vec(va);new_vec(vb);new_vec(vc);new_vec(h);
vec_def_vec_(p1,i); % this is the first point of the plane
vec_diff_(va,l2,l1);
vec_def_vec_(vb,i);
if abs(xval(va))<absmin(yval(va),zval(va)):
vec_sum_(vb,vb,vec_I);
elseif abs(yval(va))<absmin(xval(va),zval(va)):
vec_sum_(vb,vb,vec_J);
else:vec_sum_(vb,vb,vec_K);
fi;
% now, |vb| is a point not on the line and not too close to it
% we compute a vertical to the line
def_vert_l_(h,vb)(l);
vec_diff_(vb,vb,h);vec_unit_(vb,vb);
vec_sum_(p2,vb,p1);
% |p[2]| is now a point of the plane
% a third point is obtained by cross product
vec_prod_(vc,va,vb);vec_unit_(vc,vc);vec_sum_(p3,vc,p1);
free_vec(h);free_vec(vc);free_vec(vb);free_vec(va);
enddef;
% (local version)
vardef def_orth_pl_l_p(text p)(text l)(expr i)=
def_orth_pl_l_p_(p)(l)(pnt(i))
enddef;
% Line orthogonal to a plane and going through a point
% (not necessarily belonging to the plane);
% from the three points defining the plane, compute a normal,
% and add it to the point, this gives a second point,
% and make a line out of it
% (absolute version)
vardef def_orth_l_pl_p_(text l)(text p)(expr i)=
new_vec(va);new_vec(vb);
vec_def_vec_(l1,i);
def_normal_p_(l2)(p);
vec_sum_(l2,l2,l1);
free_vec(vb);free_vec(va);
enddef;
% (local version)
vardef def_orth_l_pl_p(text l)(text p)(expr i)=
def_orth_l_pl_p_(l)(p)(pnt(i))
enddef;
% Unitary vector normal to a plane.
% |v| is a vector that must have been defined
% (absolute version)
vardef def_normal_p_(expr v)(text p)=
new_vec(va);new_vec(vb);
vec_diff_(va,p2,p1);vec_diff_(vb,p3,p1);vec_prod_(v,va,vb);
vec_unit_(v,v);
free_vec(vb);free_vec(va);
enddef;
% Unitary vector normal to a plane (local version)
vardef def_normal_p(expr v)(text p)=def_normal_p_(pnt(v))(p) enddef;
% The following two functions are old versions of the
% line/plane intersection. They are not used anymore.
%
% Intersection line/plane
% Point |i| is the intersection
% The return value is |true| if the intersection is a point,
% |false| otherwise
% (absolute version)
vardef old_def_inter_p_l_pl_(expr i)(text l)(text p)=
save d,t,int;boolean int;
hide(
new_vec(va);new_vec(vb);new_vec(vc);
% first, we compute a vector normal to the plane
vec_diff_(va,p2,p1);
vec_diff_(vb,p3,p2);
vec_prod_(vc,va,vb);
% we want the plane equation as ax+by+cz+d=0
% the normal vector gives us (a,b,c)
% d is then easy to compute
d=-xval(vc)*xval(p1)-yval(vc)*yval(p1)-zval(vc)*zval(p1);
vec_diff_(i,l2,l1);
if vec_dprod_(i,vc)=0: % the line is parallel to the plane
int:=false;
else:
int:=true;
t=-(d+xval(vc)*xval(l1)+yval(vc)*yval(l1)+zval(vc)*zval(l1))
/vec_dprod_(i,vc);
vec_mult_(i,i,t);vec_sum_(i,i,l1);
fi;
free_vec(vc);free_vec(vb);free_vec(va);
)
int
enddef;
% same (local version)
vardef old_def_inter_p_l_pl(expr i)(text l)(text p)=
def_inter_p_l_pl_(pnt(i))(l)(p)
enddef;
% Intersection line/plane (absolute version)
% Point |i| is the intersection.
% The return value is |true| if the intersection is a point,
% |false| otherwise
vardef def_inter_p_l_pl_(expr i)(text l)(text p)=
save int;boolean int;
hide(
new_points(loc)(3);
vec_diff_(loc1,p2,p1);vec_diff_(loc2,p3,p1);vec_prod_(loc3,loc1,loc2);
vec_diff_(loc1,p1,l1);vec_diff_(loc2,l2,l1);
if vec_dprod_(loc2,loc3)<>0:
vec_mult_(loc2,loc2,vec_dprod_(loc1,loc3)/vec_dprod_(loc2,loc3));
vec_sum_(i,l1,loc2);
int:=true;
% Remark: in order to prove that point |i| is on the plane, it
% suffices to compute vec(ci).(vec(cd) /\ vec(ce))
% =(-vec(ac)+vec(ai)).(vec(cd) /\ vec(ce))
% =-vec(ac).(vec(cd) /\ vec(ce))
% +(vec(ab).(vec(cd) /\ vec(ce))) vec(ac).(vec(cd) /\ vec(ce))
% ----------------------------
% vec(ab).(vec(cd) /\ vec(ce))
% =0
else: % the line is parallel to the plane
int:=false;
fi;
free_points(loc)(3);
)
int
enddef;
% Intersection line/plane (local version)
vardef def_inter_p_l_pl(expr i)(text l)(text p)=
def_inter_p_l_pl_(pnt(i))(l)(p)
enddef;
% The following function is used in |def_inter_l_pl_pl|.
% We could simplify it by breaking it in two.
vardef def_inter_l_pl_pl_base_case_(text l)(expr pa,pb,pc)(text q)=
save trial;
new_line_(trial)(pa,pb);
if def_inter_p_l_pl_(l1)(trial)(q):
else: % there is no intersection or the intersection is the line
vec_def_vec_(trial1,pa);
mid_point_(trial2,pb,pc);
if def_inter_p_l_pl_(l1)(trial)(q):
else:
message "THIS SHOULD NOT HAPPEN, PLEASE REPORT THIS PROBLEM";
fi;
fi;
set_line_(trial)(pa,pc);
if def_inter_p_l_pl_(l2)(trial)(q):
else: % there is no intersection or the intersection is the line
vec_def_vec_(trial1,pa);
mid_point_(trial2,pb,pc);
if def_inter_p_l_pl_(l2)(trial)(q):
else:
message "THIS SHOULD NOT HAPPEN, PLEASE REPORT THIS PROBLEM";
fi;
fi;
free_line(trial);
enddef;
% Intersection of two planes.
% TO DO: this function is not yet robust enough, because
% unnecessary overflows can occur.
% A boolean is set if there is no intersection.
% The line |l| must already have been defined.
vardef def_inter_l_pl_pl(text l)(text p)(text q)=
save trial,da,db,dc,int;boolean int;
hide(
% we first search the point of p1, p2, p3 which is the farthest
% from q;
da=dist_pl_(p1)(q);db=dist_pl_(p2)(q);dc=dist_pl_(p3)(q);
if (da=db) and (db=dc): % the two planes are parallel
int:=false;
else:
int:=true;
if (da>=db) and (da>=dc):
def_inter_l_pl_pl_base_case_(l)(p1,p2,p3)(q);
elseif (db>=da) and (db>=dc):
def_inter_l_pl_pl_base_case_(l)(p2,p1,p3)(q);
else:
def_inter_l_pl_pl_base_case_(l)(p3,p1,p2)(q);
fi;
fi;
)
int
enddef;
% Visual intersection between lines (jk) and (lm).
% The computed intersection lies on (jk).
% Returns true if there is an intersection, false otherwise.
% (absolute version)
vardef def_visual_inter_(expr i)(expr j,k,l,m)=
save pla,plb,la,lb,d,int;boolean int;
hide(
new_plane_(pla)(Obs,l,m);new_plane_(plb)(Obs,j,k);
new_line_(la)(0,0);new_line_(lb)(j,k);
if def_inter_l_pl_pl(la)(pla)(plb):
int:=true;
% |d| is the closest distance between lines |la| and |lb|
% We don't use |d| here, and are only interested in point |i|.
d=def_inter_p_l_l_(i)(la)(lb);
else:
int:=false;
fi;
free_line(lb);free_line(la);free_plane(plb);free_plane(pla);
) int
enddef;
% same (local version)
vardef def_visual_inter(expr i)(expr j,k,l,m)=
def_visual_inter_(pnt(i),pnt(j),pnt(k),pnt(l),pnt(m))
enddef;
% Point of a line at a given distance from a given point.
% |i| = new point |d|=distance |j|=point |l|=line
% $|d|>0$ or $|d|<0$ give two different points.
% If there is an intersection, the function returns |true|;
% otherwise it returns |false|.
% (absolute version)
vardef def_point_at_(expr i)(expr d)(expr j)(text l)=
save dj,ld,int;boolean int;
hide(
new_point(h);new_point(hc);
def_vert_l_(h,j)(l);
vec_diff_(hc,j,h);
if d*d-vec_dprod_(hc,hc)>=0: int:=true;
ld=sign(d)*sqrt(d*d-vec_dprod_(hc,hc));
vec_diff_(i,l1,l2);
vec_unit_(i,i);
vec_mult_(i,i,ld);
vec_sum_(i,i,h);
else: int:=false;
fi;
free_point(hc);
free_point(h);
)
int
enddef;
% same (local version)
vardef def_point_at(expr i)(expr d)(expr j)(text l)=
def_point_at_(pnt(i))(d)(pnt(j))(l)
enddef;
% Define a vertical of a line.
% Point |i| is obtained as the intersection of a vertical
% starting from point |j| and reaching the line |l|.
vardef def_vert_l_(expr i,j)(text l)=
new_points(loc)(3);
vec_diff_(loc1,j,l1);vec_diff_(loc2,l2,l1);
vec_mult_(loc3,loc2,vec_dprod_(loc1,loc2)/vec_dprod_(loc2,loc2));
vec_sum_(i,loc3,l1);
free_points(loc)(3);
enddef;
% Define a vertical. (local version)
vardef def_vert_l(expr i,j)(text l)=
def_vert_l_(pnt(i),pnt(j))(l);
enddef;
% Vertical falling on a plane.
% Point |j| falls on plane |p| at point |i| (absolute version)
vardef def_vert_pl_(expr i)(expr j)(text p)=
save d;
new_vec(va);new_vec(vb);
def_normal_p_(va)(p);
vec_diff_(vb,j,p1);
d=-vec_dprod_(vb,va);
vec_mult_(va,va,d);
vec_sum_(vb,vb,va);
vec_sum_(i,p1,vb);
free_vec(vb);free_vec(va);
enddef;
% same (local version)
vardef def_vert_pl(expr i)(expr j)(text p)=
def_vert_pl_(pnt(i))(pnt(j))(p)
enddef;
% Distance to a plane.
% (absolute version)
vardef dist_pl_(expr i)(text p)=
save d;
hide(
new_vec(va);
def_vert_pl_(va)(i)(p);
vec_diff_(va,va,i);
d=vec_mod_(va);
free_vec(va);
)
d
enddef;
% (local version)
def dist_pl(expr i)(text p)=dist_pl_(pnt(i))(p) enddef;
% Projections on planes or lines, according to a direction.
% This one is very hazardous: use epsilon
% Find point |i| on |l| from point |j| using direction |d|
def def_proj_l_(expr i)(text l)(expr j)(text d)=
NOT YET IMPLEMENTED
enddef;
def def_proj_l(expr i)(text l)(expr j)(text d)=
def_proj_l_(pnt(i))(l)(pnt(j))(d)
enddef;
% Find point |i| on |p| from point |j| using direction |d|.
vardef def_proj_pl_(expr i)(text p)(expr j)(text d)=
save l_,int; boolean int;
hide(
% we compute the intersection between line (|j|+|d|) and plane |p|
new_line_(l_)(1,1); % we must take a name that cannot
% conflict with the text replacement of |d|
vec_diff_(l_2,d2,d1);vec_sum_(l_2,l_2,j);
vec_def_vec_(l_1,j);
if def_inter_p_l_pl_(i)(l_)(p):int=true;
else: int=false;
fi;
free_line(l_);
)
int
enddef;
def def_proj_pl(expr i)(text p)(expr j)(text d)=
def_proj_pl_(pnt(i))(p)(pnt(j))(d)
enddef;
% Central projection on a plane.
def def_cproj_pl_(expr i)(text p)(expr j)(expr k)=
% use |def_proj_p|
NOT YET IMPLEMENTED
enddef;
% Central projection on a plane.
def def_cproj_pl(expr i)(text p)(expr j)(expr k)=
def_cproj_pl_(pnt(i))(p)(pnt(j))(pnt(k))
enddef;
% Intersection of two lines (hazardous).
% Due to rounding errors, two lines that should intersect
% may not do so in reality. Therefore,
% we compute the point which is the middle of the two
% closest points between the lines and return the distance
% between the two lines. If the lines are parallel (possibly
% identical), we return -1.
vardef def_inter_p_l_l_(expr i)(text l)(text m)=
save ga,gb,gc,gd,ge,gf,t,u,d,mx;
hide(
new_point(va);new_point(vb);new_point(vc);new_point(h);new_point(k);
vec_diff_(va,m1,l1);
vec_diff_(vb,l2,l1);
vec_diff_(vc,m2,m1);
ga=vec_dprod_(vc,vb);gb=-vec_dprod_(vb,vb);
gc=vec_dprod_(va,vb);gd=vec_dprod_(vc,vc);
ge=-ga;gf=vec_dprod_(va,vc);
% compute the max of ga,gb,...
mx:=absmax(ga,gb);mx:=absmax(mx,gc);mx:=absmax(mx,gd);mx:=absmax(mx,ge);
mx:=absmax(mx,gf);
ga:=ga/mx;gb:=gb/mx;gc:=gc/mx;gd:=gd/mx;ge:=ge/mx;gf:=gf/mx;
if ga*ge=gb*gd: % the lines are parallel
% we return -1
d=-1;
else:
t=(gc*gd-ga*gf)/(ga*ge-gb*gd);u=(gb*gf-gc*ge)/(ga*ge-gb*gd);
vec_diff_(h,l2,l1);vec_mult_(h,h,t);vec_sum_(h,h,l1);
vec_diff_(k,m2,m1);vec_mult_(k,k,u);vec_sum_(k,k,m1);
% |h| and |k| are now the closest points
% we set |i| to the middle of |h| and |k| and return the distance |hk|
mid_point_(i,h,k);
vec_diff_(h,h,k);d=vec_mod_(h);
fi;
free_point(k);free_point(h);free_point(vc);free_point(vb);free_point(va);
)
d
enddef;
def def_inter_p_l_l(expr i)(text l)(text m)=
def_inter_p_l_l_(pnt(i))(l)(m)
enddef;
% Find point |i| symmetric of point |j| with respect to point |k|
def def_sym_(expr i)(expr j)(expr k)=
NOT YET IMPLEMENTED
enddef;
def def_sym(expr i)(expr j)(expr k)=
def_sym_(pnt(i))(pnt(j))(pnt(k))
enddef;
% Find point |i| symmetric of point |j| with respect to plane |p|
def def_sym_pl_(expr i)(expr j)(text p)=
NOT YET IMPLEMENTED
enddef;
def def_sym_pl(expr i)(expr j)(text p)=
def_sym_pl_(pnt(i))(pnt(j))(p)
enddef;
% Find point |i| symmetric of point |j| with respect to line |l|.
% That's a mere 180 degrees rotation around the line.
def def_sym_l_(expr i)(expr j)(text l)=
NOT YET IMPLEMENTED
enddef;
def def_sym_l(expr i)(expr j)(text l)=
def_sym_l_(pnt(i))(pnt(j))(l)
enddef;
% Intersection circle/line (hazardous).
% If some intersection does not exist, |infty| is put for its values
def def_inter_p_p_c_l_(expr i,j)(text c)(text l)=
NOT YET IMPLEMENTED
enddef;
def def_inter_p_p_c_l(expr i,j)(text c)(text l)=
def_inter_p_p_c_l_(pnt(i),pnt(j))(c)(l)
enddef;
% circle/plane
% A similar coding will distinguish the four cases:
% one point, two points, the full circle, nothing
def def_inter_p_p_c_pl_(expr i,j)(text c)(text p)=
NOT YET IMPLEMENTED
enddef;
def def_inter_p_p_c_pl(expr i,j)(text c)(text p)=
def_inter_p_p_c_pl_(pnt(i),pnt(j))(c)(p)
enddef;
% circle/circle
% A similar coding will distinguish the four cases:
% one point, two points, the full circle, nothing
def def_inter_p_p_c_c_(expr i,j)(text ca)(text cb)=
NOT YET IMPLEMENTED
enddef;
def def_inter_p_p_c_c(expr i,j)(text ca)(text cb)=
def_inter_p_p_c_c_(pnt(i),pnt(j))(ca)(cb)
enddef;
% Computation of tangent lines and planes.
% Tangent line to a circle at a given point.
def def_tang_l_c_p_(text l)(text c)(expr i)=
NOT YET IMPLEMENTED
enddef;
def def_tang_l_c_p(text l)(text c)(expr i)=
def_tang_l_c_p_(l)(c)(pnt(i))
enddef;
% Tangent plane to a sphere at a given point.
def def_tang_pl_s_p_(text p)(text s)(expr i)=
NOT YET IMPLEMENTED
enddef;
def def_tang_pl_s_p(text p)(text s)(expr i)=
def_tang_pl_s_p_(p)(s)(pnt(i))
enddef;
% Sphere defined by four non-coplanar points.
def def_sphere_through_(text s)(expr i,j,k,l)=
NOT YET IMPLEMENTED
enddef;
def def_sphere_through(text s)(expr i,j,k,l)=
def_sphere_through_(s)(pnt(i),pnt(j),pnt(k),pnt(l))
enddef;
% Line going through a point and parallel to another line.
def def_parallel_l_p_pl_(text l)(expr i)(text m)=
NOT YET IMPLEMENTED
enddef;
def def_parallel_l_p_pl(text l)(expr i)(text m)=
def_parallel_l_p_pl_(l)(pnt(i))(m)
enddef;
% Plane going through a point and parallel to another plane.
def def_parallel_pl_p_pl_(text p)(expr i)(text q)=
NOT YET IMPLEMENTED
enddef;
def def_parallel_pl_p_pl(text p)(expr i)(text q)=
def_parallel_pl_p_pl_(p)(pnt(i))(q)
enddef;
def def_rectangle_one_side_(expr p)(text l)(text pa)(text pb)(text pc)=
if def_inter_l_pl_pl(l)(pb)(pc):
else:
message "YOUR PLANES ARE NOT WELL SPECIFIED 1";
fi;
if def_inter_p_l_pl_(p)(l)(pa):
else:
message "YOUR PLANES ARE NOT WELL SPECIFIED 2";
fi;
enddef;
% A rectangle (for instance representing a plane) can be defined
% from five planes; the rectangle is made of four points (corners)
% |pa| is the plane containing the rectangle
vardef def_rectangle_pl_pl_pl_pl_pl_(expr ca,cb,cc,cd)
(text pa)(text pb)(text pc)(text pd)(text pe)=
save l;
new_line_(l)(1,1);
def_rectangle_one_side_(ca)(l)(pa)(pb)(pc);
def_rectangle_one_side_(cb)(l)(pa)(pc)(pd);
def_rectangle_one_side_(cc)(l)(pa)(pd)(pe);
def_rectangle_one_side_(cd)(l)(pa)(pe)(pb);
free_line(l);
enddef;
% Instead of using four additional planes, one can also use eight points:
% the order of the point is important.
vardef def_rectangle_pl_(expr ca,cb,cc,cd)
(text pa)(expr pta,ptb,ptc,ptd,pte,ptf,ptg,pth)=
save pb,pc,pd,pe;
% we create the four additionnal planes
new_plane_(pb)(pta,ptb,pte);new_plane_(pc)(ptb,ptc,ptf);
new_plane_(pd)(ptc,ptd,ptg);new_plane_(pe)(ptd,pta,pth);
def_rectangle_pl_pl_pl_pl_pl_(ca,cb,cc,cd)(pa)(pb)(pc)(pd)(pe);
free_plane(pe);free_plane(pd);free_plane(pc);free_plane(pb);
enddef;
def draw_rectangle(expr i,j,k,l)=
draw_line(i,j);draw_line(j,k);draw_line(k,l);draw_line(l,i);
enddef;
numeric mark_h,mark_l;mark_h=2mm;mark_l=1mm;
def draw_one_mark(expr p,a)=
draw (p+unitvector(dir(a))*mark_h/2)--(p-unitvector(dir(a))*mark_h/2);
enddef;
% Draw |n| marks between points |i| and |j|.
% |i| and |j| are local points and there is no absolute version
% since this is a drawing function.
vardef draw_equal_marks(expr i,j,n)=
save a,k,l,start;
a=angle(z[ipnt_(j)]-z[ipnt_(i)])+90;
l=(x[ipnt_(j)]-x[ipnt_(i)])++(y[ipnt_(j)]-y[ipnt_(i)]);
if n=1:
draw_one_mark(.5[z[ipnt_(i)],z[ipnt_(j)]],a);
elseif n>1:
start=0.5-(n-1)*mark_l/(2*l);
for k:=0 upto n-1:
draw_one_mark((start+k*mark_l/l)[z[ipnt_(i)],z[ipnt_(j)]],a);
endfor;
else: message "parameter " & decimal n & " should be positive";
fi;
enddef;
numeric square_angle_size;
square_angle_size=0.2;
% (absolute version)
def def_right_angle_(expr pi,pj,pk,i,j,k)=
vec_diff_(pj,j,i);vec_diff_(pk,k,i);
if vec_mod_(pj)>0:
vec_mult_(pj,pj,square_angle_size/vec_mod_(pj));
fi;
if vec_mod_(pk)>0:
vec_mult_(pk,pk,square_angle_size/vec_mod_(pk));
fi;
vec_sum_(pi,i,pj);vec_sum_(pi,pi,pk);
vec_sum_(pj,pj,i);vec_sum_(pk,pk,i);
enddef;
% (local version)
def def_right_angle(expr pi,pj,pk,i,j,k)=
def_right_angle_(pnt(pi),pnt(pj),pnt(pk),pnt(i),pnt(j),pnt(k));
enddef;
% Right angle on a plane projection.
% Similar to |def_right_angle_|.
% This also defines the vertical projection as |vp|.
vardef def_right_angle_p_(expr pi,pj,pk,vp)(expr i)(text p)=
def_vert_pl_(vp)(i)(p);
new_vec(va);
vec_diff_(va,p1,p2);
vec_sum_(va,va,vp); % va is now a second point on the plane,
% different from the projection
def_right_angle_(pi,pj,pk,vp,va,i);
free_vec(va);
enddef;
def draw_right_angle(expr pi,pj,pk)=
draw z[ipnt_(pj)]--z[ipnt_(pi)]--z[ipnt_(pk)];
enddef;
def draw_double_right_angle(expr pi,pj,pk,pl)=
draw z[ipnt_(pj)]--z[ipnt_(pi)]--z[ipnt_(pk)]--z[ipnt_(pl)]--cycle;
enddef;
% |draw_line| with extra drawing in either directions
def draw_line_extra(expr i,j)(expr exi,exj)=
draw exi[z[ipnt_(i)],z[ipnt_(j)]]--exj[z[ipnt_(i)],z[ipnt_(j)]];
enddef;
% defines point |i| at position |t| on segment |a|-|b| (absolute version)
def set_extra_point_(expr i,a,b,t)=
vec_diff_(i,b,a);vec_mult_(i,i,t);vec_sum_(i,i,a);
enddef;
% defines point |i| at position |t| on segment |a|-|b| (local version)
def set_extra_point(expr i,a,b,t)=
set_extra_point_(pnt(i),pnt(a),pnt(b),t);
enddef;
% labels with local points
vardef thelabel_obj@#(expr s,n) =
thelabel.@#(s,z[ipnt_(n)])
enddef;
def label_obj = draw thelabel_obj enddef;
% The plane |p| (which must have been initialized) is defined
% as the screen plane. This is useful for computing vanishing points
def def_screen_pl(text p)=
vec_mult_(p1,ObsI_,Obs_dist);vec_sum_(p1,p1,Obs); % center of screen
vec_sum_(p2,p1,ObsJ_);vec_sum_(p3,p1,ObsK_);
enddef;
% |i| is the resulting point, |l| defines a line in space,
% |s| is the screen plane
% Returns |true| is there is a vanishing point, otherwise |false|.
vardef def_vanishing_point_p_l_pl_(expr i)(text l)(text s)=
save vp;boolean vp;
hide(
new_vec(v);
vec_diff_(v,l2,l1);vec_sum_(v,Obs,v);
new_line_(obsl)(Obs,v);
if def_inter_p_l_pl_(i)(obsl)(s):vp=true;else:vp=false;fi;
free_line(obsl);
free_vec(v);
)
vp
enddef;
def def_vanishing_point_p_l_pl(expr i)(text l)(text s)=
def_vanishing_point_p_l_pl_(pnt(i))(l)(s)
enddef;
endinput
|